Science.gov

Sample records for chemical composition chemical

  1. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  2. Chemical composition of Mars

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Anders, E.

    1979-01-01

    The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.

  3. Chemical Compositions of Stars

    NASA Astrophysics Data System (ADS)

    Leckrone, D.; Murdin, P.

    2000-11-01

    In 1835, in a famously inaccurate forecast, the French philosopher Auguste Comte wrote of stars that, `We understand the possibility of determining their shapes, their distances, their sizes and their movements; whereas we would never know how to study by any means their chemical composition…'. At the close of the 20th century the accurate measurement of the abundances of the chemical elements in...

  4. Chemical composition of Borislav ozocerite

    SciTech Connect

    Batukova, G.I.; Davydov, V.D.; Shcherbik, L.K.; Petrishchev, K.P.; Kolodko, N.P.; Moiseyeva, A.F.

    1983-01-01

    Ozocerite is a natural wax product with wide commercial use. The absence of comprehensive data concerning the chemical composition and structure of ozocerite hinders the production of wax melts with predetermined properties. Slight changes in the chemical composition of wax products, difficult to detect by modern methods of investigation, have a decisive effect on the properties of these products. Individual compounds have not, so far, been identified by present-day physicochemical methods. This paper describes an investigation of the chemical composition of Borislav ozocerite using a method developed to study the composition of Soviet lignite wax. Borislav ozocerite obtained by extraction with BR-70 light petroleum spirit under industrial conditions and with BR-1 light petroleum spirit, under laboratory conditions (samples A and B, respectively) were examined. Physical and chemical properties of Borislav ozocerite were determined. 6 references, 2 figures, 3 tables.

  5. Method of forming a chemical composition

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  6. Chemical composition of Mars

    USGS Publications Warehouse

    Morgan, J.W.; Anders, E.

    1979-01-01

    The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on K U = 2200 from orbital ??-spectrometry and on thermal history calculations by Tokso??z and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking). The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (?? = 3.52-3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S-much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600-1300 K) or 0.029 (Tl group, Tcond < 600 K). The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11. Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. ?? 1979.

  7. The Chemical Composition of Honey

    ERIC Educational Resources Information Center

    Ball, David W.

    2007-01-01

    Honey is a supersaturated sugar solution, created by bees, and used by human beings as a sweetener. However, honey is more than just a supersaturated sugar solution; it also contains acids, minerals, vitamins, and amino acids in varying quantities. In this article, we will briefly explore the chemical composition of honey. (Contains 2 figures and…

  8. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  9. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    DOEpatents

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  10. Chemical composition of lunar material.

    PubMed

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  11. The Chemical Composition of Maple Syrup

    ERIC Educational Resources Information Center

    Ball, David W.

    2007-01-01

    Maple syrup is one of several high-sugar liquids that humans consume. However, maple syrup is more than just a concentrated sugar solution. Here, we review the chemical composition of maple syrup. (Contains 4 tables and 1 figure.)

  12. Chemical composition of fat and oil products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fats and oils are an important dietary component, and contribute to the nutritional and sensory quality of foods. This chapter focuses on the chemical composition of fats and oils, and how these compositions affect the functional properties of fats and oils in foods. The focus will remain on the mos...

  13. Modification of chemical additives to elastomeric compositions

    NASA Astrophysics Data System (ADS)

    Mukhutdinov, A. A.; Grishin, B. S.

    1994-08-01

    The physicochemical principles of the modification of crystalline chemical additives to elastomeric compositions are examined. A classification of various types of modifications based on scientific principles is given. The modifications are subdivided into physical and physicochemical depending on the configuration of the molecules in the crystals, the defectiveness and dispersity of the crystalline particles, the melting points of the crystals, and the presence of necleophilic and electrophylic centres in the molecules of the components of binary and complex eutectic mixtures. The effectiveness of the modification of the chemical additives is determined by the manifestation in binary systems of these components in elastomeric compositions of physical and chemical synergism due to the occurrence of the relevant processes in such systems. A relation has been discovered between the physical and chemical phenomena accompanying the modification of the chemical additives in binary and complex eutectic mixtures, their influence on the properties of the elastomeric composition is examined, the ecological problems associated with the processing of such materials are discussed, and the relation between the structure and properties of the molecules of the additives is analysed using quantum-chemical calculations. The bibliography includes 92 references.

  14. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  15. Impact of oil on groundwater chemical composition

    NASA Astrophysics Data System (ADS)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  16. Chemical composition of new Acapulcoites and Lodranites

    NASA Astrophysics Data System (ADS)

    Zipfel, J.; Palme, H.

    1993-03-01

    The bulk compositions of two Antarctic Lodranites, MAC 88177 and FRO 90011, and two Acapulcoites, ALH 81261 and Monument Draw, were determined with instrumental neutron activation analysis. Acapulcoites have essentially chondritic major and trace element abundances but achondritic texture. They consist of entirely recrystallized, fine grained mineral assemblages. Chondrules are extremely rare; one relict radiating pyroxene chondrule was described in Monument Draw (MD). The coarse grained Lodranites also have achondritic textures, but they are different compositionally with depletions in Al, Na, and incompatible elements probably a result of separation of partial, feldspar-rich melt. MAC 88177 is significantly more depleted in incompatible elements than FRO 90011 suggesting a higher degree of partial melting for the MAC-Lodranite. The chemical data support a genetic relationship between Lodranites and Acapulcoites inferred earlier from oxygen isotopes, petrology, and mineral composition.

  17. Chemical Composition and Photometry of BE Lyncis

    NASA Astrophysics Data System (ADS)

    Kim, Chulhee; Yushchenko, A. V.; Kim, S.-L.; Jeon, Y.-B.; Kim, Chun-Hwey

    2012-05-01

    High-resolution spectroscopic observation was carried out to find the chemical composition of BE Lyn. The abundances of 25 chemical elements from carbon to neodymium were found. The deficiency of iron appeared to be equal to Δ log N(Fe) = -0.26 ± 0.08 with respect to the solar metallicity, and the abundances of other elements were mainly undersolar. Only nitrogen, sodium, aluminum, and sulfur showed overabundances near 0.2-0.3 dex. The abundance pattern showed no clear signs of accretion or mass transfer events. It is not possible to exclude the classification of BE Lyn as a SX Phe-type star with slightly undersolar abundances of chemical elements. In addition, new differential time-series observations of BE Lyn were secured using V filters, and seven new times of light maximum were identified. We collected 162 times of light maximum from the literature, unpublished data, and an open database, and we proceeded to investigate the pulsational properties of BE Lyn. All five harmonic frequencies were identified using the Fourier decomposition method.

  18. Chemical composition of Texas surface waters, 1949

    USGS Publications Warehouse

    Irelan, Burdge

    1950-01-01

    This report is the fifth the a series of publications by the Texas Board of Water Engineers giving chemical analyses of the surface waters in the State of Texas. The samples for which data are given were collected between October 1, 1948 and September 30, 1949. During the water year 25 daily sampling stations were maintained by the Geological Survey. Sampled were collected less frequently during the year at many other points. Quality of water records for previous years can be found in the following reports: "Chemical Composition of Texas Surface Waters, 1938-1945," by W. W. Hastings, and J. H. Rowley; "Chemical Composition of Texas Surface Waters, 1946," by W. W. Hastings and B. Irelan; "Chemical Composition of Texas Surface Waters, 1947," by B. Irelan and J. R. Avrett; "Chemical Composition of Texas Surface Waters, 1948," by B. Irelan, D. E. Weaver, and J. R. Avrett. These reports may be obtained from the Texas Board of Water Engineers and Geological Survey at Austin, Texas. Samples for chemical analysis were collected daily at or near points on streams where gaging stations are maintained for measurement of discharge. Most of the analyses were made of 10-day composites of daily samples collected for a year at each sampling point. Three composite samples were usually prepared each month by mixing together equal quantities of daily samples collected for the 1st to the 10th, from the 11th to the 20th, and during the remainder of the month. Monthly composites were made at a few stations where variation in daily conductance was small. For some streams that are subject to sudden large changes in chemical composition, composite samples were made for shorter periods on the basis of the concentration of dissolved solids as indicated by measurement of specific conductance of the daily samples. The mean discharge for the composite period is reported in second-feet. Specific conductance values are expressed as "micromhos, K x 10 at 25° C." Silica, calcium, magnesium, sodium

  19. Environmental effects of oilfield chemicals on composite

    SciTech Connect

    Sorem, R.M.

    1998-12-31

    This paper presents a feasibility study of the effects of oilfield chemicals on composite materials. In this initial study only hydrochloric acid is considered. Initial attempts were made to test stressed specimens, but results were very poor. Subsequent testing was performed to determine how the composite material constituents reacted to the hydrochloric acid. The initial testing was performed on tubular specimens with axial and essentially hoop wound fibers of different materials with different resins. The specimens were loaded in bending to induce representative strains in the tubing. All specimens failed. The second tests consisted of only an environmental soak to determine the amount of mass uptake as well as the reduction in strength. The strength reduction results will be presented at a later time. Testing was performed on S-2 glass, carbon and Kevlar 49 as well as three different resins.

  20. Globally convergent computation of chemical equilibrium composition.

    PubMed

    Patil, Sunil; Aiyer, R C; Sharma, K C

    2008-05-01

    We report the Newton-Raphson based globally convergent computational method for determination of chemical equilibrium composition. In the computation of chemical equilibrium composition, an appearance of nonpositive value of number of moles of any component leads to discrepancy. The process of conditional backtracking and adaptive set of refining factors for Newton-Raphson steps are employed to resolve the problem. The mathematical formulation proposed by Heuze et al. (J Chem Phys 1985, 83, 4734) has been solved using proposed computational method, instead of empirical iterative formulation, as proposed by them. Results for the same numerical example, used by Heuze et al. (J Chem Phys 1985, 83, 4734) and White et al. (J Chem Phys 1958, 28, 751) are presented in addition to decomposition of Cyclotrimethylenetrinitramine for fixed temperature and pressure. It is observed that the proposed method is efficient and globally convergent. An even noteworthy finding is that the set of refining factors can be chosen from the range 0.1 to eta, where eta may be greater than one depending on how smoothly system of nonlinear equations is dependant on corresponding variable. Related analysis and results are discussed.

  1. Cometary Coma Chemical Composition (C4) Mission

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  2. Chemical composition of selected edible nut seeds.

    PubMed

    Venkatachalam, Mahesh; Sathe, Shridhar K

    2006-06-28

    Commercially important edible nut seeds were analyzed for chemical composition and moisture sorption. Moisture (1.47-9.51%), protein (7.50-21.56%), lipid (42.88-66.71%), ash (1.16-3.28%), total soluble sugars (0.55-3.96%), tannins (0.01-0.88%), and phytate (0.15-0.35%) contents varied considerably. Regardless of the seed type, lipids were mainly composed of mono- and polyunsaturated fatty acids (>75% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of macadamia, linoleic acid (C18:2) was the major polyunsaturated fatty acid. In the case of walnuts, in addition to linoleic acid (59.79%) linolenic acid (C18:3) also significantly contributed toward the total polyunsaturated lipids. Amino acid composition analyses indicated lysine (Brazil nut, cashew nut, hazelnut, pine nut, and walnut), sulfur amino acids methionine and cysteine (almond), tryptophan (macadamia, pecan), and threonine (peanut) to be the first limiting amino acid as compared to human (2-5 year old) amino acid requirements. The amino acid composition of the seeds was characterized by the dominance of hydrophobic (range = 37.16-44.54%) and acidic (27.95-33.17%) amino acids followed by basic (16.16-21.17%) and hydrophilic (8.48-11.74%) amino acids. Trypsin inhibitory activity, hemagglutinating activity, and proteolytic activity were not detected in the nut seed samples analyzed. Sorption isotherms (Aw range = 0.08-0.97) indicated a narrow range for monolayer water content (11-29 mg/g of dry matter). No visible mold growth was evident on any of the samples stored at Aw < 0.53 and 25 degrees C for 6 months.

  3. Chemical composition of selected edible nut seeds.

    PubMed

    Venkatachalam, Mahesh; Sathe, Shridhar K

    2006-06-28

    Commercially important edible nut seeds were analyzed for chemical composition and moisture sorption. Moisture (1.47-9.51%), protein (7.50-21.56%), lipid (42.88-66.71%), ash (1.16-3.28%), total soluble sugars (0.55-3.96%), tannins (0.01-0.88%), and phytate (0.15-0.35%) contents varied considerably. Regardless of the seed type, lipids were mainly composed of mono- and polyunsaturated fatty acids (>75% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of macadamia, linoleic acid (C18:2) was the major polyunsaturated fatty acid. In the case of walnuts, in addition to linoleic acid (59.79%) linolenic acid (C18:3) also significantly contributed toward the total polyunsaturated lipids. Amino acid composition analyses indicated lysine (Brazil nut, cashew nut, hazelnut, pine nut, and walnut), sulfur amino acids methionine and cysteine (almond), tryptophan (macadamia, pecan), and threonine (peanut) to be the first limiting amino acid as compared to human (2-5 year old) amino acid requirements. The amino acid composition of the seeds was characterized by the dominance of hydrophobic (range = 37.16-44.54%) and acidic (27.95-33.17%) amino acids followed by basic (16.16-21.17%) and hydrophilic (8.48-11.74%) amino acids. Trypsin inhibitory activity, hemagglutinating activity, and proteolytic activity were not detected in the nut seed samples analyzed. Sorption isotherms (Aw range = 0.08-0.97) indicated a narrow range for monolayer water content (11-29 mg/g of dry matter). No visible mold growth was evident on any of the samples stored at Aw < 0.53 and 25 degrees C for 6 months. PMID:16787018

  4. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  5. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  6. On-line chemical composition analyzer development

    SciTech Connect

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  7. Essential Oils, Part III: Chemical Composition.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    2016-01-01

    Data on the chemistry of essential oils which have caused contact allergy are provided. The largest group of chemicals found in essential oils consists of terpenes. The number of identified components usually ranges from 100 to 250, but in some oils (lavender, geranium, rosemary) 450 to 500 chemicals have been found. Many chemicals are present in a large number of oils, up to 98% for β-caryophyllene and 97% for limonene. Chemicals that are important constituents of >20 oils are limonene, linalool, and α-pinene. In many essential oils, there are 2 to 5 components which together constitute over 50% to 60% of the oil. In some oils, however, there is one dominant ingredient, making up more than 50% of the oil, including (E)-anethole in aniseed and star anise oil, carvone in spearmint oil, 1,8-cineole (eucalyptol) in Eucalyptus globulus oil, and (E)-cinnamaldehyde in cassia oil. The most important chemicals in 93 individual oils are specified. PMID:27427817

  8. Honey: Chemical composition, stability and authenticity.

    PubMed

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius.

  9. Honey: Chemical composition, stability and authenticity.

    PubMed

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius. PMID:26593496

  10. Chemical compositions of large cluster IDPs

    SciTech Connect

    Flynn, G.J.; Lanzirotti, A.; Sutton, S.R.

    2006-12-06

    We performed X-ray fluorescence spectroscopy on two large cluster IDPs, which sample the IDP parent body at a mass scale two orders-of-magnitude larger than {approx}10 {micro}m IDPs, allowing proper incorporation of larger mineral grains into the bulk composition of the parent body. We previously determined that {approx}10 {micro}m interplanetary dust particles (IDPs) collected from the Earth's stratosphere are enriched in many moderately volatile elements by a factor of {approx}3 over the CI meteorites. However, these IDP measurements provide no direct constraint on the bulk chemical composition of the parent body (or parent bodies) of the IDPs. Collisions are believed to be the major mechanism for dust production by the asteroids, producing dust by surface erosion, cratering and catastrophic disruption. Hypervelocity impact experiments at {approx}5 km/sec, which is the mean collision velocity in the main belt, performed by Flynn and Durda on ordinary chondrite meteorites and the carbonaceous chondrite meteorite Allende show that the 10 {micro}m debris is dominated by matrix material while the debris larger than {approx}25 {micro}m is dominated by chondrule fragments. Thus, if the IDP parent body is similar in structure to the chondritic meteorites, it is likely that the {approx}10 {micro}m IDPs oversample the fine-grained component of the parent body. We have examined the matrix material from the few meteorites that are sufficiently fine-grained to be samples of potential IDP parent bodies. This search has, thus far, not produced a compositional and mineralogical match to either the hydrous or anhydrous IDPs. This result, coupled with our recent mapping of the element distributions, which indicates the enrichment of moderately volatile elements is not due to contamination on their surfaces, suggests the IDPs represent a new type of extraterrestrial material. Nonetheless, the meteorite fragmentation results suggest that compositional measurements on 10 {micro

  11. Chemical Composition of Fresh and Aged Biochars

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Hamdan, R.; Mukherjee, A.; Zimmerman, A. R.

    2014-12-01

    It is possible to manipulate the chemical and physical properties of pyrogenic organic matter ('black carbon' or 'biochar') during its production and tailor its composition for intended environmental management applications. In this study biochars made from grass (Tripsacum floridanum), oak (Quercus lobata), and pine (Pinus taeda) at 250 ºC in air and 400 and 650 ºC under N2 were characterized by solid state 13C-NMR spectroscopy and desorption atmospheric pressure photoionization mass spectrometry. Among the biochars produced, those originating from pine showed distinct characteristics, with greater amounts of oxygenated aromatic clusters after low temperature combustion and more condensed aromatic clusters after higher temperature pyrolysis. Although a mixture of small and large aromatic clusters occurred across the temperature profile, cluster size increased and functionality decreased with increasing combustion temperature (Figure 1). At medium and high temperatures, aromatic clusters of up to 60- carbon aromatic rings inter-connected with small chains dominated the biochars examined. These structures are intermediate in size between the linearly condensed structures and the predominantly condensed aromatic clusters proposed in earlier studies. Field aging of the pure biochars for 15 months decreased the total acid functional group content as determined by Boehm titration, but solid-state 13C-NMR analyses suggested the creation and transformation of a range of functional groups via leaching, oxidation, and addition of microbially-produced organic matter. Similar trends were observed when the biochars were mixed with soils, suggesting that the same biochar aging processes occurred in the soil environment. These findings demonstrate that biochar transformations occur over time through a multitude of processes that are both biochar and soil type-dependent.

  12. Chemical composition of major ions in rainwater.

    PubMed

    Salve, P R; Maurya, A; Wate, S R; Devotta, Sukumar

    2008-03-01

    The present study investigated the chemical composition of rainwater at Kabir nagar, Nari, Nagpur, Maharashtra, India. The rainwater samples were collected on event basis during June-July-August-2006 and were analyzed for pH, major anions Cl, NO(3), SO(4)) and cations (Ca, Mg, Na, K, NH4). The pH value varied from 6.0 to 7.3 (avg. 6.3 +/- 0.3) indicating alkaline nature of rainwater. The pH of the rainwater was found well above the reference pH (5.6), showing alkalinity during the monsoon season. The average and standard deviation of ionic composition was found to be 98.1 +/- 10.6 micro eql(-1). The total anions contribute 45.1% and cations 54.9%, respectively to rainwater. Neutralization factors (NF) followed a sequence of NF(Ca) > NF(Mg) > NF(NH4) with factors of 1.1, 0.38 and 0.15 indicating the crustal components are responsible for neutralization of anions. The average ratio of (NO(3) + Cl)/SO(4) observed as 1.1 indicates that nitric and hydrochloric acid influences the acidity of rainwater. The ratio of NH(4)/NO(3) and NH(4)/SO(4) was observed as 0.68 and 0.34 indicate that the possible compounds which may predominate in the atmosphere are NH(4)NO(3) and (NH(4))(2)SO(4). Ionic correlation was established to identify sources of origin. A good correlation was seen between Ca and Mg (r = 0.95); suggesting the common occurrence of these ions from crustal origin. Similarly, the acidic ions SO(4) and NO(3) correlated well (r = 0.60) indicating their origin from similar sources. Other relatively significant correlations were observed between Ca and SO4 (r = 0.92), Mg and SO(4) (r = 0.83), Ca and NO(3) (r = 0.09), Ca and Cl (r = 0.34) and Mg and Cl (r = 0.31), and Mg and NO(3) (r = 0.71). The observed rainwater ratio of Cl/Na (1.1) is closer to that of seawater ratio (1.16) indicates fractionation of sea-salt and modifications by non-marine constituents as the site is 834 km away from the sea coast. The nss-Ca contribution was observed as 95.7% suggesting their

  13. Origin and chemical composition of evaporite deposits

    USGS Publications Warehouse

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from

  14. Propolis chemical composition and honeybee resistance against Varroa destructor.

    PubMed

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  15. Chemical composition of plasma treated polyimide microspheres

    NASA Astrophysics Data System (ADS)

    Gawdzik, Barbara; Sobiesiak, Magdalena

    2003-05-01

    Synthetic carbon microspheres for chromatography were obtained from porous copolymer of 4,4'-bis(maleimidodiphenyl)methane (BM) and divinylbenzene (DVB) using arc discharge argon plasma treatment. Chemical structure of the obtained material was determined by elemental analysis, scanning electron microscopy with X-ray detector, acid and base titrations, and atomic absorption spectroscopy. The results suggest that the carbon microspheres contain copper coming from the plasma reactor electrodes. To remove it two complexion agents were used: EDTA and 20% HNO 3. Copper can be removed from the surface using these methods. The other amount was permanently built into internal structure of the microspheres.

  16. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  17. THE CHEMICAL COMPOSITION OF PRAESEPE (M44)

    SciTech Connect

    Boesgaard, Ann Merchant; Roper, Brian W.; Lum, Michael G. E-mail: brianwroper@gmail.com

    2013-09-20

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne → Na cycling with dredge-up into the atmospheres of the red giants.

  18. The chemical composition of Galactic beat Cepheids

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V.; Lemasle, B.; Chekhonadskikh, F.; Bono, G.; Matsunaga, N.; Yushchenko, A.; Anderson, R. I.; Belik, S.; da Silva, R.; Inno, L.

    2016-08-01

    We determine the metallicity and detailed chemical abundances (α, iron-peak and neutron-capture elements) for the almost complete (18/24) sample of Galactic double mode Cepheids (also called beat Cepheids). Double mode Cepheids are Cepheids that pulsate in two modes simultaneously. We calibrate a new relation between their metallicity and their period ratio P1/P0. This linear relation allows to determine the metallicity of bimodal Cepheids with an accuracy of 0.03 dex in the range of [Fe/H] from +0.2 to -0.5 dex. By extrapolating the relation to Magellanic Clouds beat Cepheids, we provide their metallicity distribution function. Moreover, by using this relation, we also provide the first metallicity estimate for two double-mode F/1O Cepheids located in and beyond the Galactic bulge. Finally, we report the discovery of a super-Lithium rich double mode Cepheid V371 Per which has a Lithium abundance of logA(Li) = 3.54 ± 0.09 dex. Along with V1033 Cyg (which is an ordinary classical Cepheid), it is the second known Cepheid of such type in the Galaxy.

  19. The relationship of argon retentivity and chemical composition of hornblende

    SciTech Connect

    Leake, B.E.; Farrow, C.M. ); Elias, E.M. )

    1988-08-01

    K-Ar ages of 26 hornblende separates from Connemara, western Ireland do not show any correlation with the chemical composition of the hornblendes, including their iron contents. It is suggested that this is the usual pattern as there are only rare reports of compositional control of K-Ar ages.

  20. Contributions regarding chemical composition variation in ultrasonic field overlaying welding

    NASA Astrophysics Data System (ADS)

    Amza, Gh; Petrescu, V.; Niţoi, D. F.; Amza, C. Gh; Dimitrescu, A.; Apostolescu, Z.

    2016-08-01

    Paper presents a new reconditioning method based on ultrasonic field and analyses the modificated structure composition in three zone: filler material, thermal influenced zone, and base material. Also, chemical composition variation as a result of ultrasonic wave influence is studied besides the ultrasonic wave influence on dilution process.

  1. Seasonal variation in the chemical composition of two tropical seaweeds.

    PubMed

    Marinho-Soriano, E; Fonseca, P C; Carneiro, M A A; Moreira, W S C

    2006-12-01

    The chemical composition of red seaweed Gracilaria cervicornis and brown seaweed Sargassum vulgare from Brazil was investigated. In this study, the relationship between the nutritive components of each species and the environment was established. Protein content varied from 23.05+/-3.04% to 15.97+/-3.04%. The highest value was found in G. cervicornis. The protein levels were positively correlated with nitrogen content and negatively with water temperature and salinity. Carbohydrate contents of both species varied significantly (p<0.01) and the values observed were superior to others chemical constituents. Contrary to carbohydrates, the lipid concentrations were the lowest recorded chemical component and varied slightly between the two species. Ash content was greater in S. vulgare (14.20+/-3.86) than in G. cervicornis (7.74+/-1.15). In general the variation in chemical composition was related to environment. PMID:16311028

  2. Chemical composition in relation with biomass ash structure

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  3. Chemical Equilibrium Composition of Aqueous Systems

    1996-12-30

    MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.

  4. Chemical composition of Earth, Venus, and Mercury.

    PubMed

    Morgan, J W; Anders, E

    1980-12-01

    Model compositions of Earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, Tl/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. Review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets.

  5. Chemical composition of Earth, Venus, and Mercury.

    PubMed

    Morgan, J W; Anders, E

    1980-12-01

    Model compositions of Earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, Tl/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. Review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets. PMID:16592930

  6. Correlation between biogas yield and chemical composition of energy crops.

    PubMed

    Dandikas, V; Heuwinkel, H; Lichti, F; Drewes, J E; Koch, K

    2014-12-01

    The scope of this study was to investigate the influence of the chemical composition of energy crops on biogas and methane yield. In total, 41 different plants were analyzed in batch test and their chemical composition was determined. For acid detergent lignin (ADL) content below 10% of total solids, a significant negative correlation for biogas and methane yields (r≈-0.90) was observed. Based on a simple regression analysis, more than 80% of the sample variation can be explained through ADL. Based on a principal component analysis and multiple regression analysis, ADL and hemicellulose are suggested as suitable model variables for biogas yield potential predictions across plant species. PMID:25443623

  7. Fuel options from microalgae with representative chemical compositions

    SciTech Connect

    Feinberg, D. A.

    1984-07-01

    Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

  8. The chemical composition of interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.

    1984-01-01

    Quantitative molecular abundances are becoming available for dense interstellar clouds and circumstellar envelopes, revealing both similarities across a wide range of source conditions and significant differences in the chemistries involved. As understanding concerning the processes that lead to particular compositions increases, it may become possible to relate these findings to the evolution of molecular clouds and hence to the chemistry of regions in which stellar and planetary formation is in progress. Attention is given to the results of a recently completed spectral scan of the Orion molecular cloud, as well as the envelope around the evolved star IRC + 10216, published by Johansson et al. (1983).

  9. Chemical Composition of Icy Satellite Surfaces

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Cruikshank, D. P.; Stephan, K.; McCord, T. B.; Coustenis, A.; Carlson, R. W.; Coradini, A.

    2010-06-01

    Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the

  10. Surface chemical composition analysis of heat-treated bamboo

    NASA Astrophysics Data System (ADS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  11. Composition and placement process for oil field chemicals

    SciTech Connect

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  12. Chemical composition analysis and authentication of whisky.

    PubMed

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. PMID:25315338

  13. Chemical composition analysis and authentication of whisky.

    PubMed

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE.

  14. Chemical Composition of Laboratory Generated Seafoam Particles

    NASA Astrophysics Data System (ADS)

    Tyree, C. A.; Alexandrova, O. A.; Allen, J. O.

    2005-12-01

    . Surprisingly, the size and number of seafoam particles was independent of organic content; this is in contrast to previous laboratory experiments that showed seafoam particle numbers were enhanced when surface-active organics were added to artificial seawater (Garrett, 1968). We present recent measurements of the composition and enrichment of laboratory seafoam particles, which we propose approximate remote marine boundary layer particles.

  15. Energetic composites and method of providing chemical energy

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1997-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  16. Energetic composites and method of providing chemical energy

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1997-02-25

    A method is described for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figs.

  17. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    SciTech Connect

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  18. Chemical composition of cottonseed affected by cropping management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed is a valuable raw material for a range of food, animal feed, and industrial (such as adhesives) products. Chemical composition is one of the critical parameters to evaluate cottonseed's quality and potential end use. However, the information on the impacts of cropping management practices...

  19. Coma chemical composition at the Abydos landing site

    NASA Astrophysics Data System (ADS)

    Morse, A.; Sheridan, S.; Morgan, G.; Andrews, D.; Barber, S.; Wright, I.

    2015-10-01

    The Ptolemy instrument, onboard the Rosetta Philae Lander, made measurements of the chemical composition of the coma mid-bounce, just after the non-nominal landing on the surface, and subsequently at the Abydos landing site. This presentation will discuss Ptolemy's operations throughout this 45 hour period and the results obtained.

  20. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Moeckel, W E; Weston, Kenneth C

    1958-01-01

    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  1. Computer program determines chemical composition of physical system at equilibrium

    NASA Technical Reports Server (NTRS)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  2. Chemical composition and bioactivity studies of Alpinia nigra essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free radical scavenging, bactericidal and bitting deterrent properties of Alpinia nigra essential oils (EOs) were investigated in the present study. Chemical composition of the EOs were analyzed using GC-MS/GC-FID which revealed the presence of 63 constituents including ß-caryophyllene as major comp...

  3. Chemical vapor infiltration of non-oxide ceramic matrix composites

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-12-31

    Continuous fiber ceramic composites are enabling new, high temperature structural applications. Chemical vapor infiltration methods for producing these composites are being investigated, with the complexity of filament weaves and deposition chemistry merged with standard heat and mass transport relationships. Silicon carbide- based materials are, by far, the most mature, and are already being used in aerospace applications. This paper addresses the state-of-the-art of the technology and outlines current issues.

  4. Chemical composition and medicinal significance of Fagonia cretica: a review.

    PubMed

    Qureshi, Huma; Asif, Saira; Ahmed, Haroon; Al-Kahtani, Hassan A; Hayat, Khizar

    2016-01-01

    Members of the family Zygophyllaceae are distributed in arid areas of the world and are traditionally used against various health insults ranging from skin lesions to lethal cancer. Fagonia cretica Linn. is a plant having novel compounds responsive in diseases that are still considered as incurable or are curable with serious side effects. Researchers, particularly of the Asian region elaborately studied the chemical composition and pharmacological activities of this plant. But further studies are still required to evaluate this plant in clinical trials in order to save humanity from synthetic chemical drugs yet disputed as 'friends or foe'. PMID:25921950

  5. Date fruit: chemical composition, nutritional and medicinal values, products.

    PubMed

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed.

  6. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-01-01

    Mass concentrations of particulate matter (PM) chemical components were determined from data for 0.3 to 3.0 μm particles measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) data at an urban and rural site. Hourly-averaged concentrations of nitrate, sulphate, ammonium, organic carbon, and elemental carbon, estimated based on scaled ATOFMS peak intensities of corresponding ion marker species, were compared with collocated chemical composition measurements by an Aerosol Mass Spectrometer (AMS), a Gas-Particle Ion Chromatograph (GPIC), and a Sunset Lab field OCEC analyzer. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 and 0.85 at the urban and rural sites, respectively. ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM chemical components at the rural site. Mass reconstruction using this ATOFMS based composition data agreed very well with the total PM mass measured at the rural site. Size distributions of the ten main types of particles were resolved for the rural site and the mass composition of each particle type was determined in terms of sulphate, nitrate, ammonium, organic carbon and elemental carbon. This is the first study to estimate hourly mass concentrations of individual aerosol components and the mass composition of individual particle-types based on ATOFMS single particle measurements.

  7. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  8. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  9. Chemical Composition of Defatted Cottonseed and Soy Meal Products

    PubMed Central

    He, Zhongqi; Zhang, Hailin; Olk, Dan C.

    2015-01-01

    Chemical composition is critical information for product quality and exploration of new use. Hence defatted cottonseed meals from both glanded (with gossypol) and glandless (without gossypol) cotton seeds were separated into water soluble and insoluble fractions, or water soluble, alkali soluble as well as total protein isolates. The contents of gossypol, total protein and amino acids, fiber and carbohydrates, and selected macro and trace elements in these products were determined and compared with each other and with those of soy meal products. Data reported in this work improved our understanding on the chemical composition of different cottonseed meal products that is helpful for more economical utilization of these products. These data would also provide a basic reference for product standards and quality control when the production of the cottonseed meal products comes to pilot and industrial scales. PMID:26079931

  10. Interpreting chemical compositions of small scale basaltic systems: A review

    NASA Astrophysics Data System (ADS)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  11. Chemical composition of the flower oil of Cinnamomum zeylanicum blume.

    PubMed

    Jayaprakasha, G K; Jagan Mohan Rao, L; Sakariah, K K

    2000-09-01

    The steam-distilled oil of cinnamon (Cinnamomum zeylanicum) flowers was analyzed by GC and GC-MS. It consists of 23% hydrocarbons and 74% oxygenated compounds. A total of 26 compounds constituting approximately 97% of the oil were characterized. (E)-Cinnamyl acetate (41.98%), trans-alpha-bergamotene (7.97%), and caryophyllene oxide (7.2%) are found to be major compounds. This is the first report on the chemical composition of the flower oil of Cinnamomum zeylanicum.

  12. Chemical composition of the essential oil from Carramboa littlei (Asteraceae).

    PubMed

    de Rojas, Yndra Cordero; Rojas, Luis B; Usubillaga, Alfredo

    2011-01-01

    The essential oil from the leaves of Carramboa littlei Aristeg. was isolated by hydrodistillation yielding 0.09%, w/v. The chemical composition was determined by GC-FID and GC-MS. Sixteen components were identified by comparison of their mass spectra with Wiley and NIST library data. The major constituents of the oil were germacrene-D (50.0%), bicyclogermacrene (4.8%) and ent-kaur-16-en-19-al (21.8%).

  13. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  14. Chemical composition studies of flint with different origins

    NASA Astrophysics Data System (ADS)

    Zarina, Liga; Seglins, Valdis; Kostjukovs, Juris; Burlakovs, Juris

    2015-04-01

    Flint is a widely used material in the Stone Age because of its physical characteristics, which makes the material suitable for obtaining tools with sharp working edges. Chert, flint, chalcedony, agate and jasper in composition and several other physical characteristics are very similar. Therefore in archaeology most often they are determined simplified and are not distinguished, but described as flint or chert, denoting only the material in a general sense. However, in-depth studies it is necessary accurately identify the rock type and, in addition, to determine the origin of the flint and the conditions of the formation for the various archaeological research needs. As a typical example can be noted the localization problems in determining whether flint is local, or have emerged in the region through the exchange or by transportation. Flint consists mainly from quartz and mostly it has cryptocrystalline or amorphous structure. In nature it occurs as nodules and interbedded inclusions in sedimentary deposits as a result of digenesis processes when calcium carbonate is replaced with silicia. Bedded chert primarily is accumulations originated from excess alkalinity in the sediments. Flint can also be formed in the crystallization processes of the chemically unstable amorphous silicia. In this context, it should be noted that flint is naturally heterogeneous and very varied material by the physical properties and therefore problematic in many contemporary studies. In the study different origin flint samples from England, Denmark and Latvia were compared after their chemical composition. Flint nodules from Northern Europe chalk cliffs formed as inclusions in interbedded deposits or results of the digenesis and samples of chalcedony saturated dolomite from Latvia formed in hydrothermal processes were analysed using XRD and XRF methods. The obtained data were statistically analysed, identifying major, minor and trace elements and subsequently assessing the chemical

  15. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  16. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  17. Chemical Composition of Rainwater in Córdoba City, Argentina

    NASA Astrophysics Data System (ADS)

    López, M. L.; Asar, M. L.; Ceppi, S.; Bürgesser, R. E.; Avila, E.

    2013-05-01

    Sampling and chemical analysis of rainwater has proved to be a useful technique for studying its chemical composition and provides a greater understanding of local and regional dispersion of pollutants and their potential impacts to ecosystems through deposition processes. Samples of rainwater were collected during 2009-2012, in Córdoba city, Argentina. Two kind of sampling were performed: event-specific and sequential. The objective of the first of these was to determine the chemical concentration of the total rain, while the objective of the second one was to analyze the variability of the chemical concentration during an individual rain event. The total volume of each sample was divided in halves. One half was filtered through 0.45 μm membrane filter. After this, all the samples were reduced by evaporation to a final volume of 10 ml. The non-filtered samples were acidified and digested in accordance to the method 3050B of the Environmental Protection Agency (EPA) for acid digestion of sediments. Multi-elemental standard solutions in different concentrations were prepared by adequate dilutions. Gallium was added as an internal standard in all standard solutions and samples. Exactly 5 μL of these solutions were deposited on acrylic supports. When these droplets were dried, Synchrotron Radiation Total Reflection X-Ray Fluorescence technique was used for determining the chemical elements. Spectra were analyzed with the AXIL package for spectrum analysis. Due to the intrinsic characteristics of the total reflection technique, the background of the measurements is significantly reduced and there are no matrix effects, therefore quantification can be obtained from the linear correlation between fluorescence intensity and the concentration of the element of interest. The elements quantified were S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, and Pb. For all of them a calibration curve was performed in order to quantify their concentrations on the

  18. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect

    1998-10-05

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  19. Determining chemical composition of materials through micro-CT images.

