Sample records for chemical composition study

  1. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  2. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  3. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage.

    PubMed

    Petropoulos, Spyridon; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R

    2018-03-01

    The aim of the present study was to determine the effect of fruit size on nutritional value, chemical composition and antioxidant properties of Mediterranean okra genotypes. For this purpose, pods from four okra cultivars and local landraces commonly cultivated in Greece, as well as pods from four commercial cultivars from North America were collected at two sizes (3-5 and>7cm). Significant differences were observed between the studied genotypes for both nutritional value and chemical composition parameters. Small fruit had a higher nutritional value, whereas chemical composition differed in a genotype dependent manner with most of the studied cultivars showing better results when harvested in small size. In conclusion, fruit size has a genotype dependent impact on chemical composition and nutritional value of okra pods and the common practice of harvesting okra fruit while they still have a small size helps to increase nutritional value for most of the studied genotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Variability of chemical analysis of reinforcing bar produced in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Salman, A.; Djavanroodi, F.

    2018-04-01

    In view of the importance and demanding roles of steel rebar’s in the reinforced concrete structures, accurate information on the properties of the steels is important at the design stage. In the steelmaking process, production variations in chemical composition are unavoidable. The aim of this work is to study the variability of the chemical composition of reinforcing steel produced throughout the Saudi Arabia and asses the quality of steel rebar’s acoording to ASTM A615. 68 samples of ASTM A615 Grade 60 from different manufacturers were collected and tested using the Spectrometer test to obtain Chemical Compositions. EasyFit (5.6) software is utilized to conducted statistical analysis. Chemical compositions distributions and, control charts are generated for the compositions. Results showed that some compositions are above the upper line of the control chart. Finally, the analyses show that less than 3% of the steel failed to meet minimum ASTM standards for chemical composition.

  5. Vector diagram of the chemical compositions of tektites and earth lavas

    NASA Technical Reports Server (NTRS)

    Kvasha, L. G.; Gorshkov, G. S.

    1978-01-01

    The chemical compositions of tektites and various volcanic glasses, similar in composition to tektites are compared by a petrochemical method. The advantage of the method is that a large number of chemical analyses of igneous rocks can be graphically compared with the help of vectors, plotted in relation to six parameters. These parameters, calculated from ratios of the main oxides given by silicate analysis, reflect the chief characteristics of igneous rock. Material for the study was suppled by data from chemical analysis characterizing tektites of all known locations and data from chemical analyses of obsidians similar in chemical composition to tektites of various petrographical provinces.

  6. Characterizing the variability in chemical composition of flowback and produced waters - results from lab and field studies

    NASA Astrophysics Data System (ADS)

    Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Schmid, Franziska E.; Zhu, Yaling; Lipińska, Olga; Konieczyńska, Monika

    2017-04-01

    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the target shales themselves. Shales are a heterogeneous mixture of minerals, organic matter, and formation water and little is actually understood about the fluid-rock interactions occurring during hydraulic fracturing of the shales and their effects on the chemical composition of flowback and produced water. To overcome this knowledge gap, interactions of different shales with different artificial stimulation fluids were studied in lab experiments under ambient and elevated temperature and pressure conditions. These lab experiments showed clearly that fluid-rock interactions change the chemical composition of the initial stimulation fluid and that geochemistry of the fractured shale is relevant for understanding flowback water composition. In addition, flowback water samples were taken after hydraulic fracturing of one horizontal well in Pomeranian region, Poland and investigated for their chemical composition. With this presentation, results from lab and field studies will be presented and compared to decipher possible controls on chemical compositions of flowback and produced water.

  7. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  8. [Bioinorganic chemical composition of the lens and methods of its investigation].

    PubMed

    Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G

    2018-01-01

    Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.

  9. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    NASA Astrophysics Data System (ADS)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  10. Effect of alkaline treatment on mechanical properties of kenaf fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Reddy, Bijjam Ramgopal; Dhoria, Sneha H.

    2018-04-01

    This paper focuses on the study of the effect of chemical treatment on mechanical properties such as tensile, flexural and impact properties of kenaf fiber reinforced polyester composites. Adhesion between the fiber and polymer is one of factors affecting the mechanical properties of composites. In order to increase the adhesion, the fibers are chemically treated with 5% of sodium hydroxide (NaOH) solution. The composite specimens are prepared in both untreated and treated forms of kenaf fibers with five levels of fiber volume fractions. The specimens are prepared according to ASTM standards. Mechanical tests such as tensile, flexural and impact are conducted to determine ultimate tensile strength, bending strength and impact strength of composites. The effect of change in volume fraction on the mechanical properties of the composites is studied for both untreated (raw) and chemically treated kenaf fibers. It has been found that the composites made of chemically treated fibers have good mechanical properties compared to untreated fibers.

  11. Modeling strength loss in wood by chemical composition. Part I, An individual component model for southern pine

    Treesearch

    J. E. Winandy; P. K. Lebow

    2001-01-01

    In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...

  12. Study of the structure and chemical composition of the protective coating of a fist stage gas turbine blade after regenerative heat treatment

    NASA Astrophysics Data System (ADS)

    Davidov, D. I.; Kazantseva, N. V.; Vinogradova, N. I.; Ezhov, I. V.

    2017-12-01

    Investigation of the structure and chemical composition of the protective coating of the first stage IN738 gas turbine blade after standard regenerative heat treatment was done. It was found the degradation of microstructure and chemical composition of both the blade feather and its protective coating. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the protective coating. Cracks on the boundary between the blade feather and the protective coating were found by scanning electron microscopy. The carbide transformation and sigma phase were found in the structure of the blade feather. Based upon the structural and chemical composition studies, it is concluded that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not provide full structure regeneration.

  13. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  14. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials

    NASA Astrophysics Data System (ADS)

    Shimoda, G.; Kogiso, T.

    2017-12-01

    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic crusts based on reported bulk chemical compositions of altered oceanic crusts and global data sets of MORB. On the basis of the chemical variation, we will discuss isotopic evolution of altered oceanic crusts to delineate isotopic variation of recycled oceanic crusts.

  15. [The characteristics of chemical composition of content of unicameral bone cysts depending on their growth stage].

    PubMed

    Stogov, M V; Luneva, S N; Mitrofanov, A I; Tkachuk, E A

    2012-11-01

    The article deals with the results of study of chemical composition of solitary cysts and blood serum of 27 patients. The results demonstrated that qualitative composition of f content of unicameral bone cysts is identical to chemical composition of blood serum. The results of analysis of total proteolysis activity and acid phosphatase activity in content of cysts can be used as criteria to determine the stage of cyst growth and to evaluate the effectiveness of applied treatment.

  16. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    PubMed

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  17. The Acid-Base Properties and Chemical Composition of the Surface of the InSb-ZnTe System

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.; Shubenkova, E. G.; Timoshenko, O. T.; Filatova, T. N.

    2008-04-01

    The acid-base properties and chemical composition of the surface of solid solutions and binary components of the InSb-ZnTe system were studied by the hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and mass spectrometry methods. The strength, nature, and concentration of acid centers were determined. Changes in the concentration of acid centers caused by surface exposure to CO and changes in the composition of the system were also studied. The mechanism of acid-base interactions was established. The chemical composition of the surface of system components exposed to air included adsorbed H2O molecules, OH- groups, hydrocarbon and oxocarbon compounds, and the products of surface atom oxidation. After thermal treatment in a vacuum, the composition of the surface approached the stoichiometric composition.

  18. Evaluating the effect of some mechanical properties for chemically treated various natural fibers reinforced polyester composite

    NASA Astrophysics Data System (ADS)

    Salih, Wafaa Mahdi; Abdulkader, Niveen Jamal; Salih, Sana Mahdi

    2018-05-01

    This research were studied the effect of some mechanical properties for composite materials reinforced fiber and prepared from material (polyester with various natural fibers) then studied the effect of chemical treatment on the same fiber immerse in 10% NaOH solution for half an hour and then compared, the results of the same test of composite materials without and with chemical treatment and the results proved that there is a clear effect when treat the fiber compared to non-chemical treatment of the fibers also noted that hemp fibers loaded the stress higher than other fibers for both cases to distinguish them that the hemp fiber has continuous fibers either the other fibers are characterized by the type of cross linking or chopped types in tensile test, and the results of the same test of composite materials without and with chemical treatment and the results proved that the hardness of the fiber composite while the treated fiber composite samples better than the untreated fiber, and from the figures the palm leaf has the highest value than lufa fiber, hemp fiber and the smallest value is in sisal fiber because of the nature of formation fibers materials.

  19. Chemical performance of multi-environment trials in lens (Lens culinaris M.).

    PubMed

    Karadavut, Ufuk; Palta, Cetin

    2010-01-15

    Genotype-environment (GE) interaction has been a major effect to determine stable lens (Lens culinaris (Medik.) Merr.) cultivars for chemical composition in Turkey. Utilization of the lines depends on their agronomic traits and stability of the chemical composition in diverse environments. The objectives of this study were: (i) to evaluate the influence of year and location on the chemical composition of lens genotypes; and (ii) to determine which cultivar is the most stable. Genotypes were evaluated over 3 years (2005, 2006 and 2007) at four locations in Turkey. Effects of year had the largest impact on all protein contents. GE interaction was analyzed by using linear regression techniques. Stability was estimated using the Eberhart and Russell method. 'Kişlik Kirmizi51' was the most stable cultivar for grain yield. The highest protein was obtained from 'Kişlik Kirmizi51' (4.6%) across environments. According to stability analysis, 'Firat 87' had the most stable chemical composition. This genotype had a regression coefficient (b(i) = 1) around unity, and deviations from regression values (delta(ij) = 0) around zero. Chemical composition was affected by year in this study. Temperature might have an effect on protein, oil, carbohydrate, fibre and ash. Firat 87 could be recommended for favourable environments. Copyright (c) 2009 Society of Chemical Industry.

  20. A Statistical Approach for Judging Stability of Whole Mixture Chemical Composition over Time for Highly Complex Disinfection By-Product Mixtures from EPA's Four Lab Study

    EPA Science Inventory

    Chemical characterization of complex mixtures and assessment of stability over time of the characterized chemicals is crucial both to characterize exposure and to use data from one mixture as a surrogate for other similar mixtures. The chemical composition of test mixtures can va...

  1. The use of computer-assisted image analysis in the evaluation of the effect of management systems on changes in the color, chemical composition and texture of m. longissimus dorsi in pigs.

    PubMed

    Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian

    2014-08-01

    The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Method of forming a chemical composition

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  3. Studies on thermo-mechanical properties of chemically treated jute-polyester composite

    NASA Astrophysics Data System (ADS)

    Chaudhari, Vikas; Chandekar, Harichandra; Saboo, Jayesh; Mascarenhas, Adlete

    2018-03-01

    The effect of chemical treatments on jute-polyester composites is studied in this paper. The jute fabrics are chemically treated with NaOH and benzoyl chloride and its tensile and visco-elastic properties are compared with untreated jute composite. The NaOH treated jute-polyester composite show superior tensile strength and modulus compared to other jute-polyester composites. The glass transition temperature obtained from DMA shift to higher temperature for composites in comparison to polyester resin, this is due to restriction of mobility in chains due to introduction of jute reinforcement. The DMA results also show favourable results towards NaOH treatment i.e. higher storage modulus and lower tan δ values relative to untreated jute-polyester composite. The benzoyl treated jute-polyester composite however do not show promising results which may be attributed to the fact that the adhesion properties associated with similar ester functional groups in the benzoyl treated jute fabric and polyester resin were not obtained.

  4. Data on the weights, specific gravities and chemical compositions of potato (Solanum tuberosum) tubers for food processing from different areas of Hokkaido, Japan.

    PubMed

    Sato, Hiroaki; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Itoyama, Ryuichi; Ichisawa, Megumi; Negichi, Junko; Sakuma, Rui; Furusho, Tadasu; Sagane, Yoshimasa; Takano, Katsumi

    2017-04-01

    This data article provides the weights, specific gravities and chemical compositions (moisture, protein, fat, ash, and carbohydrate) of potato tubers, for food processing use, from the Tokachi, Kamikawa and Abashiri areas of Hokkaido, Japan. Potato tubers of four cultivars ('Toyoshiro', 'Kitahime', 'Snowden' and 'Poroshiri') were employed in the current study. The weights and specific gravities of potato tubers from each cultivar, harvested from three areas, were measured, and those of near average weight and specific gravity from each group were analyzed for their chemical composition. In this article, weight, specific gravity, and chemical composition data are provided in tables.

  5. Chemical composition and bioactivity studies of Alpinia nigra essential oils

    USDA-ARS?s Scientific Manuscript database

    Free radical scavenging, bactericidal and bitting deterrent properties of Alpinia nigra essential oils (EOs) were investigated in the present study. Chemical composition of the EOs were analyzed using GC-MS/GC-FID which revealed the presence of 63 constituents including ß-caryophyllene as major comp...

  6. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.

    There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less

  7. Bulk chemical compositions of Antarctic meteorites in the NIPR collection

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Imae, N.; Yamaguchi, A.; Haramura, H.; Kojima, H.

    2018-03-01

    Bulk chemical compositions of meteorites were traditionally analyzed by wet chemical analysis, and NIPR has data for 1162 meteorites as of September 2017. We discuss the classification of meteorites on the basis of these data. Chondrite data are distributed in an anomalously wide range of compositions on the Urey-Craig diagram. One of the reasons for such wide distribution is terrestrial weathering producing Fe2O3-bearing phases from Fe-Ni metal and sulfides. Another important factor affecting the bulk compositional data is brecciation. Our observations indicate that many brecciated chondrites contain anomalously abundant opaque minerals, or are depleted in them, resulting in unusual compositions. In case of enstatite and some carbonaceous chondrites, the bulk compositions are distributed in wider ranges than reported before. The bulk compositions of HED meteorites are consistent with their mineralogy and classification. Our study suggests that wet chemical data are still significant for the meteorite classification. However, petrographic observation is indispensable for evaluating the bulk chemistry and classification of meteorites.

  8. Evaluation of Beef by Electronic Tongue System TS-5000Z: Flavor Assessment, Recognition and Chemical Compositions According to Its Correlation with Flavor.

    PubMed

    Zhang, Xinzhuang; Zhang, Yawei; Meng, Qingxiang; Li, Ning; Ren, Liping

    2015-01-01

    The aim of this study was to assess the ability of electronic tongue system TS-5000Z to evaluate meat quality based on flavor assessment, recognition and correlation with the meat chemical composition. Meat was sampled from eighteen beef cattle including 6 Wagyu breed cattle, 6 Angus breed cattle and 6 Simmental breed cattle. Chemical composition including dry matter, crude protein, fat, ash, cholesterol and taurine and flavor of the meat were measured. The results showed that different breed cattle had different chemical compositions and flavor, which contains sourness, umami, saltiness, bitterness, astringency, aftertaste from astringency, aftertaste from bitterness and aftertaste from umami, respectively. A principal component analysis (PCA) showed an easily visible separation between different breeds of cattle and indicated that TS-5000Z made a rapid identification of different breeds of cattle. In addition, TS-5000Z seemed to be used to predict the chemical composition according to its correlation with the flavor. In conclusion, TS-5000Z would be used as a rapid analytical tool to evaluate the beef quality both qualitatively and quantitatively, based on flavor assessment, recognition and chemical composition according to its correlation with flavor.

  9. Cometary coma chemical composition (C4) mission. [Abstract only

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.

    1994-01-01

    Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.

  10. The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Gates, T. S.

    2003-01-01

    The effects of the chemical functionalization of a carbon nanotube embedded in a nanotube/polyethylene composite on the bulk elastic properties are presented. Constitutive equations are established for both functionalized and non-functionalized nanotube composites systems by using an equivalent-continuum modeling technique. The elastic properties of both composites systems are predicted for various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite material considered in this study, most of the elastic stiffness constants of the functionalized composite are either less than or equal to those of the non-functionalized composite.

  11. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  12. Global two dimensional chemistry model and simulation of atmospheric chemical composition

    NASA Astrophysics Data System (ADS)

    Zhang, Renjian; Wang, Mingxing; Zeng, Qingcun

    2000-03-01

    A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20 km with a resolution of 5° x 1 km. The wind field is residual circulation calcu-lated from diabatic rate. 34 species and 104 chemical and photochemical reactions are considered in the model. The sources of CH4, CO and NOx, which are divided into seasonal sources and non-seasonal sources, are parameterized as a function of latitude and time. The chemical composi-tion of atmosphere was simulated with emission level of CH4, CO and NOx in 1990. The results are compared with observations and other model results, showing that the model is successful to simu-late the atmospheric chemical composition and distribution of CH4.

  13. Structural characterization and chemical classification of some bryophytes found in Latvia.

    PubMed

    Maksimova, Viktorija; Klavina, Laura; Bikovens, Oskars; Zicmanis, Andris; Purmalis, Oskars

    2013-07-01

    Bryophytes are the second largest taxonomic group in the plant kingdom; yet, studies conducted to better understand their chemical composition are rare. The aim of this study was to characterize the chemical composition of bryophytes common in Northern Europe by using elemental, spectral, and non-destructive analytical methods, such as Fourier transform IR spectrometry (FT-IR), solid-phase (13) C-NMR spectrometry, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), for the purpose of investigating their chemotaxonomic relationships on the basis of chemical-composition data. The results of all these analyses showed that bryophytes consist mainly of carbohydrates. Judging by FT-IR spectra, the OH groups in combination of CO groups were the most abundant groups. The (13) C-NMR spectra provided information on the presence of such compounds as phenolics and lipids. It was found that the amount of phenolic compounds in bryophytes is relatively small. This finding definitely confirmed the absence of lignin in the studied bryophytes. Cluster analysis was used to better understand differences in the chemical composition of bryophyte samples and to evaluate possible usage of these methods in the chemotaxonomy of bryophytes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2016-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  15. Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.

    PubMed

    Benyelles, Batoul; Allali, Hocine; Dib, Mohamed El Amine; Djabou, Nassim; Paolini, Julien; Costa, Jean

    2017-06-01

    The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 - 99% of the total oil compositions. The main components were linalool (18; 12.5 - 22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2 - 20.2%), 2-methylbutyl isobutyrate (10; 4.2 - 12.2%), ammimajane (47; 2.6 - 37.1%), (E)-β-ocimene (15; 0.2 - 12.8%) and 3-methylbutyl isovalerate (19; 3.3 - 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Water Absorption Behavior of Hemp Hurds Composites

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  17. Chemical composition and strength of dolomite geopolymer composites

    NASA Astrophysics Data System (ADS)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  18. Contribution to the Problem of Forecasting the Mineral Content and Chemical Composition of Reservoir Water (K Voprosy o Prognozirovanii Mineralizatsii i Khimicheskogo Sostava),

    DTIC Science & Technology

    1977-03-01

    necessity for broadening the work on studying the factors influencing the hydrochemical system of the reservoirs and. the chemical conposition and mineral...flow water with reservoir water , It is necessary to pay attention to the study of the interact~ on of shore ~grouncl) deposits with the reservoir water...insufficiently studied and which can in some regions of our country prove to ‘be an influ— ence on the chemical composition of reservoirs, ~-f great

  19. Composites Based on Polytetrafluoroethylene and Detonation Nanodiamonds: Filler-Matrix Chemical Interaction and Its Effect on a Composite's Properties

    NASA Astrophysics Data System (ADS)

    Koshcheev, A. P.; Perov, A. A.; Gorokhov, P. V.; Zaripov, N. V.; Tereshenkov, A. V.; Khatipov, S. A.

    2018-06-01

    Specific properties of PTFE composites filled with ultradisperse detonation diamonds (UDDs) with different surface chemistries are studied. It is found for the first time that filler in the form of UDDs affects not only the rate of PTFE thermal decomposition in vacuum pyrolysis, but also the chemical composition of the products of degradation. The wear resistance of UDD/PTFE composites is shown to depend strongly on the UDD surface chemistry. The presence of UDDs in a PTFE composite is found to result in perfluorocarbon telomeres, released as a readily condensable fraction upon composite pyrolysis. The chemical interaction between PTFE and UDDs, characterized by an increase in the rate of gas evolution and a change in the desorbed gas's composition, is found to occur at temperature as low as 380°C. It is shown that the intensity of this interaction depends on the concentration of oxygen-containing surface groups, the efficiency of UDDs in terms of the composite's wear resistance being reduced due to the presence of these groups. Based on the experimental data, a conclusion is reached about the chemical interaction between UDDs and a PTFE matrix, its dependence on the nanodiamond surface chemistry, and its effect on a composite's tribology.

  20. Determination of the chemical composition of human renal stones with MDCT: influence of the surrounding media

    NASA Astrophysics Data System (ADS)

    Grosjean, Romain; Sauer, Benoît; Guerra, Rui; Kermarrec, Isabelle; Ponvianne, Yannick; Winninger, Daniel; Daudon, Michel; Blum, Alain; Felblinger, Jacques; Hubert, Jacques

    2007-03-01

    The selection of the optimal treatment method for urinary stones diseases depends on the chemical composition of the stone and its corresponding fragility. MDCT has become the most used modality to determine rapidly and accurately the presence of stones when evaluating urinary lithiasis treatment. That is why several studies have tempted to determine the chemical composition of the stones based on the stone X-ray attenuation in-vitro and invivo. However, in-vitro studies did not reproduce the normal abdominal wall and fat, making uncertain the standardization of the obtained values. The aim of this study is to obtain X-ray attenuation values (in Hounsfield Units) of the six more frequent types of human renal stones (n=217) and to analyze the influence of the surrounding media on these values. The stones were first placed in a jelly, which X-ray attenuation is similar to that of the human kidney (30 HU at 120 kV). They were then stuck on a grid, scanned in a water tank and finally scanned in the air. Significant differences in CT-attenuation values were obtained with the three different surrounding media (jelly, water, air). Furthermore there was an influence of the surrounding media and consequently discrepancies in determination of the chemical composition of the renal stones. Consequently, CT-attenuation values found in in-vitro studies cannot really be considered as a reference for the determination of the chemical composition except if the used phantom is an anthropomorphic one.