    PubMed

    Jussiani, Eduardo Inocente; Dos Reis, Paulo José; Appoloni, Carlos Roberto

    2016-10-01

    X-ray microtomography is a 3D non-destructive method which, through digital images, enables a view of the internal structure of samples. Recently, researchers have been extensively performing various methods in the attempt to determine the chemical composition of materials. This paper brings further insight into this matter and proposes a new experimental method for determining the internal chemical composition of samples. Using a set of standard samples, calibration curves can be created that allow to relate the average gray scale of a sample obtained through microtomographic images to the value of ρZeff(m). In this model, ρZeff(m) is the parameter that chemically characterizes a material. The exponent m is obtained by the average value obtained with standard samples, which were titanium dioxide (TiO2), calcium chloride (CaCl2), calcium hydroxide (Ca(OH)2), and calcium nitrate (Ca(NO3)2). For the samples scanning process, a Bruker SkyScan 1172 microCT was used for testing rocks, nylon, graphite, calcium carbonate (CaCO3) and aluminum samples. The experimental results achieved by this method were consistent with the theoretical values. PMID:27451140

  20. Relation of sensory perception with chemical composition of bioprocessed lingonberry.

    PubMed

    Viljanen, Kaarina; Heiniö, Raija-Liisa; Juvonen, Riikka; Kössö, Tuija; Puupponen-Pimiä, Riitta

    2014-08-15

    The impact of bioprocessing on lingonberry flavour was studied by sensory evaluation and chemical analysis (organic acids, mannitol, phenolic compounds, sugars and volatile compounds). Bioprocessing of lingonberries with enzymes, lactic acid bacteria (LAB) or yeast, or their combination (excluding pure LAB fermentation) affected their perceived flavour and chemical composition. Sweetness was associated especially with enzyme treatment but also with enzyme+LAB treatment. Yeast fermentation caused significant changes in volatile aroma compounds and perceived flavour, whereas minor changes were detected in LAB or enzyme-treated berries. Increased concentration of organic acids, ethanol and some phenolic acids correlated with perceived fermented odour/flavour in yeast fermentations, in which increase in benzoic acid level was significant. In enzymatic treatment decreasing anthocyanins correlated well with decreased perceived colour intensity. Enzyme treatment is a potential tool to decrease naturally acidic flavour of lingonberry. Fermentation, especially with yeast, could be an interesting new approach to increase the content of natural preservatives, such as antimicrobial benzoic acid.

  1. Chem I Supplement: The Chemical Composition of the Cell.

    ERIC Educational Resources Information Center

    Holum, John R.

    1984-01-01

    Describes the principal chemical substances which occur in most cells. These chemicals are the lipids, carbohydrates, proteins, and nucleic acids. Suggests that the structures of these substances be taught first since structure determines function. (JN)

  2. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  3. A bootstrap estimation scheme for chemical compositional data with nondetects

    USGS Publications Warehouse

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  4. The physical and chemical composition of the lower mantle.

    PubMed

    Bovolo, C Isabella

    2005-12-15

    This article reviews some of the recent advances made within the field of mineral physics. In order to link the observed seismic and density structures of the lower mantle with a particular mineral composition, knowledge of the thermodynamic properties of the candidate materials is required. Determining which compositional model best matches the observed data is difficult because of the wide variety of possible mineral structures and compositions. State-of-the-art experimental and analytical techniques have pushed forward our knowledge of mineral physics, yet certain properties, such as the elastic properties of lower mantle minerals at high pressures and temperatures, are difficult to determine experimentally and remain elusive. Fortunately, computational techniques are now sufficiently advanced to enable the prediction of these properties in a self-consistent manner, but more results are required.A fundamental question is whether or not the upper and lower mantles are mixing. Traditional models that involve chemically separate upper and lower mantles cannot yet be ruled out despite recent conflicting seismological evidence showing that subducting slabs penetrate deep into the lower mantle and that chemically distinct layers are, therefore, unlikely.Recent seismic tomography studies giving three-dimensional models of the seismic wave velocities in the Earth also base their interpretations on the thermodynamic properties of minerals. These studies reveal heterogeneous velocity and density anomalies in the lower mantle, which are difficult to reconcile with mineral physics data.

  5. Chemical composition of volatile oil from Cinnamomum zeylanicum buds.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Rao, Lingamallu Jaganmohan; Sakariah, Kunnumpurath K

    2002-01-01

    The hydro-distilled volatile oil of the Cinnamomum zeylanicum (C. zeylanicum) buds was analyzed using GC and GC-MS for the first time. Thirty-four compounds representing approximately 98% of the oil was characterized. It consists of terpene hydrocarbons (78%) and oxygenated terpenoids (9%). alpha-Bergamotene (27.38%) and alpha-copaene (23.05%) are found to be the major compounds. A comparison of the chemical composition of the oil was made with that of flowers and fruits.

  6. Chemical feasibility of lithium as a matrix for structural composites

    NASA Technical Reports Server (NTRS)

    Swann, R. T.; Esterling, D. M.

    1984-01-01

    The chemical compatibility of lithium with tows of carbon and aramid fibers and silicon carbide and boron monofilaments was investigated by encapsulating the fibers in liquid lithium and also by sintering. The lithium did not readily wet the various fibers. In particular, very little lithium infiltration into the carbon and aramid tows was achieved and the strength of the tows was seriously degraded. The strength of the boron and silicon carbide monofilaments, however, was not affected by the liquid lithium. Therefore lithium is not feasible as a matrix for carbon and aramid fibers, but a composite containing boron or silicon carbide fibers in a lithium matrix may be feasible for specialized applications.

  7. Unusual chemical compositions of noctilucent-cloud particle nuclei

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.

    1973-01-01

    Two sounding rocket payloads were launched from the ESRO range in Sweden during a noctilucent cloud display. Large numbers of submicron particles were collected, most of which appear to be made up of a high density material coated with a low density material. Typical electron micrographs are shown. Particle chemical compositions have been measured by use of dispersive X-ray analysis equipment attached to an electron microscope and have revealed that most of the high density particle nuclei have atomic weights greater than iron.

  8. A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions

    NASA Astrophysics Data System (ADS)

    Hawthorne, Frank C.

    2012-11-01

    Here, I describe a theoretical approach to the structure and chemical composition of minerals based on their bond topology. This approach allows consideration of many aspects of minerals and mineral behaviour that cannot be addressed by current theoretical methods. It consists of combining the bond topology of the structure with aspects of graph theory and bond-valence theory (both long range and short range), and using the moments approach to the electronic energy density-of-states to interpret topological aspects of crystal structures. The structure hierarchy hypothesis states that higher bond-valence polyhedra polymerize to form the (usually anionic) structural unit, the excess charge of which is balanced by the interstitial complex (usually consisting of large low-valence cations and (H2O) groups). This hypothesis may be justified within the framework of bond topology and bond-valence theory, and may be used to hierarchically classify oxysalt minerals. It is the weak interaction between the structural unit and the interstitial complex that controls the stability of the structural arrangement. The principle of correspondence of Lewis acidity-basicity states that stable structures will form when the Lewis-acid strength of the interstitial complex closely matches the Lewis-base strength of the structural unit, and allows us to examine the factors that control the chemical composition and aspects of the structural arrangements of minerals. It also provides a connection between a structure, the speciation of its constituents in aqueous solution and its mechanism of crystallization. The moments approach to the electronic energy density-of-states provides a link between the bond topology of a structure and its thermodynamic properties, as indicated by correlations between average anion coordination number and reduced enthalpy of formation from the oxides for [6]Mg{/m [4]}Si n O( m+2 n) and MgSO4(H2O) n .

  9. Chemical composition and health effects of Tartary buckwheat.

    PubMed

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.

  10. Chemical composition and health effects of Tartary buckwheat.

    PubMed

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health. PMID:26948610

  11. Chemical composition of milk from a herd of Norwegian goats.

    PubMed

    Brendehaug, J; Abrahamsen, R K

    1986-05-01

    The chemical composition of Norwegian bulk collected goats' milk from the University herd was analysed during one lactation period (30 weeks, 20 samples during 1983). There was considerable variation in chemical composition during the year. Fat content decreased over the first 4 months of lactation and increased during the mountain pasture period. Protein concentration decreased during the first 4 months, and then increased until the end of lactation. Lactose concentration decreased throughout lactation. Casein nitrogen (casein N) was highest at mid lactation and lowest at the beginning and end of lactation. beta-Lactoglobulin N showed the opposite trend. Citrate content showed a significantly quadratic decrease and total ash content an increase with advancing lactation. Mutual significant correlations between total P, K, Na, Ca and Mg were calculated, and all increased throughout lactation. There was significant positive correlation between concentrations of individual medium-chain fatty acids and stage of lactation. They remained more or less constant during the first part of the lactation, decreased to minima when the goats were on pasture, and increased during the last phase of lactation. Concentration of C16 fatty acid was negatively correlated with C18 and C18:1. Goat flavour intensity score and quality flavour score were highest at mid lactation, and positively correlated with the acid degree value.

  12. Description, chemical composition and noble gases of the chondrite Nogata

    NASA Astrophysics Data System (ADS)

    Shima, M.; Murayama, S.; Okada, A.; Yabuki, H.; Takaoka, N.

    1983-06-01

    Microscopic, electron-microprobe, chemical-composition, and noble-gas-isotopic-abundance studies of a 20-g sample of the ordinary chondrite Nogata are reported. The historical report of the fall of the chondrite at Nogata, Japan in the year 861 is supported by C-14 dating of the wooden box in which it has been stored in a Shinto shrine. The measurement data are presented in tables and discussed. Except for a low Fe content, the chemical composition and petrological structure of the chondrite are consistent with an L6 classification. Nogata is found to be more lightly shocked and to contain relatiely more radiogenic and spallogenic noble gases than other L chondrites. The gas-retention ages calculated for Nogata are 4.5 (He-4) and 4.7 (Ar-40) x 10 to the 9th years; the cosmic-ray-exposure age is about 4 x 10 to the 7th years. It is suggested that the metamorphism of the chondrite was completed within about 10 to the 8th years of the formation of its parent body.

  13. Chemical composition of Titan's lakes and noble gases sequestration

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Mousis, O.; Lunine, J.-I.; Lavvas, P.; Lobo, L.; Ferreira, A.

    2010-04-01

    Titan is one of the most enigmatic objects in the Solar System. The presence of hydrocarbon lakes and even a global ocean have been suspected for decades. The dark features discovered by the CASSINI spacecraft are good candidates for these expected lakes (see McEwen et al. 2005 and Stofan et al. 2007). Their chemical composition has still not been measured but numerical models can give relatively accurate predictions. In the present work, we use the recent model of Titan's lakes chemical composition elaborated by Cordier et al. (2009) in light of the recent Cassini-Huygens measurements in order to investigate the possibility of sequestration of large quantities of noble gases in these liquids. Indeed, the noble gas abundances have been found to be largely in subsolar abundances in the atmosphere of Titan and the origin of this impoverishment is still poorly understood. Our preliminary results show that, under specific circumstances, at least the atmospheric depletion in krypton could be caused by its dissolution in the Titan's surface hydrocarbon liquid phase.

  14. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  15. Composition and Chemical Variability of Ivoirian Polyalthia oliveri Leaf Oil.

    PubMed

    Ouattara, Zana A; Boti, Jean Brice; Ahibo, Coffy Antoine; Bekro, Yves-Alain; Casanova, Joseph; Tomi, Félix; Bighelli, Ange

    2016-03-01

    The chemical composition of 45 essential oil samples isolated from the leaves of Polyalthia oliveri harvested in three Ivoirian forests was investigated by GC-FID (retention indices measured on two columns of different polarities), and by (13) C-NMR, following a method developed in our laboratory. In total, 41 components were identified. The content of the main components varied drastically from sample to sample: (E)-β-caryophyllene (1.2 - 50.8%), α-humulene (0.6 - 47.7%), isoguaiene (0 - 27.9%), alloaromadendrene (0 - 24.7%), germacrene B (0 - 18.3%), δ-cadinene (0.4 - 19.3%), and β-selinene (0.2 - 18.5%). The analysis of six oil samples selected in function of their chromatographic profiles is reported in detail. The 45 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The compositions of the oils from group I (15 samples) and II (12 samples) were dominated by (E)-β-caryophyllene and α-humulene, respectively. Oil samples of group III (18 samples) needed to be partitioned into four subgroups III.1-III.4 whose compositions were dominated by alloaromadenrene, isoguaiene, germacrene B, and δ-cadinene, respectively.

  16. Switchgrass biomass and chemical composition for biofuel in eastern Canada

    SciTech Connect

    Madakadze, I.C.; Stewart, K.; Peterson, P.R.; Coulman, B.E.; Smith, D.L.

    1999-08-01

    Switchgrass (Panicum virgatum L.) is one of several warm-season grasses that have been identified as potential biomass crops in North America. A two-year field study was conducted, on a free-draining sandy clay loam (St. Bernard, Typic Hapludalf), to characterize the growth and evaluate changes in biomass accumulation and composition of switchgrass at Montreal, QC. Three cultivars, Cave-in-Rock, Pathfinder, and Sunburst, were grown in solid stands in a randomized complete block design. Canopy height, dry matter (DM) accumulation and chemical composition were monitored biweekly throughout the growing season. Average maximum canopy heights were 192.5 cm for Cave-in-Rock, 169.9 for Pathfinder, and 177.8 for Sunburst. The respective end-of-season DM yields were 12.2, 11.5, and 10.6 Mg/ha. Biomass production among cultivars appeared to be related to time of maturation. Nitrogen concentration of DM decreased curvilinearly from 25 g/kg at the beginning of the season to 5 g/kg DM at season's end. Both acid-detergent fiber (ADF) and neutral-detergent fiber (NDF) concentrations increased to a maximum early in the season, after which no changes were detected. The average maximum values of ADF and NDF were, respectively, 647.6 and 849.0 g/kg DM for Cave-in-Rock, 669.1 and 865.2 for Pathfinder, and 661.8 and 860.9 for Sunburst. Changes in canopy height, DM accumulation, and chemical composition could all be described by predictive regression equations. These results indicate that switchgrass has potential as a biomass crop in a short-season environment.

  17. Determining the chemical composition of cloud condensation nuclei

    SciTech Connect

    Williams, A.L.; Rothert, J.E.; McClure, K.E. ); Alofs, D.J.; Hagen, D.E.; Schmitt, J.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. . Cloud and Aerosol Science Lab.)

    1992-12-01

    This third progress report describes the status of our efforts to develop the instrumentation to collect cloud condensation nuclei (CCN) in amounts sufficient for chemical analysis. During the fall of 1992 we started collecting filter samples of CCN with the laboratory version of the apparatus at Rolla -MO. The mobile version of the apparatus is in the latter stages of construction. This report includes a fairly rigorous discussion of the operation of the CCN sampling system. A statistical model of the operation of the system is presented to show the ability of the system to collect CCN in the two different size ranges for which we plan to determine the chemical composition. A question is raised by the model results about the operation of one of the virtual impactors. It appears to pass a small percent of particles larger than its cut-point that has the potential of contaminating the smallest CCN sample with larger CCN material. Further tests are necessary, but it may be necessary to redesign that impactor. The appendices of the report show pictures of both the laboratory version and the mobile version of the CCN sampling system. The major hardware has been completed, and the mobile version will be in operation within a few weeks.

  18. Chemical composition of precipitation and its sources in Hangzhou, China.

    PubMed

    Xu, Hong; Bi, Xiao-Hui; Feng, Yin-Chang; Lin, Feng-Mei; Jiao, Li; Hong, Sheng-Mao; Liu, Wen-Gao; Zhang, Xiao-Yong

    2011-12-01

    To understand the origin and chemical characteristics of precipitation in Hangzhou, rainwater samples were collected from June 2006 to May 2008. All samples were analyzed for pH, electrical conductivity, and major ions (NH⁴⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, SO₄²⁻, NO₃⁻, F⁻, and Cl⁻). Acidification of precipitation in Hangzhou was serious with volume-weighted mean pH value of 4.5, while frequency of acid rain was 95%. The calculated SO₄²⁻/NO₃⁻ ratio in Hangzhou precipitation was 2.87, which indicated that the precipitation of Hangzhou belonged to sulfate-based acid rain. The results of acid neutralization analysis showed that not all the acidity in the precipitation of Hangzhou was neutralized by alkaline constituents. The results of sea salt contribution analysis showed that nearly all SO₄²⁻, Ca²⁺, and Mg²⁺ and 33.7% of K⁺ were of non-sea origins, while all Na⁺ and Cl⁻ and 66.3% of K⁺ originated from sea sources. The principal component analysis which was used to analyze the sources of various ions indicated that chemical compositions of precipitation in Hangzhou mainly came from terrestrial sources, factory emissions, fuel wood burning, and marine sources.

  19. Relation of sensory perception with chemical composition of bioprocessed lingonberry.

    PubMed

    Viljanen, Kaarina; Heiniö, Raija-Liisa; Juvonen, Riikka; Kössö, Tuija; Puupponen-Pimiä, Riitta

    2014-08-15

    The impact of bioprocessing on lingonberry flavour was studied by sensory evaluation and chemical analysis (organic acids, mannitol, phenolic compounds, sugars and volatile compounds). Bioprocessing of lingonberries with enzymes, lactic acid bacteria (LAB) or yeast, or their combination (excluding pure LAB fermentation) affected their perceived flavour and chemical composition. Sweetness was associated especially with enzyme treatment but also with enzyme+LAB treatment. Yeast fermentation caused significant changes in volatile aroma compounds and perceived flavour, whereas minor changes were detected in LAB or enzyme-treated berries. Increased concentration of organic acids, ethanol and some phenolic acids correlated with perceived fermented odour/flavour in yeast fermentations, in which increase in benzoic acid level was significant. In enzymatic treatment decreasing anthocyanins correlated well with decreased perceived colour intensity. Enzyme treatment is a potential tool to decrease naturally acidic flavour of lingonberry. Fermentation, especially with yeast, could be an interesting new approach to increase the content of natural preservatives, such as antimicrobial benzoic acid. PMID:24679764

  20. Similarities in the chemical composition of carbonate groundwaters and seawater

    SciTech Connect

    Hodge, V.F.; Stetzenbach, K.J.; Johannesson, K.H.

    1998-09-01

    Fifty-four elements were quantified in spring waters emanating from carbonate rock in Ash Meadows, in southern Nevada, and in Death Valley, CA. The results show that the concentrations of many of the trace elements found in these groundwaters are remarkably close to those found in modern seawater. The concentrations of 26 of the elements in the spring waters and seawater are within a factor of 2; 14 more are within a factor of 10; 8 elements are enriched in the groundwater by more than a factor of 10; and 6 elements are depleted by more than a factor of 10. Similarities in the trace chemical composition of ancient seawater and modern seawater can be inferred from the fingerprint of trace elements found in these carbonate rock-source spring waters.

  1. Chemical vapor infiltration of TiB{sub 2} composites

    SciTech Connect

    Besmann, T.M.

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  2. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry. PMID:25870697

  3. Chemical composition of rainwater in western Amazonia — Brazil

    NASA Astrophysics Data System (ADS)

    Honório, B. A. D.; Horbe, A. M. C.; Seyler, P.

    2010-11-01

    An extensive sample study in western Amazonia, Brazil was performed over the course of one year to i) establish the natural influence of the forest, ii) determine the contribution of the vegetation and fossil fuel burning and iii) detect the geographical and temporal influences on the rainwater composition. Six sampling stations were chosen on two 1000 km-long orthogonal axes. Parintins, Itapiranga, Manaus, Tabatinga were the stations from East to West, and Boa Vista, Manaus, and Apui were the stations from North to South. The results indicate a complex control of the chemical composition of the rainwater and a rather high heterogeneity among the stations. This heterogeneity can be explained by the influence of biogenic, terrestrial dust, agriculture activities and biomass-burning aerosols, and the urban development of Manaus City with its rapid increase in the use of fossil fuel. The isotopic composition of the rainwater indicates that from the north and west sides to the south and east sides, a slight geographical and temporal gradient exists, and more δ180 enriched rainwater tends to be present in the west (Tabatinga) and in the North (Boa Vista). During the dry season a more negative δ180 rainwater was observed in Manaus and Boa Vista stations, as compared to others stations. This observation indicates the more intense evaporative contribution of rainwater as a consequence of a rapid deforestation (savannization) process in the Manaus region.

  4. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  5. Chemical composition and physical state of lipid deposits in atherosclerosis.

    PubMed

    Lundberg, B

    1985-07-01

    The composition, morphology, and physical properties of lipids in atherosclerotic lesions from human aortas were studied in order to elucidate the factors for the accumulation of cholesterol and its esters in the vessel wall. Lesions were classified histologically into 3 groups: fatty streak, fibrous plaque, and advanced plaque. The relative lipid composition of the lesions was plotted on the phase diagram of the 3 major lipids: cholesterol, cholesteryl ester, and phospholipid. Early fatty streaks had compositions within the 2-phase zone with a cholesterol-phospholipid liquid crystalline phase and a cholesteryl ester oily phase. Advanced fatty streaks and fibro-fatty plaques fell within the 3-phase zone with excess free cholesterol. Advanced plaques also had an average lipid composition within the 3-phase zone, but with a larger excess of free cholesterol. From the lipid-chemical point of view there is a continuous progression from early fatty streaks through advanced fatty streaks and fibro-fatty plaques to advanced plaques. In fatty streaks the cholesteryl esters accumulate in the form of isotropic and anisotropic droplets. The latter are in the smectic liquid crystalline state with the molecules arranged in layers and have surfaces that are spherical and smooth. Fibrous and advanced plaques showed beside droplets also amorphous lipids and cholesterol monohydrate crystals. Some of the amorphous lipids were solid up to about 45 degrees C and exhibited a smectic phase at cooling, indicating cholesteryl esters as the major component. The transition temperatures of high-melting cholesteryl esters, e.g. palmitate, are depressed by low-melting ones. Most of the triglycerides are present in the cholesteryl ester droplets and abolish the cholesteric liquid crystalline phase.

  6. Vector diagram of the chemical compositions of tektites and earth lavas

    NASA Technical Reports Server (NTRS)

    Kvasha, L. G.; Gorshkov, G. S.

    1978-01-01

    The chemical compositions of tektites and various volcanic glasses, similar in composition to tektites are compared by a petrochemical method. The advantage of the method is that a large number of chemical analyses of igneous rocks can be graphically compared with the help of vectors, plotted in relation to six parameters. These parameters, calculated from ratios of the main oxides given by silicate analysis, reflect the chief characteristics of igneous rock. Material for the study was suppled by data from chemical analysis characterizing tektites of all known locations and data from chemical analyses of obsidians similar in chemical composition to tektites of various petrographical provinces.

  7. [Characteristics of chemical compositions of precipitation in Beijing].

    PubMed

    Yang, Dong-Yan; Li, Xiu-Jinz; Chen, Yuan-Yuan; Zou, Ben-Dong; Lin, An-Guo

    2011-07-01

    Characteristics of chemical compositions of precipitation in Beijing were analyzed. The average value of pH was 5.19 from 2005 to 2009, showing stable characteristics of acidification with precipitation. The lowest annual average pH was 4. 87 in 2008 with the highest acidification frequency of 42% and 23% in Chegongzhuang and Daxing districts respectively. The inorganic ion concentrations declined in 5a, indicating an increasing improvement of air quality in Beijing. The concentrations of NH4+ and NO3- were found to increase and contributed to the high nitrogen amount in precipitation. Different seasons have influence on composition concentrations. Generally speaking, the ion concentrations in winter were higher that that in summer. SO4(2-) was the main factor responsible for the acidification of snow in winter, SO4(2-) and NO3- had similar contributions to the acidification of precipitation in summer. It was also found that the local pollutants of SO2, NO(x) and NH3 were major contributors to the acidification of precipitation in Beijing area, local geological conditions and long-distance transfers have important effects on the neutralization of the precipitation.

  8. Flaxseed hull: Chemical composition and antioxidant activity during development.

    PubMed

    Herchi, Wahid; Al Hujaili, Abdullah D; Sakouhi, Faouzi; Sebei, Khaled; Trabelsi, Hajer; Kallel, Habib; Boukhchina, Sadok

    2014-01-01

    Changes in the chemical composition and antioxidant activity of flaxseed hull during maturation were investigated. P129 hull variety was studied at four maturation stages (St1, St2, St3, and St4). Significant variation in proximate composition and flaxseed hull oil characteristics were observed. A significant increase in the carbohydrates content of the hull was observed during development. The main methyl esters were linolenic acid (48.95 - 51.52 %), oleic acid (20.27-23.41%) and linoleic acid (15.62-17.70%). The highest polyunsaturated fatty acids (PUFA) were found to be 67.14 % at the first stage of maturity (St1). Flaxseed hull oil was of good quality, containing an abundance of omega-3 essential fatty acids. The iodine value increased, while the saponification value of oil decreased during seed development. The decrease in ascorbic acid content was steady. The maximum level of total phenolic acid content (128.3 mg/100 g oil) was reached at 7 DAF. The antioxidant activity of oilseed was assessed by means of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay. Radical scavenging activity for green hull was 52.74% and mature hull was 69.32%. PMID:24919478

  9. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification.

    PubMed

    Park, Ka Hwa; Lee, Kwang Yeon; Lee, Hyeon Gyu

    2013-09-01

    Chemical modification of dietary fiber (DF), extracted from whole grain barley, was carried out to obtain cross-linked (CL) DF, carboxymethyl (CM) DF, and hydroxypropyl (HP) DF. The DF components, physicochemical properties, and subsequent influence on the in vitro digestibility of wheat starch gels were comparatively investigated. The redistribution of fiber components from chemically modified DF was observed. An increase in the total DF (TDF) content of CL- and HP-DF was observed, which was mainly due to an increase of insoluble DF. Carboxymethylation led to an appreciable increase of soluble DF (1.17-6.20%) but TDF contents slightly decreased. Chemical modification of barley DF led to increases in arabinose (7.1-11.5%) and xylose (10.7-17.5%), but glucose contents decreased (67.4-79.9%). The treatments, especially carboxymethylation, effectively (P<0.05) increased hydration properties (e.g. water solubility, swelling power, and water absorption index). Substitution of 5% wheat starch with CL-, and HP-DF led to decreased in vitro digestibility in comparison to the control starch. Our results suggest that chemical modification improve the DF characteristics of barley and to exploit its potential application as a functional ingredient in fiber-rich products.

  10. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  11. Chemical composition of sedimentary rocks in California and Hawaii

    USGS Publications Warehouse

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of

  12. Exploring the chemical composition of water in the Kandalaksha Bay

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Khaitov, Vadim; Maksimova, Victoria; Belkina, Natalia

    2014-05-01

    Oil films were noted at the head of the Kandalaksha Bay as far back as in 1971, as soon as the first stage of the oil tank farm had been commissioned (the autumn of 1970). In 1997-1998 there were accidental oil spills posing a real threat to the Kandalaksha Reserve biota. In May 2011, oil spills from the Belomorsk oil tank farm resulted in a local environmental emergency. In this work we have traced the evolution of polluted water by means of hydrogeochemical monitoring and reconstructing the chemical composition of surface and near-bottom water of the Kandalaksha Bay by using physical-chemical modeling (Selector software package, Chudnenko, 2010). The surface and near-bottom water was sampled in the summer of 2012 and 2013 at the following sites: under the numbers 3 (N 67.2.673, E 32.23.753); 4 (N 67.3.349, E 32.28.152); 1 (N 67.5.907, E 32.29.779), and 2 (N 67.6.429, E 32.30.539). The monitored objects and sampling time were sensitive to both the effects of the White Sea water (high tide), fresh water, and water affected by human impact (the oil tank farm). At each site, three samples were taken. The next stage involved reconstructing of the sea water ion composition by modeling within the Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e system, where e is an electron. Modeling of the chemical composition of near-bottom water (site 3) has revealed high contents of carbon dioxide, hydrogen disulphide, hydrocarbonates, and no oxygen (Eh<0). All this suggests a transformation of hydrocarbons that might have got to the sampling area in May 2011, or as the result of constant leakage of petroleum hydrocarbons from the oil tank farm. Sampling at site 4 in 2013 has revealed petroleum hydrocarbons both in surface (0.09 mg/l) and near-bottom (0.1 mg/l) water. Both monitoring and modeling have demonstrated that hydrobionts on areas adjoining the oil tank farm are far from prospering. Monitoring should be accompanied by express analysis of oxidizing conditions

  13. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  14. Calorimetry, chemical composition and in vitro digestibility of oilseeds.

    PubMed

    Ítavo, Luís Carlos Vinhas; Soares, Cláudia Muniz; Ítavo, Camila Celeste Brandão Ferreira; Dias, Alexandre Menezes; Petit, Hélène Veronique; Leal, Eduardo Souza; de Souza, Anderson Dias Vieira

    2015-10-15

    The objective of the study was to determine the quality of sunflower, soybean, crambe, radish forage and physic nut, by measuring chemical composition, in vitro digestibility and kinetics of thermal decomposition processes of mass loss and heat flow. Lipid was inversely correlated with protein of whole seed (R = -0.67), meal (R = -0.95), and press cake (R = -0.78), and positively correlated with the enthalpy (ΔH) of whole seed. Soybean seed and meal presented a high in vitro digestibility but poor energy sources with ΔH averaging 5907.5 J/g and 2570.1J/g for whole seed and meal, respectively. As suggested by the release of heat, measured by ΔH, whole seeds of crambe (6295.1J/g), radish forage (6182.7 J/g), and physic nut (6420.0 J/g) may be potential energy sources for ruminant animals. The thermal analysis provided additional information besides that obtained from the usual wet chemistry and in vitro measurements. PMID:25952861

  15. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  16. Calorimetry, chemical composition and in vitro digestibility of oilseeds.

    PubMed

    Ítavo, Luís Carlos Vinhas; Soares, Cláudia Muniz; Ítavo, Camila Celeste Brandão Ferreira; Dias, Alexandre Menezes; Petit, Hélène Veronique; Leal, Eduardo Souza; de Souza, Anderson Dias Vieira

    2015-10-15

    The objective of the study was to determine the quality of sunflower, soybean, crambe, radish forage and physic nut, by measuring chemical composition, in vitro digestibility and kinetics of thermal decomposition processes of mass loss and heat flow. Lipid was inversely correlated with protein of whole seed (R = -0.67), meal (R = -0.95), and press cake (R = -0.78), and positively correlated with the enthalpy (ΔH) of whole seed. Soybean seed and meal presented a high in vitro digestibility but poor energy sources with ΔH averaging 5907.5 J/g and 2570.1J/g for whole seed and meal, respectively. As suggested by the release of heat, measured by ΔH, whole seeds of crambe (6295.1J/g), radish forage (6182.7 J/g), and physic nut (6420.0 J/g) may be potential energy sources for ruminant animals. The thermal analysis provided additional information besides that obtained from the usual wet chemistry and in vitro measurements.

  17. Chemical composition of biomass generated in the guava tree pruning.

    PubMed

    Camarena-Tello, Julio César; Rocha-Guzmán, Nuria Elizabeth; Gallegos-Infante, José Alberto; González-Laredo, Rubén Francisco; Pedraza-Bucio, Fabiola Eugenia; López-Albarrán, Pablo; Herrera-Bucio, Rafael; Rutiaga-Quiñones, José Guadalupe

    2015-01-01

    Psidium guajava L. (Myrtaceae) is a native plant of Central America and is now widely cultivated in many tropical regions of the world for the fruit production. In Mexico, in the guava orchards common practices to control fruit production are: water stress, defoliation and pruning. In this study, we report the chemical composition of the biomass (branches and leaves) generated in the pruning practices. The results ranged as follows: pH (4.98-5.88), soda solubility (39.01-70.49 %), ash (1.87-8.20 %); potassium and calcium were the major inorganic elements in ash. No heavy metals were detected in the studied samples; total solubility (15.21-46.60 %), Runkel lignin (17.77-35.26 %), holocellulose (26.56 -69.49 %), α-cellulose (15.53-35.36 %), hemicelluloses (11.02-34.12 %), tannins in aqueous extracts (3.81-9.06 %), and tannins in ethanolic extracts (3.42-15.24 %). PMID:26417359

  18. Microbial population, chemical composition and silage fermentation of cassava residues.

    PubMed

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage.

  19. Chemical composition and antigenotoxic properties of Lippia alba essential oils

    PubMed Central

    López, Molkary Andrea; Stashenko, Elena E.; Fuentes, Jorge Luis

    2011-01-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds. PMID:21931523

  20. Chemical composition of biomass generated in the guava tree pruning

    PubMed Central

    Camarena-Tello, Julio César; Rocha-Guzmán, Nuria Elizabeth; Gallegos-Infante, José Alberto; González-Laredo, Rubén Francisco; Pedraza-Bucio, Fabiola Eugenia; López-Albarrán, Pablo; Herrera-Bucio, Rafael; Rutiaga-Quiñones, José Guadalupe

    2015-01-01

    Psidium guajava L. (Myrtaceae) is a native plant of Central America and is now widely cultivated in many tropical regions of the world for the fruit production. In Mexico, in the guava orchards common practices to control fruit production are: water stress, defoliation and pruning. In this study, we report the chemical composition of the biomass (branches and leaves) generated in the pruning practices. The results ranged as follows: pH (4.98-5.88), soda solubility (39.01-70.49 %), ash (1.87-8.20 %); potassium and calcium were the major inorganic elements in ash. No heavy metals were detected in the studied samples; total solubility (15.21-46.60 %), Runkel lignin (17.77-35.26 %), holocellulose (26.56 -69.49 %), α-cellulose (15.53-35.36 %), hemicelluloses (11.02-34.12 %), tannins in aqueous extracts (3.81-9.06 %), and tannins in ethanolic extracts (3.42-15.24 %). PMID:26417359

  1. Tea tree oil: contact allergy and chemical composition.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    2016-09-01

    In this article, contact allergy to, and the chemical composition of, tea tree oil (TTO) are reviewed. This essential oil is a popular remedy for many skin diseases, and may be used as neat oil or be present in cosmetics, topical pharmaceuticals and household products. Of all essential oils, TTO has caused most (published) allergic reactions since the first cases were reported in 1991. In routine testing, prevalences of positive patch test reactions have ranged from 0.1% to 3.5%. Nearly 100 allergic patients have been described in case reports and case series. The major constituents of commercial TTO are terpinen-4-ol, γ-terpinene, 1,8-cineole, α-terpinene, α-terpineol, p-cymene, and α-pinene. Fresh TTO is a weak to moderate sensitizer, but oxidation increases its allergenic potency. The major sensitizers appear to be ascaridole, terpinolene, α-terpinene, 1,2,4-trihydroxymenthane, α-phellandrene, and limonene. The clinical picture of allergic contact dermatitis caused by TTO depends on the products used. Most reactions are caused by the application of pure oil; cosmetics are the culprits in a minority of cases. Patch testing may be performed with 5% oxidized TTO. Co-reactivity to turpentine oil is frequent, and there is an overrepresentation of reactions to fragrance mix I, Myroxylon pereirae, colophonium, and other essential oils. PMID:27173437

  2. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  3. An investigation into the chemical composition of alternative invertebrate prey.

    PubMed

    Oonincx, D G A B; Dierenfeld, E S

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches (Gromphadorhina portentosa), fruit flies (Drosophila melanogaster), false katydids (Microcentrum rhombifolium), beetles of the mealworm (Tenebrio molitor), and superworm beetles (Zophobas morio), as well as woodlice (Porcellio scaber). Dry matter (DM), crude protein, crude fat, neutral detergent fiber, acid detergent fiber, ash, macro and trace minerals, vitamins A and E, and carotenoid concentrations were quantified. Significant differences were found between species. Crude protein content ranged from 38 to 76% DM, fat from14 to 54% DM, and ash from 2 to 8% DM. In most species, calcium:phosphorus was low (0.08-0.30:1); however, P. scaber was an exception (12:1) and might prove useful as a dietary source of calcium for insectivores. Vitamin E content was low for most species (6-16 mg/kg DM), except for D. melanogaster and M. rhombifolium (112 and 110 mg/kg DM). The retinol content, as a measure of vitamin A activity, was low in all specimens, but varied greatly among samples (0.670-886 mg/kg DM). The data presented can be used to alter diets to better suit the estimated requirements of insectivores in captivity. Future research on the topic of composition of invertebrate prey species should focus on determination of nutrient differences owing to species, developmental stage, and diet.

  4. Chemical composition of sediments from White Sea, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component <50% is spread on the shallow area (Kandalaksha Bay), in areas with high hydrodynamic activity of near-bottom water. Under the conditions of their low activity, fine-grained facies are common(>80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near

  5. Lunar clinopyroxenes: Chemical composition, structural state, and texture

    USGS Publications Warehouse

    Ross, M.; Bence, A.E.; Dwornik, E.J.; Clark, J.R.; Papike, J.J.

    1970-01-01

    Single-crystal x-ray diffraction, microprobe, optical and electron optical examinations of clinopyroxenes from Apollo 11 lunar samples 10003, 10047, 10050, and 10084 show that generally the crystals are composed of (001) augite-pigeonite intergrowths in varying ratios. Transmission electron micrographs reveal abundant exsolution lamellae, many only 60 A?? thick. In addition to the phase inhomogeneities, primary chemical inhomogeneities are clearly demonstrated. There are reciprocal relationships between calcium and iron and between Ti4+ + 2Al and R2+ + 2Si. Our evidence suggests that a chemically inhomogeneous subcalcic C2/c augite was the only primary pyroxene from which pigeonite later exsolved.

  6. Chemical composition analysis of simulated waste glass T10-G-16A

    SciTech Connect

    Fox, K. M.