  1. Water Deficit and Seasonality Study on Essential Oil Constituents of Lippia gracilis Schauer Germplasm

    PubMed Central

    Cruz, Elizangela Mércia de Oliveira; Pinto, Jéssika Andreza Oliveira; Fontes, Saymo Santos; Arrigoni-Blank, Maria de Fátima; Bacci, Leandro; de Jesus, Hugo César Ramos; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2014-01-01

    The aim of this study was to analyze the chemical composition of the essential oil from leaves of Lippia gracilis genotypes, in the dry and rainy seasons, and with and without irrigation. The extraction of essential oil was realized by hydrodistillation in a Clevenger apparatus. The chemical composition analysis was performed using a GC-MS/FID. The leaves of the L. gracilis genotypes provide essential oil with content between 1.25% and 1.92% in the rainy season and 1.42% and 2.70% in the dry season; when irrigation was used the content was between 1.42% and 2.87%, without irrigation contents were between 1.60% and 3.00%. The chemical composition of L. gracilis showed high levels of terpenes. The major constituent of genotypes LGRA-106 was thymol and carvacrol was the major constituent for the other genotypes. Concentrations showed little variation between seasons, demonstrating the stability of the chemical composition of L. gracilis even with different climatic conditions. PMID:25302321

  2. Impacts of the mixing state and chemical composition on the cloud condensation nuclei (CCN) activity in Beijing during winter, 2016

    NASA Astrophysics Data System (ADS)

    Ren, J.; Zhang, F.

    2017-12-01

    Abstract.Understanding aerosol chemical composition and mixing state on CCN activity in polluted urban area is crucial to determine NCCN accurately and thus to quantify aerosol indirect effects. Aerosol hrgroscopicity, size-resolved cloud condensation nuclei (CCN) concentration and chemical composition are measured under polluted and background conditions in Beijing based on the Air Pollution and Human Health (APHH) field campaign in winter 2016. The CCN number concentration (NCCN) is predicted by using κ-Köhler theory from the PNSD and five simplified of the mixing state and chemical composition. The assumption of EIS (sulfate, nitrate and SOA internally mixed, and POA and BC externally mixed with size-resolved chemical composition) shows the best closure to predict NCCN with the ratio of predicted to measured NCCN of 0.96-1.12 both in POL and BG conditions. Under BG conditions, IB (internal mixture with bulk chemical composition) scheme achieves the best CCN closure during any periods of a day. In polluted days, EIS and IS (internal mixture with size-resolved chemical composition) scheme may achieve better closure than IB scheme due to the heterogeneity in particles composition across different size. ES (external mixture with size-resolved chemical composition) and EB (external mixture with bulk chemical composition) scheme markedly underestimate the NCCN with the ratio of predicted to measured NCCN of 0.6-0.8. In addition, we note that assumptions of size-resolved composition (IS or ES) show very limited promotes by comparing with the assumptions of bulk composition (IB or EB), furthermore, the prediction becomes worse by using size-resolved assumption in clean days. The predicted NCCN during eve-rush periods shows the most sensitivity to the five different assumptions, with ratios of the predicted and measured NCCN ranging from 0.5 to 1.4, reflecting great impacts from evening traffic and cooking sources. The result from the sensitivity examination of predict NCCN to particles mixing state and organic volume fractions with the aging of organic particles suggests that the mixing state of particles plays a minor role when the κorg exceeds 0.1. Our study could provide new dataset to evaluate the CCN parameterization in models in those heavily polluted regions with large fraction of POA and BC.

  3. Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry.

    PubMed

    Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H

    2011-10-01

    Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values of selected amino acids for poultry.

  4. Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem.

    PubMed

    Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin

    2017-12-01

    The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

  5. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T. B.

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targetedmore » and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.« less

  6. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods - slides

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  7. Comparison of Chemical Composition of Complex Disinfection Byproduct (DBP) Mixtures Produced by Different Treatment Methods

    EPA Science Inventory

    Analyses of the chemical composition of complex DBP mixtures, produced by different drinking water treatment processes, are essential to generate toxicity data required for assessing their risks to humans. For mixture risk assessments, whole mixture toxicology studies generally a...

  8. Soda-Lime-Silicate Float Glass: A Property Comparison

    DTIC Science & Technology

    2017-10-01

    transparent armor systems. Thus, it is necessary to measure and compare the chemical composition as well as the physical and mechanical properties of...this study show that all 3 SLS glasses have essentially the same chemical composition and the same physical and mechanical properties, indicating they

  9. Interpopulational and seasonal variation in the chemical signals of the lizard Gallotia galloti.

    PubMed

    García-Roa, Roberto; Megía-Palma, Rodrigo; Ortega, Jesús; Jara, Manuel; López, Pilar; Martín, José

    2017-01-01

    Communicative traits are strikingly diverse and may vary among populations of the same species. Within a population, these traits may also display seasonal variation. Chemical signals play a key role in the communication of many taxa. However, we still know far too little about chemical communication in some vertebrate groups. In lizards, only a few studies have examined interpopulational variation in the composition of chemical cues and signals and only one study has explored the seasonal effects. Here we sampled three subspecies of the Tenerife lizards ( Gallotia galloti ) and analyze the lipophilic fraction of their femoral gland secretions to characterize the potential interpopulational variation in the chemical signals. In addition, we assessed whether composition of these secretions differed between the reproductive and the non-reproductive season. We analyzed variations in both the overall chemical profile and the abundance of the two main compounds (cholesterol and vitamin E). Our results show interpopulational and seasonal differences in G. gallotia chemical profiles. These findings are in accordance with the high interpopulational variability of compounds observed in lizard chemical signals and show that their composition is not only shaped by selective factors linked to reproductive season.

  10. Chemical compositions, infrared spectroscopy, and X-ray diffractometry study on brown-rotted woods

    Treesearch

    Gai-Yun Li; Luo-Hua Huang; Chung Hse; Te-Fu Qin

    2011-01-01

    The effect of brown-rot decay on the chemical composition and crystallinity of Masson pine was studied by exposing it to Wolfiporia cocos (Schwein.) Ryvarden and Gilbn. for durations of up to 15 weeks in the field. The holocellulose content, α-cellulose content, and wood crystallinity decreased slowly in the initial stage, followed by a significant reduction...

  11. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  12. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    DOEpatents

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  13. Creation and Analysis of the Chemical Composition Map of Eros and Its Cosmochemical Interpretation

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Morgan, Thomas (Technical Monitor)

    2003-01-01

    The data was analyzed and two papers were written and published in the refereed journal: Meteoritics and Planetary Science. These paper describes the results of the study of the surface chemical composition of the asteroid Eros by the NEAR X-ray Fluorescence Spectrometer.

  14. Chemical composition of Achillea schischkinii Sosn., an endemic species from Turkey

    USDA-ARS?s Scientific Manuscript database

    In this study, we investigated the chemical composition of an endemic species of Achillea schischkinii Sosn. (Asteraceae) collected from an eastern part of Turkey (Van). Air-dried aerial parts were subjected to water-distillation using a Clevenger-type system. The essential oil was analyzed by GC-MS...

  15. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.

    PubMed

    Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio

    2012-02-01

    Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

    PubMed Central

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling. PMID:28686660

  17. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    PubMed

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  18. A network pharmacology study of Sendeng-4, a Mongolian medicine.

    PubMed

    Zi, Tian; Yu, Dong

    2015-02-01

    We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from DrugBank, SuperTarget, TTD (Therapeutic Targets Database) and other databases and the relevant signaling pathways from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and established models of the chemical composition-target network and chemical composition-target-disease network using Cytoscape software, the analysis indicated that the chemical composition had at least nine different types of targets that acted together to exert effects on the diseases, suggesting a "multi-component, multi-target" feature of the traditional Mongolian medicine. We also employed the rat model of rheumatoid arthritis induced by Collgen Type II to validate the key targets of the chemical components of Sendeng-4, and three of the key targets were validated through laboratory experiments, further confirming the anti-inflammatory effects of Sendeng-4. In all, this study predicted the active ingredients and targets of Sendeng-4, and explored its mechanism of action, which provided new strategies and methods for further research and development of Sendeng-4 and other traditional Mongolian medicines as well. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Pulsed plasma chemical synthesis of carbon-containing titanium and silicon oxide based nanocomposite

    NASA Astrophysics Data System (ADS)

    Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Zhirkov, Igor

    2018-03-01

    The paper presents the results of the experimental investigation of the physical and chemical properties of the TixSiyCzOw composite nanopowders, which were first obtained using a pulsed plasma chemical method. The pulsed plasma chemical synthesis was achieved using a technological electron accelerator (TEA-500). The parameters of the electron beam are as follows: 400-450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. The main physical and chemical properties of the obtained composites were studied (morphology, chemical, elemental and phase composition). The morphology of the TixSiyCzOw composites is multiform. There are large round particles, with an average size of above 150 nm. Besides, there are small particles (an average size is in the range of 15-40 nm). The morphology of small particles is in the form of crystallites. In the TixSiyCzOw synthesised composite, the peak with a maximum of 946 cm-1 was registered. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Si‒О‒Ti bond, which indicates the formation of the solid solution. The composites consist of two crystal phases - anatase and rutile. The prevailing phase of the crystal structure is rutile.

  20. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  2. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    PubMed

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  3. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  4. Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals

    NASA Astrophysics Data System (ADS)

    Schiano, P.; Clocchiatti, R.

    1994-04-01

    ROCK samples derived from the Earth's upper mantle commonly show indirect evidence for chemical modification. Such modification, or 'metasomatism', can be recognized by the precipitation of exotic minerals such as phlogopite, amphibole or apatite1, and by the overprinting of the bulk compositions of the mantle rocks by a chemical signature involving the enrichment of potassium and other 'incompatible' elements2. Here we study the composition of the metasomatic agents more directly by examining melt and fluid inclusions trapped in mantle minerals. These inclusions are secondary, forming trails along healed fracture planes. A systematic study of the chemical compositions and entrapment temperatures and pressures of inclusions from 14 ultramaflc peridotites from both continental and oceanic intraplate regions shows that volatile- and silica-rich metasomatic melts are present throughout the litho-sphere. Their compositions, which differ dramatically from those of erupted, mantle-derived magmas, are more akin to continental than to oceanic crust.

  5. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing

    NASA Astrophysics Data System (ADS)

    Ren, Jingye; Zhang, Fang; Wang, Yuying; Collins, Don; Fan, Xinxin; Jin, Xiaoai; Xu, Weiqi; Sun, Yele; Cribb, Maureen; Li, Zhanqing

    2018-05-01

    Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external-internal size-resolved, abbreviated as EI-SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p/m) were 0.90 - 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT-BK scheme) shows good closure with RCCN_p/m of 1.0 -1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT-SR scheme) achieves better closure than the INT-BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI-SR and INT-SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p/m of 0.66 - 0.75) when using the schemes of external mixtures with bulk (EXT-BK scheme) or size-resolved composition (EXT-SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.

  7. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    PubMed

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical composition of gypsum plants from Turkey.

    PubMed

    Bolukbasi, A; Kurt, L; Palacio, S

    2016-03-01

    Depending on their specificity to gypsum, plants can be classified as gypsophiles (gypsum exclusive) and gypsovags (non-exclusive). The former may further be segregated into wide and narrow gypsophiles, depending on the breadth of their distribution area. Narrow gypsum endemics have a putative similar chemical composition to plants non-exclusive to gypsum (i.e. gypsovags), which may indicate their similar ecological strategy as stress-tolerant plant refugees on gypsum. However, this hypothesis awaits testing in different regions of the world. We compared the chemical composition of four narrow gypsum endemics, one widely distributed gypsophile and six gypsovags from Turkey. Further, we explored the plasticity in chemical composition of Turkish gypsovags growing on high- and low-gypsum content soils. Differences were explored with multivariate analyses (RDA) and mixed models (REML). Narrow gypsum endemics segregated from gypsovags in their chemical composition according to RDAs (mainly due to higher K and ash content in the former). Nevertheless, differences were small and disappeared when different nutrients were analysed individually. All the gypsovags studied accumulated more S and ash when growing on high-gypsum than on low-gypsum soils. Similar to narrow gypsum endemics from other regions of the world, most local gypsum endemics from Turkey show a similar chemical composition to gypsovags. This may indicate a shared ecological strategy as stress-tolerant plants not specifically adapted to gypsum. Nevertheless, the narrow gypsum endemic Gypsophila parva showed a chemical composition typical of gypsum specialists, indicating that various strategies are feasible within narrowly distributed gypsophiles. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  10. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  11. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    USDA-ARS?s Scientific Manuscript database

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  12. Chemical composition, in vitro antioxidant, antimicrobial and insecticidal activities of essential oil from Cladanthus arabicus

    USDA-ARS?s Scientific Manuscript database

    The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...

  13. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    USDA-ARS?s Scientific Manuscript database

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  14. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  15. Method of producing hydrogen

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  16. Chemical communication, sexual selection, and introgression in wall lizards.

    PubMed

    MacGregor, Hannah E A; Lewandowsky, Rachel A M; d'Ettorre, Patrizia; Leroy, Chloé; Davies, Noel W; While, Geoffrey M; Uller, Tobias

    2017-10-01

    Divergence in communication systems should influence the likelihood that individuals from different lineages interbreed, and consequently shape the direction and rate of hybridization. Here, we studied the role of chemical communication in hybridization, and its contribution to asymmetric and sexually selected introgression between two lineages of the common wall lizard (Podarcis muralis). Males of the two lineages differed in the chemical composition of their femoral secretions. Chemical profiles provided information regarding male secondary sexual characters, but the associations were variable and inconsistent between lineages. In experimental contact zones, chemical composition was weakly associated with male reproductive success, and did not predict the likelihood of hybridization. Consistent with these results, introgression of chemical profiles in a natural hybrid zone resembled that of neutral nuclear genetic markers overall, but one compound in particular (tocopherol methyl ether) matched closely the introgression of visual sexual characters. These results imply that associations among male chemical profiles, sexual characters, and reproductive success largely reflect transient and environmentally driven effects, and that genetic divergence in chemical composition is largely neutral. We therefore suggest that femoral secretions in wall lizards primarily provide information about residency and individual identity rather than function as sexual signals. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    PubMed

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  18. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Griffiths, P. T.; Pope, F. D.; Reid, J. P.; Kalberer, M.

    2017-04-01

    The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.

  19. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate.

  20. Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi

    PubMed Central

    dos Santos, Helder Freitas; Campos, Jaqueline Ferreira; dos Santos, Cintia Miranda; Balestieri, José Benedito Perrella; Silva, Denise Brentan; Carollo, Carlos Alexandre; de Picoli Souza, Kely; Estevinho, Leticia Miranda; dos Santos, Edson Lucas

    2017-01-01

    Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae. In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties. PMID:28467350

  1. Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi.

    PubMed

    Santos, Helder Freitas Dos; Campos, Jaqueline Ferreira; Santos, Cintia Miranda Dos; Balestieri, José Benedito Perrella; Silva, Denise Brentan; Carollo, Carlos Alexandre; de Picoli Souza, Kely; Estevinho, Leticia Miranda; Dos Santos, Edson Lucas

    2017-05-03

    Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae . In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul; Liong, Syarifuddin

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is aboutmore » 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.« less

  3. The Impact of Marine Enzymatic Activity on Sea Spray Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Ryder, O. S.; Michaud, J. M.; Sauer, J. S.; Lee, C.; Förster, J. D.; Pöhlker, C.; Andreae, M. O.; Prather, K. A.

    2016-12-01

    The composition of sea spray aerosol (SSA) and the relationship between its organic fraction and biological ocean conditions is not well understood, resulting in considerable disagreement in the literature linking biological markers to SSA chemical composition. Recent work suggests that enzymatic activity in seawater may play a key role in dictating aerosol composition by changing the organic pool from which SSA is formed. Here we investigate the role of enzymatic activity on SSA spatial chemical composition, aerosol phase and morphological microstructure. In these experiments, SSA was generated using a novel mini-Marine Aerosol Reference Tank system. SSA collected onto substrates was generated from artificial salt water that had been doped with either 1) unsaturated triglycerides or 2) diatom cellular lysate, both followed by lipase. Results from analysis including morphological studies via atomic force microscopy, and chemical composition investigations both under dry and RH conditions via STXM-NEXAFS are presented.

  4. Multi-component quantitation of meso/nanostructural surfaces and its application to local chemical compositions of copper meso/nanostructures self-organized on silica

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Yi; Chang, Hsin-Wei; Chang, Che-Chen

    2018-03-01

    Knowledge about the chemical compositions of meso/nanomaterials is fundamental to development of their applications in advanced technologies. Auger electron spectroscopy (AES) is an effective analysis method for the characterization of meso/nanomaterial structures. Although a few studies have reported the use of AES for the analysis of the local composition of these structures, none have explored in detail the validity of the meso/nanoanalysis results generated by the AES instrument. This paper addresses the limitations of AES and the corrections necessary to offset them for this otherwise powerful meso/nanoanalysis tool. The results of corrections made to the AES multi-point analysis of high-density copper-based meso/nanostructures provides major insights into their local chemical compositions and technological prospects, which the primitive composition output of the AES instrument failed to provide.

  5. Assessment of Fecal Near-infrared Spectroscopy to Predict Feces Chemical Composition and Apparent Total Tract Digestibility of Nutrients in Pigs.

    PubMed

    Nirea, K G; Pérez de Nanclares, M; Skugor, A; Afseth, N K; Meuwissen, T H E; Hansen, J Ø; Mydland, L T; Øverland, M

    2018-05-08

    Apparent total tract digestibility (ATTD) of nutrients could be an alternative measure of feed efficiency when breeding for robust animals that are fed fiber-rich diets. Apparent total tract digestibility of nutrients requires measuring individual feed intake of a large number of animals which is expensive and complex. Alternatively, ATTD of nutrients and feces chemical composition can be predicted using fecal near-infrared spectroscopy (FNIRS). The objective of this study was to assess if the feces chemical composition and ATTD of nutrients can be predicted using FNIRS that originate from various pig experimental datasets. Fecal samples together with detailed information on the feces chemical composition and ATTD of nutrients were obtained from four different pig experiments. Feces near-infrared spectroscopy were analyzed from fecal samples of a complete dataset. The model was calibrated using the FNIRS and reference samples of feces chemical composition and ATTD of nutrients. The robustness and predictability of the model was evaluated by the r2 and the closeness between SE of calibration (SEC) and SE of cross-validation (SECV). Prediction of the feces chemical components and ATTD of nutrients was successful as SEC and SECV were equivalent. Calibration model was developed to estimate the ATTD of nutrients and fecal chemical composition from the FNIRS and worked well for OM (r2 = 0.94; SEC = 48.5; SECV = 56.6), CP ( r2 = 0.89; SEC = 18.1; SECV = 18.8), GE ( r2 = 0.92; SEC = 1.2; SECV = 1.4), NDF (r2 = 0.94 ; SEC = 55; SECV = 60.2), OM digestibility (r2 = 0.94; SEC = 5.5; SECV = 6.7), GE digestibility (r2 = 0.88; SEC = 2.3; SECV = 2.6) and fat digestibility (r2 = 0.79 ; SEC = 6, SECV = 6.8). However, the SE of prediction was slightly higher than what has been reported in another study. The prediction of feces chemical composition for fat (r2 = 0.69; SEC = 11.7, SECV = 12.3), CP digestibility (r2 = 0.63; SEC = 2.3; SECV = 2.7) and NDF digestibility (r2 = 0.64, SEC = 7.7, SECV = 8.8) was moderate. We conclude that the FNIRS accurately predicts the chemical composition of feces and ATTD of nutrients for OM, CP and GE. The approach of FNIRS is a cost-effective method for measuring digestibility and feed efficiency in a large-scale pig breeding programs.

  6. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  7. Chemistry and Composition of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kolb, Charles E.; Worsnop, Douglas R.

    2012-05-01

    For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

  8. TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Cho, H; Kumar, N

    Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less

  9. Effect of Chemical Washing Pre-treatment of Empty Fruit Bunch (EFB) biochar on Characterization of Hydrogel Biochar composite as Bioadsorbent

    NASA Astrophysics Data System (ADS)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Wan, W. A.; Ghani, Ab Karim

    2018-05-01

    Hydrogel biochar composite (HBC) is a recent interest among researchers because of the hydrophilic characteristic which can adsorb chemical fluid and showed a versatile potential as adsorbent in removing hazardous material in wastewater and gas stream. In this study, the effect of chemical washing pre-treatment by using two different type of chemical agent Hydrochloric Acid (HCL) and Hydrogen Peroxide (H2O2) was analysed and investigated. The raw EFB biochar was prepared using microwave assisted pyrolysis under 1000W for 30 min under N2 flow with 150 mL/min. To improve the adsoprtion ability, the EFB biochar has been chemical washed pre-treatment with Hydrochloric Acid (HCl) and Hydrogen Peroxide (H2O2) before polymerization process with acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The characterization has studied by using Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). FTIR result shows that, the formation of Raw EFB to Hydrogel Biochar Composite (Raw EFB > EFB Biochar > Treated Biochars (HCl & H2O2) > Hydrogel Biochar Composite) have changed in functional group. For DSC result it shows that the thermal behaviour of all samples is endothermic process and have high thermal resistance.

  10. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    NASA Astrophysics Data System (ADS)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  11. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  12. The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity.

    PubMed

    Bueno-Silva, Bruno; Marsola, Alexandre; Ikegaki, Masaharu; Alencar, Severino M; Rosalen, Pedro L

    2017-06-01

    The aim of this study was to evaluate the effect of seasons on the chemical composition and antibacterial activity of Brazilian red propolis (BRP) and its plant source. BRP was collected from Maceio, Alagoas state, north-east of Brazil, during one year. Chemical composition was determined by physicochemical analyses and HPLC while antimicrobial activity was assessed against Streptococcus mutans, Streptococcus sobrinus, Staphylococcus aureus and Actinomyces naeslundii by determining the minimal inhibitory and bactericidal concentrations (MIC and MBC, respectively). The comparative chemical profiles varied quantitatively according to the collection period. Formononetin was the most abundant compound in both propolis and resin, while isoliquiritigenin, (3S)-neovestitol, (3S)-vestitol are suggested to be responsible for antimicrobial activity of Brazilian red propolis. MIC varied from 15.6 to 125 μg/mL, whereas MBC varied from 31.2 to 500 μg/mL. Therefore, season in which propolis and its botanical source are collected indeed influences their chemical compositions, resulting in variations in their antibacterial activity.

  13. Physical and Chemical Characterization Of Greater Yam (Dioscorea Alata) And Jack Bean (Canavalia Ensiformis) - Based Composite Flour

    NASA Astrophysics Data System (ADS)

    Affandi, D. R.; Praseptiangga, D.; Nirmala, F. S.; Sigit Amanto, B.; Atmaka, W.