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  7. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  8. Anisotropy vs chemical composition at ultra-high energies

    SciTech Connect

    Lemoine, Martin; Waxman, Eli E-mail: eli.waxman@weizmann.ac.il

    2009-11-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E{sub thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E{sub thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55 EeV is not a statistical accident, and that no significant anisotropy has been observed at energies ∼<10 EeV, we show that the apparent clustering toward Cen A cannot be attributed to heavy nuclei. Similar conclusions are drawn regarding the apparent excess correlation with nearby active galactic nuclei. We then discuss a robust lower bound to the magnetic luminosity that a source must possess in order to be able to accelerate particles of charge Z up to 100 EeV, L{sub B} ∼> 10{sup 45} Z{sup −2} erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data does not support the model of cosmic ray origin in active radio-quiet or even radio-loud galaxies. Finally, we demonstrate that the apparent clustering in the direction of Cen A can be explained by the contribution of the last few gamma-ray bursts or magnetars in the host galaxy thanks to the scattering of the cosmic rays on the magnetized lobes.

  9. Chemical composition of phosphorites of the Phosphoria Formation

    USGS Publications Warehouse

    Gulbrandsen, R.A.

    1966-01-01

    The chemical composition, both major and minor constituents, of 60 samples of phosphorite from the Phosphoria Formation was determined. Major constituents of the average phosphorite are, by weight per cent: SiO2, 11??9; Al2O3, 1??7; Fe2O3,1??1; MgO, 0??3; CaO, 44??0; Na2O, 0??6; K2O, 0??5; total H2O, 2??2; H2O-, 0??6; TiO2, 0??1; P2O5, 30??5; CO2, 2??2; SO3, 1??8; F, 3??1; organic matter, 2??1; and oil, 0??2. Uranium averages 0??009 per cent. The phosphate mineral is basically apatite, Ca5(PO4)3F, with small but significant and variable substitutions-Na, Sr, U and Th for Ca, and CO3 and SO4 for PO4. Rare metals not associated with apatite are associated principally with the organic-matter component of the rocks. This group includes As, Ag, Cd, Cr, Cu, Mo, Ni, Sb, Se, V and Zn. Chromium is the most abundant, having a modal abundance of 0??1 per cent and a maximum concentration of 0??3 per cent. The average phosphorite is composed of approximately 80 per cent apatite, 10 per cent quartz, 5 per cent muscovite-illite, 2 per cent organic matter, 1 per cent dolomite-calcite, 1 per cent iron oxide, and 1 per cent other components. It is texturally a medium-grained pellet phosphorite. ?? 1966.

  10. Chemical composition of Antrim shale in the Michigan basin

    SciTech Connect

    Leddy, D.G.; Sandel, V.R.; Swartz, G.L.; Kenny, D.H.; Gulick, W.M.; El Khadem, H.S.

    1980-08-01

    During the period between March 1977 and July 1980 core samples from 28 different wells at various locations in the Antrim shale deposit in the Michigan Basin were analyzed for Al, SiO/sub 2/, Fe, Mg, Ca, Na, S, Pb, Hg, Ba, Sb, Sn, Cd, Ag, Mo, Sr, Br, As, Zn, Cu, Ni, Co, Mn, Cr, V, Sc, Cl, P, F, B, Be, and Li. The geochemical analysis revealed that the sulfur content of the shale varied proportionately with that of carbon. On the other hand, calcium values vary inversely with organic carbon (lowest calcite in shale with highest organic carbon). Iron values do not vary greatly within a core and show no tendency to follow organic carbon or sulfur. It seems that the relationships that exist between the chemical species are controlled by the geological events that resulted in the formation of the shale. The kerogen was found to be a crosslinked polymeric structure consisting of roughly equal amounts of aromatic and aliphatic carbons. Functional groups are few, mainly hydroxy and olefinic double bonds. The bitumen (toluene extractable material) was fractionated and the fractions identified. The paraffins in the samples had the same constituents in differing concentrations while the aromatic fractions appear to have significant differences in composition. The distribution of the n-alkanes indicates the shale is more mature than the Green River shales. The amount of vanadyl porphyrin is greater than the amount of nickel and the ratio increases with depth. The concentration of petroporphyrins ranged from one-tenth to one-third the amount extracted from western oil shales.

  11. Characterization of Indian beers: chemical composition and antioxidant potential.

    PubMed

    Pai, Tapasya V; Sawant, Siddhi Y; Ghatak, Arindam A; Chaturvedi, Palak A; Gupte, Arpita M; Desai, Neetin S

    2015-03-01

    Chemical composition, antioxidant potential and corresponding lipid preoxidation of Indian commercial beers were evaluated. The presence of polyphenolic compounds such as tannic acid, gallic acid, catechol, vanillin, caffeic acid, quercetin, p-coumaric acid and rutin was quantified using LC-MS while the organic acids including tartaric, malic, acetic, citric and succinic acids were analysed using HPLC. Beer sample B8 had the greatest concentration of phenolic and flavonoid components (0.620 ± 0.084 mg/mL and 0.379 ± 0.020 mg/mL respectively) among the beer samples studied. The DPPH radical scavenging activity was observed in the range of 68.34 ± 0.85 % to 89.90 ± 0.71 % and ABTS radical cation scavenging activity was in the range of 59.75 ± 0.20 % to 76.22 ± 0.50 %. Percent protection in lipid peroxidation was quantified to be maximum (54.45 ± 3.39 %) in sample B5. Total phenolic content positively correlates with antioxidant assays, DPPH and ABTS (r = 0.35 and r = 0.58 respectively) with p < 0.001 and also with lipid peroxidation (r = 0.04) with p < 0.001. Negative correlation was observed between total flavonoid content with ABTS and lipid peroxidation (r = -0.1 and r = -0.05) respectively. The process of brewing warrants additional research to determine how the concentration of selected phenolic compounds can be increased. PMID:25745209

  12. Brazilian Propolis: Correlation Between Chemical Composition and Antimicrobial Activity

    PubMed Central

    Salomão, Kelly; Pereira, Paulo Roberto S.; Campos, Leila C.; Borba, Cintia M.; Cabello, Pedro H.; Marcucci, Maria Cristina

    2008-01-01

    The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs) determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp), B (B. dracunculifolia) and C (Araucaria spp). Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM) and 3-(4-hydroxy-3-(oxo-butenyl)-phenylacrylic acid (DHCA1) and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4) and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN). When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF) and dicaffeoylquinic acid 3 (CAFQ3), of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2) and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis. PMID:18830454

  13. Biological activities and chemical composition of lichens from Serbia.

    PubMed

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  14. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  15. A study on chemical composition and detection of chemical adulteration in tetra pack milk samples commercially available in Multan.

    PubMed

    Awan, Adeela; Naseer, Misbah; Iqbal, Aasfa; Ali, Muhammad; Iqbal, Rehana; Iqbal, Furhan

    2014-01-01

    The aim of this study was to analyze and compare the chemical composition of 8 tetra pack milk samples, Olpers (S1), Haleeb (S2), Good milk (S3), Everyday (S4), Milk Pack (S5), Dairy Queen (S6), Dairy Umang (S7), Nurpur (S8) available in local markets and to detect the presence of various chemical adulterants in tetra pack milk samples in Southern Punjab (Pakistan). Density, pH, solid not fat, total solids, lactometer reading, specific gravity and fat contents were analyzed to determine the chemical composition of milk samples. Our results revealed that all the studied parameters had statistically non significant differences (P>0.05) except total fat in milk samples which was significantly different (P=0.03) among the 8 studied milk samples. Presence of a number of chemical adulterants, formalin, cane sugar, starch, glucose, ammonium sulphate, salt, pulverized soap, detergents, skim milk powder, benzoic acid, salicylic acid, borax, boric acid and alkalinity were also detected in milk samples following standard procedures. Results indicated that formalin, cane sugar, glucose, alkalinity and benzoic acid were present in all samples while salt test was positive only for Olper milk. All other studied adulterants were not detected in 8 milk samples under study. % fat was the only significantly different feature among the studied milk quality parameters with S8 containing lowest while S5 having the maximum % fat. PMID:24374447

  16. On the chemical composition of L-chondrites

    NASA Technical Reports Server (NTRS)

    Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.

    1980-01-01

    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.

  17. Environmental tobacco smoke: overview of chemical composition and genotoxic components.

    PubMed

    Löfroth, G

    1989-02-01

    Tobacco smoke contains numerous compounds emitted as gases and condensed tar particles. The sidestream smoke emissions, which constitute the major part of environmental tobacco smoke (ETS), are generally larger than the mainstream smoke emissions. Many of the organic compounds, belonging to a variety of chemical classes, are known to be genotoxic and carcinogenic. These include the known constituents, alkenes, nitrosamines, aromatic and heterocyclic hydrocarbons and amines. Emission of sidestream smoke in indoor environments with relatively low ventilation rates can result in pollutant concentrations above those generally encountered in ambient air in urban areas. The chemical characteristics of ETS thus support the indications that exposure to ETS can be causally associated with the induction of several types of cancer.

  18. Chemical composition of Nigella sativa Linn: Part 2 Recent advances.

    PubMed

    Akram Khan, M; Afzal, M

    2016-06-01

    The black cumin or Nigella sativa L. seeds have many acclaimed medicinal properties such as bronchodilatory, hypotensive, antibacterial, antifungal, analgesic, anti-inflammatory and immunopotentiating. This review article is an update on the previous article published on Nigella sativa L. in this journal in 1999. It covers the medicinal properties and chemical syntheses of the alkaloids isolated from the seeds of the herb. PMID:27068721

  19. Regulating continent growth and composition by chemical weathering

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Little, M.G.; Kistler, R.; Horodyskyj, U.N.; Leeman, W.P.; Agranier, A.

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. ?? 2008 by The National Academy of Sciences of the USA.

  20. Regulating continent growth and composition by chemical weathering.

    PubMed

    Lee, Cin-Ty Aeolus; Morton, Douglas M; Little, Mark G; Kistler, Ronald; Horodyskyj, Ulyana N; Leeman, William P; Agranier, Arnaud

    2008-04-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms.

  1. Regulating continent growth and composition by chemical weathering

    PubMed Central

    Lee, Cin-Ty Aeolus; Morton, Douglas M.; Little, Mark G.; Kistler, Ronald; Horodyskyj, Ulyana N.; Leeman, William P.; Agranier, Arnaud

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. PMID:18362343

  2. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-07-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  3. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    PubMed Central

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-01-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems. PMID:27403714

  4. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests.

    PubMed

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y H

    2016-01-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon's index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems. PMID:27403714

  5. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests.

    PubMed

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y H

    2016-07-11

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon's index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  6. Origin and Bulk Chemical Compositions of the Inner Planets

    NASA Astrophysics Data System (ADS)

    Prentice, A. J.

    2001-12-01

    as β = β 1(θ - θ s})/(θ {1 - θ s). Here θ = μ cT(r)/μ Tc, c means the centre, θ 1 = μ c}T(r{1})/μ_{1 Tc, etc. If the controlling parameters β 1, θ s, θ 1 stay constant, then the contracting cloud sheds gas rings whose mean orbital radii Rn (n=0,1,2, ...) form a closely geometric sequence. The choice β = 0.1253, θ s = 0.00232 and θ 1 = 7.6 θ s leads to the detachment of a family of gas rings whose evolved radii Rn match the observed mean planetary spacings and whose condensate bulk chemical compositions yield densities in accord with the values /lineρunc. The maximum value of pt}/p{gas in the PSC, occurring at radius r = r1, is now only 11.3. The initial mass of the PSC is 1.197M⊙ . The loss of cloud mass during contraction to present solar size results in the orbital expansion of all gas rings and condensate material after ring detachment. Earth's gas ring was shed at 0.917 AU. Details of the gas ring temperatures, mean orbit pressures and condensate compositions are given in the URL below. Notably, Mercury formed at 1632 K and consists mostly of Fe-Ni-Cr-Co-V alloy (mass fraction: 0.670) and gehlenite (0.254). For Venus (911 K), the condensate contains metal alloy (0.326) and MgO-SiO2 (0.575). (Fe-Ni)S (0.087) and tremolite (0.102) first condense at Earth's orbit (674 K). FeO, as fayalite (0.180), first forms at Mars' (459 K). I thank Mr. David Warren [Tasmania], Dr. John D. Anderson [NASA/JPL] and the ARC for support.

  7. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  8. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  9. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Matlin, W.M.; Stinton, D.P.; Besmann, T.M.

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  11. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; McLaughlin, J.C.; Probst, K.J.; Anderson, T.J.; Starr, T.L.

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  12. Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 1. Chemical composition of mainstream smoke.

    PubMed

    Borgerding, M F; Bodnar, J A; Chung, H L; Mangan, P P; Morrison, C C; Risner, C H; Rogers, J C; Simmons, D F; Uhrig, M S; Wendelboe, F N; Wingate, D E; Winkler, L S

    1998-07-01

    A new-technology cigarette has been developed. While the new cigarette burns some tobacco, it does not use tobacco as the fuel to sustain combustion and provide heat to the cigarette. Rather, the new cigarette primarily heats tobacco thereby reducing products of smoke formation mechanisms such as tobacco combustion, tobacco pyrolysis and pyrosynthesis. The mainstream smoke composition from a cigarette based on the new design (TOB-HT) has been characterized in comparative chemical testing with two reference cigarettes using the FTC puffing regimen. Thermal properties, UV absorption characteristics, elemental composition and materials balance studies all suggest a simplified smoke aerosol. Twenty-five smoke constituents ("target compounds") identified by the scientific community as compounds that may contribute to the diseases statistically associated with smoking have also been measured. Mainstream smoke concentrations of most target compounds are significantly lower with the TOB-HT cigarette when compared with reference cigarettes in the ultra-light "tar" and light "tar" categories. Taken together, chemical analysis results suggest simplified TOB-HT smoke chemistry with marked reductions in specific chemicals reported to be biologically active.

  13. Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 1. Chemical composition of mainstream smoke.

    PubMed

    Borgerding, M F; Bodnar, J A; Chung, H L; Mangan, P P; Morrison, C C; Risner, C H; Rogers, J C; Simmons, D F; Uhrig, M S; Wendelboe, F N; Wingate, D E; Winkler, L S

    1998-03-01

    A new-technology cigarette has been developed. While the new cigarette burns some tobacco, it does not use tobacco as the fuel to sustain combustion and provide heat to the cigarette. Rather, the new cigarette primarily heats tobacco thereby reducing products of smoke formation mechanisms such as tobacco combustion, tobacco pyrolysis and pyrosynthesis. The mainstream smoke composition from a cigarette based on the new design (TOB-HT) has been characterized in comparative chemical testing with two reference cigarettes using the FTC puffing regimen. Thermal properties, UV absorption characteristics, elemental composition and materials balance studies all suggest a simplified smoke aerosol. Twenty-five smoke constituents ("target compounds") identified by the scientific community as compounds that may contribute to the diseases statistically associated with smoking have also been measured. Mainstream smoke concentrations of most target compounds are significantly lower with the TOB-HT cigarette when compared with reference cigarettes in the ultra-light "tar" and light "tar" categories. Taken together, chemical analysis results suggest simplified TOB-HT smoke chemistry with marked reductions in specific chemicals reported to be biologically active.

  14. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOEpatents

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  15. Chemical composition of the haze in Malaysia 2005

    NASA Astrophysics Data System (ADS)

    Norela, S.; Saidah, M. S.; Mahmud, M.

    2013-10-01

    A study of the chemical composition of the haze was conducted in two areas: Klang Valley and Malacca in Peninsular Malaysia, from July to September of 2005. The data is based on the reports of the air quality monitoring for particulate matter (PM10), pH of rainwater, anions (NO3-, SO42-, Cl-), cations (NH4+, Na2+, Ca2+, K+, Mg2+), heavy metals (Fe, Zn, Pb, Mn, Cu, Ni) and a meteorology parameter, the wind speed. The monthly concentrations of PM10 for the Klang Valley ranged from 35.90 to 104.46 μg m-3 whilst in Malacca the concentration ranged from 35.80 to 54.30 μg m-3 which was over the permitted level of 50 μg m-3 for the time period of a month as stipulated by the Department of Environment Malaysia (DOE). The pH of rainwater collected in the Klang Valley ranged from 4.26 ± 0.12 to 5.45 ± 0.58, while in Malacca the pH varied from 4.35 ± 0.20 to 5.43 ± 0.12. The mean concentrations for NO3-, SO42-, Cl-, NH4+, Ca2+, Na2+, K+, Mg2+ for three months in the Klang Valley were 46.40 ± 11.16 μeq L-1, 34.84 ± 9.82 μeq L-1, 12.34 ± 4.13 μeq L-1, 29.28 ± 11.02 μeq L-1, 8.92 ± 0.88 μeq L-1, 8.18 ± 1.00 μeq L-1, 2.08 ± 0.34 μeq L-1, 1.38 ± 0.24 μeq L-1, respectively, whilst in Malacca, the mean concentrations were 24.46 ± 6.99 μeq L-1, 28.4 ± 7.24 μeq L-1, 27.32 ± 7.36 μeq L-1, 30.92 ± 1.26 μeq L-1, 4.10 ± 2.56 μeq L-1, 21.44 ± 7.54 μeq L-1, 3.18 ± 1.82 μeq L-1 and 1.54 ± 1.66 μeq L-1, respectively. These values were lower than the non haze period (January to March and April to June) except for the Cl- ion which recorded the highest anion in Malacca. However, the mean values were similar for the period from October to December. The mean concentrations of metals showed that Cu > Ni, whilst in Malacca, in descending order, were Fe > Zn > Cu > Mn > Pb > Ni.

  16. Chemical Composition of Fine Particulate Matter and Life Expectancy

    PubMed Central

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  17. CHEMICAL COMPOSITIONS OF KINEMATICALLY SELECTED OUTER HALO STARS

    SciTech Connect

    Zhang Lan; Zhao Gang; Ishigaki, Miho; Chiba, Masashi; Aoki, Wako E-mail: zhanglan@bao.ac.c E-mail: chiba@astr.tohoku.ac.j

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including alpha-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [alpha/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens and Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy.

  18. Chemical composition of nebulosities in the magellanic clouds.

    PubMed

    Aller, L H; Czyzak, S J; Keyes, C D; Boeshaar, G

    1974-11-01

    From photoelectric spectrophotometric data secured at Cerro Tololo Interamerican Observatory we have attempted to derive electron densities and temperatures, ionic concentrations, and chemical abundances of He, C, N, O, Ne, S, and Ar in nebulosities in the Magellanic Clouds. Although 10 distinct nebulosities were observed in the Small Cloud and 20 such objects in the Large Cloud, the most detailed observations were secured only for the brighter objects. Results for 30 Doradus are in harmony with those published previously and recent work by Peimbert and Torres-Peimbert. Nitrogen and heavier elements appear to be less abundant in the Small Cloud than in the Large Cloud, in accordance with the conclusions of Dufour. A comparison with the Orion nebula suggests He, N, Ne, O, and S may all be less abundant in the Megellanic Clouds, although adequate evaluations will require construction of detailed models. For example, if we postulate that the [NII], [OII], and [SII] radiations originate primarily in regions with electron temperatures near 8000 degrees K, while the [OIII], [NeIII], [ArIII], and H radiations are produced primarily in regions with T(epsilon) = 10,000 degrees K, the derived chemical abundances in the clouds are enhanced.

  19. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  20. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  1. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods - slides

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  2. Chemical Composition of Lunar Magma Ocean Constrained by High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Sakai, R.; Kushiro, I.; Nagahara, H.; Ozawa, K.; Tachibana, S.

    2010-03-01

    We report our attempts to constrain bulk chemical compositions of lunar magma ocean based on experimental constraints from physical properties of magma that can float anorthite to form the lunar anorthosite crust.

  3. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL....61(a)(6) § 761.292 Chemical extraction and analysis of individual samples and composite samples. Use... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method...

  4. A New Reference Chemical Composition for TMC-1

    NASA Astrophysics Data System (ADS)

    Gratier, P.; Majumdar, L.; Ohishi, M.; Roueff, E.; Loison, J. C.; Hickson, K. M.; Wakelam, V.

    2016-08-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agúndez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  5. Does forest fire effect chemical composition of surface water

    SciTech Connect

    Sanders, A.T. . Dept. of Geography and Geology)

    1992-01-01

    Chemical Data for stream drainages in Yellowstone National Park area have been examined for trends associated with the 1988 burn. Limited pre-fire data make assessment difficult. Data from the Snake River (at maximum recorded discharge) suggest that TDS decreases, total Nitrogen remains constant and total Phosphorus increases from pre-fire (and very dry conditions) to post-fire (and more normal conditions). To test these apparent trends post-fire data from adjacent valleys (Jones Creek, burned; Crow Creek, unburned) were compared. Each shows a decrease in TDS, similar nearly constant total Nitrogen and an increase in total Phosphorus. Although year to year changes in surface water seem greater from the burned valley, the data from the unburned valley show similar trends. Therefore these data do not clearly distinguish trends resulting solely from the burn.

  6. Chemical composition of streams during low flow; Fairfax County, Virginia

    USGS Publications Warehouse

    Larson, J.D.

    1978-01-01

    Water samples were collected and stream discharges were measured at 49 sites in Fairfax County, Virginia during a period of low flow in August 1977. In addition, pesticide and metal content of residue on stream-bottom sediments from several major streams in the county were analysed. Waters from the streams in Fairfax County have generally good chemical quality during low flow. One stream in Vienna, Virginia has a high sodium chloride content, suggesting an upstream discharge of salty water. Higher concentrations of dissolved, solids reflect both the effects of geology and urbanization. Streams draining Triassic rocks in the western section of the county are characterized by the greatest natural concentration of dissolved minerals in the water. The concentrations of pesticide and metal residue associated with bottom sediments suggest a low level of pollution in the streams. One site in western Fairfax County contained above-normal levels of polychlorinated biphenyls (PCB's) in the stream sediments.

  7. Correlation between dielectric properties and chemical composition of the tourmaline single crystals

    NASA Astrophysics Data System (ADS)

    Shekhar Pandey, Chandra; Jodlauk, Sven; Schreuer, Jürgen

    2011-10-01

    Dielectric responses were studied on piezoelectric tourmaline single crystals of widely varying chemical composition from different geological origins. The dielectric constants at constants stress, and dissipation factor were measured as a function of frequency (100-1000 kHz) using method of substitution. A correlation between two independent dielectric constants (along and perpendicular to crystallographic c-axis) is observed, and dependence of dielectric constants on chemical composition is presented.

  8. [Chemical weapons and chemical terrorism].

    PubMed

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  9. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  10. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  11. Chemical microsensors

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  12. The Chemical Composition of Halo Stars on Extreme Orbits

    NASA Astrophysics Data System (ADS)

    Stephens, Alex

    1999-04-01

    Presented within is a fine spectroscopic analysis of 11 metal-poor (-2.15<[Fe/H]<-1.00) dwarf stars on orbits that penetrate the outermost regions of the Galactic halo. Abundances for a select group of light metals (Na, Mg, Si, Ca, and Ti), Fe-peak nuclides (Cr, Fe, and Ni), and neutron-capture elements (Y and Ba) were calculated using line strengths measured from high-resolution (R~48,000), high signal-to-noise ratio (S/N~110pixel^-1) echelle spectra acquired with the Keck I 10 m telescope and HIRES spectrograph. Ten of the stars have apogalactica, a proxy for stellar birthplace, which stretch between 25 and 90 kpc; however, these ``outer halo'' stars exhibit strikingly uniform abundances. The average, Fe-normalized abundances-<[Mg/Fe]>=+0.23+/-0.09, <[Si/Fe]>=+0.24+/-0.10, <[Ca/Fe]>=+0.22+/-0.07, <[Ti/Fe]>=+0.20+/-0.08, <[Cr/Fe]>=0.02+/-0.07, <[Ni/Fe]>=-0.09+/-0.07, and <[Ba/Fe]>=+0.01+/-0.12-exhibit little intrinsic scatter; moreover, the evolution of individual ratios (as a function of [Fe/H]) is generally consistent with the predictions of galactic chemical evolution models dominated by the ejecta of core-collapse supernovae. Only <[Y/Fe]>=-0.13+/-0.21 exhibits a dispersion larger than observational uncertainties, which suggests a different nucleosynthesis site for this element. It has been conjectured that stars on high-energy orbits-either those that penetrate the remote halo or ones with extreme retrograde velocities-were once associated with a cannibalized satellite galaxy. Such stars, as shown here, are indistinguishable from metal-poor dwarfs of the inner Galactic halo. The uniformity of the abundances, regardless of kinematic properties, suggests that physically, spatially, and temporally distinct star-forming regions within (or near) the growing Milky Way experienced grossly similar chemical evolution histories. Implications for galaxy formation scenarios are discussed.

  13. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-05-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%), and NO3- (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The

  14. Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products

    SciTech Connect

    Shaw, M.S.

    1993-06-01

    A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.

  15. Conical intersection seams in polyenes derived from their chemical composition

    SciTech Connect

    Nenov, Artur; Vivie-Riedle, Regina de

    2012-08-21

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)]. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  16. The chemical compositions of RR Lyrae type c variable stars

    SciTech Connect

    Govea, Jose; Gomez, Thomas; Sneden, Christopher; Preston, George W. E-mail: chris@verdi.as.utexas.edu

    2014-02-20

    We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit 'Blazhko-effect' period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters—effective temperature, surface gravity, microturbulent velocity, and metallicity—were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the α-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.

  17. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  18. Characterization of biomass burning particles: chemical composition and processing

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  19. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    NASA Astrophysics Data System (ADS)

    Prank, Marje; Sofiev, Mikhail; Tsyro, Svetlana; Hendriks, Carlijn; Semeena, Valiyaveetil; Vazhappilly Francis, Xavier; Butler, Tim; Denier van der Gon, Hugo; Friedrich, Rainer; Hendricks, Johannes; Kong, Xin; Lawrence, Mark; Righi, Mattia; Samaras, Zissis; Sausen, Robert; Kukkonen, Jaakko; Sokhi, Ranjeet

    2016-05-01

    Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution ~ 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2.5 by 10-60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20 % for PM2.5 and between 10 and 25 % for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3-, were overpredicted by the models. There were notable differences between the models' predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models' skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model-measurement comparison.

  20. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  1. Chemical Peels

    MedlinePlus

    ... the complications or potential side effects of a chemical peel? Temporary or permanent change in skin color, particularly for women on birth control pills, who subsequently become pregnant or have a history of brownish facial ... after having a chemical peel? All peels require some follow-up care: ...

  2. Chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  3. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  4. Chemical Emergencies

    MedlinePlus

    ... agents such as sarin and VX. Many hazardous chemicals are used in industry - for example, chlorine, ammonia, and benzene. Some can be made from everyday items such as household cleaners. Although there are no guarantees of safety during a chemical emergency, you can take actions to protect yourself. ...

  5. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  6. Chemical and sulfur isotopic composition of precipitation in Beijing, China.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Chen, Tongbin; Lang, Yunchao; Peters, Marc; Tian, Liyan; Zhang, Hanzhi; Wang, Chunyu

    2016-03-01

    China is experiencing serious acid rain contamination, with Beijing among the worst-hit areas. To understand the chemical feature and the origin of inorganic ions in precipitation of Beijing, 128 precipitation samples were collected and analyzed for major water-soluble ions and δ(34)S. The pH values ranged from 3.68 to 7.81 and showed a volume weighted average value (VWA) of 5.02, with a frequency of acid rain of 26.8 %. The VWA value of electrical conductivity (EC) was 68.6 μS/cm, which was nearly 4 times higher than the background value of northern China. Ca(2+) represented the main cation; SO4 (2-) and NO3 (-) were the dominant anion in precipitation. Our study showed that SO4 (2-) and NO3 (-) originated from coal and fossil fuel combustion; Ca(2+), Mg(2+), and K(+) were from the continental sources. The δ(34)S value of SO4 (2-) in precipitation ranged from +2.1 to +12.8‰ with an average value of +4.7‰. The δ(34)S value showed a winter maximum and a summer minimum tendency, which was mainly associated with temperature-dependent isotope equilibrium fractionation as well as combustion of coal with relatively positive δ(34)S values in winter. Moreover, the δ(34)S values revealed that atmospheric sulfur in Beijing are mainly correlated to coal burning and traffic emission; coal combustion constituted a significant fraction of the SO4 (2-) in winter precipitation. PMID:26573310

  7. The lodranite class: Asteroid break-up and chemical composition

    NASA Astrophysics Data System (ADS)

    Weigel, A.; Eugster, O.; Koeberl, C.; Kraehenbuehl, U.

    1994-07-01

    We continued our work on lodranites and present the cosmic-ray-produced noble gas abundances of EET 84302, FRO 90011, Gibson, and Y 74357. Additionally, we determined the target element abundances for the production of cosmogenic noble gases in aliquots of our samples by neutron activation analysis (INAA and RNAA). We calculated production rates using the chemistry-dependent equations for achondrites determined by Eugster and Michel (1994). Since the Mg/Si ratio in lodranites is similar to that of H chondrites. Because the contents of trapped He and Ne in lodranites are low we can derive reliable He-3 and Ne-21 cosmic-ray exposure ages. All lodranites fall within 30% of the average exposure age T21 of 4.6 Ma and within 20% of the average exposure age T3 of 6.1 Ma, except MAC 88177, with obvious diffusion loss of He-3. Our exposure ages agree with those based on Al-26 and Be-10 measurements that range from 3.8 to 6.4 Ma. The average exposure age T3 is about 30% higher than the average T21. Most lodranites show a high (Ne-22/Ne-21)c ratio, which is an indication for a small preatmospheric size. Perhaps the production rate ratio P3/P21 is underestimated for very small meteoroids. We conclude that one break-up event on the lodranite parent asteroid is responsible for the production of all eight lodranites dated till now. The chemical abundances presented allow us to derive more reliable production rates than in our previous work. We, thus deduce that the common break-up occurred 5 +/- 1 Ma.

  8. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  9. Chemical and sulfur isotopic composition of precipitation in Beijing, China.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Chen, Tongbin; Lang, Yunchao; Peters, Marc; Tian, Liyan; Zhang, Hanzhi; Wang, Chunyu

    2016-03-01

    China is experiencing serious acid rain contamination, with Beijing among the worst-hit areas. To understand the chemical feature and the origin of inorganic ions in precipitation of Beijing, 128 precipitation samples were collected and analyzed for major water-soluble ions and δ(34)S. The pH values ranged from 3.68 to 7.81 and showed a volume weighted average value (VWA) of 5.02, with a frequency of acid rain of 26.8 %. The VWA value of electrical conductivity (EC) was 68.6 μS/cm, which was nearly 4 times higher than the background value of northern China. Ca(2+) represented the main cation; SO4 (2-) and NO3 (-) were the dominant anion in precipitation. Our study showed that SO4 (2-) and NO3 (-) originated from coal and fossil fuel combustion; Ca(2+), Mg(2+), and K(+) were from the continental sources. The δ(34)S value of SO4 (2-) in precipitation ranged from +2.1 to +12.8‰ with an average value of +4.7‰. The δ(34)S value showed a winter maximum and a summer minimum tendency, which was mainly associated with temperature-dependent isotope equilibrium fractionation as well as combustion of coal with relatively positive δ(34)S values in winter. Moreover, the δ(34)S values revealed that atmospheric sulfur in Beijing are mainly correlated to coal burning and traffic emission; coal combustion constituted a significant fraction of the SO4 (2-) in winter precipitation.

  10. Chemical threats.

    PubMed

    Fry, Donald E

    2006-06-01

    The use of chemical agents as military weapons has been recognized for many centuries but reached the most feared and publicized level during World War I. Considerable political effort has been exercised in the twentieth century to restrict military strategies with chemicals. However, considerable concern currently exists that chemical weapons may be used as agents in civilian terrorism. The distribution of acetaminophen tablets contaminated with potassium cyanide and the release of sarin in the Tokyo sub-way system show that larger-scale deployment of chemical agents can be a reality. This reality makes it necessary for civilian disaster-planning strategies to incorporate an understanding of chemical agents, their effects, and the necessary treatment.

  11. ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE

    SciTech Connect

    Liu Ruoyu; Wang Xiangyu

    2012-02-10

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultrahigh energies and provide a sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultrahigh energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  12. [Rapid identification of chemical composition in safflower with UHPLC-LTQ-Orbitrap].

    PubMed

    Wang, Song-song; Ma, Yan; Zhang, Yi; Li, De-feng; Yang, Hong-jun; Liang, Ri-xin

    2015-04-01

    The UHPLC-LTQ-Orbitrap high resolution mass spectrometer was used to explore the chemical compositions in safflower. The rapid separation of the compositions was conducted by the UHPLC, following by high resolution full scan and MS2 scan, under the positive and negative ion mode. The chemical formula of compositions were deduced by full scan data in less than 5, then the potential structures were confirmed by the MS2 data. Forty-nine compounds were detected, of which 26 was identified, and 5 compounds was validated by the standard substances. PMID:26281560

  13. The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Gates, T. S.

    2003-01-01

    The effects of the chemical functionalization of a carbon nanotube embedded in a nanotube/polyethylene composite on the bulk elastic properties are presented. Constitutive equations are established for both functionalized and non-functionalized nanotube composites systems by using an equivalent-continuum modeling technique. The elastic properties of both composites systems are predicted for various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite material considered in this study, most of the elastic stiffness constants of the functionalized composite are either less than or equal to those of the non-functionalized composite.

  14. Chemical composition distribution analysis of photoresist copolymers and influence on ArF lithographic performance

    NASA Astrophysics Data System (ADS)

    Momose, Hikaru; Yasuda, Atsushi; Ueda, Akifumi; Iseki, Takayuki; Ute, Koichi; Nishimura, Takashi; Nakagawa, Ryo; Kitayama, Tatsuki

    2007-03-01

    For getting information about the distribution of chemical composition, several model polymers were prepared under different polymerization conditions and were measured by critical adsorption point-liquid chromatography (CAP-LC). In the copolymer system of 8- and 9- (4-oxatricyclo[5.2.1.0 2,6]decane-3-one) acrylate (OTDA) and 2-ethyl-2-adamantyl methacrylate (EAdMA), the peak shapes of the CAP-LC chromatogram varied according to the polymerization condition although they indicated same molecular weight and averaged chemical composition. The difference of the CAP-LC elution curves was related to the chemical composition distribution of copolymers for CAP-LC measurement combined with proton nuclear magnetic resonance (1H-NMR). The terpolymers consisted of α-hydroxy-γ-butyrolactone methacrylate (GBLMA), 2-methyl-2-adamantyl methacrylate (MAdMA) and 1-hydroxy-3-adamantyl methacrylate (HAdMA) were prepared under various polymerization conditions. In the terpolymer system that had same molecular weight and average chemical composition, the solubility parameter (δ) and the dissolution rate were measured. The δ value and the dissolution rate curve were different among these terpolymers. It was suggested that the δ value and the chemical composition distribution of these terpolymers have a significant influence on the lithographic performance.

  15. Level and Chemical Composition of Cryoglobulins in Schizophrenia

    NASA Astrophysics Data System (ADS)

    Khoyetsyan, Aren; Boyajyan, Anna; Melkumova, Maya

    The blood samples of 40 schizophrenic patients were tested for the presence of cryoglobulins (Cgs) and composition of Cgs was examined. The elevated levels of type III Cgs, containing complement components, were detected in all study subjects.

  16. The Chondrite Neagari: Petrography, Mineralogy, Chemical Compositions, and Cosmogenic Nuclides

    NASA Astrophysics Data System (ADS)

    Okada, A.; Komura, K.; Nagao, K.; Nishiizumi, K.; Miyamoto, Y.; Sakamoto, K.; Ebihara, M.; Shima, M.

    1995-09-01

    The Neagari meteorite fell on Feb. 18, 1995 at Neagari-machi, Nomi-gun, Ishikawa-ken, Japan (geographical coordinate: 36 degrees 26.9'N, 136 degrees 27.9'E). It was broken into several pieces when it hit a car upon falling. The largest piece weighing about 325 g and a small piece weighing 39 g were brought to the Kanazawa University for the measurements of gamma-rays emitted by cosmogenic nuclides only 2.7 days after the fall. Thereafter, the measurement was repeated several times. Other small pieces were used for petrographic, mineralogical and chemical studies. Noble gas mass spectrometry and AMS were also conducted. The Neagari meteorite shows a distinct, recrystallized structure under the microscopic observation of the thin section. Chondrules, 0.6 to 1.0 mm in diameter, are all present as relicts, buried in the well-recrystallized matrix. The chondrule-matrix boundaries are scarcely discernible in the granulated matrix. Olivine (Fa: 25.3 +/- 0.6 mole%) and orthopyroxene (Fs: 20.6 +/- 0.6 mole%) are the most abundant minerals both in matrix and in the chondrule relicts. Diopside is present as individual grains in the granular matrix. Interstitial feldspar crystal (Or(sub)6.3Ab (sub)88.0 An(sub)5.8) are common in the matrix and chondrule relicts, and often enclose minute pyroxene grains. Main opaque minerals are kamacite, taenite, troilite and chromite, and the metal phase is more abundant than the sulfide phase in the section. Both Fa and Fs values indicate that the Neagari meteorite is an L chondrite. The well-crystallized structure of the matrix, poorly defined outline of relict chondrules in the matrix, the prevalence of clear and well-developed plagioclase grains in the matrix and chondrule relicts and the absence of glass and monoclinic low-Ca pyroxene indicate the petrologic type to be 6. By the non-destructive gamma-ray measurement of the meteorite, eleven cosmogenic nuclides (^44mSc, ^52Mn, ^48V, ^51Cr, ^7Be, ^56Co, ^46Sc, ^57Co, ^54Mn, ^22Na, and ^26Al

  17. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  18. Chemical peeling.