    2017-04-01

    Indonesia is a tropical country that has great potential in agriculture. Tubers and legumes as examples of the potential commodities are needed to be more developed. Flour production is one of the best alternatives to be chosen as the downstream stage of the tubers and legumes utilization. Greater yam (Dioscorea alata) and jack bean (Canavalia ensiformis) were used in this study. This study was conducted to determine best formula of composite flour based on physical, chemical, and functional characterization of composite flour produced. Variations of formula used was the ratio of greater yam flour and jack bean flour, which were 85:15 (F1), 70:30 (F2), 55:45 (F3), respectively, and this study was conducted using completely randomized design (CRD). The formula variations didn’t show any significant effect on the water absorption capability, water holding capacity (WHC), oil holding capacity (OHC), swelling power, and starch content of the composite flour. However, the formula variations had a significant influence on the colour, proximate parameters, amylose and amylopectin content, resistant starch content, dietary fibre, total phenol, and antioxidant activity of the composite flour produced. Considering the results of physical, chemical, and functional characteristics of composite flour, formula (F1) was selected as the best composite flour developed from greater yam and jack bean flours.

  14. Strategies for characterizing compositions of industrial pulp and paper sludge

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.

    2018-01-01

    The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.

  15. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline model for the high aluminum Hanford Glass composition region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Mcclane, D. L.

    2016-02-17

    In this report, SRNL provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated HLW glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  16. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Mcclane, D. L.

    2016-03-01

    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  17. Current-voltage characteristics and electroresistance in LaMnO3-δ/La0.7Ca0.3MnO3/LaAlO3 thin film composites.

    PubMed

    Gadani, Keval; Keshvani, M J; Rajyaguru, Bhargav; Dhruv, Davit; Kataria, B R; Joshi, A D; Asokan, K; Shah, N A; Solanki, P S

    2017-11-08

    In this communication, we report results of the electrical transport properties across the interface of composites consisting of n-type LaMnO 3-δ (LMO) and p-type La 0.7 Ca 0.3 MnO 3 (LCMO) manganites grown on LaAlO 3 (LAO) single crystalline substrates using low cost wet chemical solution deposition (CSD) and sophisticated, well-controlled dry chemical vapor deposition (CVD) chemical techniques. The XRD ϕ-scan studies reveal the single crystalline nature of both bilayered composites, with parallel epitaxial growth of LMO and LCMO layers onto the LAO substrate. The valence states of Mn ions in both layers of both composites were identified by performing X-ray photoelectron spectroscopy (XPS). The I-V characteristics of the LMO/LCMO interfaces show strong backward diode-like behavior at higher applied voltages well above the crossover voltage (V NB ). Below V NB , the interfaces demonstrate normal diode-like characteristics throughout the studied temperature range. The electric field-induced modulation of the LMO/LCMO junction resistance of the interfaces has been observed. Electric field-dependent electroresistance (ER) modifications at different temperatures have also been studied. The electrical transport properties have been discussed in the context of various mechanisms, such as charge injection, tunneling, depletion region modification and thermal processes across the interface. The effects of structurally and chemically developed sharp interfaces between the LMO and LCMO layers on the transport properties of the presently studied bilayered thin film composites have been discussed on the basis of correlation between the physicochemical characterization and charge transport behavior. A comparison of different aspects of the transport properties has been presented in the context of the structural strain and crystallinity of the composites grown using both wet and dry chemical techniques.

  18. A Water Tank Study of the Effects of Seawater Temperature on Coral Metabolism and Changes in Chemical Compositions in Seawater

    NASA Astrophysics Data System (ADS)

    Fujimura, H.; Arakaki, T.; Hamdun, A. M.; Oomori, T.

    2002-12-01

    For the past several years, large-scale coral bleaching has been observed in many coral reef areas around the world. Coral bleaching is considered to be caused mainly by high seawater temperature together with other factors such as strong UV-light and changes in salinity. However, the mechanism of coral bleaching is not clearly understood. We have conducted experiments using water tanks under well-controlled light and temperature conditions to elucidate the effects of seawater temperature on coral_fs metabolism and changes in chemical compositions in the seawater around the coral. Metabolism of coral was studied by analyzing changes in seawater chemical compositions. Coral specimen used in our experiment, Goniastrea aspera, was collected from northern shore of Okinawa island, Japan. pH, nitrate ion, dissolved organic carbon, and alkalinity were measured. Photochemically formed hydroxyl radical was also studied in those seawater samples.

  19. Segregation Phenomena on the Crystal Surface of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Tomashpol'skii, Yu. Ya.

    2018-06-01

    The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.

  20. Composition and conductance distributions of single GeSi quantum rings studied by conductive atomic force microscopy combined with selective chemical etching.

    PubMed

    Lv, Y; Cui, J; Jiang, Z M; Yang, X J

    2013-02-15

    Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.

  1. C15078. Essential oil composition of Phagnalon sordidum (L.) from Corsica, chemical variability and antimicrobial activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-02-10

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    PubMed

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( < 0.01) and vertical structure ( = 0.01). Using pyrolysis-gas chromatography/mass spectrometry as a molecular technique to analyze detrital chemical composition, including aromatic compounds and polycyclic aromatic hydrocarbons, we found that the chemical composition of forest detritus was nearly uniform for both unburned and burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimentalmore » basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.« less

  4. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine.

    PubMed

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Dapporto, Massimiliano; Campodoni, Elisabetta; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2018-01-01

    This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200μm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers

    NASA Astrophysics Data System (ADS)

    Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael

    2017-06-01

    As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.

  6. Environmental and Chemical Aging of Fatty-Acid-Based Vinyl Ester Composites

    DTIC Science & Technology

    2011-04-01

    Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites by Steven E. Boyd and John J. La Scala ARL-TR-5523 April...2011 Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites Steven E. Boyd and John J. La Scala Weapons and Materials...COVERED (From - To) October 2009–September 2010 4. TITLE AND SUBTITLE Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites

  7. Sensory assessment and chemical measurement of astringency of Greek wines: Correlations with analytical polyphenolic composition.

    PubMed

    Kallithraka, S; Kim, D; Tsakiris, A; Paraskevopoulos, I; Soleas, G

    2011-06-15

    The purpose of this study was to measure the astringency of selected Greek red wines and to assess the relationship between sensory and chemical data. Nine red wines produced by three native Greek grape varieties (agiorgitiko, xinomavro and mavrodafni) were used and their astringency and bitterness was assessed by a trained panel. In addition, their astringency was estimated chemically employing the ovalbumin precipitation method. Their polyphenolic composition was also determined by High Performance Liquid Chromatography (HPLC). The sensory data showed that mandilaria was the most astringent variety whereas agiorgitiko was the least. Statistical analysis of the results indicated that the chemical data obtained for astringency significantly correlated with the sensory determinations. In addition, significant correlations were obtained between the sensory data and the wine polyphenolic composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The study of multiphase flow control during odor reproduction

    NASA Astrophysics Data System (ADS)

    Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu

    2014-04-01

    Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.

  9. Controls on the chemical composition of saline surface crusts and emitted dust from a wet playa in the Mojave Desert (USA)

    USGS Publications Warehouse

    Goldstein, Harland L.; Breit, George N.; Reynolds, Richard L.

    2017-01-01

    Saline-surface crusts and their compositions at ephemeral, dry, and drying lakes are important products of arid-land processes. Detailed understanding is lacking, however, about interactions among locally variable hydrogeologic conditions, compositional control of groundwater on vadose zone and surface salts, and dust composition. Chemical and physical data from groundwater, sediments, and salts reveal compositional controls on saline-surface crusts across a wet playa, Mojave Desert, with bearing on similar settings elsewhere. The compositions of chemically and isotopically distinctive shallow (<3 m) water masses are recorded in the composition of associated salts. In areas with deeper and more saline groundwater, however, not all ions are transported through the vadose zone. Retention of arsenic and other elements in the vadose zone diminishes the concentrations of potentially toxic elements in surface salts, but creates a reservoir of these elements that may be brought to the surface during wetter conditions or by human disturbance. Selective wind-erosion loss of sulfate salts was identified by the compositional contrast between surface salt crusts and underlying groundwater. At the sub-basin scale, compositional links exist among groundwater, salt crusts, and dust from wet playas. Across the study basin, however, lateral variations in groundwater and solid-salt compositions are produced by hydrogeologic heterogeneity.

  10. Inhibition and quenching effect on positronium formation in metal salt doped polymer blend

    NASA Astrophysics Data System (ADS)

    Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.

  11. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi.

    PubMed

    Ložienė, Kristina; Švedienė, Jurgita; Paškevičius, Algimantas; Raudonienė, Vita; Sytar, Oksana; Kosyan, Anatoliy

    2018-04-22

    Although the nature-identical chemical compounds are cheaper, they not always repeat biological activity of plant origin natural chemical compounds, often react allergies and resistance of microorganisms. The aim of this study was to investigate effects of Juniperus communis origin α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Results showed that different enantiomeric composition of α-pinene have different activities on microorganisms: essential oil with (1S)-(-) ≈ (1R)-(+) enantiomeric composition of α-pinene influenced on some microorganisms stronger than essential oil with (1S)-(-) < (1R)-(+) enantiomeric composition of α-pinene; the pure natural α-pinene with enantiomeric composition S < R more strongly inhibited growth of investigated bacteria and Candida yeasts, α-pinene with enantiomeric composition S ≈ R - growth of Trichophyton and Aspergillus. (1S)-(-) and (1R)-(+) enantiomeric forms of α-pinene can have also different synergistic effects with other compounds of essential oil. The results of study showed that the same amount of α-pinene with different enantiomeric composition can have diverse antimicrobial potential due different specific interactions with other chemical compounds of essential oil. Therefore, it is very important to determine and present the enantiomeric composition of those plant origin compounds, which are characterized by enantiomerisation, during the course of research of biological activities of natural plant products (essential oils and other) and their isolated compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Detailed chemical composition of classical Cepheids in the LMC cluster NGC 1866 and in the field of the SMC

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; Groenewegen, M. A. T.; Grebel, E. K.; Bono, G.; Fiorentino, G.; François, P.; Inno, L.; Kovtyukh, V. V.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Pritchard, J.; Romaniello, M.; da Silva, R.

    2017-12-01

    Context. Cepheids are excellent tracers of young stellar populations. They play a crucial role in astrophysics as standard candles. The chemistry of classical Cepheids in the Milky Way is now quite well-known, however despite a much larger sample, the chemical composition of Magellanic Cepheids has been only scarcely investigated. Aims: For the first time, we study the chemical composition of several Cepheids located in the same populous cluster: NGC 1866, in the Large Magellanic Cloud (LMC). To also investigate the chemical composition of Cepheids at lower metallicity, we look at four targets located in the Small Magellanic Cloud (SMC). Our sample allows us to increase the number of Cepheids with known metallicities in the LMC/SMC by 20%/25% and the number of Cepheids with detailed chemical composition in the LMC/SMC by 46%/50%. Methods: We use canonical spectroscopic analysis to determine the chemical composition of Cepheids and provide abundances for a good number of α, iron-peak, and neutron-capture elements. Results: We find that six Cepheids in the LMC cluster NGC 1866 have a very homogeneous chemical composition, also consistent with red giant branch (RGB) stars in the cluster. Period-age relations that include no or average rotation indicate that all the Cepheids in NGC 1866 have a similar age and therefore belong to the same stellar population. Our results are in good agreement with theoretical models accounting for luminosity and radial velocity variations. Using distances based on period-luminosity relations in the near- or mid-infrared, we investigate for the first time the metallicity distribution of the young population in the SMC in the depth direction. Preliminary results show no metallicity gradient along the SMC main body, but our sample is small and does not contain Cepheids in the inner few degrees of the SMC. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 082.D-0792(B).