    PubMed

    Forte, R; Hack, J; Jackson, I T

    1993-01-01

    This article explores the wide range of chemical facial peels, which include phenol, trichloroacetic acid, and alpha-hydroxy acids. The application of these substances will be described in addition to the contraindications to this type of treatment.

  19. Unnecessary Chemicals

    ERIC Educational Resources Information Center

    Johnson, Anita

    1978-01-01

    Discusses the health hazards resulting from chemical additions of many common products such as cough syrups, food dyes, and cosmetics. Steps being taken to protect consumers from these health hazards are included. (MDR)

  20. A universal bias in inorganic rainwater chemical composition data

    NASA Astrophysics Data System (ADS)

    Ayers, Gregory P.; Gillett, Robert W.; Selleck, Paul W.

    2003-07-01

    In the late 1970s, it was recognised that organic acids contributed to the acidity and ionic content of rainwater, but that these acids had not been detected because they were consumed biologically in the period between rainwater collection and subsequent laboratory analysis. Discussion of consequences for measured rainwater composition has been limited to assessment of pH gain that attends organic acid loss. We show that biological effects on rainwater ionic composition are not restricted to pH alone. Ammonium, potassium, nitrate, sulfate, methanesulfonate, and phosphate ions are also removed biologically, but remain in the rainwater in biomass, implying that most previous rainwater composition studies based on ionic analyses will have systematically underestimated nutrient deposition.

  1. Chemical compositions of the moon, earth, and eucrite parent body

    NASA Technical Reports Server (NTRS)

    Anders, E.

    1977-01-01

    Model compositions of the moon and earth were calculated on the assumption that these planets had experienced chondrite-like nebular fractionation processes. The model correctly predicts the abundance ratios of certain volatile/refractory element pairs (e.g., Cd/Ba, Ga/La, Sn/Th, and Pb/U), the density of the moon, and the major rock types. The model is also used to reconstruct the composition of the parent eucrite body, which resembles the moon except for a lower content of refractory elements.

  2. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  3. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  4. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms.

  5. [Chemical composition of 11 varieties of sorghum (Sorghum vulgare) before and after popping the kernels].

    PubMed

    Tuna, E; Bressani, R

    1992-09-01

    The effect of the popping process on the chemical composition, on lysine and tryptophan and on the in vitro protein digestibility of eleven sorghum varieties was evaluated. The popping of the grain was conducted in a popcorn popper previous adjustment of conditions. There were statistically significant differences in chemical composition both, in the raw grain and in the processed grain. The chemical composition was affected by the process and with the exception of protein content, it reduced the content of ether extract (3.43 to 2.75%) and increased significantly the level of crude fiber (2.47 to 4.45%). The concentration of available lysine and of tryptophan in the raw grain was reduced significantly by the process, with lysine losses of 9 to 57% and for tryptophan of 26 to 64%. A decrease was also observed in amylose as percentage of starch. In a number of samples the popping process significantly reduced in vitro protein digestibility. PMID:1342163

  6. Morphology, microstructure and chemical composition of single inhalable particles in Shanghai, China.

    PubMed

    Akram, Waheed; Madhuku, Morgan; Ahmad, Ishaq; Xiaolin, Li; Zhang, Guilin; Yan, Li

    2014-12-01

    The morphology, microstructure, and chemical composition of a variety of particles emitted from coal-fired power plants, steel plants, and vehicle exhausts, which are possible sources of particulate matter (PM) in the atmosphere, were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and compared with particle samples collected from urban atmosphere to identify the best footprint or the suitable indicator relating the existence of studied particles and their possible emitters by the morphology, microstructure, and chemical composition of the particles. The investigation indicated that the particles from these three sources are different in morphology, microstructure, and chemical composition. Sphere aggregates were generally the most abundant components, with silicon and aluminum as major elements. The urban air particulate contained particles similar to those observed in the power plant, steel plant, and vehicle exhaust samples suggesting that all three sources are contributing to the pollution in the city.

  7. Chemical composition of the essential oil of Commiphora erythraea.

    PubMed

    Marcotullio, Maria Carla; Santi, Claudio; Mwankie, Gildas Norbert Oball-Mond; Curini, Massimo

    2009-12-01

    The essential oil composition of Commiphora erythraea (Ehrenb) Engl. is reported for the first time. The oil is rich in sesquiterpenes, particularly furanosesquiterpenes (50.3%). GC-MS analysis of the oil permitted differentiation between C. erythraea and C. kataf, two often confused species. PMID:20120119

  8. The Composition of 433 Eros: A Mineralogical-Chemical Synthesis

    NASA Technical Reports Server (NTRS)

    McCoy, T. J.; Gaffey, M.; Bell, J. F., III; Boynton, W. V.; Burbine, T. H.; Chapman, C. R.; Cheng, A.; Clark, P. E.; Evans, L. G.; Gorenstein, P.

    2001-01-01

    We report on an effort with the Near-Infrared Spectrometer/Multi-Spectral Imager (NIS/MSI) and X-ray/Gamma-ray Spectrometer (XGRS) teams to synthesize our data sets to constrain the relationship between Eros and meteorites; the mineralogy, abundances and compositions of Eros; and the processes that formed Eros. Additional information is contained in the original extended abstract.

  9. Chemical composition of black rockfish (Sebastes melanops) fillets and byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black rockfish are important in the near shore fishery of Southeast Alaska. They are the only species among the pelagic shelf rockfishes for which there is a directed fishery in state waters. The purpose of this study was to determine the composition black rockfish fillets and its major processing b...

  10. On the Formation and Chemical Composition of Super Earths

    NASA Astrophysics Data System (ADS)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2016-09-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes (≳ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place within short-lived disks (≲ 2 Myr), whereby the disks are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky (< 6 % ice by mass) to those with substantial water contents (> 30 % ice by mass). The traps play a crucial role in our results, as they dictate where in the disk particular planets can accrete from, and what compositions they are able to acquire.

  11. Effect of interfacial chemical bonding and surface topography on adhesion in carbon fiber/epoxy composites

    SciTech Connect

    Drzal, L.T.; Sugiura, N.; Hook, D. |

    1994-12-31

    A series of PAN-based IM6 carbon fibers having varying amounts of surface treatment were, pretreated with compounds representing the constituents encountered in epoxy composites to pre-react any groups on the fiber surface before composite fabrication in order to determine the effect of chemical bonding on fiber-matrix adhesion. Chemical bonding was quantified using XPS. Chemical bonding between reactive groups in amine cured epoxy matrices and the surface groups present on IN46 carbon fibers as a result of commercial surface treatments has been detected although the absolute amount of chemical bonding is low (1-3%). It was found that reaction with monofunctional epoxy groups having hydrocarbon functionalities blocked the surface from further reaction and reduced the adhesion that could be attained to its lowest value. Prereaction with difunctional amines had little effect on adhesion when compared to normal composite fabrication procedures. Prereaction with difunctional epoxy groups did enhance adhesion levels over the level attained in normal composite fabrication methods. These results showed that chemical bonding between epoxy and the carbon fiber surface could increases the adhesion between fiber and matrix about 25% while between the amino group and the carbon fiber surface about 15%. Quantitative measurements of the fiber surface microtopography were made with scanning tunneling microscopy. An increase in roughness was detected with increasing surface treatment. It was concluded that surface roughness also accounted for a significant increase in fiber-matrix adhesion.

  12. [Chemical composition of food products derived from wheat and corn produced in Costa Rica].

    PubMed

    Blanco-Metzler, A; Montero-Campos, M A; Fernández-Piedra, M

    2000-03-01

    Twenty one wheat and corn based food products elaborated in Costa Rica were analyzed by chemically with the purpose of having data on local foods. The analytical methods to determine proximate composition were AOAC's. Energy was estimated by calorimetric bomb and dietary fiber (DF) by the gravimetric enzymatic method. Also food portion size was estimated and related with DF content for food classification. The values of the nutrients per food were established and compared with others reported in foreign tables commonly used in the country. Fat and energy content in cookies are higher than in salad breads and crackers. Wheat and corn based food products are classified either as low or very low DF sources (< 2.9 g FD/portion). Corn "tortilla" DF content duplicates bread's and the fiber is basically insoluble. Marked differences were founded in the nutritive composition of specific foods when compared with values reported in foreign food tables. In other foods, as corn based products, similarities in the chemical composition were common. The chemical composition of the studied local foods shows the potential of the diet to be atherogenic, an important aspect to be considered with relation to the main causes of mortality in Costa Rica population. The more compatible food composition table with our data is the Central American, followed by the Latin American one. The necessity of having data on the chemical composition of local foods has been demonstrated. PMID:11048578

  13. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models.

    PubMed

    Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente

    2003-04-23

    Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.

  14. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Matlin, W.M.; Liaw, P.K.

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  15. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  16. Nextel{trademark}/SiC composites fabricated using forced chemical vapor infiltration

    SciTech Connect

    Weaver, B.L.; Lowden, R.A.; McLaughlin, J.C.; Stinton, D.P.; Besmann, T.M.; Schwarz, O.J.

    1993-06-01

    Oxide fiber-reinforced silicon carbide matrix composites were fabricated employing the forced-flow, thermal gradient chemical vapor infiltration (FCVI) process. Composites using Nextel{sup TM} fibers of varying composition were prepared to investigate the effectiveness of each Nextel{sup TM} fiber as a reinforcement for the given matrix. A carbon interface coating was used for the baseline materials, however, alternate interlayers with improved oxidation resistance were also explored Room-temperature flexure strengths of as-fabricated composites and specimens heated in air at 1273 K were measured and compared to results for other SiC-matrix composites.

  17. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    PubMed

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633

  18. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    PubMed

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  19. Model nebulae and determination of the chemical composition of the Magellanic Clouds

    PubMed Central

    Aller, L. H.; Keyes, C. D.; Czyzak, S. J.

    1979-01-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633

  20. Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity.

    PubMed

    Ristivojević, Petar; Trifković, Jelena; Andrić, Filip; Milojković-Opsenica, Dusanka

    2015-11-01

    Propolis is one of the most used natural products known for centuries for its beneficial effects. Due to significant differences in chemical composition of samples originating from different geographic and climatic zones it is crucial to characterize reliably each type of propolis. This article comprises the latest findings concerning the poplar type propolis, i.e. it gives a cross section of chemical composition, botanical origin and biological activity of poplar type propolis in order to encourage further investigations that would indicate its beneficial effects.

  1. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  2. Characterization of chemical composition of bee pollen in China.

    PubMed

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet. PMID:23265625

  3. Characterization of chemical composition of bee pollen in China.

    PubMed

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet.

  4. Chemical composition of certain tribal pulses in South India.

    PubMed

    Arinathan, V; Mohan, V R; John De Britto, A

    2003-05-01

    Raw seeds of tribal pulses Atylosia scarabaeoides, Canavalia gladiata, Lablab purpureus var. lignosus, Neonotonia wightii var. coimbatorensis, Rhynchosia filipes, Vigna trilobata and Vigna unguiculata subsp. unguiculata were investigated for their proximate composition, minerals, vitamins (niacin and ascorbic acid) and certain anti-nutritional substances. The seeds of L. purpureus var. lignosus and V. trilobata had a higher content of crude protein than the commonly consumed Indian pulses. The seeds were found to be a rich source of minerals like potassium when compared with recommended dietary allowance values. The total free phenolics, tannins, 3,4-dihydroxyphenylalanine and hydrogen cyanide were also analysed.

  5. Chemical composition of Eastern Black Sea aerosol--preliminary results.

    PubMed

    Balcılar, Ilker; Zararsız, Abdullah; Kalaycı, Yakup; Doğan, Güray; Tuncel, Gürdal

    2014-08-01

    Trace element composition of atmospheric particles collected at a high altitude site on the Eastern Black Sea coast of Turkey was investigated to understand atmospheric transport of pollutants to this semi-closed basin. Aerosol samples were collected at a timber-storage area, which is operated by the General Directorate of Forestry. The site is situated at a rural area and is approximately 50 km to the Black Sea coast and 200 km to the Georgia border of Turkey. Coarse (PM2.5-10) and fine (PM2.5) aerosol samples were collected between 2011 and 2013 using a "stacked filter unit". Collected samples were shipped to the Middle East Technical University in Ankara, where Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ba, Pb were measured by Energy dispersive x-ray fluorescence technique (EDXRF). Comparison of measured concentrations of elements with corresponding data generated at other parts of Turkey demonstrated that concentrations of pollution derived elements are higher at Eastern Black Sea than their corresponding concentrations measured at other parts of Turkey, which is attributed to frequent transport of pollutants from north wind sector. Positive matric factorization revealed four factors including three anthropogenic and a crustal factor. Southeastern parts of Turkey, Georgia and Black Sea coast of Ukraine were identified as source regions affecting composition of particles at our site, using trajectory statistics, namely "potential source contribution function" (PSCF). PMID:24373640

  6. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    PubMed

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils. PMID:26512548

  7. The composition of 433 Eros: A mineralogical-chemical synthesis

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Burbine, T. H.; McFadden, L. A.; Starr, R. D.; Gaffey, M. J.; Nittler, L. R.; Evans, L. G.; Izenberg, N.; Lucey, P.; Trombka, J. I.; Bell, J. F., III; Clark, B. E.; Clark, P. E.; Squyres, S. W.; Chapman, C. R.; Boynton, W. V.; Veverka, J.

    2001-12-01

    The near-Earth asteroid rendezvous (NEAR) mission carried x-ray/gamma-ray spectrometers and multi-spectral imager/near-infrared spectrometer instrument packages which gave complementary information on the chemistry and mineralogy, respectively, of the target asteroid 433 Eros. Synthesis of these two data sets provides information not available from either alone, including the abundance of non-mafic silicates, metal and sulfide minerals. We have utilized four techniques to synthesize these data sets. Venn diagrams, which examine overlapping features in two data sets, suggest that the best match for 433 Eros is an ordinary chondrite, altered at the surface of the asteroid, or perhaps a primitive achondrite derived from material mineralogically similar to these chondrites. Normalized element distributions preclude FeO-rich pyroxenes and suggest that the x-ray and gamma-ray data can be reconciled with a common silicate mineralogy by inclusion of varying amounts of metal. Normative mineralogy cannot be applied to these data sets owing to uncertainties in oxygen abundance and lack of any constraints on the abundance of sodium. Matrix inversion for simultaneous solution of mineral abundances yields reasonable results for the x-ray-derived bulk composition, but seems to confirm the inconsistency between mineral compositions and orthopyroxene/clinopyroxene ratios. A unique solution does not seem possible in synthesizing these multiple data sets. Future missions including a lander to fully characterize regolith distribution and sample return would resolve the types of problems faced in synthesizing the NEAR data.

  8. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  9. An Estimate of the Chemical Composition of Titan's Lakes

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis; Vuitton, Véronique

    2009-12-01

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C2H6) (~76%-79%), propane (C3H8) (~7%-8%), methane (CH4) (~5%-10%), hydrogen cyanide (HCN) (~2%-3%), butene (C4H8) (~1%), butane (C4H10) (~1%), and acetylene (C2H2) (~1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  10. AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES

    SciTech Connect

    Cordier, Daniel; Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis; Vuitton, Veronique

    2009-12-20

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C{sub 2}H{sub 6}) (approx76%-79%), propane (C{sub 3}H{sub 8}) (approx7%-8%), methane (CH{sub 4}) (approx5%-10%), hydrogen cyanide (HCN) (approx2%-3%), butene (C{sub 4}H{sub 8}) (approx1%), butane (C{sub 4}H{sub 10}) (approx1%), and acetylene (C{sub 2}H{sub 2}) (approx1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  11. Characterization of the chemical composition of lotus plumule oil.

    PubMed

    Bi, Yanlan; Yang, Guolong; Li, Hong; Zhang, Genwang; Guo, Zheng

    2006-10-01

    Characterizations of lotus plumule and plumule oil, focusing on approximate composition analysis of lotus plumule powder and fatty acid composition, lipid classes, triglyceride (TG) profiles, and sterol analysis of the plumule oil, were conducted in this work. The results revealed that the lotus plumule constitutes 7.8% moisture, 4.2% ash, and 12.5% crude oil and 26.3% protein on the dry base. Lotus plumule oil is rich in linoleic acid (50.4%) and oleic acid (13.5%), and the dominating saturated fatty acids are palmitic acid (18.0%) and behenic acid (6.8%). The principal components of TG in lotus plumule oil are LLL (12.80%), beta-PLL (11.27%), beta-POL (8.28%), beta-PLO (8.58%), and beta-BeLL (8.32%). Lipid class assay of the crude oil gave the saponification value of 153.4 KOH mg/g and tocopherol content 390 mg/100 g. A distinct characteristic of lotus plumule oil is that its unsaponifiable matter is incredibly high, up to 14-19%, which consists mainly of beta-sitosterol (32%), Delta(5)-avenasterol (20%), and campesterol (6.3%). The major occurring form of sterols was found to be steryl ester. This work might be useful to develop innovative applications of lotus plumule oil. PMID:17002438

  12. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  13. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    PubMed

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (<50 min) that possessed superior physicochemical properties compared to pure bioglass and physical mixture. For instance, the Young's modulus of bioglass was decreased 40-fold and the dissolution rate of silica was retarded 1.5-fold by integration of PMMA. Prolonged dissolution of silica fosters bone integration due to the continuous dissolution of bioactive silica. The primary osteoblast cells were well anchored and cell migration was observed on the surface of the hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement.

  14. Chemical sensors

    SciTech Connect

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section.

  15. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source.

  16. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source. PMID:27363128

  17. Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model

    PubMed Central

    Fernández, Victoria; Guzmán-Delgado, Paula; Graça, José; Santos, Sara; Gil, Luis

    2016-01-01

    The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth. PMID:27066059

  18. Chemical composition of the underutilized legume Cassia hirsuta L.

    PubMed

    Vadivel, V; Janardhanan, K

    2000-01-01

    Seven accessions of the underutilized legume, Cassia hirsuta L., seeds collected from seven different agroclimatic regions of Tamil Nadu, India, were analyzed for proximate composition, total proteins, protein fractions, mineral profiles and selected antinutritional factors. Crude protein ranged from 15.52 to 20.74%, crude lipid 3.77-7.04%, crude fiber 4.68-6.92%, ash 3.98-6.42% and carbohydrates 62.45-70.16%. Energy values of the seeds were 1549-1634 kJ/100 g (DM), which are comparable to those of other legumes. Data on seed protein fractions revealed that globulins constituted the bulk of the seed protein as in most legumes. Mineral contents of the seeds showed greater variation. Potassium was the most abundant mineral (1029-1786 mg/100 g), whereas manganese was low (2.1-2.2 mg/100 g). Antinutritional factors such as total free phenolics, tannins, L-DOPA and lectins were analyzed. The results of the study demonstrated that the accessions of C. hirsuta seeds collected from Tamil Nadu, India, could be good sources of some important nutrients for humans. PMID:11086879

  19. Chemical compositions and kinematics of the Hercules stream

    NASA Astrophysics Data System (ADS)

    Ramya, P.; Reddy, Bacham E.; Lambert, David L.; Musthafa, M. M.

    2016-08-01

    An abundance analysis is reported of 58-K giants identified by Famaey et al. (2005, A&A, 430, 165) as highly probable members of the Hercules stream selected from stars north of the celestial equator in the Hipparcos catalogue. The giants have compositions spanning the interval [Fe/H] from -0.17 to +0.42 with a mean value of +0.15 and relative elemental abundances [El/Fe] representative of the Galactic thin disc. Selection effects may have biased the selection from the Hipparcos catalogue against the selection of metal-poor stars. Our reconsideration of the recent extensive survey by Bensby et al. of FG dwarfs, including metal-poor stars, provides a [Fe/H] distribution for the Hercules stream, which is similar to that from the 58 giants. It appears that the stream is dominated by metal-rich stars from the thin disc. We discuss suggestions in the literature that the stream includes metal-poor stars from the thick disc.

  20. Chemical and phytochemical compositions of Voandzeia subterranea seeds.

    PubMed

    Marcel, Andzouana; Bienvenu, Mombouli Jean; Attibayeba

    2014-09-01

    The seeds of Voandzeia subterranean (L.) Thouars (Fabaceae), from Congo-Brazzaville were studied for proximate, qualitative and quantitative compositions. Phytochemical screening of various solvent extracts showed the presence of alkaloids, flavonoids, glycosides, saponins, steroids, triterpenoids, phenols, anthocyanins and carotenoids. Tannins and anthraquinones were not found. Quantitative analysis showed a high amount of alkaloids (34.40 ±0.2%), flavonoids (4.93 ± 0.17%), saponins (2.20 ± 0.11%) and anthocyanins (1.00 ± 0.12%) in decreasing order. Phenols (0.60 ± 0.12%) and carotenoids had low yields (0.26 ± 0.07%). Proximate analysis of the seeds showed high moisture, carbohydrate and energy content values (49.14, 20.53% and 956.14 kJ 100 g(-1), respectively). The results showed low ash content (3.84%) and the relatively high fat (7.84%) and protein content (18.65%). The mineral analysis revealed that potassium (3.15%) and phosphorus (1.74%) were the most abundant minerals. Calcium (0.35) and magnesium (0.39%), were found in low amounts. Sodium, iron and aluminum were detected in trace quantities (0.01%). Manganese was not detected in the present study. The seeds were found to be important both for their nutrients and non-nutrients which determined the medicinal and nutritional value of the plant. PMID:26031031

  1. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  2. Chemical networks

    NASA Astrophysics Data System (ADS)

    Thi, Wing-Fai

    2015-09-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One on-going research subject is finding new paths to synthesize species either in the gas-phase or on grain surfaces. Specific formation routes for water or carbon monoxide are discussed in more details. 13th Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  3. Chemical composition of nuts and seeds sold in Korea.

    PubMed

    Chung, Keun Hee; Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-04-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

  4. Chemical composition of nuts and seeds sold in Korea

    PubMed Central

    Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-01-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety. PMID:23610599

  5. Chemical composition of nuts and seeds sold in Korea.

    PubMed

    Chung, Keun Hee; Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-04-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety. PMID:23610599

  6. Generation rates and chemical compositions of waste streams in a typical crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Golub, Morton A.

    1990-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  7. Studies on the chemical composition of kohl stone by X-ray diffractometer.

    PubMed

    Ullah, Pervaiz Habib; Mahmood, Zafar Alam; Sualeh, Mohammad; Zoha, S M S

    2010-01-01

    Use of Kohl (Surma) creates toxicity or protects eye, is one of the most controversial topic of modern medicines. However, modern researches show that kohl forms a thin film on the eye lens thus avoiding the direct contract of harmful UV radiation and glare of sun with lens. Black and shining particles of galena in kohl shield the eyes from glare and reflection of sun and thus protect them from harmful effect of UV radiation emerging from the sun. Based on these findings and other properties of kohl, it was decided to undertake this study to ascertain it's chemical composition and to correlate these properties scientifically. In the present study, kohl stone obtained from Madina (Saudi Arabia) was analyzed to ascertain it's chemical composition. The chemical analysis and X-ray diffractometer results obtained, showed that the main component of kohl stone is galena (PbS).

  8. NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition

    PubMed Central

    Tsai, Richard Tzong-Han; Hsiao, Yu-Cheng; Lai, Po-Ting

    2016-01-01

    Chemical patents contain detailed information on novel chemical compounds that is valuable to the chemical and pharmaceutical industries. In this paper, we introduce a system, NERChem that can recognize chemical named entity mentions in chemical patents. NERChem is based on the conditional random fields model (CRF). Our approach incorporates (1) class composition, which is used for combining chemical classes whose naming conventions are similar; (2) BioNE features, which are used for distinguishing chemical mentions from other biomedical NE mentions in the patents; and (3) full-token word features, which are used to resolve the tokenization granularity problem. We evaluated our approach on the BioCreative V CHEMDNER-patent corpus, and achieved an F-score of 87.17% in the Chemical Entity Mention in Patents (CEMP) task and a sensitivity of 98.58% in the Chemical Passage Detection (CPD) task, ranking alongside the top systems. Database URL: Our NERChem web-based system is publicly available at iisrserv.csie.n cu.edu.tw/nerchem.

  9. Apxs Chemical Composition of the Kimberley Sandstone in Gale Crater

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Thompson, L. M.; Schmidt, M. E.; Berger, J. A.; Clark, B. C.; Grotzinger, J. P.; Yen, A. S.; Fisk, M. R.

    2014-12-01

    Kimberley was chosen as a major waypoint of the MSL rover Curiosity on its way to Mount Sharp. APXS data before drilling showed interestingly high K, Fe and Zn. This warranted drilling of the fine-grained sandstone for detailed investigations with SAM and Chemin. With significantly lower Na, Al and higher K, Mg and Fe, the composition of the drill target Windjana is very distinct from the previous ones in the mudstones at Yellowknife Bay. Up to 2000 ppm Br and 4000 ppm Zn post-brush were among the highest measured values in Gale Crater. The excavated fines, stemming from about 6cm, showed lower Br, but even higher Zn. Preliminary Chemin results indicate K-feldspar and magnetite being major mineral phases in Windjana, which is consistent with the pre drill APXS result and derived CIPW norms. Inside the accessible work volume of the arm at the drill site ChemCam exposed a greyish, shinier patch of rock underneath the dust, dubbed Stephen. ChemCam sees a high Mn signal in most of the spots. An APXS integration revealed high MnO as well (~4%), in addition to high Mg, Cl,K,Ni,Zn,Br,Cu,Ge and for the first time an APXS detectable amount of ~300 ppm Co. The surface might reflect a thin surface layer and may underestimate the higher Z elemental concentration since the APXS analysis assumes an infinite sample. Important elemental correlations are likely not impacted. A four spot daytime raster of Stephen before leaving the drill site showed a good correlation of Mn with Zn, Cu and Ni. All spots have 3-3.5% Cl, the highest values measured on Mars so far. While the stratigraphic setting of the Stephen sample is discussed elsewhere, the similarity with Mn deep-sea nodules is striking, e.g. the APXS calibration sample GBW07296. Whatever process formed Stephen, the process of Mn scavenging high Z trace metals from solutions seems to have happened similarly at this site on Mars.

  10. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  11. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    PubMed

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  12. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    PubMed

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  13. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  14. Differences in Chemical Composition of Soil Organic Carbon Resulting From Long-Term Fertilization Strategies

    PubMed Central

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1–3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4–6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3–52.6% and 9.4–64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  15. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    PubMed

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.

  16. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  17. Prediction of chemical contaminants and food compositions by near infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prediction of Food Adulteration by Infrared Spectroscopy H. Zhuang Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 Food adulteration, including both chemical contamination and composition alternation, has been one of major quality and/or safety c...

  18. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGES

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  19. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  20. Creation and Analysis of the Chemical Composition Map of Eros and Its Cosmochemical Interpretation

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Morgan, Thomas (Technical Monitor)

    2003-01-01

    The data was analyzed and two papers were written and published in the refereed journal: Meteoritics and Planetary Science. These paper describes the results of the study of the surface chemical composition of the asteroid Eros by the NEAR X-ray Fluorescence Spectrometer.

  1. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  2. Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    EPA Science Inventory

    Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM David G. Nashab, Esra Mutluc, William T. Prestond, Michael D. Haysb, Sarah H. Warrenc, Charly Kingc, William P. Linakb, M. lan Gilmourc, and David M. DeMarinic aOak Ridge Institute for Science and Ed...

  3. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  4. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  5. Spectroscopic characterization of the chemical composition of the potent sweetener Vartamil

    NASA Astrophysics Data System (ADS)

    Kolosova, T. E.; Prokhodchenko, L. K.; Pilipenko, V. V.; Suboch, V. P.

    2008-03-01

    The chemical composition of the potent sweetener Vartamil was characterized using spectral methods. It was demonstrated that Vartamil is a mixture of saccharose chloro derivatives, the main one of which is 4,1',6'-trichloro-4,1',6'-trideoxygalactosaccharose (Sucralose).

  6. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  7. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    PubMed

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  8. Raman spectra of Martian glass analogues: a tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena O.; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-04-01

    We present a study on the systematic changes of Raman spectra of a series of glasses as a function of their chemistry. These glass compositions are considered as analogues for rock materials identified on Mars. We performed a diffusion experiment between an iron-rich basaltic and a rhyolitic melt under reducing conditions to produce a wide range of intermediate chemical compositions. We then systematically acquired Raman spectra of the intermediate composition glasses across the diffusion interface and correlate them with the corresponding chemical compositions derived by electron microprobe analysis. Using a linear mixing model for the spectral evolution as a function of chemistry, we fitted a Raman parameter to each spectrum to estimate the chemical composition of each glass. The Raman model was verified using external natural and synthetic samples. This study: 1) expands the Raman database of silicate glasses including alkali and iron-rich compositions as expected to be found on Mars; and 2) contributes to develop Raman spectroscopy as a quantitative tool in geological and planetary science to estimate the chemistry of glasses on a microscopic level. Moreover, as Raman spectrometers have been developed for two forthcoming Mars missions [ExoMars program (2016-2018) and Mars 2020], with the benefit of this calibration, Raman spectroscopy will allow rapid, in-situ and remotely controlled identification and investigation of silicate glasses on future extraterrestrial rover missions.

  9. Chemical Mahjong

    ERIC Educational Resources Information Center

    Cossairt, Travis J.; Grubbs, W. Tandy

    2011-01-01

    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  10. Delicious Chemicals.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    This paper presents an approach to chemistry and nutrition that focuses on food items that people consider delicious. Information is organized according to three categories of food chemicals that provide energy to the human body: (1) fats and oils; (2) carbohydrates; and (3) proteins. Minerals, vitamins, and additives are also discussed along with…

  11. Chemical Indicators.

    ERIC Educational Resources Information Center

    Prombain, Dorothy R.; And Others

    This science sourcebook was written for intermediate grade teachers to provide guidance in teaching a specially developed unit on chemical indicators. Directions and suggestions for guiding student science activities are given. Some of the activities concern soil testing, crystals, and household powders such as sugar and salt. A list of necessary…

  12. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components. PMID:22389175

  13. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  14. Signatures of Earth-Like Planets in the Chemical Composition of Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Meléndez, Jorge; Ramírez, Iván

    2014-04-01

    The formation of terrestrial and gas giant planets has likely imprinted signatures on the chemical composition of their parent stars, as shown for example by the higher occurrence of giant planets for higher stellar metallicities. There are two new signatures that have been recently proposed by Meléndez et al. (2009, 2012) and Ramírez et al. (2009, 2010) for the formation of rocky planets, and by Ramírez et al. (2011) for gas giant planets. We review here our on-going work on the planet-star connection using solar twins, for which chemical abundances are being obtained at unprecedented precision (0.01 dex).

  15. Simulating the evolution of the chemical composition of the 1988/89 winter vortex

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. S.; Poole, L. R.; Solomon, S.

    1990-01-01

    During the 1988/89 Airborne Arctic Stratospheric Expedition (AASE) observations of the chemical composition and aerosol characteristics of the winter vortex were obtained from a NASA ER-2 aircraft. In this paper we present interpretations of observations obtained on three ER-2 flights using a Lagrangian coupled photochemical-microphysical model. It is argued that observations obtained on Jaunary 16 and 19, and February 10, represent different stages of the chemical evolution of the vortex, from the early stages of chlorine release, the onset of denitrification and the intensively processed state.

  16. Chemical Composition of Martian Soil and Rocks: Complex Mixing and Sedimentary Transport

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2000-01-01

    Chemical compositions of Martian soil and rocks indicate complex mixing relationships. Mixing of rock and soil clearly takes place and explains some of the chemical variation because sulfur, chlorine, magnesium, and perhaps iron are positively correlated due to their control from a secondary 'sedimentary' mineralogy (e.g., Mg- and possibly Fe-sulfate; Fe-oxides) that is present within the soils. Certain deviations from simple soil-rock mixing are consistent with mineralogical fractionation of detrital iron and titanium oxides during sedimentary transport.

  17. Chemical compositions and classifica tion of five thermally altered carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Noronha, Bianca A.; Friedrich, Jon M.

    2014-08-01

    To establish the chemical group provenance of the five thermally altered carbonaceous chondrites Asuka (A-) 881551, Asuka-882113, Elephant Moraine (EET) 96026, Mulga (west), and Northwest Africa (NWA) 3133, we quantified 44 trace elements in each of them. We also analyzed Larkman Nunatak (LAR) 04318 (CK4), Miller Range (MIL) 090001 (CR2), Roberts Massif (RBT) 03522 (CK5) as reference samples as their chemical group affinity is already recognized. We conclude that Asuka-881551, Asuka-882113, and Mulga (west) are thermally metamorphosed CK chondrites. Compositionally, Elephant Moraine 96026 most resembles the CV chondrites. NWA 3133 is the most significantly thermally altered carbonaceous chondrite in our suite of samples. It is completely recrystallized (no chondrules or matrix remain), but its bulk composition is consistent with a CV-CK clan provenance. The thermally labile element (e.g., Se, Te, Zn, and Bi) depletion in NWA 3133 indicates a chemically open system during the heating episode. It remains unclear if the heat necessary for its thermal alteration of NWA 3133 was due to the decay of 26Al or was impact related. Finally, we infer that MIL 090001, Mulga (west), and NWA 3133 show occasional compositional signatures indicative of terrestrial alteration. The alteration is especially evident within the elements Sr, Ba, La, Ce, Th, U, and possibly Sb. Despite the alteration, we can still confidently place each of the altered chondrites within an established chemical group or clan.

  18. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    PubMed

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  19. [Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS].

    PubMed

    He, Wan-Qing; Nie, Lei; Tian, Gang; Li, Jing; Shao, Xia; Wang, Min-Yan

    2013-12-01

    Volatile organic compounds (VOCs) are key precursors of ozone and secondary organic aerosols in air, and the differences in the compositions of VOCs lead to their different contribution to atmospheric reaction. Cooking oil fume is one of the important sources of atmospheric VOCs, and its chemical compositions are distinct under different conditions of oil types, food types, cooking methods and heating temperatures etc. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the chemical compositions of VOCs. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. According to spectral library search and map analysis, using area normalized semi-quantitative method, preliminary qualitative and quantitative tests were conducted for the specific components of VOCs under different conditions.

  20. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  1. Effect of Chemical Treatments on Flax Fibre Reinforced Polypropylene Composites on Tensile and Dome Forming Behaviour

    PubMed Central

    Wang, Wentian; Lowe, Adrian; Kalyanasundaram, Shankar

    2015-01-01

    Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure) to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength) can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system. PMID:25789505

  2. Effect of chemical treatments on flax fibre reinforced polypropylene composites on tensile and dome forming behaviour.

    PubMed

    Wang, Wentian; Lowe, Adrian; Kalyanasundaram, Shankar

    2015-01-01

    Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure) to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength) can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system.

  3. A Raman model for determining the chemical composition of silicate glasses

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R.; Perugini, Diego; Dingwell, Donald B.

    2015-04-01

    Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light which provides information about molecular vibrations of the investigated sample. Since the discovery of the Raman Effect (1928) in scattered light from liquids, the Raman investigation has been extended to a large number of substances at different pressure-temperature conditions. Recently, the Raman instrument setup has rapidly grown thanks to the progress in development of lasers, charge coupled devices and confocal systems (see Neuville et al. 2014 for a review). Here we present the first Raman model able to determine the chemical composition of silicate glasses. In this study we combine chemical analysis from magma mixing experiments between remelted basaltic and rhyolitic melts, with a high spatial resolution Raman spectroscopy investigation; we focus on tracking the evolution of the Raman spectrum with chemical composition of silicate glasses. The mixing process is driven by a recently-developed apparatus that generates chaotic streamlines in the melts (Morgavi et al., 2013), mimicking the development of magma mixing in nature. From these experiments we obtained a glassy filament with a chemical composition ranging from a basalt to a rhyolite. Raman and microprobe measurements have been performed on a filament of ~1000 μm diameter, every 2.5-20 μm. The evolution of the acquired Raman spectra with the measured chemical composition has been parametrized by combining both the Raman spectra of the basaltic and rhyolitic end-members. Using the developed Raman model we have been able to determine the chemical composition (mol% of SiO2, Al2O3, FeO, CaO, MgO, Na2O and K2O) of the investigated filament. Additionally, the proposed Raman model has been successfully tested using external remelted natural samples; reference glasses (Jochum et al., 2000), a remelted basalt, andesite from Etna and Montserrat respectively. Finally, as the Raman spectrum depends on the

  4. Mantle Metasomatism in Mars: Evidence from Bulk Chemical Compositions of Martian Basalts

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    2003-01-01

    Bulk compositions of martian meteorite basalts suggest that they formed from a highly depleted mantle that was variably metasomatised and enriched in incompatible elements. These results are consistent with radio-isotope results. Bulk chemical compositions of basaltic rocks retain clues and tracers to their origins and histories. Interpretations of bulk compositions are not so straight-forward as once envisioned, because real-world magmatic processes can be far from theoretical simple models like one-stage partial melting or closed-system fractional crystallization. Yet, bulk chemistry can shed a broad (if dim) light on Martian basalt petrogenesis that complements the sharply focussed illumination of radio-isotope systematics.

  5. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites.

    PubMed

    Haque, Md Mominul; Hasan, Mahbub; Islam, Md Saiful; Ali, Md Ershad

    2009-10-01

    In this work, palm and coir fiber reinforced polypropylene bio-composites were manufactured using a single extruder and injection molding machine. Raw palm and coir were chemically treated with benzene diazonium salt to increase their compatibility with the polypropylene matrix. Both raw and treated palm and coir fiber at five level of fiber loading (15, 20, 25, 30 and 35 wt.%) was utilized during composite manufacturing. Microstructural analysis and mechanical tests were conducted. Comparison has been made between the properties of the palm and coir fiber composites. Treated fiber reinforced specimens yielded better mechanical properties compared to the raw composites, while coir fiber composites had better mechanical properties than palm fiber ones. Based on fiber loading, 30% fiber reinforced composites had the optimum set of mechanical properties.

  6. Laboratory Inquiry for Determining the Chemical Composition of a Component in a Daily Use Detergent: Sodium Sesquicarbonate

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Kimura, Tomoyasu; Shigedomi, Kana

    2011-01-01

    An inquiry-based laboratory activity to determine the chemical composition of a component in alkaline detergents, sodium sesquicarbonate (SSC), is proposed. On the basis of introductory demonstrations by the instructor on the chemical properties and reactions of SSC, students propose the hypothetical composition of SSC and possible quantitative…

  7. Nest marking behavior and chemical composition of olfactory cues involved in nest recognition in Megachile rotundata.

    PubMed

    Guédot, Christelle; Buckner, James S; Hagen, Marcia M; Bosch, Jordi; Kemp, William P; Pitts-Singer, Theresa L

    2013-08-01

    In-nest observations of the solitary bee, Megachile rotundata (F.), revealed that nesting females apply olfactory cues to nests for nest recognition. On their way in and out of the nest, females drag the abdomen along the entire length of the nest, and sometimes deposit fluid droplets from the tip of the abdomen. The removal of bee-marked sections of the nest resulted in hesitation and searching behavior by females, indicating the loss of olfactory cues used for nest recognition. Chemical analysis of female cuticles and the deposits inside marked nesting tubes revealed the presence of hydrocarbons, wax esters, fatty aldehydes, and fatty alcohol acetate esters. Chemical compositions were similar across tube samples, but proportionally different from cuticular extracts. These findings reveal the importance of lipids as chemical signals for nest recognition and suggest that the nest-marking cues are derived from a source in addition to, or other than, the female cuticle.

  8. Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils.

    PubMed

    George, David R; Masic, Dino; Sparagano, Olivier A E; Guy, Jonathan H

    2009-06-01

    The results of this study suggest that certain eucalyptus essential oils may be of use as an alternative to synthetic acaricides in the management of the poultry red mite, Dermanyssus gallinae. At a level of 0.21 mg/cm(2), the essential oil from Eucalyptus citriodora achieved 85% mortality in D. gallinae over a 24 h exposure period in contact toxicity tests. A further two essential oils from different eucalyptus species, namely E. globulus and E. radiata, provided significantly (P < 0.05) lower mite mortality (11 and 19%, respectively). Notable differences were found between the eucalyptus essential oils regarding their chemical compositions. There appeared to be a trend whereby the essential oils that were composed of the fewer chemical components were the least lethal to D. gallinae. It may therefore be the case that the complexity of an essential oil's chemical make up plays an important role in dictating the toxicity of that oil to pests such as D. gallinae.

  9. Nest marking behavior and chemical composition of olfactory cues involved in nest recognition in Megachile rotundata.

    PubMed

    Guédot, Christelle; Buckner, James S; Hagen, Marcia M; Bosch, Jordi; Kemp, William P; Pitts-Singer, Theresa L

    2013-08-01

    In-nest observations of the solitary bee, Megachile rotundata (F.), revealed that nesting females apply olfactory cues to nests for nest recognition. On their way in and out of the nest, females drag the abdomen along the entire length of the nest, and sometimes deposit fluid droplets from the tip of the abdomen. The removal of bee-marked sections of the nest resulted in hesitation and searching behavior by females, indicating the loss of olfactory cues used for nest recognition. Chemical analysis of female cuticles and the deposits inside marked nesting tubes revealed the presence of hydrocarbons, wax esters, fatty aldehydes, and fatty alcohol acetate esters. Chemical compositions were similar across tube samples, but proportionally different from cuticular extracts. These findings reveal the importance of lipids as chemical signals for nest recognition and suggest that the nest-marking cues are derived from a source in addition to, or other than, the female cuticle. PMID:23905742

  10. The chemical compositions of solar twins in the open cluster M67

    NASA Astrophysics Data System (ADS)

    Liu, F.; Asplund, M.; Yong, D.; Meléndez, J.; Ramírez, I.; Karakas, A. I.; Carlos, M.; Marino, A. F.

    2016-08-01

    Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of the Milky Way. M67 is particularly interesting given its solar metallicity and age as well as being a dense cluster environment. We conducted a strictly line-by-line differential chemical abundance analysis of two solar twins in M67: M67-1194 and M67-1315. Stellar atmospheric parameters and elemental abundances were obtained with high precision using Keck/HIRES spectra. M67-1194 is essentially identical to the Sun in terms of its stellar parameters. M67-1315 is warmer than M67-1194 by ≈ 150 K as well as slightly more metal-poor than M67-1194 by ≈ 0.05 dex. M67-1194 is also found to have identical chemical composition to the Sun, confirming its solar twin nature. The abundance ratios [X/Fe] of M67-1315 are similar to the solar abundances for elements with atomic number Z ≤ 30, while most neutron-capture elements are enriched by ≈ 0.05 dex, which might be attributed to enrichment from a mixture of AGB ejecta and r-process material. The distinct chemical abundances for the neutron-capture elements in M67-1315 and the lower metallicity of this star compared to M67-1194, indicate that the stars in M67 are likely not chemically homogeneous. This poses a challenge for the concept of chemical tagging since it is based on the assumption of stars forming in the same star-forming aggregate.

  11. The chemical compositions of solar twins in the open cluster M67

    NASA Astrophysics Data System (ADS)

    Liu, F.; Asplund, M.; Yong, D.; Meléndez, J.; Ramírez, I.; Karakas, A. I.; Carlos, M.; Marino, A. F.

    2016-11-01

    Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of the Milky Way. M67 is particularly interesting given its solar metallicity and age as well as being a dense cluster environment. We conducted a strictly line-by-line differential chemical abundance analysis of two solar twins in M67: M67-1194 and M67-1315. Stellar atmospheric parameters and elemental abundances were obtained with high precision using Keck/High Resolution Echelle Spectrometer spectra. M67-1194 is essentially identical to the Sun in terms of its stellar parameters. M67-1315 is warmer than M67-1194 by ≈150 K as well as slightly more metal-poor than M67-1194 by ≈0.05 dex. M67-1194 is also found to have identical chemical composition to the Sun, confirming its solar-twin nature. The abundance ratios [X/Fe] of M67-1315 are similar to the solar abundances for elements with atomic number Z ≤ 30, while most neutron-capture elements are enriched by ≈0.05 dex, which might be attributed to enrichment from a mixture of asymptotic giant branch ejecta and r-process material. The distinct chemical abundances for the neutron-capture elements in M67-1315 and the lower metallicity of this star compared to M67-1194, indicate that the stars in M67 are likely not chemically homogeneous. This poses a challenge for the concept of chemical tagging since it is based on the assumption of stars forming in the same star-forming aggregate.

  12. The use of chemical composition data in waste management planning - A case study

    SciTech Connect

    Burnley, S.J.

    2007-07-01

    As the waste industry continues to move from a disposal-based system to one based on a combination of recovery options, the need for information on the composition of waste increases and this is reflected by the amount of information on the physical composition of municipal solid wastes that is now available. However, there is far less information on the chemical composition of municipal solid waste. The results from a number of chemical surveys from Europe are compared and show a reasonable degree of agreement, but several problems were identified with the data. Chemical and physical compositional data are combined in a case study example to investigate the flow of key potential pollutants in an integrated solid waste management system that uses materials recycling, composting, incineration and landfilling. This case study has shown that an integrated waste management strategy diverts lead and cadmium away from composting and recycling to incineration, which effectively isolates these elements from the environment through efficient capture of the pollutants followed by secure landfilling or recycling of the residues. However, further work is needed to determine the distribution of mercury in incineration residues and its fate when the residues are landfilled.

  13. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    PubMed

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality.

  14. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    PubMed

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality. PMID:24460876

  15. Chemical compositions in convective and nonconvective regions during PEM-Tropics B

    NASA Astrophysics Data System (ADS)

    Cubukcu, Nihat; Krishnamurti, T. N.; Dougherty, Ralph C.

    2002-01-01

    Four DC-8 flights during Pacific Exploratory Mission (PEM)-Tropics B are analyzed in terms of geographical location, meteorological conditions, and chemical compositions. The meteorological conditions are determined using the meteorological analysis of the Florida State University Global Spectral Model, trajectory analysis, and in situ measurements. Typical undisturbed meteorological conditions are found over the northeastern Pacific between 30° and 15°N and southeast of Hawaiian Islands during flights 5 and 6. Disturbed meteorological conditions are found over western and central equatorial Pacific especially over the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ) during flights 7 and 10. Comparison of the chemical concentrations between disturbed and undisturbed regions revealed remarkable differences. The distribution of the chemical constituents is found to be closely linked to the atmospheric state. Large amounts of pollutants are found to be capped at lower levels due to climatologically persistent trade wind inversion in the undisturbed regions. Transient convective systems are found to be the primary entity that destroys the inversion, causing the vertical transport of the chemicals. The disturbed regions displayed more homogeneous vertical distributions of chemicals resulting from low-level convergence and associated convection. Trajectory analysis showed that in undisturbed regions centered north of Hawaiian Islands, and in disturbed regions, the interaction between lower-level easterlies and upper-level westerlies plays a significant role on atmospheric chemistry over these regions.

  16. Spectroscopic Investigations of the Chemical Composition and Coma Morphology of Comets

    NASA Astrophysics Data System (ADS)

    Pierce, D.; Lewis, B.; Vaughan, C.; Cochran, A.

    2014-12-01

    Ground-based emission spectroscopy at optical wavelengths is important for understanding the chemical composition of comets. We have made spectroscopic observations of comets using both long-slit and integral-field unit spectrographs on the Harlan J. Smith telescope at the University of Texas McDonald Observatory in order to study radical species in cometary comae. We will discuss the techniques used to extract chemical abundances in comets from these data and show how the spatial distribution of the observed species and large-scale coma morphological features (e.g. jets or fans) are mapped and characterized. Analyses of data we have acquired for several comets to date will be presented that examine their chemical abundances, track the temporal evolution of coma morphology in relation to nuclear rotational behavior (where known), and gauge potential chemical heterogeneity of cometary nuclei. We will also place this work into broader context by comparing our results to existing large-sample photometric and spectroscopic surveys of comets, as well as comparing our results to those obtained during prior apparitions to determine whether these comets show any evolutionary changes in measured chemical abundances or sources of outgassing on their surfaces. This work has been funded by the NSF GK-12 STEM Fellowship program, NASA's Planetary Astronomy and Planetary Atmospheres programs, and the Fund for Astrophysical Research, Inc.

  17. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  19. Chemical composition of a sample of bright solar-metallicity stars

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Mott, A.; Steffen, M.; Bonifacio, P.; Strassmeier, K. G.; Gallagher, A.; Faraggiana, R.; Sbordone, L.

    2015-12-01

    We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from Ca II are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested. Data obtained at Observatoire de Haute Provence, with the SOPHIE spectrograph.

  20. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    SciTech Connect

    Tahir, D. Halide, H. Kurniawan, D.; Wahab, A. W.

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  1. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

    PubMed

    Mason, Charles J; Rubert-Nason, Kennedy F; Lindroth, Richard L; Raffa, Kenneth F

    2015-01-01

    Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

  2. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  3. Depth versus age: new perspectives from the chemical compositions of ancient crust

    NASA Astrophysics Data System (ADS)

    Humlera, Eric; Langmuirb, Charles; Dauxc, Vaiérie

    1999-11-01

    Petrological data provide a new approach to an evaluation of the depth-age problem for ancient seafloor. The correlations among basalt chemical composition, axial depth and mantle temperature at current ocean ridges allow the determination of initial depth and mantle temperature for any portion of ancient seafloor that was created at a spreading center, provided the chemical composition of the ancient crust is determined. It is then possible to calculate a petrologically constrained depth at any age, which can be compared to observed depths and depths from the classical half space models. We evaluate data from DSDP and ODP drill holes on crust older than 80 Ma, considering chemical composition, back-tracked depth and crustal thickness. The data are complex, and interpretation of their chemical composition requires consideration of alteration, absence of glass compositions, data quality, and the influence of off-axis volcanism and near-ridge hot spots. To check and expand the data set, we develop and use trace element proxies for major element compositions, since many trace element ratios are less influenced by alteration and by variable proportions of phenocrysts. The twenty drill holes for which reliable data can be obtained are well distributed around the globe, and include multiple sites on old crust in the Atlantic, Pacific and Indian ocean basins. Comparison of the chemical and crustal distributions between ancient and current N-MORB show that the oceanic crust older than 80 Ma has significantly lower Na 8.0,Zr/Y, Sm/Yb N, and higher CaO/Al 2O 3,Fe 8.0 and crustal thickness. Quantitative modeling of these results suggests that the mantle was hotter in this time period by about 50°C, that the cruss was several hundred meters shallower and 1-2 km thicker. These observations show that half to two thirds of the observed flattening relative to a half space model is due to the change in mantle temperature and crustal composition. Thus, only a few hundred meters of

  4. Chemical composition, digestibility and antinutritional factors content of two wild legumes: Styphonolobium burseroides and Acacia bilimekii.

    PubMed

    Sotelo, A; Migliaro, P; Toledo, A; Contreras, J

    1999-01-01

    The chemical composition, digestibility and toxin contents of two wild legumes: Styphnolobium burseroides and Acacia bilimekii, collected in a semi-arid zone of Mexico, were determined. Both legumes had a high fiber content. The seeds of Styphnolobium burseroides had a low protein content (14%), and the pod a high content of reducing sugars. However the seeds of Acacia bilimekii had a high protein concentration (35%). The seed proteins were low in sulphur amino acids and tryptophan in both legumes but were rich in lysine. Trypsin inhibitors and lectins were present in low concentrations; alkaloids and cyanogenic glucosides were not detected. The in vitro digestibility for monogastric animals was low but the same test with ruminal juice showed a high digestibility for both legumes. Based on their chemical composition and digestibility, these legumes could be a good alternative source in the feeding of ruminants. PMID:10646630

  5. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  6. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  7. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils.

    PubMed

    Thørring, H; Skuterud, L; Steinnes, E

    2014-08-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m(-2) per column, results indicate that acidic precipitation increased the mobility of (134)Cs added during the experiment. However, depth distribution of already present Chernobyl fallout (137)Cs was not significantly affected by the chemical composition of precipitation. PMID:24704765

  8. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    PubMed

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases. PMID:26373171

  9. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India.

    PubMed

    Sharma, Ph Baleshwor; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2015-02-01

    Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits viz., Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola grown in Manipur, India were presented in the current study. The order of the antioxidant activity and reducing power of the fruit samples was found as R. semialata > D. indica > G. xanthochymus > A. carambola > G. pedunculata. Good correlation coefficient (R(2) > 0.99) was found among the three methods applied to determine antioxidant activity. Total phenolic content was positively correlated (R(2) = 0.960) with the antioxidant activity however, total flavonoid content was not positively correlated with the antioxidant activity. Physico-chemical and proximate composition of these fruits is documented for the first time.

  10. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

    PubMed

    Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia

    2015-01-01

    The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.

  11. Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr

    PubMed Central

    de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.

    2015-01-01

    Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026

  12. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils.

    PubMed

    Thørring, H; Skuterud, L; Steinnes, E

    2014-08-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m(-2) per column, results indicate that acidic precipitation increased the mobility of (134)Cs added during the experiment. However, depth distribution of already present Chernobyl fallout (137)Cs was not significantly affected by the chemical composition of precipitation.

  13. Chemical composition and variability of the volatile components from inflorescences of Cirsium species.

    PubMed

    Kozyra, Małgorzata; Mardarowicz, Marek; Kochmańska, Joanna

    2015-01-01

    The present study aimed to investigate the chemical composition of the essential oils of inflorescences Cirsium spp. (Asteraceae) by GC/MS method. Essential oils were extracted from the inflorescences of Cirsium pannonicum (Link), Cirsium ligulare Boiss., Cirsium heterophyllum (L.) Hill., Cirsium acaule (L.) Scop., Cirsium oleraceum (L.) Scop., Cirsium dissectum (L.) Hill., Cirsium decussatum (Janka) and Cirsium eriophorum (L.) Scop., using the steam distillation method. A gas chromatography-mass spectrometry method was employed for the analysis of essential oils. Our study shows the differences in chemical composition of volatile oils in the inflorescences of Cirsium spp. The main components of the essential oil were ketones and aldehydes with a long carbon side-chain. Volatile oils also contained small amounts of terpenes: thymol, β-linalool, eugenol, carvacrol and fatty acids with odd number of carbon atoms-waxes. The compounds in the essential oils obtained from inflorescences Cirsium L. species have been identified for the first time. PMID:25674834

  14. Microflora and chemical composition of dental plaque from subjects with hereditary fructose intolerance.

    PubMed Central

    Hoover, C I; Newbrun, E; Mettraux, G; Graf, H

    1980-01-01

    We compared the microbiological and chemical composition of dental plaque from subjects with hereditary fructose intolerance who restrict their dietary sugar intake with that of control subjects who do not. The two groups showed no significant differences in chemical composition of plaque: the mean protein, carbohydrate, calcium, magnesium, and phosphate contents were similar. Dental plaque from both groups contained similar numbers of total colony-forming units per microgram of plaque protein, and Streptococcus sanguis, an indigenous nonpathogen, was isolated with equal frequency from plaque samples of both groups. However, potentially odontopathic Streptococcus mutans and Lactobacillus were isolated three to four times more frequently from plaque samples of control subjects than from plaque samples of subjects with hereditary fructose intolerance. Clearly, diet (sucrose in particular) influences the colonization and multiplication of specific cariogenic organisms in dental plaque. PMID:7399699

  15. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength

    SciTech Connect

    GE Fryxell; KL Alford; KL Simmons; RD Voise; WD Samuels

    1999-10-14

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer.

  16. Effect of the chemical composition of slag on its foamability in an electric arc furnace

    NASA Astrophysics Data System (ADS)

    Kozhukhov, A. A.

    2015-06-01

    The problems of foaming electric furnace slags are considered. The role of the physicochemical properties of slag during its foaming in electric arc furnaces is studied. The regions of slag foaming in an electric arc furnace are determined. Based on the derived relations between the chemical composition of slag and its foamability, one can choose a rational path of slag formation to ensure good slag foaming in the course of electrosmelting of steel.

  17. Inelastic light scattering spectroscopy in Si/SiGe nanostructures: Strain, chemical composition and thermal properties

    NASA Astrophysics Data System (ADS)

    Tsybeskov, L.; Mala, S. A.; Wang, X.; Baribeau, J.-M.; Wu, X.; Lockwood, D. J.

    2016-11-01

    We present a review of recent studies of inelastic light scattering spectroscopy in two types of Si/SiGe nanostructures: planar superlattices and cluster (dot) multilayers including first- and second-order Raman scattering, polarized Raman scattering and low-frequency inelastic light scattering associated with folded acoustic phonons. The results are used in semi-quantitative analysis of chemical composition, strain and thermal conductivity in these technologically important materials for electronic and optoelectronic devices.

  18. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  19. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    PubMed

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal. PMID:26703535

  20. Concentration of mycotoxins and chemical composition of corn silage: a farm survey using infrared thermography.

    PubMed

    Schmidt, P; Novinski, C O; Junges, D; Almeida, R; de Souza, C M

    2015-09-01

    This work evaluated the chemical composition and mycotoxin incidence in corn silage from 5 Brazilian dairy-producing regions: Castro, in central-eastern Paraná State (n=32); Toledo, in southwestern Paraná (n=20); southeastern Goiás (n=14); southern Minas Gerais (n=23); and western Santa Catarina (n=20). On each dairy farm, an infrared thermography camera was used to identify 3 sampling sites that exhibited the highest temperature, a moderate temperature, and the lowest temperature on the silo face, and 1 sample was collected from each site. The chemical composition and concentrations of mycotoxins were evaluated, including the levels of aflatoxins B1, B2, G1, and G2; zearalenone; ochratoxin A; deoxynivalenol; and fumonisins B1 and B2. The corn silage showed a highly variable chemical composition, containing, on average, 7.1±1.1%, 52.5±5.4%, and 65.2±3.6% crude protein, neutral detergent fiber, and total digestible nutrients, respectively. Mycotoxins were found in more than 91% of the samples, with zearalenone being the most prevalent (72.8%). All samples from the Castro region contained zearalenone at a high average concentration (334±374µg/kg), even in well-preserved silage. The incidence of aflatoxin B1 was low (0.92%). Silage temperature and the presence of mycotoxins were not correlated; similarly, differences were not observed in the concentration or incidence of mycotoxins across silage locations with different temperatures. Infrared thermography is an accurate tool for identifying heat sites, but temperature cannot be used to predict the chemical composition or the incidence of mycotoxins that have been analyzed, within the silage. The pre-harvest phase of the ensiling process is most likely the main source of mycotoxins in silage.

  1. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    PubMed

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  2. Relative toxicity of pyrolysis gases from materials - Effects of chemical composition and test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1978-01-01

    Relative toxicity test data on 270 materials are presented, based on test procedures developed at the University of San Francisco. The effects of chemical composition, using data on 13 types of synthetic polymers and eight types of fabrics, are discussed. Selected materials were evaluated using nine test conditions with the USF method, and using methods developed at the FAA Civil Aeromedical Institute, Douglas Aircraft Company and San Jose State University.

  3. Factors affecting the microbial and chemical composition of silage. IV. Effect of wilting on maize silage.

    PubMed

    Mahmoud, S A; Abdel-Hafez, A; Zaki, M M; Saleh, E A

    1979-01-01

    The effect of wilting on the microbial and chemical composition of ensiled maize plants was studied. Wilting stimulated high densities of lactic acid bacteria, with the decrease in counts of undesirable flora, i.e., yeasts, moulds, proteolytic and saccharolytic anaerobes, causing spoilage of silage. Moreover, wilting decreased the losses of dry matter, total acidity, and butyric acid content of silage. Accordingly, wilting proved to be a favourable treatment for the production of good quality silage from maize plants. PMID:38606

  4. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.

    PubMed

    Hanbali, Fadwa E L; Akssira, Mohamed; Ezoubeiri, Aicha; Gadhi, Chems Eddoha A; Mellouki, Fouad; Benherraf, Ahmed; Blazquez, Amparo M; Boira, Herminio

    2005-07-14

    The chemical composition of the volatile oil constituent from Pulicaria odora L. roots has been analyzed by GC/MS. Twenty-seven components were identified, being thymol (47.83%) and its derivative isobutyrate (30.05%) the main constituents in the oil. Furthermore, the oil was tested against seven bacteria at different concentrations. Results showed that the oil exhibited a significant antibacterial activity.

  5. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    PubMed

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides. PMID:22422292

  6. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    PubMed

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  7. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    NASA Technical Reports Server (NTRS)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  8. Chemical composition and antioxidant activity of a Lebanese plant Euphorbia macroclada schyzoceras

    PubMed Central

    Farhan, Hussein; Rammal, Hassan; Hijazi, Akram; Daher, Ahmad; Reda, Mohamad; Annan, Hussein; Chokr, Ali; Bassal, Ali; Badran, Bassam; Ghaloub, Abdulameer Nasser

    2013-01-01

    Objective To determine the chemical composition, total phenolic and total flavonoid contents of the crude extracts from leaves and stems of a Lebanese plant Euphorbia macroclada schyzoceras (E. macroclada), and to evaluate their antioxidant potential using DPPH, H2O2, and chelating of ferrous ions tests. Methods Quantification of the total phenolic and total flavonoid contents of the crude extracts from leaves and stems and the antioxidant activities were evaluated using spectrophotometric analyses. The chemical composition has been estimated using different techniques such as IR, LC/MS and NMR. Results Ethanolic extract from leaves of E. macroclada was better than aqueous extract and showed higher content in total phenolic and total flavonoid than found in the stems. On the other hand, using DPPH and H2O2 tests, this extract from leaves showed higher antioxidant capacity than aqueous extract. However, using the chelating of ferrous ions test, the antioxidant activity of the aqueous extract of both stems and leaves was stronger than that of ethanolic once. The chemical composition of the whole plant showed the presence of some aromatic compounds and fatty acids. Conclusions Both ethanolic and water extracts from both parts of this plant are effective and have good antioxidant power. So, this plant can be used in the prevention of a number of diseases related to oxidative stress. PMID:23836193

  9. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  10. The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines.

    PubMed

    Satora, Pawel; Tarko, Tomasz; Sroka, Pawel; Blaszczyk, Urszula

    2014-08-01

    The aim of this study was to determine the influence of two different Wickerhamomyces anomalus strains, CBS 1982 and CBS 5759, on the chemical composition and sensory characteristics of Gloster apple wines. They were inoculated into unpasteurized as well as pasteurized apple musts together with a S. cerevisiae strain as a mixed culture. Fermentation kinetics, basic enological parameters, antioxidant properties as well as selected polyphenol, volatile compound, and organic acid contents were analyzed during the experiments. Apple wines obtained after spontaneous fermentation were characterized by high volatile acidity, increased concentrations of acetaldehyde, and volatile esters, as well as the lowest amounts of ethyl alcohol and higher alcohols compared with other samples. Addition of 0.05 g L(-1) W. anomalus killer strains to the unpasteurized must significantly changed the fermentation kinetics and chemical composition of apple wines. The value of volatile acidity was highly decreased, while the amount of higher alcohols and titratable acidity increased. Pasteurization of must improved the fermentation efficiency. Higher amounts of polyphenol compounds and lower amounts of malic acid were also detected. Application of W. anomalus strains together with S. cerevisiae yeast as a mixed culture positively influenced the chemical composition and sensory features of produced apple wines. PMID:24750993

  11. Application of infrared spectroscopy for assessing quality (chemical composition) of peatland plants, litter and soil

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Laiho, Raija

    2016-04-01

    In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.

  12. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  13. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria).

    PubMed

    Oonincx, D G A B; van der Poel, A F B

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes, lycopene and gross energy were determined in penultimate instar and adult locusts, that had been fed three different diets. The locusts received a diet of grass or grass+wheat bran or grass+wheat bran+carrots. Adding wheat bran decreased the protein content and increased fat content (633 vs. 583 and 182 vs. 231 g/kg DM, respectively). Addition of carrots to the diet increased fat content further from 231 to 271 g/kg DM. Mineral concentrations of Ca, K, Mg, and Na, were significantly affected by diet. P, K, Cu, and Fe concentrations were significantly different in penultimate migratory locusts compared with adults. Wheat bran decreased the α-carotene content, which did not change by incorporating carrots in the diet. However, carrots did result in higher β-carotene concentrations. Retinol concentrations were increased by incorporating both wheat bran and carrots in the diet compared with the diet containing only grass. This study shows that the chemical composition of migratory locusts can be manipulated through the diet. As such, it enables nutritionists to adapt the chemical composition of live feeder insects to better meet the nutritional demands of predators.

  14. Chemical composition of fog and cloud water at the Erzgebirge summit, Germany

    NASA Astrophysics Data System (ADS)

    Schüttauf, S.; Zimmermann, F.; Matschullat, J.

    2010-07-01

    The Erzgebirge as part of the former "Black Triangle" was one of the most polluted forested areas in Central Europe. The local climate is characterized by above-average stable air stratification leading to an above-average amount of inversions with advection fog. Thus, "acid fog" was thought to play an important role in the acidic deposition and in the forest decline on both sides of the Erzgebirge ridge (800 - 900 m a.s.l.). The last data on chemical composition and deposition of fog and cloud water were reported from the 1990's. This work determined the current chemical composition of fog and cloud water from the region in respect to the 1999 Gothenburg protocol. Chemical composition data of fog samples are reported from two sites: (1) Zinnwald, 877 m a.s.l., eastern Erzgebirge, and (2) Fichtelberg, 1214 m a.s.l. The latter results are the first data on the chemical composition of cloud water from that site. Passive fog collectors were used, and only exposed when fog occurred. Two collectors at Zinnwald (one for ion analysis and one for trace elements) and one collector at Fichtelberg were used. Electrical conductivity, pH-value, and the concentration of major ions and trace metals (Ba, Pb, Zn, Al, Mn, Ti, V, Ni, Cu, Sr, Cd, Sb, As, Cr) were determined. TOC was analysed in selected samples. Fog frequency in the investigation period (10.2009 - 12.2009) was comparable to long-term observations. Modelled liquid water contents (LWC) were in the range of typical values for German low elevation mountains. Minimum pH values, 3.5 for Zinnwald and 3.7 for Fichtelberg, were still of phytotoxic relevance. The chemical composition of fog and cloud water differed considerably between the sites. Zinnwald still is a polluted site with high concentrations of sulphate, nitrate, ammonium and organic compounds, while Fichtelberg is much less influenced by air pollution. There, sodium and chloride dominated the composition. At Zinnwald, Al, Zn, Pb, and Cu showed the highest trace

  15. A miniature laser ablation mass spectrometer for in situ chemical composition investigation of lunar surface

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Mezger, K.; Riedo, A.; Tulej, M.; Wurz, P.

    2015-10-01

    A miniature laser ablation mass spectrometer (LMS) is presented. The LMS is designed as a flight instrument for planetary and space research and optimised for in situ measurements of the chemical composition of rocks and soils on a planetary surface. By means of measure-ments standard reference materials of soil and a sample of the Allende meteorite we demonstrate that LMS is a suitable instrument for in situ measurements of elemental and isotopic composition with high precision and accuracy. Furthermore, it is shown that LMS data allows deriving of the material mineralogy and petrology with high spatial resolution, lateral and vertical, and the application of in situ age dating methods.

  16. Chemically produced tungsten-praseodymium oxide composite sintered by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Yu; Luo, Lai-Ma; Lu, Ze-Long; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2014-11-01

    Pr2O3 doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV0.2 of Pr2O3/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr2O3/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W-1 wt% Pr2O3 composites decreased with the same trend, was above 150 W/m K.

  17. Refinery piping fires resulting from variations in chemical composition of piping materials

    SciTech Connect

    Setterlund, R.B.

    1996-07-01

    A number of refinery fires in recent years are traceable to variations in the chemical composition of piping materials. These fires are typically more destructive than those due to other causes and can take place without warning. Some, but not all, were the result of the inadvertent use of carbon steel in alloy steel piping systems. Others were the result of alloy welds in carbon steel systems while still others were due to variations in residual elements leading to anomalous corrosion behavior. Recommendations are given on areas of refinery units where the greatest need for close control of material composition exists.

  18. Features of water chemical composition of oligotrophic and eutrophic bogs in the South of the Tomsk region

    NASA Astrophysics Data System (ADS)

    Naymushina, O.

    2016-03-01

    On the basis of the actual material the analysis of chemical composition of bog waters in the territory of the South of the Tomsk region is carried out. The data on average concentration of macro and trace components, organic matter, pH of bog waters are obtained. Significant distinctions in a chemical composition of surface water for different types of bogs are revealed. The composition and macrostructure of humic acids by the example of eutrophic bogs is studied.

  19. Comparison surface characteristics and chemical composition of conventional metallic and nickel-free brackets.

    PubMed

    Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto

    2015-01-01

    This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.

  20. Exploring the chemical sensitivity of a carbon nanotube/green tea composite.

    PubMed

    Chen, Yanan; Lee, Yang Doo; Vedala, Harindra; Allen, Brett L; Star, Alexander

    2010-11-23

    Single-walled carbon nanotubes (SWNTs) possess unique electronic and physical properties, which make them very attractive for a wide range of applications. In particular, SWNTs and their composites have shown a great potential for chemical and biological sensing. Green tea, or more specifically its main antioxidant component, epigallocatechin gallate (EGCG), has been found to disperse SWNTs in water. However, the chemical sensitivity of this SWNT/green tea (SWNT/EGCG) composite remained unexplored. With EGCG present, this SWNT composite should have strong antioxidant properties and thus respond to reactive oxygen species (ROS). Here we report on fabrication and characterization of SWNT/EGCG thin films and the measurement of their relative conductance as a function of H(2)O(2) concentrations. We further investigated the sensing mechanism by Fourier transform infrared (FTIR) spectroscopy and field-effect transistor measurements (FET). We propose here that the response to H(2)O(2) arises from the oxidation of EGCG in the composite. These findings suggest that SWNT/green tea composite has a great potential for developing simple resistivity-based sensors. PMID:21043457

  1. Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites

    NASA Astrophysics Data System (ADS)

    Nasirpouri, Farzad; Pourmahmoudi, Hassan; Abbasi, Farhang; Littlejohn, Samuel; Chauhan, Ashok S.; Nogaret, Alain

    2015-10-01

    We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS-GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS-GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.

  2. X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites.

    PubMed

    Kinney, J H; Breunig, T M; Starr, T L; Haupt, D; Nichols, M C; Stock, S R; Butts, M D; Saroyan, R A

    1993-05-01

    The fabrication of improved ceramic-matrix composites will require a better understanding of processing variables and how they control the development of the composite microstructure. Noninvasive, high-resolution methods of x-ray tomography have been used to measure the growth of silicon carbide in a woven Nicalon-fiber composite during chemical vapor infiltration. The high spatial resolution allows one to measure the densification within individual fiber tows and to follow the closure of macroscopic pores in situ. The experiments provide a direct test of a recently proposed model that describes how the surface area available for matrix deposition changes during infiltration. The measurements indicate that this surface area is independent of the fiber architecture and location within the preform and is dominated by large-scale macroporosity during the final stages of composite consolidation. The measured surface areas are in good agreement with the theoretical model.

  3. Access to data on chemical composition of products used in auto repair and body shops.

    PubMed

    Karstadt, M; Bobal, R

    1984-01-01

    Some information on chemical composition of products used in the workplace can be obtained by requesting composition data from product marketers. Workers in auto repair and body shops identified 253 products used in their shops. Full disclosure of composition was obtained for approximately 20% of the 174 products marketed by companies which answered our letters. Composition was partially disclosed for approximately 40% of the products, and about 10% of the product formulations were claimed to be trade secret or confidential. The study reported in this paper was carried out in New York State in 1980, before the effective date of the New York State right-to-know law. The results of this study can be used as a benchmark to judge the effectiveness of worker right-to-know laws and product labeling regulations.

  4. Effects of chemical fuel composition on energy generation from thermopower waves

    NASA Astrophysics Data System (ADS)

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-01

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ˜2 V and an average peak specific power as high as 15 kW kg-1 were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s-1 and 157 mV, while they were 2 cm s-1 and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H+ and Na+ ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy source.

  5. Phylogenetic or environmental control on the organo-chemical composition of Sphagnum mosses?

    NASA Astrophysics Data System (ADS)

    Limpens, Juul; Nilsson, Mats

    2014-05-01

    Decomposition of organic material is one of the key processes that determines the size of the soil-feedback to global warming, but it is also a process surrounded with one of the largest uncertainties, making understanding its mechanistic drivers of crucial importance. In organic soils decomposition is closely determined by the organo-chemical composition of the litter entering the soil. But what, in turn drives the organo-chemical composition? Is it an emergent feature of the environment the species producing the litter grow in, or is it an evolutionary trait that can be tracked through the species' phylogeny? We set out to answer this question for one of the most import peat-forming plants on earth: the genus Sphagnum. We sampled 18 Sphagnum species, about equally distributed over 6 sites spanning a wide range of environmental conditions: most species were collected at multiple sites. For all species we characterised the chemical composition, focussing on three functional chemistry groups: (i) mineral elements, (ii) carbohydrate polymers (iii) non-carbohydrate polymers (aromatic and aliphatic compounds) . For each group of compounds we used multivariate statistical techniques to derive the degree of variation explained by environment: (site, position within site) and phylogeny (sections within genus Sphagnum). We found that the variation in mineral element concentrations was mostly explained by environment, with the biggest differences in the concentrations of basic cat-ions calcium and magnesium. In contrast, the variation in carbohydrates was mostly explained by phylogeny, with clear associations between sections and monosaccharides. The monosaccharide rhamnose was associated with species from the Acutifolia section known for their poor degradability, whereas xylose and galactose were closely associated with degradable species from the Cuspidata section. The composition non-carbohydrate polymers took an intermediate position: both environment and phylogeny

  6. Modeling the Chemical Composition of the Fluid that Formed the ALH84001 Carbonates

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L.

    2005-12-01

    The character of aqueous systems on Mars can provide us with important information regarding the history of water and the possibilities for the presence of life on Mars. Evidence of these aqueous systems has been preserved in carbonates found in the martian meteorite ALH84001 whose crystallization age of 4.5 Ga indicates that it has experienced almost all of Mars' history. In addition, the 3.9 Ga age of the carbonates places their formation at a critical time that has been argued to have been `warm and wet' by many studies. The carbonates in the ALH84001 meteorite provide the best opportunity, among all of the martian meteorites, to understand the details of an ancient aqueous system on Mars. Their unique chemical, isotopic and mineralogical composition provides the opportunity to make conclusive statements about the geological conditions in which they formed including the temperature, association with the atmosphere, chemistry of the fluids, and the presence or absence of life. This study uses an empirical model to understand the attributes of the formation fluid based on the unique chemical compositions of the carbonates. This requires the assumption that the ALH84001 carbonate globules formed from a single fluid whose chemical composition changed due to the precipitation of carbonates more calcium rich than the overall fluid composition. The model consists of a simple stepwise stoichiometric calculation of the precipitation of the ALH84001 carbonates from a hypothetical solution. From extensive measurements of the chemical composition of the globules and their abundance in the rock, one can calculate the total amount of magnesium, calcium, and iron removed from the formation fluid as the carbonates precipitated. The unique zoned nature of the ALH84001 carbonates provides a real constraint on the possible fluid compositions consistent with their precipitation. Our results indicate that the fluid that formed the ALH84001 carbonates had an Mg/Ca ratio that was

  7. Some General Laws of Chemical Elements Composition Dynamics in the Hydrosphere

    NASA Astrophysics Data System (ADS)

    Korzh, V.