  13. Chondritic Earth: comparisons, guidelines and status

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2014-12-01

    The chemical and isotopic composition of the Earth is rationally understood within the context of the chondritic reference frame, without recourse to hidden reservoirs, collision erosion, or strict interpretation of an enstatite chondrite model. Challenges to interpreting the array of recent and disparate chemical and isotopic observations from meteorites need to be understood as rich data harvests that inform us of the compositional heterogeneity in the early solar system. Our ability to resolve small, significant compositional differences between chondrite families provide critical insights into integrated compositional signatures at differing annuli distances from the Sun (i.e., 1-6 AU). Rigorous evaluation of chondritic models for planets requires treatment of both statistical and systematic uncertainties - to date these efforts are uncommonly practiced. Planetary olivine to pyroxene ratio reflects fO2 and temperature potentials in the nebular, given possible ISM compositional conditions; thus this ratio is a non-unique parameter of terrestrial bodies. Consequently the Mg/Si value of a planet (ie., olivine to pyroxene ratio) is a free variable; there is no singular chondritic Mg/Si value. For the Earth, there is an absence of physical and chemical evidence requiring a major element, chemical distinction between the upper and lower mantle, within uncertainties. Early Earth differentiation likely occurred, but there is an absence of chemical and isotopic evidence of its imprint. Chondrites, peridotites, komatiites, and basalts (ancient and modern) reveal a coherent picture of a chondritic compositional Earth, with compositionally affinities to enstatite chondrites. At present results from geoneutrino studies non-uniquely support these conclusions. Future experiments can provide true transformative insights into the Earth's thermal budget, define compositional BSE models, and will restrict discussions on Earth dynamics and its thermal evolution.

  14. On the Impact Origin of Phobos and Deimos. III. Resulting Composition from Different Impactors

    NASA Astrophysics Data System (ADS)

    Pignatale, Francesco C.; Charnoz, Sébastien; Rosenblatt, Pascal; Hyodo, Ryuki; Nakamura, Tomoki; Genda, Hidenori

    2018-02-01

    The origin of Phobos and Deimos in a giant impact-generated disk is gaining larger attention. Although this scenario has been the subject of many studies, an evaluation of the chemical composition of the Mars’s moons in this framework is missing. The chemical composition of Phobos and Deimos is unconstrained. The large uncertainties about the origin of the mid-infrared features; the lack of absorption bands in the visible and near-infrared spectra; and the effects of secondary processes on the moons’ surfaces make the determination of their composition very difficult using remote sensing data. Simulations suggest a formation of a disk made of gas and melt with their composition linked to the nature of the impactor and Mars. Using thermodynamic equilibrium, we investigate the composition of dust (condensates from gas) and solids (from a cooling melt) that result from different types of Mars impactors (Mars-, CI-, CV-, EH-, and comet-like). Our calculations show a wide range of possible chemical compositions and noticeable differences between dust and solids, depending on the considered impactors. Assuming that Phobos and Deimos resulted from the accretion and mixing of dust and solids, we find that the derived assemblage (dust-rich in metallic iron, sulfides and/or carbon, and quenched solids rich in silicates) can be compatible with the observations. The JAXA’s Martian Moons eXploration (MMX) mission will investigate the physical and chemical properties of Phobos and Deimos, especially sampling from Phobos, before returning to Earth. Our results could be then used to disentangle the origin and chemical composition of the pristine body that hit Mars and suggest guidelines for helping in the analysis of the returned samples.

  15. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  16. Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test

    DOE PAGES

    Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...

    2017-01-11

    Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less

  17. Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi

    NASA Astrophysics Data System (ADS)

    Mastalygina, E. E.; Popov, A. A.; Pantyukhov, P. V.

    2017-06-01

    The paper is devoted to investigation of deterioration of natural fillers and polyethylene composites on their basis (polyethylene/filler=70/30) due to the action of mold fungi. The fillers chemical composition, dimensional parameters and biodegradability have been analyzed as factors exert a considerable impact on composite materials biodeterioration. It has been found that the principal factor determining the biodeterioration of polyethylene/filler composites by mold fungi is chemical composition of a filler and, in turn, its biodegradability. The excess of holocellulose content over lignin content and high protein content in a filler are able to induce biofouling of the polymeric composite materials. The presence of soluble and easy hydrolysed fraction in a filler increases its availability in a polymeric matrix. According to the study results, most effective natural fillers as additives stimulating polyethylene composites biodegradability are milled straw of seed flax and hydrolyzed keratin of bird’s feather.

  18. Distribution of elements in the Salt Wash member of the Morrison Formation in the Jo Dandy area, Montrose County, Colorado

    USGS Publications Warehouse

    Newman, William L.; Elston, Donald P.

    1957-01-01

    A study of the distribution of elements in the Salt Wash member of the Morrison formation of Jurassic age from samples taken in the Jo Dandy area, Montrose County, Colo., was made to determine average chemical composition of mudstone and sandstone and to determine the magnitude of variations in concentrations of elements within similar rock types. Analytical data were obtained by semiquantitative spectrographic and radiometric methods. Results of the study show that variations in concentrations of about 20 elements commonly detected by semiquantititive spectrographic analyses of sedimentary rocks are small for a specific rock type; therefore, considerable confidence may be placed upon the average chemical appears to be no significant relation between chemical composition of mudstone or sandstone and distance from known uranium-vanadium ore or mineralization rock. Mudstone generally contains greater concentrations of the elements studied than sandstone. The chemical composition of red mudstone is similar to the chemical composition of green mudstone except that red mudstone was found to contain almost twice as much calcium as green mudstone in the Jo Dandy area. Samples of the unoxidized sandstone from the Jo Dandy area contain about twice as much calcium, three times as much strontium, but only about one-half as much as zirconium as oxidized sandstone; except for these elements the chemical compositions of both categories of sandstone are similar. Samples of sandstone of the Salt Wash member in the Jo Dandy area contain more potassium, magnesium, vanadium, and nickel than “average sandstone” of the Salt Wash member. The distribution of bismuth in rocks of the Jo Dandy area suggests that bismuth and perhaps part of the potassium and magnesium found in rocks of the Salk Wash member were either derived from solutions which ascended from the underlying salt- and gypsum-bearing Paradox member that was incorporated with rocks of the Salt Wash during sedimentation.

  19. Essential-oil composition and chemical variability of Senecio vulgaris L. from Corsica.

    PubMed

    Andreani, Stéphane; Paolini, Julien; Costa, Jean; Muselli, Alain

    2015-05-01

    The chemical composition of the essential oils isolated from the aerial parts of Senecio vulgaris plants collected in 30 Corsican localities was characterized using GC-FID and GC/MS analyses. Altogether, 54 components, which accounted for 95.2% of the total oil composition, were identified in the 30 essential-oil samples. The main compounds were α-humulene (1; 57.3%), (E)-β-caryophyllene (2; 5.6%), terpinolene (3; 5.3%), ar-curcumene (4; 4.3%), and geranyl linalool (5; 3.4%). The chemical composition of the essential oils obtained from separate organs and during the complete vegetative cycle of the plants were also studied, to gain more knowledge about the plant ecology. The production of monoterpene hydrocarbons, especially terpinolene, seems to be implicated in the plant-flowering process and, indirectly, in the dispersal of this weed species. Comparison of the present results with the literature highlighted the originality of the Corsican S. vulgaris essential oils and indicated that α-humulene might be used as taxonomical marker for the future classification of the Senecio genus. A study of the chemical variability of the 30 S. vulgaris essential oils using statistical analysis allowed the discrimination of two main clusters according to the soil nature of the sample locations. These results confirmed that there is a relation between the soil nature, the chemical composition of the essential oils, and morphological plant characteristics. Moreover, they are of interest for commercial producers of essential oil in selecting the most appropriate plants. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    PubMed

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metal-composite adhesion based on diazonium chemistry.

    PubMed

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  3. Diffusion, swelling, cross linkage study and mechanical properties of ZnO doped PVA/NaAlg blend polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.

  4. Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.

    PubMed

    Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph

    2017-01-01

    The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.

  5. [Comparison of essential oil enriched with ultrafiltration method and extraction method respectively from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by GC-MS].

    PubMed

    Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping

    2011-10-01

    To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.

  6. Stevia rebaudiana Bertoni - chemical composition and functional properties.

    PubMed

    Marcinek, Katarzyna; Krejpcio, Zbigniew

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it "kaa-hee" ("sweet herb"). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  7. [Advances in studies on bear bile powder].

    PubMed

    Zhou, Chao-fan; Gao, Guo-jian; Liu, Ying

    2015-04-01

    In this paper, a detailed analysis was made on relevant literatures about bear bile powder in terms of chemical component, pharmacological effect and clinical efficacy, indicating bear bile powder's significant pharmacological effects and clinical application in treating various diseases. Due to the complex composition, bear bile powder is relatively toxic. Therefore, efforts shall be made to study bear bile powder's pharmacological effects, clinical application, chemical composition and toxic side-effects, with the aim to provide a scientific basis for widespread reasonable clinical application of bear bile powder.

  8. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1998-01-01

    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  9. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    PubMed

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effect of Chemical Treatments on Flax Fibre Reinforced Polypropylene Composites on Tensile and Dome Forming Behaviour

    PubMed Central

    Wang, Wentian; Lowe, Adrian; Kalyanasundaram, Shankar

    2015-01-01

    Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure) to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength) can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system. PMID:25789505

  11. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  12. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    PubMed Central

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-01-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033

  13. Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative(1)H-NMR.

    PubMed

    Le, Phuong-Mai; Ding, Jianfu; Leek, Donald M; Mester, Zoltan; Robertson, Gilles; Windust, Anthony; Meija, Juris

    2016-10-01

    In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative(1)H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x((13)C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.

  14. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less

  15. Solid State Chemistry of Clathrate Phases: Crystal Structure, Chemical Bonding and Preparation Routes

    NASA Astrophysics Data System (ADS)

    Baitinger, Michael; Böhme, Bodo; Ormeci, Alim; Grin, Yuri

    Clathrates represent a family of inorganic materials called cage compounds. The key feature of their crystal structures is a three-dimensional (host) framework bearing large cavities (cages) with 20-28 vertices. These polyhedral cages bear—as a rule—guest species. Depending on the formal charge of the framework, clathrates are grouped in anionic, cationic and neutral. While the bonding in the framework is of (polar) covalent nature, the guest-host interaction can be ionic, covalent or even van-der Waals, depending on the chemical composition of the clathrates. The chemical composition and structural features of the cationic clathrates can be described by the enhanced Zintl concept, whereas the composition of the anionic clathrates deviates often from the Zintl counts, indicating additional atomic interactions in comparison with the ionic-covalent Zintl model. These interactions can be visualized and studied by applying modern quantum chemical approaches such as electron localizability.

  16. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity, cerium oxide nanoparticles were chemically modified using a process known as doping, to alter their valence state. The size and shape of the cerium oxide nanoparticles remained constant. Overall, results indicated that cerium oxide was not toxic in both RLE-6TN and NR8383 pulmonary rat cells, however, chemically modifying the valence state of the nanomaterial did affect the antioxidant potential. To determine if this trend was measureable in vivo, rats were exposed to various cerium oxide nanoparticles via intratracheal instillation and damage, changes in pulmonary cell differentials, and phagocytic cell activity were assessed. Results implicate that chemically modifying the nanoparticles had an effect on the overall damage induced by the material but did not dramatically affect inflammatory potential or phagocytic cell activity. Overall the data from these studies imply that size, shape, chemical composition, and valence state of nanomaterials can be manipulated to alter their toxicity.