    2012-12-01

    The biophysical oceanic composition is a result of substance migration and transformation on river-sea and ocean- atmosphere boundaries. Chemical composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments (Fig. 1). The correlation between the chemical compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In Fig.1 we show intensities of global migration and average concentrations in the ocean in the coordinates lgC - lg τ, where C is an average element concentration and τ is its residual time in the ocean. Fig. 1 shows a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed to estimate natural (unaffected by anthropogenic influence) mean concentrations of elements

  8. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  9. Chemical locomotion.

    PubMed

    Paxton, Walter F; Sundararajan, Shakuntala; Mallouk, Thomas E; Sen, Ayusman

    2006-08-18

    Research into the autonomous motion of artificial nano- and microscale objects provides basic principles to explore possible applications, such as self-assembly of superstructures, roving sensors, and drug delivery. Although the systems described have unique propulsion mechanisms, motility in each case is made possible by the conversion of locally available chemical energy into mechanical energy. The use of catalysts onboard can afford nondissipative systems that are capable of directed motion. Key to the design of nano- and micromotors is the asymmetric placement of the catalyst: its placement in an environment containing a suitable substrate translates into non-uniform consumption of the substrate and distribution of reaction products, which results in the motility of the object. These same principles are exploited in nature to effect autonomous motion.

  10. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.

    PubMed

    He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2015-09-23

    Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed.

  11. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.

    PubMed

    He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2015-09-23

    Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed. PMID:26283470

  12. The Chemical Composition of Planet-Harboring Stars in M67

    NASA Astrophysics Data System (ADS)

    Holzer, Parker H.; Ivans, Inese; Galbraith-Frew, Jessica; Anderton, Tim; Apogee Team

    2016-03-01

    At the forefront of observational astronomy is the search for, and an understanding about the nature of, stars containing planetary companions. To contribute to this search, we have studied stars in the open cluster Messier 67 (M67), a cluster known to have many stars very comparable to the Sun. At least four dwarf stars in this cluster have shown evidence in previous studies to contain planets. We studied these, as well as about thirty four other F-dwarf stars in M67, by using high signal-to-noise infrared stellar spectra from APOGEE (Apache Point Observatory Galactic Evolution Experiment; a part of the Sloan Digital Sky Survey). Because stars in an open cluster are born from the same material and approximately at the same time, they are in general expected to all have very similar chemical compositions. However, after using spectral synthesis to derive the temperature, gravitational acceleration at the surface, and overall chemical enrichment of the stars in our sample, we have shown that the chemical composition of stars in the cluster is not homogeneous, but instead exhibits a spread. Further, we have shown that this spread may possibly be due to the presence of planet-harboring stars. Our findings suggest that planet-harboring stars are richer in refractory elements and poorer in volatile elements, giving a deeper understanding of the environments in which planets are likely to form.

  13. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment.

    PubMed

    Brito, J O; Silva, F G; Leão, M M; Almeida, G

    2008-12-01

    This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood, and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood.

  14. Body composition of two human cadavers by neutron activation and chemical analysis

    SciTech Connect

    Knight, G.S.; Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1986-02-01

    In vivo neutron activation analysis (NAA) is currently used to measure body composition in metabolic and nutritional studies in many clinical situations, but has not previously been validated by comparison with chemical analysis of human cadavers. Total body nitrogen (TBN) and chlorine (TBCl) were measured in two human cadavers by NAA before homogenization and chemical analysis (CHEM) after (cadaver 1: TBN, 1.47 NAA, 1.51 CHEM; TBCl, 0.144 NAA, 0.147 CHEM; cadaver 2: TBN, 0.576 NAA, 0.572 CHEM; TBCl, 0.0227 NAA, 0.0250 CHEM). The homogenates were also analyzed by NAA, and no significant differences were found, indicating that the effects of elemental inhomogeneity on the measurement of TBN and TBCl are insignificant. Total body water, fat, protein, minerals, and carbohydrates were measured chemically for each cadaver and compared with estimates for these compartments obtained from a body composition model, which when used in vivo involves NAA and tritium dilution. The agreement found justifies the use of the model for the measurement of changes in total body protein, water, and fat in sequential studies in groups of patients.

  15. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  16. Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes

    NASA Astrophysics Data System (ADS)

    Sohl, Frank; Choukroun, Mathieu; Kargel, Jeffrey; Kimura, Jun; Pappalardo, Robert; Vance, Steve; Zolotov, Mikhail

    2010-06-01

    The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.

  17. The effect of natural weathering on the chemical and isotopic compositions of biotites

    USGS Publications Warehouse

    Clauer, Norbert; O'Neil, J.R.; Bonnot-Courtois, C.

    1982-01-01

    The effect of progressive natural weathering on the isotopic (Rb-Sr, K-Ar, ??D, ??18O) and chemical (REE, H2O+) compositions of biotite has been studied on a suite of migmatitic biotites from the Chad Republic. During the early stages of weathering the Rb-Sr system is strongly affected, the hydrogen and oxygen isotope compositions change markedly, the minerals are depleted in light REE, the water content increases by a factor of two, and the K-Ar system is relatively little disturbed. During intensive weathering the K-Ar system is more strongly disturbed than the Rb-Sr system. Most of the isotopic and chemical modifications take place under nonequilibrium conditions and occur before newly formed kaolinite and/or smectite can be detected. These observations suggest that 1. (a) "protominerals" may form within the biotite structure during the initial period of weathering, and 2. (b) only when chemical equilibrium is approached in the weathering profile are new minerals able to form. ?? 1982.

  18. Aging of Secondary Organic Aerosol from β-Pinene: Changes in Chemical Composition, Density and Morphology

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, M.; Hastie, D. R.

    2013-12-01

    Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.

  19. Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower.

    PubMed

    Kim, Min-Jin; Yang, Kyong-Wol; Kim, Sang Suk; Park, Suk Man; Park, Kyung Jin; Kim, Kwang Sik; Choi, Young Hun; Cho, Kwang Keun; Hyun, Chang-Gu

    2014-05-01

    Though many essential oils from citrus peels are claimed to have several medicinal functions, the chemical composition and biological activities of the essential oils of Citrus flowers have not been well described. Therefore, this study intended to investigate the chemical composition and anti-inflammatory potential of essential oils from C. unshiu flower (CEO) to support its purported beneficial health effects. The chemical constituents of the CEO, analyzed by gas chromatography-mass spectrometry (GC-MS), included y-terpinene (24.7%), 2-beta-pinene (16.6%), 1-methyl-2-isopropylbenzene (11.5%), L-limonene (5.7%), beta3-ocimene (5.6%), and alpha-pinene (4.7%). The effects of the CEO on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages were also examined. The results indicate that the CEO is an effective inhibitor of LPS-induced NO and PGE2 production in RAW 264.7 cells. Additionally, CEO was shown to suppress the production of inflammatory cytokines including interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6. Based on these results, CEO may be considered a potential anti-inflammatory candidate with human health benefits.

  20. Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus).

    PubMed

    Harris, Rachel L; Davies, Noel W; Nicol, Stewart C

    2012-11-01

    The short-beaked echidna is believed to use olfactory cues from a cloacal scent gland to attract and locate mates during the breeding season. We investigated the chemical composition of echidna secretions, including cloacal swabs and solid, "waxy" exudates from the cloaca and spurs. Scent samples from 37 individuals were collected over a 1-year period and analyzed using a range of different analytical techniques. A total of 186 compounds were identified, including volatile carboxylic acids, aldehydes, ketones, fatty acids, methyl esters, ethyl esters, terpenes, nitrogen- and sulphur-containing compounds, alcohols, and aromatics. Long chain and very long chain monounsaturated fatty acids, sterols, and sterol esters were identified as the major constituents of solid exudates, some of which have not previously been described from any animal skin gland. There was a high degree of composition overlap between male and female cloaca swabs; however, there is significant variation, which could mediate echidna mating behavior. Many of the volatile and nonvolatile chemicals detected are used for communication in other species, suggesting that chemical signals have important and diverse functions in echidna social interactions. PMID:22871649

  1. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals.

    PubMed

    Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar

    2015-01-01

    Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K(+) (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K(+) induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519

  2. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals

    PubMed Central

    Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar

    2015-01-01

    Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519

  3. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria.

  4. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  5. The Perils of Partition: Difficulties in Retrieving Magma Compositions from Chemically Equilibrated Basaltic Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism.

  6. Chemical composition of surface films on glass windows and implications for atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lam, Buuan; Diamond, Miriam L.; Simpson, André J.; Makar, Paul A.; Truong, Jennifer; Hernandez-Martinez, Nadia A.

    Atmospherically derived surface films that cover impervious surfaces in cities, have areas comparable to that of atmospheric particulate matter (PM). The films compete with PM for sorption of volatile and semi-volatile organic compounds and alter the functionality of urban surfaces. The determination of surface-film composition is therefore vital to understanding their role in mediating chemical fate and transport within cities. Here, we show the composition of urban surface films collected from windows in downtown Toronto (Ontario, Canada) to be comprised of ˜94% inorganic compounds of which 8% are sulfate, 7% nitrate and 18% metals. Approximately 5% of the urban film mass is organic carbon, with ˜35% of the organic carbon mass corresponding to carbohydrates, ˜35% aliphatics, ˜20% aromatics and ˜10% carbonyls. The composition of surface films differs significantly from that of PM, suggesting differential accumulation, depositional degradation, and/or processes within films differing from those affecting PM. A rigid polymeric component comprising a small fraction of the organic carbon was also found, which may suggest direct deposition from environmental sources, or possible secondary in situ reactions within the film. Here, we suggest a potential mechanism for the oxidation of surface films to form organic polymers via radical initiation processes. Thus, the composition of surface films has important implications for chemical fate of contaminants within cities and presents a significant aspect of contaminant uptake that has not been considered in many air-quality models.

  7. Chemical composition of major VOC emission sources in the Seoul atmosphere.

    PubMed

    Na, Kwangsam; Kim, Yong Pyo; Moon, Il; Moon, Kil-Choo

    2004-04-01

    This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors.

  8. Chemical composition of major VOC emission sources in the Seoul atmosphere.

    PubMed

    Na, Kwangsam; Kim, Yong Pyo; Moon, Il; Moon, Kil-Choo

    2004-04-01

    This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors. PMID:15006511

  9. Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition.

    PubMed

    Ryder, Alan G

    2004-05-01

    The fluorescence of crude petroleum oils is sensitive to changes in chemical composition and many different fluorescence methods have been used to characterize crude oils. The use of fluorescence lifetimes to quantitatively characterize oil composition has practical advantages over steady-state measurements, but there have been comparatively few studies in which the lifetime behavior is correlated with gross chemical compositional data. In this study, the fluorescence lifetimes for a series of 23 crude petroleum oils with American Petroleum Institute (API) gravities of between 10 and 50 were measured at several emission wavelengths (450-785 nm) using a 380 nm light emitting diode (LED) excitation source. It was found that the intensity average fluorescence lifetime (tau) at any emission wave-length does not correlate well with either API gravity or aromatic concentration. However, it was found that tau is strongly negatively correlated with both the polar and sulfur concentrations and positively correlated with the corrected alkane concentration. This indicates that the fluorescence behavior of crude petroleum oils is governed primarily by the concentration of quenching species. All the strong lifetime-concentration correlations are nonlinear and show a high degree of scatter, especially for medium to light oils with API gravities of between 25 and 40. The degree of scatter is greatest for oils where the concentrations (wt %) of the polar fraction is approximately 10 +/- 4%, the asphaltene component is approximately 1 +/- 0.5%, and sulfur is 0.5 +/- 0.4%. This large degree of scatter precludes the use of average fluorescence lifetime data obtained with 380 nm excitation for the accurate prediction of the common chemical compositional parameters of crude petroleum oils. PMID:15165340

  10. Inhable particulate matter from lime industries: Chemical composition and deposition in human respiratory tract

    NASA Astrophysics Data System (ADS)

    Godoi, Ricardo H. M.; Braga, Darci M.; Makarovska, Yaroslava; Alfoldy, Balint; Carvalho Filho, Marco A. S.; Van Grieken, Réne; Godoi, Ana Flavia L.

    Air pollution caused by the lime production industry has become a serious problem with potential effects to human health, especially in developing countries. Colombo is a city included in the Metropolitan Region of Curitiba (capital of Paraná State) in South Brazil. In Colombo city, a correlation has been shown between the lime production and the number of persons who need respiratory treatment in a local hospital, indicating that the lime industry can cause deleterious health effects in the exposed workers and population. This research was conducted to deal firstly with the characterization of the size distribution and chemical compositions of particles emitted from lime manufacturing and subsequently to assess the deposition rate of inhaled dolomitic lime aerosol particles in the human respiratory tract. The elemental chemical composition and particle size of individual atmospheric particles was quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis. Information concerning the bulk composition is provided by energy-dispersive X-ray detection. The majority of the respirable particulate matter identified was composed of aluminosilicates, Ca-Mg oxides, carbon-rich particles, mixtures of organic particles and Ca-Mg carbonates, soot and biogenic particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated, revealing the deposition of CaO·MgO at extrathoracic, tracheobronchial and pulmonary levels. The results of this study offer evidence to the threat of the fine and coarse particles emitted from dolomite lime manufacturing, allowing policy-makers to better focus their mitigation strategies in an effective way, as well as to the dolomite producers for the purpose of designing and/or implementing improved emission controls.

  11. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques

    SciTech Connect

    Liu, Lu; Ye, Philip; Womac, A.R.; Sokhansanj, Shahabaddine

    2010-04-01

    A quick method for analyzing the chemical composition of renewable energy biomass feedstock was developed by using Fourier transform near-infrared (FT-NIR) spectroscopy coupled with multivariate analysis. The study presents the broad-based model hypothesis that a single FT-NIR predictive model can be developed to analyze multiple types of biomass feedstock. The two most important biomass feedstocks corn stover and switchgrass were evaluated for the variability in their concentrations of the following components: glucan, xylan, galactan, arabinan, mannan, lignin, and ash. A hypothesis test was developed based upon these two species. Both cross-validation and independent validation results showed that the broad-based model developed is promising for future chemical prediction of both biomass species; in addition, the results also showed the method's prediction potential for wheat straw.

  12. Chemical composition of shale oil. 1; Dependence on oil shale origin

    SciTech Connect

    Kesavan, S.; Lee, S. ); Polasky, M.E. )

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent the abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.

  13. Upper limit to the mass of pulsationally stable stars with uniform chemical composition

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1992-01-01

    Nuclear-energized pulsational instability is a well-known feature of models of chemically homogeneous stars above a critical mass. With the Rogers-Iglesias opacities, the instability occurs above 120-150 solar mass for normal Galactic Population I chemical compositions, and above approximately 90 solar mass for stars in metal-poor environments like the outer Galaxy and the Small Magellanic Cloud. Models of homogeneous helium-burning stars are unstable above masses of 19 and 14 solar mass, respectively. These significant increases of the critical masses, in the normal metallicity cases, over the values derived previously with the Los Alamos opacities can explain the stability of the brightest observed O-type stars, but they do not exclude the possibility that the most luminous hydrogen-deficient Wolf-Rayet stars are experiencing this type of instability.

  14. Chemical compositions and antioxidant activities of water extracts of Chinese propolis.

    PubMed

    Guo, Xiali; Chen, Bin; Luo, Liping; Zhang, Xi; Dai, Ximo; Gong, Shangji

    2011-12-14

    The present study investigated the chemical composition and antioxidant activity of the water extract of propolis (WEP) collected from 26 locations in China. Spectrophotometry was used to determine the physicochemical properties and the chemical constituents of WEP. Phenolic compounds in WEP were identified by RP-HPLC-DAD with reference standards. The antioxidant activities [characterized by reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability] of WEP were also measured. Results show that epicatechin, p-coumaric acid, morin, 3,4-dimethoxycinnamic acid, naringenin, ferulic acid, cinnamic acid, pinocembrin, and chrysin are the major functional phenolic compounds in Chinese WEPs. Furthermore, most WEPs show strong antioxidant activities, which are significantly correlated with E(1cm)(1%), an index for the estimation of the quality of WEP. WEPs also contain many more active constituents than ethanol extracts of propolis. PMID:22026502

  15. Chemical composition fluctuations in roots of Plumbago scandens L. in relation to floral development.

    PubMed

    Paiva, Selma R; Lima, Lucilene A; Figueiredo, Maria Raquel; Kaplan, Maria Auxiliadora C

    2011-12-01

    Plumbago scandens L. is a Brazilian tropical/subtropical species that occurs along the coast. Chemically it is mainly represented by naphthoquinones, flavonoids, terpenoids and steroids. The aim of the present work is to study quantitative changes in the root metabolic production of Plumbago scandens during different physiologic developmental stages relative to floration. The results indicated the presence of four substances in the extracts: plumbagin, epi-isoshinanolone, palmitic acid and sitosterol, independent on developmental stage. The naphthoquinone plumbagin has always showed to be the major component of all extracts. Naphthoquinones exhibited their highest content during floration, while the content of the two others components decreased during this stage, revealing an inverse profile. The chemical composition changed depending on the plant requirements. PMID:22146952

  16. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  17. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin

    PubMed Central

    Toreti, Viviane Cristina; Sato, Helia Harumi; Pastore, Glaucia Maria; Park, Yong Kun

    2013-01-01

    Propolis is the generic name given to the product obtained from resinous substances, which is gummy and balsamic and which is collected by bees from flowers, buds, and exudates of plants. It is a popular folk medicine possessing a broad spectrum of biological activities. These biological properties are related to its chemical composition and more specifically to the phenolic compounds that vary in their structure and concentration depending on the region of production, availability of sources to collect plant resins, genetic variability of the queen bee, the technique used for production, and the season in which propolis is produced. Many scientific articles are published every year in different international journal, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis. This paper presents a review on the publications on propolis and patents of applications and biological constituents of propolis. PMID:23737843

  18. Surface composition and chemical state of Fe and Mo impregnated subbituminous coal

    SciTech Connect

    Ni, H.; Anderson, R.K.; Givens, E.N.; Stencel, J.M.

    1994-12-31

    The surface composition and chemical states of elements in samples of Wyodak subbituminous coal impregnated with Fe and Mo were investigated. The concentrations of Fe, Mo, S, Al, Si, Ca, C, O, and N were determined by x-ray photoelectron spectroscopy (XPS) in samples impregnated with 0.7-2.0 wt% Fe and 500-1000 ppm Mo. The metals were deposited on the samples by an incipient wetness technique using solutions of ferric nitrate, ferric sulfate, ferrous sulfate and ammonium molybdate. The effect of the metal precursor, the relative amounts of Fe and Mo loading, the effect of base-treatment with NH{sub 4}OH and the chemical states of the elements are discussed. Deconvolution of the overlapped S{sub 2}, and Mo{sub 3d} peaks is described along with a brief overview of the liquefaction performance of these coals.

  19. Chemical composition and mass closure of ambient PM10 at urban sites

    NASA Astrophysics Data System (ADS)

    Terzi, Eleni; Argyropoulos, George; Bougatioti, Aikaterini; Mihalopoulos, Nikolaos; Nikolaou, Kostas; Samara, Constantini

    2010-06-01

    The chemical composition of PM10 was studied during summer and winter sampling campaigns conducted at two different urban sites in the city of Thessaloniki, Greece (urban-traffic, UT and urban-industrial, UI). PM10 samples were chemically analysed for minerals (Si, Al, Ca, Mg, Fe, Ti, K), trace elements (Cd, Cr, Cu, Mn, Pb, V, Zn, Te, Co, Ni, Se, Sr, As, and Sb), water-soluble ions (Cl -, NO 3-, SO 42-, Na +, K +, NH 4+, Ca 2+, Mg 2+) and carbonaceous compounds (OC, EC). Spatial variations of atmospheric concentrations showed significantly higher levels of minerals, some trace metals and TC at the UI site, while at the UT site significantly higher levels of elements like Cd, Ba, Sn, Sb and Te were observed. Crustal elements, excepting Ca at the UI site, did not exhibit significant seasonal variations at any site pointing to constant emissions throughout the year. In order to reconstruct the particle mass, the determined components were classified into six classes as follows: mineral matter (MIN), trace elements (TE), organic matter (OM), elemental carbon (EC), sea salt (SS) and secondary inorganic aerosol (SIA). Good correlations with slopes close to 1 were found between chemically determined and gravimetrically measured PM10 masses for both sites. According to the chemical mass closure obtained, the major components of PM10 at both sites were MIN (soil-derived compounds), followed by OM and SIA. The fraction unaccounted for by chemical analysis comprised on average 8% during winter and 15% during summer at the urban-industrial site, while at the urban-traffic site the percentages were 21.5% in winter and 4.8% in summer.

  20. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    SciTech Connect

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste

  1. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China

    PubMed Central

    Liang, Linghong; Wu, Xiangyang; Zhu, Maomao; Zhao, Weiguo; Li, Fang; Zou, Ye; Yang, Liuqing

    2012-01-01

    Background: Mulberry (Morus, Moraceae) is widely distributed in the temperate, subtropical, or tropical regions of the world, while there are no conclusive reports on the chemical composition, nutritional value, and antioxidant properties of mulberry cultivars from China. Objective: To investigate chemical properties and to determine proximate nutritive compounds of the eight mulberry cultivars. Materials and Methods: Chemical properties (including moisture, ash, total dry matter, total soluble solids, pH, and total titratable acidity) of the eight mulberry cultivars were investigated. Proximate nutritive compounds (including crude protein, crude fat, mineral elements, total anthocyanins, total polyphenols, total flavonoids, and total sugars) were also determined. Results: The results indicated that the moisture contents were 70.0-87.4%, the crude protein contents 1.62-5.54%, and the crude fat contents from 1.23-2.23%. The major fatty acids in mulberry fruits were linoleic acid (C18:2) and palmitic acid (C16:0), 26.40-74.77% and 9.29-22.26%, respectively. Mulberry fruit is also a good source of minerals and the potassium content (521.37-1718.60 mg/100g DW) is especially higher than that of other elements. Compared with other species, the Morus atropurpurea Roxb. had relatively high total polyphenols content (189.67-246.00 mg GAE/100mg) and anthocyanins content (114.67-193.00 mg/100mg). There was a good linear correlation between antioxidant activity and total polyphenols content. Conclusion: Significant differences of the chemical composition, nutritional value, and antioxidant activities among the mulberry cultivars were observed, the Morus atropurpurea Roxb. showed considerable high nutritional value and antioxidant activity which could be developed for functional food that benefits human health. PMID:23060696

  2. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

    PubMed

    Mason, Charles J; Rubert-Nason, Kennedy F; Lindroth, Richard L; Raffa, Kenneth F

    2015-01-01

    Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization. PMID:25475786

  3. Chemical composition of the essential oil from Croton kimosorum, an endemic species to Madagascar.

    PubMed

    Rabehaja, Delphin J R; Ihandriharison, Harilala; Ramanoelina, Panja A R; Benja, Rakotonirina; Ratsimamanga-Urverg, Suzanne; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2014-01-01

    Croton kimosorum Leandri is an endemic species to Madagascar. The chemical composition of aerial parts, leaf and stem oils is reported for the first time. Analysis was carried out by combination of chromatographic (CC, GC), spectroscopic and spectrometric (MS, 13C NMR) techniques. In total, 76 compounds have been identified. Essential oil isolated from aerial parts contained mainly linalool (21.6%), sabinene (10.4%), 1,8-cineole (6.3%), beta-pinene (6.2%), (E)-beta-caryophyllene (5.9%), terpinen-4-ol (4.8%), geraniol (4,5%) and germacrene D (2.3%). In comparison with the first sample, the composition of leaf and stem oils varied slightly, while essential oil isolated by vapor distillation from a semi-industrial still exhibited similar composition.

  4. Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes

    SciTech Connect

    Li, Yong; Zhang, Kai; Zheng, Bailin Zhang, Xiaoqian; Wang, Qi

    2015-06-28

    Composition-gradient electrode materials have been proven to be one of the most promising materials in lithium-ion battery. To study the mechanism of mechanical degradation in spherical composition-gradient electrodes, the finite deformation theory and reversible chemical theory are adopted. In homogeneous electrodes, reversible electrochemical reaction may increase the magnitudes of stresses. However, reversible electrochemical reaction has different influences on stresses in composition-gradient electrodes, resulting from three main inhomogeneous factors—forward reaction rate, backward reaction rate, and reaction partial molar volume. The decreasing transition form of forward reaction rate, increasing transition form of backward reaction rate, and increasing transition form of reaction partial molar volume can reduce the magnitudes of stresses. As a result, capacity fading and mechanical degradation are reduced by taking advantage of the effects of inhomogeneous factors.

  5. The Chemical Nature of the Fiber/resin Interface in Composite Materials

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.

    1984-01-01

    Carbon fiber/epoxy resin composites are considered. The nature of the fiber structure and the interaction that occurs at the interface between fiber and matrix are emphasized. Composite toughness can be improved by increased axial tensile and compressive strengths in the fibers. The structure of carbon fibers indicates that the fiber itself can fail transversely, and different transverse microstructures could provide better transverse strengths. The higher surface roughness of lower modulus and surface-treated carbon fibers provides better mechanical interlocking between the fiber and matrix. The chemical nature of the fiber surface was determined, and adsorption of species on this surface can be used to promote wetting and adhesion. Finally, the magnitude of the interfacial bond strength should be controlled such that a range of composites can be made with properties varying from relatively brittle and high interlaminar shear strength to tougher but lower interlaminar shear strength.

  6. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Bradt, Richard C.

    1990-01-01

    Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteresis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.

  7. Effect of season on the chemical composition and nutritional quality of the edible crab Cancer pagurus.

    PubMed

    Barrento, Sara; Marques, António; Teixeira, Bárbara; Anacleto, Patrícia; Vaz-Pires, Paulo; Nunes, Maria Leonor

    2009-11-25

    Cancer pagurus is most appreciated in southern Europe for its muscle and brown meat content. In Portugal, consumption occurs mostly in summer and at Christmas. In this study the seasonal nutritional quality of edible tissues of female and male C. pagurus was determined. Tissue composition was affected by season and sex. All tissues had a well-balanced essential amino acid composition. Muscle and gonads of females had n-3/n-6 ratios in the range of the usual recommended values, and all tissues had PUFA/SFA above the recommended level. Autumn was the season with the highest brown meat yield, total essential amino acids (muscle), taurine (all tissues), EPA (male gonads), and n-3/n-6 ratio (gonads). However, it was also the season with the highest fat content and cholesterol concentration in ovaries. Therefore, people with restricted diets should moderate the consumption of ovaries in autumn. The remaining tissues pose no risks with respect to their proximate chemical composition.

  8. A miniature laser ablation mass spectrometer for quantitative in situ chemical composition investigation of lunar surface

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Grimaudo, Valentine; Mezger, Klaus; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Wurz, Peter

    2016-04-01

    The chemical composition of planetary bodies, moons, comets and asteroids is a key to understand their origin and evolution [Wurz,2009]. Measurements of the elemental and isotopic composition of rocks yield information about the formation of the planetary body, its evolution and following processes shaping the planetary surface. From the elemental composition, conclusions about modal mineralogy and petrology can be drawn. Isotope ratios are a sensitive indicator for past events on the planetary body and yield information about origin and transformation of the matter, back to events that occurred in the early solar system. Finally, measurements of radiogenic isotopes make it possible to carry out dating analyses. All these topics, particularly in situ dating analyses, quantitative elemental and highly accurate isotopic composition measurements, are top priority scientific questions for future lunar missions. An instrument for precise measurements of chemical composition will be a key element in scientific payloads of future landers or rovers on lunar surface. We present a miniature laser ablation mass spectrometer (LMS) designed for in situ research in planetary and space science and optimised for measurements of the chemical composition of rocks and soils on a planetary surface. By means of measurements of standard reference materials we demonstrate that LMS is a suitable instrument for in situ measurements of elemental and isotopic composition with high precision and accuracy. Measurements of soil standards are used to confirm known sensitivity coefficients of the instrument and to prove the power of LMS for quantitative elemental analyses [Neuland,2016]. For demonstration of the capability of LMS to measure the chemical composition of extraterrestrial material we use a sample of Allende meteorite [Neuland,2014]. Investigations of layered samples confirm the high spatial resolution in vertical direction of LMS [Grimaudo,2015], which allows in situ studying of past

  9. Estimation of chemical carcass composition from 8th rib characteristics with Belgian blue double-muscled bulls.

    PubMed

    De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I

    1999-01-01

    Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls. PMID:22061533

  10. Estimation of chemical carcass composition from 8th rib characteristics with Belgian blue double-muscled bulls.

    PubMed

    De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I

    1999-01-01

    Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls.

  11. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    PubMed Central

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-01-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033

  12. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition.

    PubMed

    Li, Yongfu; Chen, Na; Harmon, Mark E; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A; Mao, Jingdong

    2015-10-30

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced (13)C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  13. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  14. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oils of two representatives of the Lamiaceae-family, Dracocephalum heterophyllum Benth. and Hyssopus officinalis L., are described for their antifungal, antibacterial and larvicidal as well as biting deterrent activities. Additionally, the essential oils’ chemical compositions, analyze...

  15. The chemical composition of the Martin surface: new results from the APXS of the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Athena Science Team

    The two Mars Exploration Rovers were equipped with a small instrument, the Alpha Particle X-ray Spectrometer (APXS), to determine the chemical composition of soils and rocks at Gusev crater and Meridiani Planum ites.

  16. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Fischer, Tobias; Williams, Stanley N.

    2000-08-01

    We present chemical and isotopic data for fumarolic vapor and thermal spring discharges from Cumbal Volcano, SW Colombia. In 1988 Cumbal showed signs of apparent reactivation. Gases and steam condensates were sampled from summit fumaroles (83-375°C) of Cumbal in 1988-1996 and discharges from thermal springs (15-37°C) on its flanks in 1995-1996. Based on relative CO2, total S (H2S+SO2), and HCl contents, fumarolic discharges are principally magmatic in composition. Fumarolic steam condensates (1993-1996) have δ18O values of -11.4 to +2.5‰ and δD values of -91 to -43‰. δ18O and δD compositions indicate mixing between local meteoric and magmatic waters. 3He/4He ratios in 1993-1996 samples (5.3-7.9 Rcor) are consistent with addition of mantle-derived helium. δ13CCO2 values for 1996 samples (-6.7 to -5.0‰) likely indicate contribution of marine-carbonate, organic sediment, and mantle-derived CO2. δ34SStotal compositions (-4.6 to +5.6‰) of 1988-1996 fumarolic discharges have magmatic signatures and may reflect cycles of deposition and remobilization of native sulfur. Thermal waters are acid-sulfate or bicarbonate in composition. Relative concentrations of chemical constituents of thermal waters imply that the composition of waters is controlled by absorption of magmatic volatiles into shallow ground- and surface waters, dilution with meteoric waters along flow paths, and dissolution of host rocks. δ18O and δD compositions are consistent with a meteoric origin of waters. δ34SStotal values for thermal spring gas discharges (9.6-10.5‰) suggest deposition of δ34S-depleted sulfur minerals along flow paths. Chemical and isotopic compositions of 1988-1995 fumarolic discharges provide evidence for input of magmatic volatiles into the Cumbal hydrothermal system. From 1995 to 1996, geochemical data show increasing hydrothermal signatures, suggesting a decline in magmatic volatile input.

  17. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  18. Evaluation of various feedstuffs of ruminants in terms of chemical composition and metabolisable energy content

    PubMed Central

    Kumar, Dinesh; Datt, Chander; Das, L. K.; Kundu, S. S.

    2015-01-01

    Aim: The aim was to determine the chemical composition and metabolisable energy (ME) content of feedstuffs used in ruminant animals using in vitro method. Materials and Methods: A total of 18 feedstuffs used for ruminant feeding including cultivated non-leguminous fodders like maize, sorghum, pearl millet, and oat; leguminous fodders like cowpea and berseem; agro-industrial by-products such as wheat bran, deoiled rice bran, rice polish, wheat straw, and concentrates such as mustard oil cake, groundnut cake, soybean meal, cotton seed cake, grains like maize, oat, wheat, and barley were taken for this study. Chemical compositions and cell wall constituents of test feeds were determined in triplicate. The crude protein (CP) content was calculated as nitrogen (N) × 6.25. True dry matter digestibility (TDMD), true organic matter digestibility (TOMD), ME, and partitioning factor (PF) values were determined by in vitro gas production technique (IVGPT). Results: The CP content of non-leguminous fodders varied from 7.29% (sorghum) to 9.51% (maize), but leguminous fodders had less variation in CP. Oilseed cakes/meals had high CP and ether extract (EE) content than other feedstuffs except rice polish, which had 12.80% EE. Wheat straw contained highest fiber fractions than the other ingredients. ME content was highest in grains (wheat-12.02 MJ/kg) and lowest in wheat straw (4.65 MJ/kg) and other roughages. TDMD of grains and oilseed cakes/meals were higher than the fodders and agro-industrial by-products. The same trend was observed for TOMD. Conclusions: It was concluded that the energy feeds showed a great variation in chemical composition and ME content. The results of this study demonstrated that the kinetics of gas production of energy feed sources differed among themselves. Evaluation of various feedstuffs is helpful in balanced ration formulation for field animals and under farm conditions for better utilization of these commonly available feed resources. PMID:27047142

  19. Chemical composition of the small mammal reproductive system as an indicator of enterprise technogenic impact on the environment

    NASA Astrophysics Data System (ADS)

    Baranovskaya, N.; Belyanovskaya, A.; Bezel, V.; Mukhacheva, S.; Anufrieva, M.

    2016-09-01

    In this paper we consider the indicative role of chemical composition of the small mammal (specifically, the bank vole, or Myodes glareolus) reproductive system with the purpose of studying the impact of a large-scale nonferrous metal-processing enterprise on living organisms through the expample of Middle Ural copper-smelting plant OJSC. We have analysed the chemical composition of the placenta-embryo system in the areas which are 2 km and 30 km away from the plant.

  20. Influence of a Passivated Nanodimensional Aluminum Powder on Physical and Chemical Characteristics of Combustion of Metal Compositions

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.

    2014-11-01

    The influence of various nanodimensional metal powders on the linear combustion rate of metal compositions is analyzed. It is demonstrated that passivation of nanoaluminum with glycine not only provides its physical and chemical compatibility with other components of a high-energy material and its subsequent physical and chemical stability, but also does not influence the main integral combustion characteristic that opens possibilities for its application as a fuel in high-energy compositions.

  1. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium.

    PubMed

    Sowa, Maciej; Greń, Katarzyna; Kukharenko, Andrey I; Korotin, Danila M; Michalska, Joanna; Szyk-Warszyńska, Lilianna; Mosiałek, Michał; Zak, Jerzy; Pamuła, Elżbieta; Kurmaev, Ernst Z; Cholakh, Seif O; Simka, Wojciech

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species.

  2. In situ chemical composition measurements with a miniature laser ablation mass spectrometer for planetary exploration

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Meyer, S.; Mezger, K.; Riedo, A.; Tulej, M.; Wurz, P.

    2013-09-01

    We present a miniature laser ablation mass spectrometer (LMS) for planetary and space research. For demonstrating the performance of the instrument, a sample of Allende meteorite is investigated as an analogue to a planetary surface. Investigation of a very inhomogeneous structure like the surface of a chondritic meteorite requires high spatially resolved data of chemical content, elemental and isotopic. We measure the composition of the Allende meteorite and show that by using a ns-laser for ablation, elemental analysis is accomplished with high quality allowing to study the mineralogy. The results will be compared to measurements using a fs-laser system to show improvements of the technique.

  3. Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) Don ssp. italicum.

    PubMed

    Mancini, Emilia; De Martino, Laura; Marandino, Aurelio; Scognamiglio, Maria Rosa; De Feo, Vincenzo

    2011-09-08

    The chemical composition of the essential oil of Helichrysum italicum (Roth) Don ssp. italicum, collected in the National Park of Cilento and Diano Valley, Southern Italy, was studied by means of GC and GC/MS. Forty four compounds of 45 constituents were identified in the oil, mainly oxygenated sesquiterpenes. The essential oil was evaluated for its potential in vitro phytotoxic activity against germination and early radicle elongation of radish and garden cress. The radicle elongation of radish was significantly inhibited at the highest doses tested, while germination of both seeds was not affected.

  4. Ion-Molecule Reactions and Chemical Composition of Emanated from Herculane Spa Geothermal Sources

    PubMed Central

    Cosma, Constantin; Suciu, Ioan; Jäntschi, Lorentz; Bolboacă, Sorana D.

    2008-01-01

    The paper presents a chemical composition analysis of the gases emanated from geothermal sources in the Herculane Spa area (Romania). The upper homologues of methane have been identified in these gases. An ion-molecule reaction mechanism could be implicated in the formation of the upper homologues of methane. The CH4+ ions that appear under the action of radiation are the starting point of these reactions. The presence of hydrogen in the emanated gases may be also a result of these reactions. PMID:19325844

  5. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  6. [Chemical composition and immunochemical characteristics of the lipopolysaccharide of nitrogen-fixing rhizobacterium Azospirillum brasilense CD].

    PubMed

    Konnova, O N; Burygin, G L; Fedonenko, Iu P; Matora, L Iu; Pankin, K E; Konnova, S A; Ignatov, V V

    2006-01-01

    The chemical composition of the lipopolysaccharide of the associative diazotrophic rhizobacterium Azospirillum brasilense Cd has been studied. Among the main components of the hydrophobic part of the lipopolysaccharide, we identified 3-hydroxytetradecanoic, hexadecenoic, 3-hydroxyhexadecanoic, hexadecanoic, octadecenoic, and nanodecanoic fatty acids; the carbohydrate part contained rhamnose, galactose, and mannose. Polyclonal antibodies against the preparation under study were raised in rabbits. Serological relations between A. brasilense Cd and other strains of Azospirillum spp. were studied using double radial immunodiffusion and enzyme-linked immunosorbent assay.

  7. Orimulsion combustion by-products: Chemical composition and leaching characteristics. Final report

    SciTech Connect

    Ladwig, K.J.; Murarka, I.P.; Mauro, D.M.

    1998-08-01

    Orimulsion{reg_sign} is a recently developed fuel for burning in utility boilers to generate electricity. It is manufactured by mixing water with heavy bitumen recovered from the Orinico Tar Belt in Venezuela. Orimulsion is not current used in the US but is being considered by several US utilities. This report summarizes the chemical composition and characteristics of Orimulsion fuel and Orimulsion by-products. This information will be used to provide technical input for a regulatory determination by the US Environmental Protection Agency on management of Orimulsion combustion by-products.

  8. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium.

    PubMed

    Sowa, Maciej; Greń, Katarzyna; Kukharenko, Andrey I; Korotin, Danila M; Michalska, Joanna; Szyk-Warszyńska, Lilianna; Mosiałek, Michał; Zak, Jerzy; Pamuła, Elżbieta; Kurmaev, Ernst Z; Cholakh, Seif O; Simka, Wojciech

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. PMID:25063150

  9. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham.

    PubMed

    Chessa, Mario; Sias, Angela; Piana, Andrea; Mangano, Giuseppe Salvatore; Petretto, Giacomo Luigi; Masia, Maria Dolores; Tirillini, Bruno; Pintore, Giorgio

    2013-01-01

    The chemical composition of essential oil obtained by hydrodistillation of the fresh aerial parts of Mentha requienii Bentham (Lamiaceae) collected on the Gennargentu Mountains (Sardinia, Italy) has been investigated by gas chromatography and gas chromatography-mass spectrometry. The main constituents that resulted were pulegone (78%), menthone (0.5%), isomenthone (18%), isopulegone (1.3%) and limonene (1.76%). In vitro antifungal activity is evaluated in order to identify new means that could be helpful in the prevention of contamination in indoor environments.

  10. An X-Ray Tomography Based Modeling Solution For Chemical Vapor Infiltration Of Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Ros, William; Vignoles, Gérard L.; Germain, Christian

    2010-05-01

    A numerical tool for the simulation of Chemical Vapor Infiltration of carbon/carbon composites is introduced. The structure of the fibrous medium can be studied by high resolution X-Ray Computed Micro Tomography. Gas transport in various regimes is simulated by a random walk technique whilst the morphological evolution of the fluid/solid interface is handled by a Marching Cube technique. The program can be used to evaluate effective diffusivity and first order reaction rate. The numerical tool is validated by comparing computed effective properties of a straight slit pore with reactive walls to their analytical expression. Simulation of CVI processing of a real complex media is then presented.

  11. Chemical information science coverage in Chemical Abstracts.

    PubMed

    Wiggins, G

    1987-02-01

    For many years Chemical Abstracts has included in its coverage publications on chemical documentation or chemical information science. Although the bulk of those publications can be found in section 20 of Chemical Abstracts, many relevant articles were found scattered among 39 other sections of CA in 1984-1985. In addition to the scattering of references in CA, the comprehensiveness of Chemical Abstracts as a secondary source for chemical information science is called into question. Data are provided on the journals that contributed the most references on chemical information science and on the languages of publication of relevant articles.

  12. Evaluating the influence of chemical weathering on the composition of the continental crust using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X.

    2011-12-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  13. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Meyer III, Harry M

    2012-01-01

    High strength carbon fibers were surface treated by a continuous gas phase thermo-chemical surface treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. An increase of the oxygen atomic content from 3 % to 20 % with a preferential generation of carboxylic acid functionalities and hydroxyl groups was highlighted after the thermo-chemical surface treatment, compared to an oxygen atomic content of 7 % and a wide variety of oxygen moieties with the electro-chemical surface treatment. The tensile strength of the fibers increased slightly after the thermo-chemical surface treatment and remained the same after the electro-chemical surface treatment. Short beam shear and 90 flexural tests of composites revealed that the improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. Atomic force microscopy showed that the creation of roughness with both surface treatments at a nanometric scale. Although the surface is slightly rougher after the electro-chemical surface treatment and is expected to lead to higher adhesion due to mechanical interlocking between the fiber surface and the matrix, the effect of covalent bonding coming from the high concentration of chemical groups on the surface results in higher adhesion strength, as obtained with the thermo-chemical surface treatment.

  14. Chemically treated kindling and process

    SciTech Connect

    Earlywine, R.T.

    1984-10-09

    A chemically treated kindling and process for the production thereof wherein the kindling is comprised of a pressed mixture of wood fibers, alum, and cornstarch, and is saturated with a prepared composition comprising a plurality of chemically distinct compositions, each of the compositions containing a different predetermined amount of refined petroleum wax and refined oil.

  15. Influence of Stellar Flares on the Chemical Composition of Exoplanets and Spectra

    NASA Astrophysics Data System (ADS)

    Venot, Olivia; Rocchetto, Marco; Carl, Shaun; Roshni Hashim, Aysha; Decin, Leen

    2016-10-01

    More than three thousand exoplanets have been detected so far, and more and more spectroscopic observations of exoplanets are performed. Future instruments (James Webb Space Telescope (JWST), E-ELT, PLATO, Ariel, etc.,) are eagerly awaited, as they will be able to provide spectroscopic data with greater accuracy and sensitivity than what is currently available. This will allow more accurate conclusions to be drawn regarding the chemistry and dynamics of exoplanetary atmospheres, provided that the observational data are carefully processed. One important aspect to consider is temporal stellar atmospheric disturbances that can influence the planetary composition, and hence spectra, and potentially can lead to incorrect assumptions about the steady-state atmospheric composition of the planet. In this paper, we focus on perturbations coming from the host star in the form of flare events that significantly increase photon flux impingement on the exoplanets atmosphere. In some cases, particularly for M stars, this sudden increase may last for several hours. We aim to discover to what extent a stellar flare is able to modify the chemical composition of the planetary atmosphere and, therefore, influence the resulting spectra. We use a one-dimensional thermo-photochemical model to study the neutral atmospheric composition of two hypothetical planets located around the star AD Leo. We place the two planets at different distances from the star, which results in effective atmospheric temperatures of 412 and 1303 K. AD Leo is an active star that has already been observed during a flare. Therefore, we use the spectroscopic data from this flare event to simulate the evolution of the chemical composition of the atmospheres of the two hypothetical planets. We compute synthetic spectra to evaluate the implications for observations. The increase in the incoming photon flux affects the chemical abundances of some important species (such as H and NH3), down to altitudes associated with

  16. The impact of infield biomass burning on PM levels and its chemical composition.

    PubMed

    Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M

    2014-12-01

    In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.

  17. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.

    PubMed

    Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P

    2015-12-15

    A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates. PMID:26548712

  18. Influence of origin and extraction method on argan oil physico-chemical characteristics and composition.

    PubMed

    Hilali, Miloudi; Charrouf, Zoubida; Soulhi, Abd El Aziz; Hachimi, Larbi; Guillaume, Dominique

    2005-03-23

    Twenty one samples of argan oil of different geographical origin (Tidzi, Tamanar, Benaiznassen, Ait mzal, Ait Baha, Ighrem, Aoulouz) and/or prepared following a different process (traditional, mechanical, or industrial) were collected and their physico-chemical properties analyzed. Sample acidity was found between 0.14 and 1.40%, unsaponifiable matter between 0.34 and 0.79%, saponification value between 180.0 and 199.6, highest peroxide index was 5.72 meq/kg, refractive index (20 degrees C) between 1.4644 and 1.4705, and UV absorption at 270 nm between 0.228 and 0.605. This study, carried out on randomly selected samples, clearly demonstrates that press extraction does not alter either the chemical composition of argan oil or its physico-chemical characteristics. It also demonstrates that press extraction respects the critical factors reported for traditionally prepared oils and necessary to obtain a beneficial effect on human health (a specific fatty acid balance and high tocopherol and sterol levels). In addition, this study should be useful for the establishment of a national quality standard.

  19. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    PubMed

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  20. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Ruaud, M.; Hersant, F.; Dutrey, A.; Semenov, D.; Majumdar, L.; Guilloteau, S.

    2016-10-01

    Context. Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. Aims: We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. Methods: We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H2), and the sticking of H2 is almost negligible. Finally, the remaining model is an intermediate solution known as the encounter desorption mechanism. Results: We show that the efficiency of molecular hydrogen binding (and thus its abundance at the surface of the grains) can have a quantitative effect on the predicted column densities in the gas phase of major species such as CO, CS, CN, and HCN.

  1. Heparins: process-related physico-chemical and compositional characteristics, fingerprints and impurities.

    PubMed

    Liverani, Lino; Mascellani, Giuseppe; Spelta, Franco

    2009-11-01

    During the past 25 years, heparin extraction and purification processes have changed. The results of these changes are reflected by the continuous increase in potency of the International Standard for heparin. This increase is due not only to a higher purity, but also to a number of changes in the physico-chemical characteristics of heparin. For long time, all these changes have been disregarded as non-critical by regulatory authorities. Heparin marketing authorisation was reviewed only two years ago and Pharmacopoeia monographs were reviewed just for the addition of new tests, mainly aimed at tackling the oversulfated chondroitin sulfate (OSCS) crisis. Currently, heparin monographs are again under revision. Such changes, different for each manufacturer, have caused a further increase in the heterogeneity of individual batches of heparin. This review aims at showing that chemical, physical and biological characteristics of heparin (such as disaccharide composition, amount of low sulfated and high sulfated sequences, molecular weight profiles [MW], activities, structural artifacts, fingerprints and glycosaminoglycans impurities) are all process-dependent and may significantly vary when different processes are used to minimise the content of dermatan sulfate. The wide heterogeneity of the physico-chemical characteristics of currently marketed heparin and the lack of suitable and shareable reference standards for the identification/quantification of process-related impurities caused, and are still causing, heated debates among scientific institutions, companies and authorities. PMID:19888518

  2. Fourier Transform Near Infrared Spectrometry: Using Interferograms To Determine Chemical Composition

    NASA Astrophysics Data System (ADS)

    Hoy, R. M.; McClure, W. Fred

    1989-12-01

    Previous research conducted in this laboratory has demonstrated several advantages accrued by transforming near infrared spectra from the wavelength domain to the Fourier domain. Those advantages include: [1] smoothing wavelength domain data without loss of end points, [2] correcting for particle size phenomena encountered in solid sample analyses by simply omitting the mean term Fourier coefficient from the "retransformation process", [3] minimizing the multicollinearity problem prevalent in wavelength space, [4] generating wavelength-space derivatives from Fourier space without loss of end points, [5] performing band enhancements via Fourier self-deconvolution, [6] identifying sample type using Fourier vectors, [7] estimating chemical composition using only the first few Fourier coefficients, [8] cutting of computer storage requirements by more than 96%, [9] cutting of calibration time by more than 96%, hence [10] reducing the drudgery of maintaining calibrations. That the first 12 Fourier coefficients contain sufficient information to determine chemical constituents in many products has turned out to be a major advantage leading us to understand that the chemical absorption information in the wavelength spectrum of a sample obtained with an interferometer was also present in the interferogram.

  3. Investigation of the composition of anabolic tablets using near infrared spectroscopy and Raman chemical imaging.

    PubMed

    Rebiere, Hervé; Ghyselinck, Céline; Lempereur, Laurent; Brenier, Charlotte

    2016-01-01

    The use of performance enhancing drugs is a widespread phenomenon in professional and leisure sports. A spectroscopic study was carried out on anabolic tablets labelled as 5 mg methandienone tablets provided by police departments. The analytical approach was based on a two-step methodology: a fast analysis of tablets using near infrared (NIR) spectroscopy to assess sample homogeneity based on their global composition, followed by Raman chemical imaging of one sample per NIR profile to obtain information on sample formulation. NIR spectroscopy assisted by a principal components analysis (PCA) enabled fast discrimination of different profiles based on the excipient formulation. Raman hyperspectral imaging and multivariate curve resolution - alternating least square (MCR-ALS) provided chemical images of the distribution of the active substance and excipients within tablets and facilitated identification of the active compounds. The combination of NIR spectroscopy and Raman chemical imaging highlighted dose-to-dose variations and succeeded in the discrimination of four different formulations out of eight similar samples of anabolic tablets. Some samples contained either methandienone or methyltestosterone whereas one sample did not contain an active substance. Other ingredients were sucrose, lactose, starch or talc. Both techniques were fast and non-destructive and therefore can be carried out as exploratory methods prior to destructive screening methods. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition.

    PubMed

    Pejic, Biljana; Vukcevic, Marija; Kostic, Mirjana; Skundric, Petar

    2009-05-15

    Sorption potential of waste short hemp fibers for Pb(2+), Cd(2+) and Zn(2+) ions from aqueous media was explored. In order to assess the influence of hemp fiber chemical composition on their heavy metals sorption potential, lignin and hemicelluloses were removed selectively by chemical modification. The degree of fiber swelling and water retention value were determined in order to evaluate the change in accessibility of the cell wall components to aqueous solutions due to the fiber modification. The effects of initial ion concentration, contact time and cosorption were studied in batch sorption experiments. The obtained results show that when the content of either lignin or hemicelluloses is progressively reduced by chemical treatment, the sorption properties of hemp fibers are improved. Short hemp fibers are capable of sorbing metal ions (Pb(2+), Cd(2+) and Zn(2+)) from single as well as from ternary metal ion solutions. The maximum total uptake capacities for Pb(2+), Cd(2+) and Zn(2+) ions from single solutions are the same, i.e. 0.078mmol/g, and from ternary mixture 0.074, 0.035 and 0.035mmol/g, respectively.

  5. The detailed chemical composition of the terrestrial planet host Kepler-10

    NASA Astrophysics Data System (ADS)

    Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J.; Gustafsson, B.; Howes, L. M.; Roederer, I. U.; Lambert, D. L.; Bensby, T.

    2016-03-01

    Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and 14 of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins were obtained with very high precision using a strictly differential analysis of high quality Canada-France-Hawaii Telescope, Hobby-Eberly Telescope and Magellan spectra. When compared to the majority of thick disc twins, Kepler-10 shows a depletion in the refractory elements relative to the volatile elements, which could be due to the formation of terrestrial planets in the Kepler-10 system. The average abundance pattern corresponds to ˜13 Earth masses, while the two known planets in Kepler-10 system have a combined ˜20 Earth masses. For two of the eight thick disc twins, however, no depletion patterns are found. Although our results demonstrate that several factors [e.g. planet signature, stellar age, stellar birth location and Galactic chemical evolution (GCE)] could lead to or affect abundance trends with condensation temperature, we find that the trends give further support for the planetary signature hypothesis.

  6. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  7. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  8. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  9. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  10. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    SciTech Connect

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  11. Effects of chemical fuel composition on energy generation from thermopower waves.

    PubMed

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-01

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ∼2 V and an average peak specific power as high as 15 kW kg(-1) were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s(-1) and 157 mV, while they were 2 cm s(-1) and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H(+) and Na(+) ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy

  12. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  13. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are

  14. Interspecies differences in the empty body chemical composition of domestic animals.

    PubMed

    Maeno, H; Oishi, K; Hirooka, H

    2013-07-01

    Domestication of animals has resulted in phenotypic changes by means of natural and human-directed selection. Body composition is important for farm animals because it reflects the status of energy reserves. Thus, there is the possibility that farm animals as providers of food have been more affected by human-directed selection for body composition than laboratory animals. In this study, an analysis was conducted to determine what similarities and differences in body composition occur between farm and laboratory animals using literature data obtained from seven comparative slaughter studies (n = 136 observations). Farm animals from four species (cattle, goats, pigs and sheep) were all castrated males, whereas laboratory animals from three species (dogs, mice and rats) comprised males and/or females. All animals were fed ad libitum. The allometric equation, Y = aX b , was used to determine the influence of species on the accretion rates of chemical components (Y, kg) relative to the growth of the empty body, fat-free empty body or protein weights (X, kg). There were differences between farm and laboratory animals in terms of the allometric growth coefficients for chemical components relative to the empty BW and fat-free empty BW (P < 0.01); farm animals had more rapid accretion rates of fat (P < 0.01) but laboratory animals had more rapid accretion rates of protein, water and ash (P < 0.01). In contrast, there was no difference in terms of the allometric growth coefficients for protein and water within farm animals (P > 0.2). The allometric growth coefficients for ash weight relative to protein weight for six species except sheep were not different from a value of 1 (P > 0.1), whereas that of sheep was smaller than 1 (P < 0.01). When compared at the same fat content of the empty body, the rate of change in water content (%) per unit change in fat content (%) was not different (P > 0.05) across farm animal species and similar ash-to-protein ratios were obtained

  15. Photothermal method for in situ microanalysis of the chemical composition of coal samples

    DOEpatents

    Amer, N.M.

    1983-10-25

    Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.

  16. On the visual binary υ Car and the chemical composition of its brighter component.

    NASA Astrophysics Data System (ADS)

    Samedov, Z. A.

    On the basis of the method for studying the composite spectrum of a double system, the following values of effective temperatures and surface gravities are obtained for the components of the visual binary υ Car: Teff = 7600±350K, lg g = 1.1±0.3 for the brighter component υ Car A, Teff = 23000±1600K, lg g = 3.3±0.1 for the fainter component υ Car B. By comparing the evolutionary calculations the author has found masses, radii, luminosities; the age is 107years. Using spectroscopic data, the microturbulent velocity and the chemical composition are studied in the atmosphere of υ Car A. The analysis of Ti II, Fe II, Cr II lines showed higher values in comparison with Fe I lines. The element abundances are defined using relatively weak lines, on average it is close to that of the Sun.

  17. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    PubMed Central

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  18. Chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour.

    PubMed

    Adelakun, O E; Oyelade, O J; Ade-Omowaye, B I O; Adeyemi, I A; Van de Venter, M

    2009-06-01

    Studies on the chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour were carried out. This is done to establish the nutritional composition and the antioxidative potentials of the seeds, both of which are highly implicated in health. Okra seeds were roasted at 160 degreeC for 10-60 mins. The roasted seeds were subjected to proximate, yield and antioxidative activity determination. Pre-treatment by roasting was found to increase the yield, but was found to be time dependent. The range means obtained for protein, fat, ash, fiber and sugar contents were 42.14-38.10, 31.04-17.22, 4.06-3.42, 3.45-3.60 and 8.82-8.65, respectively. The antioxidant activity was significantly increased by roasting, while in vitro digestibility showed that most antioxidative activities were available in the intestinal phase of gastrointestinal tracts.

  19. Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization.

    PubMed

    Lashermes, G; Nicolardot, B; Parnaudeau, V; Thuriès, L; Chaussod, R; Guillotin, M L; Linères, M; Mary, B; Metzger, L; Morvan, T; Tricaud, A; Villette, C; Houot, S

    2010-01-01

    Our aim was to develop a typology predicting potential N availability of exogenous organic matters (EOMs) in soil based on their chemical characteristics. A database of 273 EOMs was constructed including analytical data of biochemical fractionation, organic C and N, and results of N mineralization during incubation of soil-EOM mixtures in controlled conditions. Multiple factor analysis and hierarchical classification were performed to gather EOMs with similar composition and N mineralization behavior. A typology was then defined using composition criteria to predict potential N mineralization. Six classes of EOM potential N mineralization in soil were defined, from high potential N mineralization to risk of inducing N immobilization in soil after application. These classes were defined on the basis of EOM organic N content and soluble, cellulose-, and lignin-like fractions. A decision tree based on these variables was constructed in order to easily attribute any EOM to 1 of the 6 classes. PMID:19726180

  20. Chemical composition and antibacterial activity of essential oil of Nepeta graciliflora Benth. (Lamiaceae).

    PubMed

    Sharma, Pankaj; Shah, G C; Sharma, Rabia; Dhyani, Praveen

    2016-06-01

    The chemical composition of the essential oil obtained from aerial parts of Nepeta graciliflora was analysed, for the first time, by GC-FID and GC-MS. A total of 27 compounds were identified, constituting over 91.44% of oil composition. The oil was strongly characterised by sesquiterpenes (86.72%), with β-sesquiphellandrene (28.75%), caryophyllene oxide (12.15%), α-bisabolol (8.97%), α-bergamotene (8.51%), β-bisabolene (6.33%) and β-Caryophyllene (5.34%) as the main constituents. The in vitro activity of the essential oil was determined against four micro-organisms in comparison with chloramphenicol by the agar well diffusion and broth dilution method. The oil exhibited good activity against all tested organisms.

  1. Chemical composition and antibacterial activity of essential oil of Nepeta graciliflora Benth. (Lamiaceae).

    PubMed

    Sharma, Pankaj; Shah, G C; Sharma, Rabia; Dhyani, Praveen

    2016-06-01

    The chemical composition of the essential oil obtained from aerial parts of Nepeta graciliflora was analysed, for the first time, by GC-FID and GC-MS. A total of 27 compounds were identified, constituting over 91.44% of oil composition. The oil was strongly characterised by sesquiterpenes (86.72%), with β-sesquiphellandrene (28.75%), caryophyllene oxide (12.15%), α-bisabolol (8.97%), α-bergamotene (8.51%), β-bisabolene (6.33%) and β-Caryophyllene (5.34%) as the main constituents. The in vitro activity of the essential oil was determined against four micro-organisms in comparison with chloramphenicol by the agar well diffusion and broth dilution method. The oil exhibited good activity against all tested organisms. PMID:26140331

  2. The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk

    PubMed Central

    Li, Haimei; Ma, Ying; Li, Qiming; Wang, Jiaqi; Cheng, Jinju; Xue, Jun; Shi, John

    2011-01-01

    The paper surveyed the chemical composition and nitrogen distribution of Maiwa yak milk, and compared the results with reference composition of cow milk. Compared to cow milk, yak milk was richer in protein (especially whey protein), essential amino acids, fat, lactose and minerals (except phosphorus). The contents of some nutrients (total protein, lactose, essential amino acids and casein) were higher in the warm season than in the cold season. Higher ratios of total essential amino acids/total amino acids (TEAA/TAA) and total essential amino acids/total non essential amino acids (TEAA/TNEAA) were found in the yak milk from the warm season. However its annual average ratio of EAA/TAA and that of EAA/NEAA were similar to those of cow milk. Yak milk was rich in calcium and iron (p < 0.05), and thus may serve as a nutritional ingredient with a potential application in industrial processing. PMID:21954332

  3. Chemical composition, quality and histochemical characteristics of individual dromedary camel (Camelus dromedarius) muscles.

    PubMed

    Kadim, I T; Al-Karousi, A; Mahgoub, O; Al-Marzooqi, W; Khalaf, S K; Al-Maqbali, R S; Al-Sinani, S S H; Raiymbek, G

    2013-03-01

    This study characterized the chemical composition, quality and histological traits of six muscles from 10 dromedary carcasses. There were significant differences in moisture, fat, protein, mineral, saturated and unsaturated fatty acid contents between muscles. The longissimus thoracis (LT) had the highest cooking loss (33.5%) and triceps brachii (TB) the lowest (29.2%). The shear force value of semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) were significantly higher than infraspinatus (IS), TB and LT. The LT had significantly higher values for L*, a*, b* than ST. The SM had the lowest MFI (65.3), while IS had the highest value (75.8). The ST significantly had the highest and lowest proportions of Type I and Type IIA muscle fibers, respectively than other muscles. This study indicated that composition, quality, and histochemical parameters varied among camel muscles and the knowledge of this variation allows for better marketing and processing of camel meat. PMID:23273465

  4. Effect of the Chemical Composition on The Pyroplastic Deformation of Sanitaryware Porcelain Body

    NASA Astrophysics Data System (ADS)

    Yeşim Tunçel, Derya; Kerim Kara, Mustafa; Özel, Emel

    2011-10-01

    Pyroplastic deformation is the bending of a ceramic specimen caused by gravity during heat treatment. It can be defined as the loss of shape of product during its firing. Pyroplastic deformation is related to properties of liquid phases formed during firing. Therefore, the effect of the chemical composition on the pyroplastic deformation of sanitaryware porcelain was investigated in this study. Systematical compositional arrangements were made according to different combinations of (SiO2/Al2O3) and (Na2O/K2O) ratios by using Seger formula approach. Pyroplastic deformation behaviour of compositions within a controlled firing regime was investigated by using fleximeter. The bodies were also prepared in a special form by slip casting method at laboratory scale in order to determine the pyroplastic deformation of the samples. The experimental results showed that a definite combination at SiO2/Al2O3 ratio of 5 and Na2O/K2O ratio of 4 give the lowest pyroplastic deformation in the porcelain body formulations. The pyroplastic deformation value of this composition was determined as 25 mm which is 44% lower than that of the standard composition (45 mm).

  5. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  6. Chemical composition and its origin in spring rainwater over Taihu Lake

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Yang, Longyuan; Qin, Boqiang; Ji, Lingling

    2006-12-01

    Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of SO{4/2-} was the largest followed by NO{3/-}, whereas among all cations, Ca2+ concentration and the rate was the largest, and then NH{4/+} was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which SO{4/2-}, NO{3/-} and NH{4/-} contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem rmmarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.

  7. Review of the application of near-infrared spectroscopy technology to determine the chemical composition of animal manure.

    PubMed

    Chen, Longjian; Xing, Li; Han, Lujia

    2013-07-01

    Animal manure contains a variety of chemical constituents that are highly valuable to agriculture, including nitrogen, phosphorus, potassium, and metal micronutrients. Although appropriately applied manure has numerous positive attributes, the excessive application of manure may lead to pollution of the atmosphere, water, or soil. To reconcile precision agriculture and the potential negative environmental influences of animal manure, it is necessary to develop rapid and robust methods to evaluate the chemical composition of animal manure. This paper summarizes recent advances in near-infrared reflectance spectroscopy (NIRS) in predicting moisture, dry matter, organic matter, nitrogen, phosphorus, carbon, and metal content in animal manure. The results indicate the high potential of NIRS as an efficient tool for monitoring the chemical composition of animal manure. Future prospects and needs related to increasing the feasibility of the industrial application of NIRS and improving NIRS prediction precision in determining the chemical composition of animal manure are discussed.

  8. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia

    2008-06-01

    The chemical composition, antioxidant potential and antimicrobial activity were studied in six walnuts (Juglans regia L.) cultivars (cv. Franquette, Lara, Marbot, Mayette, Mellanaise and Parisienne) produced in Portugal. Concerning their chemical composition the main constituent of fruits was fat ranging from 78.83% to 82.14%, being the nutritional value around 720kcal per 100g of fruits. Linoleic acid was the major fatty acid reaching the maximum value of 60.30% (cv. Lara) followed by oleic, linolenic and palmitic acids. The aqueous extracts of walnut cultivars were investigated by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. All the walnut extracts exhibited antioxidant capacity in a concentration-dependent manner being the lowest EC(50) values obtained with extracts of cv. Parisienne. Their antimicrobial capacity was also checked against gram positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans), revealing activity against the different tested microorganisms.

  9. Effect of bio-regulator and foliar fertilizers on chemical composition and yield of soybean.

    PubMed

    Piccinin, Gleberson Guillen; Braccini, Alessandro Lucca; da Silva, Luiz Henrique; Mariucci, Giovanna Emanuêlle Gonçalves; Suzukawa, Andréia Kazumi; Dan, Lilian Gomes de Morais; Tonin, Telmo António

    2013-11-15

    Current study evaluates the effects of bio-regulator associated with foliar fertilizers on the yield components, productivity and chemical composition of soybean. The experimental design was entirely randomized blocks, with four replications. The treatments consisted of: T1-absolute control, T2-application of 0.25 L h(-1) Stimulate in R1 stage of development, T3-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1, T4-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1; T5-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 2 L h(-1) Mover in R5.1, T6-application of 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1 and T7-application of 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R1. Application of Sett and Mover is a potentially efficient handling as it favors the soybean agronomic performance in R1 stage. Chemical composition of processed grains has influence with applying bio-regulator and foliar fertilizers. PMID:24511692

  10. [Nondestructive analysis of chemical composition, structure and mineral constitution of jadeite jade].

    PubMed

    Sun, Fang-Ce; Zhao, Hong-Xia; Gan, Fu-Xi

    2011-11-01

    The techniques of portable energy-dispersive X-ray fluorescence analysis (PXRF), proton induced X-ray emission spectroscopy (LRS) were employed to analyze the chemical composition, structure and mineral constitution of 12 samples. The results indicated that the chemical compositions determined by PXRF and PIXE are well comparable and most samples are constituted by almost pure jadeite with low concentration of secondary elements. One sample contains a little omphacite and one sample is composed only by omphacite. Raman characteristic peaks of jadeite occurred at 201, 372, 698, 985 and 1 037 cm(-1), while those of omphacite located at 680 and 1 017 cm(-1). By using laser Raman spectroscopy for testing the fissures of the samples, wax in 3 samples and epoxy resin in one sample were found. Raman characteristic peaks of wax located at 2 846 and 2 880 cm(-1) and those of epoxy resin occurred at 2 924 and 3 065 c(-1). The application of nondestructive techniques in jadeite jade broadens the range of samples for future study and provides technical support for jadeite jade's further study, identification and classification.

  11. Chemical composition of essential oils from plantago lanceolata L. leaves extracted by hydrodistillation.

    PubMed

    Bajer, Tomáš; Janda, Václav; Bajerová, Petra; Kremr, Daniel; Eisner, Aleš; Ventura, Karel

    2016-03-01

    Extensive traditional use of medical plants leads to research dealing with chemical composition of essential oils. The aim of this work was evaluation of quality of the essential oil and extending of the knowledge about chemical composition of essential oil from ribwort (Plantago lanceolata L.) and proportional representation of compounds. Extractions of essential oils from samples of ribwort were performed by hydrodistillation. GC-MS and GC-FID techniques were used for investigation of the qualitative and semi-quantitative content of aromatic compounds in the essential oils, respectively. Major aroma constituents of ribwort leaves were groups of fatty acids 28.0-52.1 % (the most abundant palmitic acid 15.3-32.0 %), oxidated monoterpenes 4.3-13.2 % (linalool 2.7-3.5 %), aldehydes and ketones 6.9-10.0 % (pentyl vinyl ketone 2.0-3.4 %) and alcohols 3.8-9.2 % (1-octen-3-ol 2.4-8.2 %). In relative high amount were identified apocarotenoids (1.5-2.3 %) which are important constituents because of their intense fragrant. The importance is in potential manufacture control of feedstocks before producing of food supplements. PMID:27570283

  12. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes

    PubMed Central

    Fayemiwo, Kehinde Adenike; Adeleke, Monsuru Adebayo; Okoro, Ovie Princewill; Awojide, Shola Hezekiah; Awoniyi, Ilias Olufemi

    2014-01-01

    Objective To assess the chemical composition and mosquito larvicidal potentials of essential oils of locally sourced Pinus sylvestris (P. sylvestris) and Syzygium aromaticum (S. aromaticum) against Aedes aegypti (A. aegypti) and Culex quinquefasciatus (C. quinquefasciatus). Method The chemical composition of the essential oils of both plants was determined using GC-MS while the larvicidal bioassay was carried out using different concentrations of the oils against the larvae of A. aegypti and C. quinquefasciatus in accordance with the standard protocol. Results The results as determined by GC-MS showed that oil of S. aromaticum has eugenol (80.5%) as its principal constituent while P. sylvestris has 3-Cyclohexene-1-methanol, .alpha., .alpha.4-trimethyl (27.1%) as its dominant constituent. Both oils achieved over 85% larval mortality within 24 h. The larvae of A. aegypti were more susceptible to the oils [LC50 (S. aromaticum)=92.56 mg/L, LC50(P. sylvestris)=100.39 mg/L] than C. quinquefasciatus [LC50(S. aromaticum)=124.42 mg/L; LC50(P. sylvestris)=128.00 mg/L]. S. aromaticum oil was more toxic to the mosquito larvae than oil of P. sylvestris but the difference in lethal concentrations was insignificant (P>0.05). Conclusion The results justify the larvicidal potentials of both essential oils and the need to incorporate them in vector management and control. PMID:24144127

  13. On-line chemical composition analyzer development. Phase 3, Final report

    SciTech Connect

    Moore, C.F.; Garrison, A.A.; Roberts, M.J.

    1993-09-01

    Energy consumed in distillation processes in the United States represents nearly 3% of total national energy consumption. Effective control of distillation columns would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology to control these diverse processes in real time. This report presents a summary of the findings of the third phase of a three-phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, diode pumped YAG laser, process sample cell, and personal computer. This system has been successfully tested on a distillation process at Eastman Chemical Company to establish its performance. Also, continued application development was undertaken during this phase of the program.

  14. Dissolution of cerium(IV)-lanthanide(III) oxides: comparative effect of chemical composition, temperature, and acidity.

    PubMed

    Horlait, D; Clavier, N; Szenknect, S; Dacheux, N; Dubois, V

    2012-03-19

    The dissolution of Ce(1-x)Ln(x)O(2-x/2) solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R(L,0)) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R(L,0) values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitude than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E(A) ≈ 60-85 kJ·mol(-1)) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H(3)O(+)) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO(2) matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples.

  15. Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers.

    PubMed

    Bekir, Jalila; Mars, Mohamed; Vicendo, Patricia; Fterrich, Amira; Bouajila, Jalloul

    2013-06-01

    The chemical composition, antioxidant (DPPH and ABTS assays), anti-inflammatory (5-LOX), and cytotoxic (MCF-7) activities from flowers of seven pomegranate varieties (Punica granatum) were investigated. The highest phenolics (330.9±11.3 mg gallic acid equivalent/g dry weight (dw)), flavonoids (29.5±0.8 mg quercetin equivalent/g dw), tannins (30.6±0.6 mg catechin equivalent/g dw), and anthocyanins (0.70±0.03 mg cyanidin-3-glucoside equivalent/g dw) content were determined in the Chetoui (CH) variety. It was found that Garsi (GR) (IC₅₀=4.9±0.2 mg/L by ABTS assay) and Zaghwani (ZG) (IC₅₀=3.9±0.2 mg/L by ABTS assay) varieties exhibited the highest antioxidant activity. For the anti-inflammatory activity, all varieties were active; the ZH variety was the strongest (2.5±0.1 mg/L). The CH, ES, and RA pomegranate varieties were not active against human breast cancer cells MCF-7, whereas inhibition was more evident with extracts from ZH and GR varieties (IC₅₀=33.00±2.64 and 35.00±4.58 mg/L, respectively). Statistical analysis showed that the variety factor influenced significantly (P<.01) the chemical composition and biological activities of pomegranate flowers.

  16. The musk chemical composition and microbiota of Chinese forest musk deer males

    PubMed Central

    Li, Diyan; Chen, Binlong; Zhang, Long; Gaur, Uma; Ma, Tianyuan; Jie, Hang; Zhao, Guijun; Wu, Nan; Xu, Zhongxian; Xu, Huailiang; Yao, Yongfang; Lian, Ting; Fan, Xiaolan; Yang, Deying; Yang, Mingyao; Zhu, Qing; Satkoski Trask, Jessica

    2016-01-01

    Male musk deer secrete musk from the musk gland located between their naval and genitals. Unmated male forest musk deer generate a greater amount of musk than mated males, potentially allowing them to attract a greater number of females. In this study, we used gas chromatography and mass spectrometry (GC/MS) to explore musk chemical composition of the musk pods of captive mated and unmated sexually mature Chinese forest musk deer and used next-generation sequencing to intensively survey the bacterial communities within them. Analysis of the chemical composition of the musk showed that unmated males have more muscone and cholesterol. Features of the musk16S rRNA gene showed that mated Chinese forest musk deer have both a greater Shannon diversity (p < 0.01) and a greater number of estimated operational taxonomic units than unmated ones; many bacterial genera were overrepresented in unmated Chinese forest musk deer males. Members of these genera might be involved in musk odor fermentation. PICRUSt analysis revealed that metabolic pathways such as aldosterone-regulated sodium reabsorption, metabolism of terpenoids and polyketides, flavone and flavonol biosynthesis, and isoflavonoid biosynthesis were enriched in the musk of unmated Chinese forest musk deer males. PMID:26744067

  17. Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita).

    PubMed

    Czerner, Marina; Agustinelli, Silvina P; Guccione, Silvana; Yeannes, María I

    2015-01-01

    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods. PMID:26576657

  18. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    PubMed

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL.

  19. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  20. On the binary helium star DY Centauri: chemical composition and evolutionary state

    SciTech Connect

    Pandey, Gajendra; Rao, N. Kameswara; Jeffery, C. Simon; Lambert, David L. E-mail: nkrao@iiap.res.in E-mail: dll@astro.as.utexas.edu

    2014-10-01

    DY Cen has shown a steady fading of its visual light by about one magnitude in the last 40 yr, suggesting a secular increase in its effective temperature. We have conducted non-local thermodynamic equilibrium (LTE) and LTE abundance analyses to determine the star's effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 yr. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of a He white dwarf with a C-O white dwarf. Thus DY Cen by chemical composition appears to also be a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.