  17. A chemical model for lunar non-mare rocks

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Rhodes, J. M.

    1974-01-01

    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. It is shown that for these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original but not necessarily primitive lunar materials.

  18. A chemical model for lunar non-mare rocks

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Rhodes, J. M.

    1977-01-01

    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. For these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original, but not necessarily primitive, lunar materials.

  19. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    NASA Astrophysics Data System (ADS)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  20. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    PubMed

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Global chemical composition of ambient fine particulate matter for exposure assessment.

    PubMed

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  2. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  3. Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Yang, Guiyan; Wang, Qingyan; Liu, Chen; Wang, Xiaobin; Fan, Shuxiang; Huang, Wenqian

    2018-07-01

    Rapid and visual detection of the chemical compositions of plant seeds is important but difficult for a traditional seed quality analysis system. In this study, a custom-designed line-scan Raman hyperspectral imaging system was applied for detecting and displaying the main chemical compositions in a heterogeneous maize seed. Raman hyperspectral images collected from the endosperm and embryo of maize seed were acquired and preprocessed by Savitzky-Golay (SG) filter and adaptive iteratively reweighted Penalized Least Squares (airPLS). Three varieties of maize seeds were analyzed, and the characteristics of the spectral and spatial information were extracted from each hyperspectral image. The Raman characteristic peaks, identified at 477, 1443, 1522, 1596 and 1654 cm-1 from 380 to 1800 cm-1 Raman spectra, were related to corn starch, mixture of oil and starch, zeaxanthin, lignin and oil in maize seeds, respectively. Each single-band image corresponding to the characteristic band characterized the spatial distribution of the chemical composition in a seed successfully. The embryo was distinguished from the endosperm by band operation of the single-band images at 477, 1443, and 1596 cm-1 for each variety. Results showed that Raman hyperspectral imaging system could be used for on-line quality control of maize seeds based on the rapid and visual detection of the chemical compositions in maize seeds.

  4. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGES

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; ...

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM 2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM 2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weightedmore » PM 2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m 3), secondary inorganic aerosol (11.1 ± 5.0 μg/m 3), and mineral dust (11.1 ± 7.9 μg/m 3). Secondary inorganic PM 2.5 concentrations exceeded 30 μg/m 3 over East China. Sensitivity simulations suggested that population-weighted ambient PM 2.5 from biofuel burning (11 μg/m 3) could be almost as large as from fossil fuel combustion sources (17 μg/m 3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM 2.5.« less

  5. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    PubMed

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Interaction of intraocular lenses with fibronectin and human lens epithelial cells: Effect of chemical composition and aging.

    PubMed

    Tortolano, Lionel; Serrano, Carole; Jubeli, Emile; Saunier, Johanna; Yagoubi, Najet

    2015-12-01

    The aim of this study is to investigate in vitro interactions between hydrophobic acrylate intraocular lenses (IOLs) and their biological environment. The influence of lens chemical composition and aging on fibronectin (FN) adsorption and on IOLs cytotoxicity on human lens epithelial cells was examined. Cytotoxicity of acrylate monomers used in IOLs manufacture was also investigated. Four different IOLs were included in the study: Acrysof(®), Tecnis(®), EnVista(®), and iSert(®). Implants were artificially aged in a xenon arc chamber to simulate 2 years of light exposure. Fibronectin adsorption on IOL surface was quantified using ELISA and correlated to surface roughness determined with AFM. Direct contact cytotoxicity was determined with the MTT assay and cell morphology was observed with light microscopy. Results showed that fibronectin adsorption did not differ significantly among IOLs, whatever their chemical composition. Moreover, aging conditions did not impact fibronectin adsorption. All IOLs were biocompatible even after applying 2-year aging conditions, with cell viability higher than 70%. Five acrylate monomers appeared to be toxic in the range of concentrations tested, but no monomer release from the IOLs could be detected during accelerated 2-year incubation with saline solution. This study did not reveal an influence of chemical composition and aging on protein adsorption and on biocompatibility. © 2015 Wiley Periodicals, Inc.

  7. Characterization of the Roman curse tablet

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Boyang; Fu, Lin

    2017-08-01

    The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.

  8. In vivo ultrasound and biometric measurements predict the empty body chemical composition in Nellore cattle.

    PubMed

    Castilhos, A M; Francisco, C L; Branco, R H; Bonilha, S F M; Mercadante, M E Z; Meirelles, P R L; Pariz, C M; Jorge, A M

    2018-05-04

    Evaluation of the body chemical composition of beef cattle can only be measured postmortem and those data cannot be used in real production scenarios to adjust nutritional plans. The objective of this study was to develop multiple linear regression equations from in vivo measurements, such as ultrasound parameters [backfat thickness (uBFT, mm), rump fat thickness (uRF, mm), and ribeye area (uLMA, cm2)], shrunk body weight (SBW, kg), age (AG, d), hip height (HH, m), as well as from postmortem measurements (composition of the 9th to 11th rib section) to predict the empty body and carcass chemical composition for Nellore cattle. Thirty-three young bulls were used (339 ± 36.15 kg and 448 ± 17.78 d for initial weight and age, respectively). Empty body chemical composition (protein, fat, water, and ash in kg) was obtained by combining noncarcass and carcass components. Data were analyzed using the PROC REG procedure of SAS software. Mallows' Cp values were close to the ideal value of number of independent variables in the prediction equations plus one. Equations to predict chemical components of both empty body and carcass using in vivo measurements presented higher R2 values than those determined by postmortem measurements. Chemical composition of the empty body using in vivo measurements was predicted with R2 > 0.73. Equations to predict chemical composition of the carcass from in vivo measurements showed R2 lower (R2< 0.68) than observed for empty body, except for the water (R2 = 0.84). The independent variables SBW, uRF, and AG were sufficient to predict the fat, water, energy components of the empty body, whereas for estimation of protein content the uRF, HH, and SBW were satisfactory. For the calculation of the ash, the SBW variable in the equation was sufficient. Chemical compounds from components of the empty body of Nellore cattle can be calculated by the following equations: protein (kg) = 47.92 + 0.18 × SBW - 1.46 × uRF - 30.72 × HH (R2 = 0.94, RMSPE = 1.79); fat (kg) = 11.33 + 0.16 × SBW + 2.09 × uRF - 0.06 × AG (R2 = 0.74, RMSPE = 4.18); water (kg) = - 34.00 + 0.55 × SBW + 0.10 × AG - 2.34 × uRF (R2 = 0.96, RMSPE = 5.47). In conclusion, the coefficients of determination (for determining the chemical composition of the empty body) of the equations derived from in vivo measures were higher than those of the equations obtained from rib section measurements taken postmortem, and better than coefficients of determination of the equations to predict the chemical composition of the carcass.

  9. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOEpatents

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  10. Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.

    2018-06-01

    The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.

  11. Application of infrared spectroscopy for assessing quality (chemical composition) of peatland plants, litter and soil

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Laiho, Raija

    2016-04-01

    In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.

  12. Chemical constituents of Sweetpotato genotypes in relation to textural characteristics of processed French fries

    USDA-ARS?s Scientific Manuscript database

    Sweetpotato French fries (SPFF) are growing in popularity but limited information is available on SPFF textural properties in relation to chemical composition. This study aimed to investigate the relationship between chemical components of different sweetpotato varieties and textural characteristics...

  13. Analysis of medium-BTU gasification condensates, June 1985-June 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1987-05-01

    This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less

  14. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    DTIC Science & Technology

    1984-03-01

    GHz (see Table 1). Artificial aerosol populations of known chemical composition and concentration can be added to study their growth/evaporation... engen in the quantitative deorip im of the inter- (0) Water ion activity ...... .28. 45 action betven, millimeter waves and moist air. The water...sizes. and chemical two states called the saturation point. At saturation, the rate composition. and moat Importantly. having the ability to

  15. Physical and chemical characterization of composite flour from canna flour (Canna edulis) and lima bean flour (Phaseolus lunatus)

    NASA Astrophysics Data System (ADS)

    Praseptiangga, Danar; Tryas, Anisha Ayuning; Affandi, Dian Rachmawanti; Atmaka, Windi; Ariyantoro, Achmad Ridwan; Minardi, Slamet

    2018-02-01

    The diversity of Indonesian local food sources has potential to be developed for supporting food security based development of local food diversification. Canna tubers (Canna edulis) and lima beans (Phaseolus lunatus) are two local commodities in Indonesia which under is utilization and has limited assessment to its characteristics. This study aimed at determining the best formula of composite flour based on physical and chemical properties of composite flour produced. There were three formulas, F1 for 85% of canna flour and 15%of lima beans flour, F2 for 70% of canna flour and 30% of lima beans flour and F3 for 55% of canna flour and 45% of lima beans flour. Physical and chemical analyses were conducted and completely randomized design was used. De Garmo analysis was then used to determine the highest effectiveness index from the three formulas developed in this study and F3 demonstrated the highest effectiveness index (0.545) among three formulas evaluated. Thus, formula (F3) was selected as the best composite of the flour developed from canna flour and lima beans flour.

  16. Central nervous system effects and chemical composition of two subspecies of Agastache mexicana; an ethnomedicine of Mexico.

    PubMed

    Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano

    2014-04-11

    Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    PubMed

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  18. Lunar Skylights and Their Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Wong, J.; Torres, J.; FitzHoward, S.; Luu, E.; Hua, J.; Irby, R.

    2013-12-01

    In 2009, the Japanese orbiter, SELenological and Engineering Explorer (SELENE) discovered a skylight on the near side of the moon. Skylights are collapsed ceilings of rilles, thought to be caused by moonquakes, meteoroids, or incomplete formation of these lava tube ceilings. Since then, NASA's Lunar Reconnaissance Orbiter has discovered two more skylights, also located on the near side of the moon. Previous research has shown that the physical characteristics of known rilles, can be used as indicators of the presence of yet undiscovered rille and lava dome locations across the lunar surface. We hypothesize that skylights have a signature chemical composition that is unique, and can be used to predict the location of additional skylights on the surface of the moon. For this study, we compared chemical composition data of the three mare sites containing skylights with the 21 mare sites without skylights. Using the software JMARS for the Moon, we compiled multiple datasets to measure the concentrations of 13 different chemical compounds including calcium, iron oxide, titanium dioxide, and thorium. We then conducted a two-tailed T-test of the data, which generated probability values for the mean differences across all 13 chemical compounds of the maria sites with skylights and the maria sites without skylights. Our results show that there is no statistical difference in chemical composition across all of the maria sites examined. Therefore, we conclude that chemical composition does not predict or indicate potential skylight locations on the moon. Further research on other skylight characteristics, for example depth and surrounding underground lava channels, may shed light on the relationships between mare and skylights locations. Three Skylight Locations Found on Lunar Surface 100m View of Mare Tranquilitatis Skylight

  19. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-03-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in Southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources were reflected through three factors: two biomass burning factors and a highly chemically processed long range transport factor. The biomass burning factors were separated by PMF due to differences in chemical processing which were caused in part by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to characterize the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling.

  20. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to elucidate the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling.

  1. Method of producing a chemical hydride

    DOEpatents

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  2. Chemical Composition Measurements of LAWA44 Glass Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.; Riley, W.

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for severalmore » samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B 2O 3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.« less

  3. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles.