  1. Chemical Compositions and Antimicrobial Activities of Ocimum sanctum L. Essential Oils at Different Harvest Stages

    PubMed Central

    Saharkhiz, Mohammad Jamal; Kamyab, Amir Alam; Kazerani, Narges Khatoon; Zomorodian, Kamiar; Pakshir, Keyvan; Rahimi, Mohammad Javad

    2014-01-01

    Background: Essential Oils (EOs) possess antibacterial properties and represent a natural source to treat infections and prevent food spoilage. Their chemical composition might be affected by the environmental condition and the developmental growth stages of the plant. Objectives: The current study aimed to determine the variations in chemical compositions and antimicrobial activities of the EOs of Ocimum sanctum L. at different stages of harvesting. Materials and Methods: The oils constituents were analyzed by gas chromatography/mass spectrometry (GC/MS). The effects of three different harvest stages of O. sanctum EOs against most common causes of food-borne were evaluated by broth micro-dilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI). Results: The analysis of the EOs indicated that eugenol was the major compound of the EOs at all developmental stages which reached its maximum level at the second stage. The results showed that the tested EOs exhibited antimicrobial activities against all of the examined pathogens at concentrations of 0.125-32 µL/mL, except Pseudomonas aeruginosa which was only inhibited by high concentrations of the floral budding and full flowering EOs. EO distilled from the second developmental growth stage (floral budding) of O. sanctum exhibited the strongest antibacterial activities against the food borne bacteria. Conclusions: Considering the wide range of antimicrobial activities of the examined EOs, they might have the potential to be used to manage infectious diseases or extend the shelf life of food products. PMID:25763132

  2. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes.

    PubMed

    Gniwotta, Franka; Vogg, Gerd; Gartmann, Vanessa; Carver, Tim L W; Riederer, Markus; Jetter, Reinhard

    2005-09-01

    In the cuticular wax mixtures from leaves of pea (Pisum sativum) cv Avanta, cv Lincoln, and cv Maiperle, more than 70 individual compounds were identified. The adaxial wax was characterized by very high amounts of primary alcohols (71%), while the abaxial wax consisted mainly of alkanes (73%). An aqueous adhesive of gum arabic was employed to selectively sample the epicuticular wax layer on pea leaves and hence to analyze the composition of epicuticular crystals exposed at the outermost surface of leaves. The epicuticular layer was found to contain 74% and 83% of the total wax on adaxial and abaxial surfaces, respectively. The platelet-shaped crystals on the adaxial leaf surface consisted of a mixture dominated by hexacosanol, accompanied by substantial amounts of octacosanol and hentriacontane. In contrast, the ribbon-shaped wax crystals on the abaxial surface consisted mainly of hentriacontane (63%), with approximately 5% each of hexacosanol and octacosanol being present. Based on this detailed chemical analysis of the wax exposed at the leaf surface, their importance for early events in the interaction with host-specific pathogenic fungi can now be evaluated. On adaxial surfaces, approximately 80% of Erysiphe pisi spores germinated and 70% differentiated appressoria. In contrast, significantly lower germination efficiencies (57%) and appressoria formation rates (49%) were found for abaxial surfaces. In conclusion, the influence of the physical structure and the chemical composition of the host surface, and especially of epicuticular leaf waxes, on the prepenetration processes of biotrophic fungi is discussed.

  3. Chemical composition of ground water in the Yucca Mountain area, Nevada, 1971-84

    USGS Publications Warehouse

    Benson, L.V.; McKinley, P.W.

    1985-01-01

    Fifteen wells in the Yucca Mountain area of southern Nevada have been sampled for chemical analysis. Samples were obtained by pumping water from the entire well bore (composite sample), and, in three instances, by pumping from one or more isolated intervals within a well bore. Sodium is the most abundant cation , and biocarbonate is the most abundant anion in all water samples. Samples from the Paleozoic carbonate aquifer penetrated by well UE-25p 1 contain higher relative concentrations of calcium and magnesium than samples from overlying volcanic tuffs. Values of the stable isotope concentrations of oxygen and hydrogen are relatively negative (light) and have deuterium excess values ranging from +5 to +10. The distribution of uncorrected radiocarbon ages of tuffaceous groundwater from samples within one kilometer of the exploratory block ranges from 12,000 to 18,500 years before present. Variation in the inorganic, stable, and radioactive isotope composition of samples indicates a significant degree of lateral and vertical chemical inhomogeneity in groundwater of the Yucca Mountain area. (USGS)

  4. Quantitative imaging of chemical composition using dual-energy, dual-source CT

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Primak, Andrew N.; Yu, Lifeng; McCollough, Cynthia H.; Morin, Richard L.

    2008-03-01

    Dual-energy x-ray material decomposition has been proposed as a noninvasive quantitative imaging technique for more than 20 years. In this paper, we summarize previously developed dual-energy material decomposition methods and propose a simple yet accurate method for quantitatively measuring chemical composition in vivo. In order to take advantage of the newly developed dual-source CT, the proposed method is based upon post reconstruction (image space) data. Different from other post reconstruction methods, this method is designed to directly measure element composition (mass fraction) in a tissue by a simple table lookup procedure. The method has been tested in phantom studies and also applied to a clinical case. The results showed that this method is capable of accurately measuring elemental concentrations, such as iron in tissue, under low noise imaging conditions. The advantage of this method lies in its simplicity and fast processing times. We believe that this method can be applied clinically to measure the mass fraction of any chemical element in a two-material object, such as to quantify the iron overload in the liver (hemochromatosis). Further investigations on de-noising techniques, as well as clinical validation, are merited.

  5. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    PubMed

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition.

  6. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    PubMed Central

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL. PMID:26417300

  7. Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita).

    PubMed

    Czerner, Marina; Agustinelli, Silvina P; Guccione, Silvana; Yeannes, María I

    2015-01-01

    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods.

  8. Dissolution of cerium(IV)-lanthanide(III) oxides: Comparative effect of chemical composition, temperature, and acidity

    SciTech Connect

    Horlait, D.; Clavier, N.; Szenknect, S.; Dacheux, N.; Dubois, V.

    2012-03-15

    The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitude than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)

  9. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    SciTech Connect

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z.

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  10. Variations in Depth and Chemical Composition of Groundwater During an Interval in Intermittent Water Delivery.

    PubMed

    Yongjin, Chen; Weihong, Li; Jiazhen, Liu; Ming, Lu; Mengchen, Xu; Shengliang, Liu

    2015-08-01

    Based on monitoring data collected from 2006 to 2009 at the lower reaches of the Tarim River, tempo-spatial variations in groundwater depth and chemistry during an approximately 3-year interval of intermittent water delivery were studied. Results indicate that as the groundwater depth increased at the upper sector of the river's lower reaches from March 2007 to September 2009, so too did the main chemical composition of groundwater. Groundwater depth at the intermediate sector also increased, but major ions in groundwater declined. The groundwater depth at the lower sector started to decrease in August 2008, and the concentrations of main ions in the groundwater generally rose and fell along with the variations in groundwater depth. The groundwater depth and chemistry in the monitoring wells located at a distance from the aqueduct expressed complex changes at different sections. For instance, at the section near the Daxihaizi Reservoir Section B, groundwater depth increased gradually, but chemical composition changed little. In contrast, the groundwater depth of monitoring wells far from the Daxihaizi Reservoir (Section I) decreased and salt content in the groundwater increased. In sectors at a moderate distance from the reservoir, groundwater depth decreased and concentrations of main ions significantly increased.

  11. On the Binary Helium Star DY Centauri: Chemical Composition and Evolutionary State

    NASA Astrophysics Data System (ADS)

    Pandey, Gajendra; Kameswara Rao, N.; Jeffery, C. Simon; Lambert, David L.

    2014-10-01

    DY Cen has shown a steady fading of its visual light by about one magnitude in the last 40 yr, suggesting a secular increase in its effective temperature. We have conducted non-local thermodynamic equilibrium (LTE) and LTE abundance analyses to determine the star's effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 yr. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of a He white dwarf with a C-O white dwarf. Thus DY Cen by chemical composition appears to also be a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.

  12. Chemical composition of essential oils from plantago lanceolata L. leaves extracted by hydrodistillation.

    PubMed

    Bajer, Tomáš; Janda, Václav; Bajerová, Petra; Kremr, Daniel; Eisner, Aleš; Ventura, Karel

    2016-03-01

    Extensive traditional use of medical plants leads to research dealing with chemical composition of essential oils. The aim of this work was evaluation of quality of the essential oil and extending of the knowledge about chemical composition of essential oil from ribwort (Plantago lanceolata L.) and proportional representation of compounds. Extractions of essential oils from samples of ribwort were performed by hydrodistillation. GC-MS and GC-FID techniques were used for investigation of the qualitative and semi-quantitative content of aromatic compounds in the essential oils, respectively. Major aroma constituents of ribwort leaves were groups of fatty acids 28.0-52.1 % (the most abundant palmitic acid 15.3-32.0 %), oxidated monoterpenes 4.3-13.2 % (linalool 2.7-3.5 %), aldehydes and ketones 6.9-10.0 % (pentyl vinyl ketone 2.0-3.4 %) and alcohols 3.8-9.2 % (1-octen-3-ol 2.4-8.2 %). In relative high amount were identified apocarotenoids (1.5-2.3 %) which are important constituents because of their intense fragrant. The importance is in potential manufacture control of feedstocks before producing of food supplements.

  13. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia

    2008-06-01

    The chemical composition, antioxidant potential and antimicrobial activity were studied in six walnuts (Juglans regia L.) cultivars (cv. Franquette, Lara, Marbot, Mayette, Mellanaise and Parisienne) produced in Portugal. Concerning their chemical composition the main constituent of fruits was fat ranging from 78.83% to 82.14%, being the nutritional value around 720kcal per 100g of fruits. Linoleic acid was the major fatty acid reaching the maximum value of 60.30% (cv. Lara) followed by oleic, linolenic and palmitic acids. The aqueous extracts of walnut cultivars were investigated by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. All the walnut extracts exhibited antioxidant capacity in a concentration-dependent manner being the lowest EC(50) values obtained with extracts of cv. Parisienne. Their antimicrobial capacity was also checked against gram positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans), revealing activity against the different tested microorganisms. PMID:18334279

  14. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  15. ON THE MORPHOLOGY AND CHEMICAL COMPOSITION OF THE HR 4796A DEBRIS DISK

    SciTech Connect

    Rodigas, Timothy J.; Weinberger, Alycia; Stark, Christopher C.; Debes, John H.; Chen, Christine; Hinz, Philip M.; Close, Laird; Smith, Paul S.; Males, Jared R.; Skemer, Andrew J.; Follette, Katherine B.; Morzinski, Katie; Wu, Ya-Lin; Schneider, Glenn; Puglisi, Alfio; Briguglio, Runa; Esposito, Simone; Pinna, Enrico; Riccardi, Armando; Xompero, Marco

    2015-01-10

    We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 μm, 0.91 μm, 0.99 μm, 2.15 μm, 3.1 μm, 3.3 μm, and 3.8 μm. We find that the deprojected center of the ring is offset from the star by 4.76 ± 1.6 AU and that the deprojected eccentricity is 0.06 ± 0.02, in general agreement with previous studies. We find that the average width of the ring is 14{sub −2}{sup +3}% (11.1{sub −1.6}{sup +2.4} AU), also comparable to previous measurements. Combining our new scattered light data with archival Hubble Space Telescope images at ∼0.5-2 μm, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both data sets simultaneously, we find that silicates and organics are generally the most favored, while large abundances of water ice are usually not favored. These results suggest the HR 4796A dust grains are similar to interstellar dust and solar system comets, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.

  16. Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

    SciTech Connect

    Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

    1995-12-01

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

  17. Predicting corn digestible and metabolizable energy content from its chemical composition in growing pigs

    PubMed Central

    2014-01-01

    Background The nutrient composition of corn is variable. To prevent unforeseen reductions in growth performance, grading and analytical methods are used to minimize nutrient variability between calculated and analyzed values. This experiment was carried out to define the sources of variation in the energy content of corn and to develop a practical method to accurately estimate the digestible energy (DE) and metabolisable energy (ME) content of individual corn samples for growing pigs. Twenty samples were taken from each of five provinces in China (Jilin, Hebei, Shandong, Liaoning, and Henan) to obtain a range of quality. Results The DE and ME contents of the 100 corn samples were measured in 35.3 ± 1.92 kg growing pigs (six pigs per corn sample). Sixty corn samples were used to build the prediction model; the remaining forty samples were used to test the suitability of these models. The chemical composition of each corn sample was determined, and the results were used to establish prediction equations for DE or ME content from chemical characteristics. The mean DE and ME content of the 100 samples were 4,053 and 3,923 kcal/kg (dry matter basis), respectively. The physical characteristics were determined, as well, and the results indicated that the bulk weight and 1,000-kernel weight were not associated with energy content. The DE and ME values could be accurately predicted from chemical characteristics. The best fit equations were as follows: DE, kcal/kg of DM = 1062.68 + (49.72 × EE) + (0.54 × GE) + (9.11 × starch), with R2 = 0.62, residual standard deviation (RSD) = 48 kcal/kg, and P < 0.01; ME, kcal/kg of dry matter basis (DM) = 671.54 + (0.89 × DE) – (5.57 × NDF) – (191.39 × ash), with R2 = 0.87, RSD = 18 kcal/kg, and P < 0.01. Conclusion This experiment confirms the large variation in the energy content of corn, describes the factors that influence this variation, and

  18. Chemical and isotope compositions of nitric thermal water of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Plyusnin, A. M.; Chernyavsky, M. K.; Peryazeva, E. G.

    2010-05-01

    Three types of hydrotherms (nitric, carbonaceous and methane) are distinguished within the Baikal Rift Zone. The unloading sites of nitric therms are mostly located in the central and north-eastern parts of the Rift. Several chemical types are found among nitric therms (Pinneker, Pisarsky, Lomonosov, 1968; Lomonosov, 1974, etc.). The formation of terms being various in chemical compositions is associated with effect of several factors, i.e. various chemical, mineralogical compositions of rocks, various temperatures, extent of interaction in water-rock system, etc. The ratio data of water oxygen and hydrogen isotopes of the studied thermal springs indicate that water is largely of meteoric origin. All established ratios of oxygen (δ18OSMOW = -19.5‰ - -17.5‰) and hydrogen (δDSMOW = -155‰ - - 130‰) isotopes are along the line of meteoric waters. Oxygen values from -20‰ to -5‰ are characteristic of the current meteoric and surface waters in the region. The average value equals -16.5‰ in Lake Baikal. By our data, a large group with oxygen lighter isotope composition that corresponds to isotope ratio being specific for glaciers is revealed in fissure-vein waters. Significant shift toward the oxygen getting heavier is observed in some springs. It is mostly observed in the springs that form chemical composition within the area of the intrusive and metamorphic rock distribution. As a result of hydrolysis reaction of alumosilicates, heavy isotope passes from rocks into water molecule, whereas oxygen heavy isotope passes from rocks into solutes during decomposition of carbonates. High contents of fluoride and sulfate-ions are specific feature of the Baikal Rift Zone most nitric therms. Water is tapped in one of the drill holes, where fluoride-ion dominates in its anion composition (46.7 mg/dm3) and pH reaches 10, 12. The sulphate sulphur isotope composition studies carried out allow to conclude that its heavy isotope (δ34SCDT = +25‰ - +30‰) prevails in

  19. All year round chemical composition of aerosol reaching the inner Antarctic Plateau (Dome C - East Antarctica)

    NASA Astrophysics Data System (ADS)

    Udisti, R.; Becagli, S.; Castellano, E.; Cerri, O.; Marino, F.; Morganti, A.; Nava, S.; Rugi, F.; Severi, M.; Traversi, R.

    2009-04-01

    Since 2005, continuous, all-year-round aerosol sampling was carried out at Dome C (Central East Antarctica, 3233 m a.s.l., about 1100 km far from the coast-line), in the framework of Station Concordia project. Size-segregated aerosol samples were collected in summer and winter period by using different low- and medium-volume systems, including pre-selected cut-off samplers (with PM10, PM2.5 and PM1 heads) and multi-stage (Andersen 8-stage and Dekati 4-stage) impactors. Sampling resolution and volume range from 1 day to 1 month and from 2.3 to 12 m3/h respectively. Aerosol study at Dome C aims to improve our knowledge on present day source intensity, transport efficiency and pathways (including stratosphere-to-troposphere interchanges) of particles reaching internal sites of Antarctica and to understand size- and chemical-fractionation effects occurring during the transport (by comparison with coastal aerosol composition). Besides, more information on atmosphere-snow interaction, including depositional and post depositional processes, as well as the effect of sublimation/condensation processes on snow surface, improves the reconstruction of past atmosphere composition from EPICA-DC deep ice core, drilled in the same site. Here we report some results of the chemical composition of the Antarctic background aerosol reaching Dome C, pointing out the seasonal pattern and the temporal trend of some ionic components used as tracers of sea spray, marine biogenic and crustal emissions. The atmospheric load in the summer is more than one order of magnitude lower than that measured in coastal sites and chemical composition is dominated by secondary aerosol, mainly originated by biological marine activity (S-cycle), and distributed in the finest aerosol fractions. H2SO4 from oxidation of biogenic DMS is the main component, while the contribution of HNO3 to the ionic budget is difficult to evaluate because of the re-emission into the atmosphere from the filter surface (acidic

  20. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts

    PubMed Central

    Kim, Mi Young; Kim, Eun Jin; Kim, Young-Nam; Choi, Changsun

    2012-01-01

    Pumpkins have considerable variation in nutrient contents depending on the cultivation environment, species, or part. In this study, the general chemical compositions and some bioactive components, such as tocopherols, carotenoids, and β-sitosterol, were analyzed in three major species of pumpkin (Cucurbitaceae pepo, C. moschata, and C. maxima) grown in Korea and also in three parts (peel, flesh, and seed) of each pumpkin species. C. maxima had significantly more carbohydrate, protein, fat, and fiber than C. pepo or C. moschata (P < 0.05). The moisture content as well as the amino acid and arginine contents in all parts of the pumpkin was highest in C. pepo. The major fatty acids in the seeds were palmitic, stearic, oleic, and linoleic acids. C. pepo and C. moschata seeds had significantly more γ-tocopherol than C. maxima, whose seeds had the highest β-carotene content. C. pepo seeds had significantly more β-sitosterol than the others. Nutrient compositions differed considerably among the pumpkin species and parts. These results will be useful in updating the nutrient compositions of pumpkin in the Korean food composition database. Additional analyses of various pumpkins grown in different years and in different areas of Korea are needed. PMID:22413037

  1. The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence.

    PubMed

    Nylund, Göran M; Persson, Frank; Lindegarth, Mats; Cervin, Gunnar; Hermansson, Malte; Pavia, Henrik

    2010-01-01

    Ecological research on algal-derived metabolites with antimicrobial activity has recently received increased attention and is no longer only aimed at identifying novel natural compounds with potential use in applied perspectives. Despite this progress, few studies have so far demonstrated ecologically relevant antimicrobial roles of algal metabolites, and even fewer have utilized molecular tools to investigate the effects of these metabolites on the natural community composition of bacteria. In this study, we investigated whether the red alga Bonnemaisonia asparagoides is chemically defended against bacterial colonization of its surface by extracting surface-associated secondary metabolites and testing their antibacterial effects. Furthermore, we compared the associated bacterial abundance and community composition between B. asparagoides and two coexisting macroalgae. Surface extracts tested at natural concentrations had broad-spectrum effects on the growth of ecologically relevant bacteria, and consistent with this antibacterial activity, natural populations of B. asparagoides had significantly lower densities of epibacteria compared with the coexisting algae. Terminal restriction fragment length polymorphism analysis further showed that B. asparagoides harboured surface-associated bacteria with a community composition that was significantly different from those on coexisting macroalgae. Altogether, these findings demonstrate that B. asparagoides produces surface-bound antibacterial compounds with a significant impact on the abundance and composition of the associated bacterial community.

  2. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  3. Semi-volatile inorganic species: importance for atmospheric chemical composition on diurnal and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Mann, Graham; Arnold, Stephen; O'Connor, Fiona; Benduhn, Francois; Rumbold, Steven; Pringle, Kirsty

    2016-04-01

    Nitrate aerosol has become an important driver of reduced European air quality and climate forcing, following reductions in sulphate precursor emissions since the 1980s, and is expected to be more influential in future decades. Measurements from the European Integrated Project on Aerosol and Cloud Climate Air Quality Interactions (EUCAARI) field campaign have shown that semi-volatile aerosol species such as ammonium nitrate can comprise a major component of the sub-micron particulate matter, particularly in high pollution episodes. This presentation will assess the contribution of semi-volatile inorganic aerosol to diurnal and seasonal cycles in atmospheric chemical composition over Europe. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed 'hybrid' dissolution solver (HyDis) to accurately represent size-resolved partitioning of ammonia and nitric acid to the particle phase. In particular, we evaluate simulated size-resolved composition variations over Europe through the diurnal cycle, comparing hourly model output to Aerosol Mass Spectrometer observations at several sites during 2008. We will present the results of this composition analysis, in addition to model evaluation from comparisons with European Monitoring for Environmental Protection (EMEP) network and EUCAARI field campaign observations.

  4. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits.

    PubMed

    Mota, Ana S; Martins, M Rosário; Arantes, Sílvia; Lopes, Violeta R; Bettencourt, Eliseu; Pombal, Sofia; Gomes, Arlindo C; Silva, Lúcia A

    2015-04-01

    The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 - 34.7%), estragole (2.5 - 66.0%) and trans-anethole (7.9 - 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 µmL (P. aeruginosa ATCC 27853).

  5. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    NASA Astrophysics Data System (ADS)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  6. Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties

    PubMed Central

    Boonaert, Christophe J. P.; Rouxhet, Paul G.

    2000-01-01

    The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The concentration of the last was always below 15% (wt/wt), which is related to the hydrophilic character revealed by water contact angles of less than 30°. The surfaces of L. lactis cells had a polysaccharide concentration about twice that of proteins. The S-layer of L. helveticus was either interrupted or crossed by polysaccharide-rich compounds; the concentration of the latter was higher in the stationary growth phase than in the exponential growth phase. Further progress was made in the interpretation of XPS data in terms of chemical functions by showing that the oxygen component at 531.2 eV contains a contribution of phosphate in addition to the main contribution of the peptide link. The isoelectric points were around 2 and 3, and the electrophoretic mobilities above pH 5 (ionic strength, 1 mM) were about −3.0 × 10−8 and −0.6 × 10−8 m2 s−1 V−1 for L. lactis and L. helveticus, respectively. The electrokinetic properties of the latter reveal the influence of carboxyl groups, while the difference between the two strains is related to a difference between N/P surface concentration ratios, reflecting the relative exposure of proteins and phosphate groups at the surface. PMID:10831437

  7. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: SOA Yield and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Qi, Li; Kacarab, Mary; Cocker, David

    2016-04-01

    Aromatic hydrocarbons account for 20%-30% of urban atmospheric VOCs and are major contributors to anthropogenic secondary organic aerosol (SOA). However, prediction of SOA from aromatic hydrocarbons as a function of structure, NOx concentration, and OH radical levels remains elusive. Innovative SOA yield and chemical composition evaluation approaches are developed here to investigate SOA formation from aromatic hydrocarbons. SOA yield is redefined in this work by adjusting the molecular weight of all aromatic precursors to the molecular weight of benzene (Yield'= Yieldi×(MWi/MWBenzene); i: aromatic hydrocarbon precursor). Further, SOA elemental ratio is calculated on an aromatic ring basis rather than the classic mole basis. Unified and unique characteristics in SOA formed from aromatic hydrocarbons with different alkyl groups (varying in carbon number and location on aromatic ring) are explored by revisiting fifteen years of UC Riverside/CE-CERT environmental chamber data on 129 experiments from 17 aromatic precursors at urban region relevant low NOx conditions (HC:NO 11.1-171 ppbC:ppb). Traditionally, SOA mass yield of benzene is much greater than that of other aromatic species. However, when adjusting for molecular weight, a similar yield is found across the 17 different aromatic precursors. More importantly, four oxygens per aromatic ring are observed in the resulting SOA regardless of the alkyl substitutes attached to the ring, which majorly affect H/C ratio in SOA. Therefore, resulting SOA bulk composition from aromatic hydrocarbons can be predicted as C6+nH6+2nO4 (n: alkyl substitute carbon number). Further, the dominating role of the aromatic ring carbons is confirmed by studying the chemical composition of SOA formed from the photooxidation of an aromatic hydrocarbon with a 13C isotopically labeled alkyl carbon. Overall, this study unveils the similarity in SOA formation from aromatic hydrocarbons enhancing the understanding of SOA formation from

  8. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits.

    PubMed

    Mota, Ana S; Martins, M Rosário; Arantes, Sílvia; Lopes, Violeta R; Bettencourt, Eliseu; Pombal, Sofia; Gomes, Arlindo C; Silva, Lúcia A

    2015-04-01

    The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 - 34.7%), estragole (2.5 - 66.0%) and trans-anethole (7.9 - 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 µmL (P. aeruginosa ATCC 27853). PMID:25973507

  9. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2011-12-15

    Calcium looping cycles (CaL) and chemical looping combustion (CLC) are two new, developing technologies for reduction of CO(2) emissions from plants using fossil fuels for energy production, which are being intensively examined. Calcium looping is a two-stage process, which includes oxy-fuel combustion for sorbent regeneration, i.e., generation of a concentrated CO(2) stream. This paper discuss the development of composite materials which can use copper(II)-oxide (CuO) as an oxygen carrier to provide oxygen for the sorbent regeneration stage of calcium looping. In other words, the work presented here involves integration of calcium looping and chemical looping into a new class of postcombustion CO(2) capture processes designated as integrated CaL and CLC (CaL-CLC or Ca-Cu looping cycles) using composite pellets containing lime (CaO) and CuO together with the addition of calcium aluminate cement as a binder. Their activity was tested in a thermogravimetric analyzer (TGA) during calcination/reduction/oxidation/carbonation cycles. The calcination/reduction typically was performed in methane (CH(4)), and the oxidation/carbonation stage was carried out using a gas mixture containing both CO(2) and O(2). It was confirmed that the material synthesized is suitable for the proposed cycles; with the very favorable finding that reduction/oxidation of the oxygen carrier is complete. Various schemes for the Ca-Cu looping process have been explored here that would be compatible with these new composite materials, along with some different possibilities for flow directions among carbonator, calciner, and air reactor.

  10. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  11. Chemical Ecology: Chemical Communication in Nature.

    ERIC Educational Resources Information Center

    Wood, William F.

    1983-01-01

    Substances that deliver chemical messages between same/different species are called semiochemicals. Surveyed are three types of semiochemicals (pheromones, allomones, and kairomones), types of organisms involved, and specific chemicals used to carry the various kinds of messages. (JN)

  12. Chemical composition of snow in the northern Sierra Nevada and other areas

    USGS Publications Warehouse

    Feth, John Henry Frederick; Rogers, S.M.; Roberson, Charles Elmer

    1964-01-01

    Melting snow provides a large part of the water used throughout the western conterminous United States for agriculture, industry, and domestic supply. It is an active agent in chemical weathering, supplies moisture for forest growth, and sustains fish and wildlife. Despite its importance, virtually nothing has been known of the chemical character of snow in the western mountains until the present study. Analysis of more than 100 samples, most from the northern Sierra Nevada, but some from Utah, Denver, Colo., and scattered points, shows that melted snow is a dilute solution containing measurable amounts of some or all of the inorganic constituents commonly found in natural water. There are significant regional differences in chemical composition; the progressive increase in calcium content with increasing distance eastward from the west slope of the Sierra Nevada is the most pronounced. The chemical character of individual snowfalls is variable. Some show predominant influence of oceanic salt; others show strong effects of mineralization from continental sources, probably largely dust. Silica and boron were found in about half the samples analyzed for these constituents; precipitation is seldom analyzed for these substances. Results of the chemical analyses for major constituents in snow samples are summarized in the following table. The median and mean values for individual constituents are derived from 41-78 samples of Sierra Nevada snow, 6-18 samples of Utah snow, and 6-17 samples of Denver, Colo., snow. [Table] The sodium, chloride, and perhaps boron found in snow are probably incorporated in moisture-laden air masses as they move over the Pacific Ocean. Silica, although abundant in the silicate-mineral nuclei found in some snowflakes, may be derived in soluble form largely from dust. Calcium, magnesium, and some bicarbonate are probably added by dust of continental origin. The sources of the other constituents remain unknown. When snowmelt comes in contact

  13. Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports.

    PubMed

    Mirica, Katherine A; Phillips, Scott T; Shevkoplyas, Sergey S; Whitesides, George M

    2008-12-31

    This communication describes a density-based method that uses magnetic levitation for monitoring solid-supported reactions and for distinguishing differences in chemical composition of polymers. The method is simple, rapid, and inexpensive and is similar to thin-layer chromatography (TLC; for solution-phase chemistry) in its potential for monitoring reactions in solid-phase chemistry. The technique involves levitating a sample of beads (taken from a reaction mixture) in a cuvette containing a paramagnetic solution (e.g., GdCl(3) dissolved in H(2)O) positioned between two NdFeB magnets. The vertical position at which the beads levitate corresponds to the density of the beads and correlates with the progress of a chemical reaction on a solid support. The method is particularly useful for monitoring the kinetics of reactions occurring on polymer beads. PMID:19063630

  14. Chemical compositions of past soluble aerosols reconstructed from NEEM (Greenland) and Dome C (Antarctica) ice cores

    NASA Astrophysics Data System (ADS)

    Oyabu, Ikumi; Iizuka, Yoshinori; Fukui, Manabu; Fischer, Hubertus; Schüpbach, Simon; Gfeller, Gideon; Mulvaney, Robert; Hansson, Margareta

    2015-04-01

    Polar ice core preserve past atmospheric aerosols, which is a useful proxy for understanding the interaction between climate changes and atmospheric aerosols. One useful technique for reconstructing past soluble aerosols from ice core is the determination of dissolved ion species. However, since salts and acids melt into ions, chemical compositions of soluble aerosols in the ice cores have not been cleared. To clarify the temporal variations in the chemical compositions of past soluble aerosols, this study investigated chemical compositions of soluble particles preserved in the NEEM (Greenland) and Dome C (Antarctica) ice cores using new method 'ice-sublimation method'. The ice-sublimation method can extract soluble salts particles as a solid state without melting. The ice core samples are selected from the sections from the last termination (the Last Glacial Maximum (LGM) to Holocene) of Dome C (inland Antarctica) and NEEM ice cores. Using ice-sublimation method, soluble salts particles were extracted. Chemical components of extracted particles were analysed by scanning electron microscope and energy dispersive spectroscopy, and micro-Raman spectroscopy. The major components of soluble salts particles in the Dome C ice core are CaSO4, Na2SO4 and NaCl. The CaSO4 and NaCl fractions were high in the first half of the last termination, whereas the Na2SO4 fraction is high in the latter half of the last termination. The major components of soluble salts particles in the NEEM ice core are CaCO3, CaSO4, NaCl and Na2SO4. The fractions of CaCO3, CaSO4 and NaCl were high in LGM, whereas those of NaCl and Na2SO4 were high in Holocene. The changes in the salts compositions in Dome C ice core are mainly controlled by concentration of terrestrial material (Ca2+). In the first half of the last termination, most of the terrestrial material (CaCO3) reacted with H2SO4 but some of sea-salt (NaCl) was not reacted with H2SO4 due to high Ca2+ concentration. As a result, the CaSO4 and Na

  15. Tracing the evolution of NGC 6397 through the chemical composition of its stellar populations

    NASA Astrophysics Data System (ADS)

    Lind, K.; Charbonnel, C.; Decressin, T.; Primas, F.; Grundahl, F.; Asplund, M.

    2011-03-01

    Context. The chemical compositions of globular clusters provide important information on the star formation that occurred at very early times in the Galaxy. In particular the abundance patterns of elements with atomic number z ≤ 13 may shed light on the properties of stars that early on enriched parts of the star-forming gas with the rest-products of hydrogen-burning at high temperatures. Aims: We analyse and discuss the chemical compositions of a large number of elements in 21 red giant branch stars in the metal-poor globular cluster NGC 6397. We compare the derived abundance patterns with theoretical predictions in the framework of the "wind of fast rotating massive star"-scenario. Methods: High-resolution spectra were obtained with the FLAMES/UVES spectrograph on the VLT. We determined non-LTE abundances of Na, and LTE abundances for the remaining 21 elements, including O (from the [OI] line at 630 nm), Mg, Al, α, iron-peak, and neutron-capture elements, many of which had not been previously analysed for this cluster. We also considered the influence of possible He enrichment in the analysis of stellar spectra. Results: We find that the Na abundances of evolved, as well as unevolved, stars in NGC 6397 show a distinct bimodality, which is indicative of two stellar populations: one primordial stellar generation of composition similar to field stars, and a second generation that is polluted with material processed during hydrogen-burning, i.e., enriched in Na and Al and depleted in O and Mg. The red giant branch exhibits a similar bimodal distribution in the Strömgren colour index cy = c1 - (b - y), implying that there are also large differences in the N abundance. The two populations have the same composition for all analysed elements heavier than Al, within the measurement uncertainty of the analysis, with the possible exception of [Y/Fe]. Using two stars with almost identical stellar parameters, one from each generation, we estimate the difference in He

  16. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  17. Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity

    PubMed Central

    de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho

    2016-01-01

    Background: Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. Objective: This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. Materials and Methods: The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. Results: The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. Conclusion: The essential oil showed antimutagenic activity due to its chemical composition. SUMMARY Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg

  18. Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent

    NASA Astrophysics Data System (ADS)

    Basu, Abhijit; Bickford, Marion E.; Deasy, Ryan

    2016-05-01

    Chemical compositions of siliciclastic sedimentary rocks are commonly used to infer their tectonic provenance. We have tested the universal applicability of the underlying principle in a small, but controlled study expecting 100% confirmation of the practice. A comparison is made between the chemical composition of the ~ 1480 Ma Butler Hill Granite in an uplifted cratonic block of the St. Francois Mountain Igneous Complex and that of a small ~ 1-m-thick regolith body, a weathered granite sample, and the basal quartz arenites of the ~ 520 Ma Lamotte Formation immediately above the regolith. The results show that in plots of K2O/Na2O vs. SiO2/Al2O3, the regolith and sandstone samples correctly plot in the Passive Margin field, although the weathered granite plots in the Arc field. In plots of Th-Sc-Zr/10 and La-Th-Sc, the results plot in the Passive and Active Continental Margins and their extensions. In other common plots to discriminate tectonic provenance (e.g., SiO2 vs. K2O/Na2O, Fe2O3 + MgO vs. Al2O3/SiO2, Fe2O3 + MgO vs. TiO2, Sc/Cr vs. La/Y) a few points plot in the Passive Margin field but scatter into and outside of other fields of tectonic provenances. The chondrite-normalized REE distributions show variable degrees of negative Eu anomalies, with flat HREE, conforming to a felsic source. The LREE distributions show both positive and negative Ce anomalies that can be ascribed to the variability of redox conditions during weathering and diagenesis of the original siliciclastic sediments. The variability of the Eu anomaly was likely affected by post-erosion processes in addition to whatever was inherited from the parent rocks. We conclude that chemical compositions can provide good clues, but are neither strong indicators nor unique identifiers of their tectonic provenance. Rather, they indicate a dominantly felsic or dominantly mafic, or a mixed set of source rocks.

  19. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    PubMed Central

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  20. Impact of raized bogs on export of carbon and river water chemical composition in Western Siberia

    NASA Astrophysics Data System (ADS)

    Voistinova, Elena

    2010-05-01

    Bogs play an important role in functioning of the biosphere. Specific geochemical environment of the bogs results in formation of the special biogeochemical cycle of the elements. Processes of decay and transformation of organic material define the reductive conditions of bog water, form and migratory mobility of the chemical elements. Particular interest in recent years is aroused by the question of content and dynamics of the carbon in bog and river water according to indicated natural and climatic changes on the territory. The most important parts of the carbon balance in bog ecosystems together with processes of exhalation from deposit surface in the form of CO2 is its export with river water. The results of research carried out in scientific station "Vasyugansky" in south taiga subzone of Western Siberia showed that chemical composition of raised bog water includes high amounts of total iron (2,13 mg/l), ammonium ions (5,33 mg/l), humic and fulvic acids (5,21 mg/l and 45,8 mg/l), dissolved organic carbon (69,1 mg/l), COD (236,93 mgO/l), there are low mineralization and indicators of pH. Carbon comes in bog water in organic compounds: carboxylic acids, phenols, aromatic and paraffin hydrocarbons, organic phosphates, phthalates and other compounds. Formation of river waters composition in the Western Siberia takes place in the following context: high level of bogged river catchments (sometimes up to 70%), excess humidification and low heat provision. Basing on the results of study of hydrochemical runoff in small and medium rivers with different levels of bogged in river catchments (Chaya, Bakchar, Klyuch, Gavrilovka) it was noted that raised bog influence on river waters chemical composition shows in ion runoff decrease, organic substances runoff increase, increase of amounts of total iron, ammonium irons and water pH indicators decrease. Study of humic matters migration is very important in the context of formation of flexible complexes of humic and fulvic