    PubMed

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-02-13

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiF x . The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  4. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    PubMed Central

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-01-01

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534

  5. A Potential Use of 3-D Scanning to Evaluate the Chemical Composition of Pork Meat.

    PubMed

    Adamczak, Lech; Chmiel, Marta; Florowski, Tomasz; Pietrzak, Dorota; Witkowski, Marcin; Barczak, Tomasz

    2015-07-01

    The aim of this study was to determine the possibility of 3-D scanning method in chemical composition evaluation of pork meat. The sampling material comprised neck muscles (1000 g each) obtained from 20 pork carcasses. The volumetric estimation process of the elements was conducted on the basis of point cloud collected using 3-D scanner. Knowing the weight of neck muscles, their density was calculated which was subsequently correlated with the content of basic chemical components of the pork meat (water, protein and fat content, determined by standard methods). The significant correlations (P ≤ 0.05) between meat density and water (r = 0.5213), protein (r = 0.5887), and fat (r = -0.6601) content were obtained. Based on the obtained results it seems likely to employ the 3-D scanning method to compute the meat chemical composition. The use of the 3-D scanning method in industrial practice will allow to evaluate the chemical composition of meat in online mode on a dressing and fabrication line and in a rapid, noninvasive manner. The control of the raw material using the 3-D scanning will allow to make visual assessment more objective and will enable optimal standardization of meat batches prior to processing stage. It will ensure not only the repeatability of product quality characteristics, but also optimal use of raw material-lean and fat meat. The knowledge of chemical composition of meat is essential due to legal requirements associated with mandatory nutrition facts labels on food products. © 2015 Institute of Food Technologists®

  6. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India.

    PubMed

    Sharma, Ph Baleshwor; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2015-02-01

    Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits viz., Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola grown in Manipur, India were presented in the current study. The order of the antioxidant activity and reducing power of the fruit samples was found as R. semialata > D. indica > G. xanthochymus > A. carambola > G. pedunculata. Good correlation coefficient (R(2) > 0.99) was found among the three methods applied to determine antioxidant activity. Total phenolic content was positively correlated (R(2) = 0.960) with the antioxidant activity however, total flavonoid content was not positively correlated with the antioxidant activity. Physico-chemical and proximate composition of these fruits is documented for the first time.

  7. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil

    PubMed Central

    Mahboubi, M; Kazempour, N

    2011-01-01

    Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088

  8. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    NASA Astrophysics Data System (ADS)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  9. Effects of cocoa butter triacylglycerides and minor compounds on oil migration.

    PubMed

    Wang, Hao; Maleky, Farnaz

    2018-04-01

    In a multi-component chocolate product, oil migration, from high oil content filling into chocolate, is one of the major contributors to the product quality loss. Among various parameters influencing oil diffusivity, cocoa butter is studied intensively. Studies have shown that the rate of oil transportion in cocoa butter is affected by its composition, the way that it is crystallized, and also the storage conditions. To model and study effects of cocoa butter type and processing conditions on oil migration, five different cocoa butter samples were studied in this work. Samples' chemical compositions in addition to their structural properties were analyzed to understand and compare oil migrations in the networks. Crystallized cocoa butter samples were placed in contact with a cream as a source of liquid oil. Using Magnetic Resonance Imaging, the movement of liquid oil into samples was investigated. The effects of minor differences in the cocoa butter chemical compositions on oil migrations rate are shown clearly. The highest effective diffusion coefficient was observed in the sample with the higher unsaturated fatty acids and phospholipids content. Although shearing at 250s -1 delayed oil migration in all the samples and a significantly lower diffusion coefficient was observed in the dynamic samples, the effects of chemical composition were still dominant. This study successfully highlighted that even minor differences in cocoa butter composition affect the network mass transfer phenomenon dramatically and that it is not easy to diminish these possessions by just crystallization processes. Published by Elsevier Ltd.

  10. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

    PubMed

    Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab

    2008-10-01

    The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

  11. Volatile pollutants emitted from selected liquid household products.

    PubMed

    Kwon, Ki-Dong; Jo, Wan-Kuen; Lim, Ho-Jin; Jeong, Woo-Sik

    2008-09-01

    To identify household products that may be potential sources of indoor air pollution, the chemical composition emitted from the products should be surveyed. Although this kind of survey has been conducted by certain research groups in Western Europe and the USA, there is still limited information in scientific literature. Moreover, chemical components and their proportions of household products are suspected to be different with different manufacturers. Consequently, the current study evaluated the emission composition for 42 liquid household products sold in Korea, focusing on five product classes (deodorizers, household cleaners, color removers, pesticides, and polishes). The present study included two phase experiments. First, the chemical components and their proportions in household products were determined using a gas chromatograph and mass spectrometer system. For the 19 target compounds screened by the first phase of the experiment and other selection criteria, the second phase was done to identify their proportions in the purged-gas phase. The number of chemicals in the household products surveyed ranged from 9 to 113. Eight (product class of pesticides) to 17 (product class of cleaning products) compounds were detected in the purged-gas phase of each product class. Several compounds were identified in more than one product class. Six chemicals (acetone, ethanol, limonene, perchloroethylene (PCE), phenol, and 1-propanol) were identified in all five product classes. There were 13 analytes occurring with a frequency of more than 10% in the household products: limonene (76.2%), ethanol (71.4%), PCE (66.7%), phenol (40.5%), 1-propanol (35.7%), decane (33%), acetone (28.6%), toluene (19.0%), 2-butoxy ethanol (16.7%), o-xylene (16.7%), chlorobenzene (14.3%), ethylbenzene (11.9%), and hexane (11.9%). All of the 42 household products analyzed were found to contain one or more of the 19 compounds. The chemical composition varied broadly along with the product classes or product categories, and it was different from that reported in other studies abroad, although certain target chemicals were identified in both studies. This finding supports an assertion that chemical components emitted from household products may be different in different products and with different manufacturers. The chlorinated pollutants identified in the present study have not been reported to be components of cleaning products in papers published since the early 1990s. Limonene was identified as having the highest occurrence in the household products in the present study, although it was not detected in any of 67 household products sold in the U.S. The emission composition of selected household products was successfully examined by purge-and-trap analysis. Along with other exposure information such as use pattern of household products and the indoor climate, this composition data can be used to estimate personal exposure levels of building occupants. This exposure data can be employed to link environmental exposure to health risk. It is noteworthy that many liquid household products sold in Korea emitted several toxic aromatic and chlorinated organic compounds. Moreover, the current finding suggests that product types and manufacturers should be considered, when evaluating building occupants' exposure to chemical components emitted from household products. The current findings can provide valuable information for the semiquantitative estimation of the population inhalation exposure to these compounds in indoor environments and for the selection of safer household products. However, although the chemical composition is known, the emissions of household products might include compounds formed during the use of the product or compounds not identified as ingredients by this study. Accordingly, further studies are required, and testing must be done to determine the actual composition being emitted. Similar to eco-labeling of shampoos, shower gels, and foam baths proposed by a previous study, eco-labeling of other household products is suggested.

  12. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, Y.; Ialongo, I.; Hakkarainen, J.; Zhang, Y.

    2016-08-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of satellite data on chemical composition in UTLS, (ii) dynamical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses.In this paper, we present the main results of the project.

  13. Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system

    Treesearch

    R.B. Muntifering; A.H. Chappelka; J.C. Lin; D.F. Karnosky; G.L. Somers

    2006-01-01

    Tropospheric ozone (O3) and carbon dioxide (CO2) are significant drivers of plant growth and chemical composition. We hypothesized that exposure to elevated concentrations of O3 and CO2, singly and in combination, would modify the chemical composition of Trifolium...

  14. Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska

    Treesearch

    V. Yadama; Eini Lowell; N. Petersen; D. Nicholls

    2009-01-01

    The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...

  15. Grouping of Petroleum Substances as Example UVCBs by Ion Mobility-Mass Spectrometry to Enable Chemical Composition-Based Read-Across.

    PubMed

    Grimm, Fabian A; Russell, William K; Luo, Yu-Syuan; Iwata, Yasuhiro; Chiu, Weihsueh A; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rusyn, Ivan

    2017-06-20

    Substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs), including many refined petroleum products, present a major challenge in regulatory submissions under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and US High Production Volume regulatory regimes. The inherent complexity of these substances, as well as variability in composition obfuscates detailed chemical characterization of each individual substance and their grouping for human and environmental health evaluation through read-across. In this study, we applied ion mobility mass spectrometry in conjunction with cheminformatics-based data integration and visualization to derive substance-specific signatures based on the distribution and abundance of various heteroatom classes. We used petroleum substances from four petroleum substance manufacturing streams and evaluated their chemical composition similarity based on high-dimensional substance-specific quantitative parameters including m/z distribution, drift time, carbon number range, and associated double bond equivalents and hydrogen-to-carbon ratios. Data integration and visualization revealed group-specific similarities for petroleum substances. Observed differences within a product group were indicative of batch- or manufacturer-dependent variation. We demonstrate how high-resolution analytical chemistry approaches can be used effectively to support categorization of UVCBs based on their heteroatom composition and how such data can be used in regulatory decision-making.

  16. Chemical Composition of Surfaces of Polycrystalline Silver Held in Water Vapor

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Khubezhov, S. A.; Aleroev, M. A.; Grigorkina, G. S.; Ashkhotova, I. B.; Magkoev, T. T.; Bliev, A. P.; Ramonova, A. G.; Kibizov, D. D.

    2018-01-01

    The chemical composition of surfaces and near-surface layers of massive polycrystalline silver held in water vapor for 2 h at 1073 K is studied via Auger and X-ray photoelectron spectroscopy. It is shown that the oxygen on a surface is in the molecular state. In near-surface layers at depths of up to 8 nm, it is predominantly in the atomic state typical of chemisorbed Ag2O.

  17. Chemical Composition Analysis and Product Consistency Tests of the ORP Phase 5 Nepheline Study Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Caldwell, M. E.

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high-level waste glass compositions fabricated by the Pacific Northwest National Laboratory (PNNL). These data will be used in the development of improved models for the prediction of nepheline crystallization in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP).

  18. Biologically controlled minerals as potential indicators of life

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  19. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  20. Determination of anisotropy and multimorphology in fly ash based geopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  1. Determination of anisotropy and multimorphology in fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez

    2015-07-01

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  2. Estimation of chemical carcass composition from 8th rib characteristics with Belgian blue double-muscled bulls.

    PubMed

    De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I

    1999-01-01

    Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls.

  3. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  4. Pulsed plasma chemical synthesis of SixCyOz composite nanopowder

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2017-05-01

    SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.

  5. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  6. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  7. Screening of the chemical composition and bioactivity of Waldheimia glabra (Decne.) Regel essential oil.

    PubMed

    Manzo, Alessandra; Musso, Loana; Panseri, Sara; Iriti, Marcello; Dallavalle, Sabrina; Catalano, Enrico; Scarì, Giorgio; Giorgi, Annamaria

    2016-07-01

    This research aimed at improving knowledge as to the chemical composition and the antibacterial and anti-cancer activities of the essential oil of Waldheimia glabra, a wild plant from the Himalayan Mountains. The results obtained by GC-MS showed that spathulenol, 9-tetradecenol, thujopsene, α-thujone, santolina alcohol and terpinen-4-ol were the main constituents of Waldheimia glabra essential oil. These results were confirmed by HS-SPME GC-MS analysis that also reported high amounts of artemisia alcohol and camphor. Disc diffusion assay suggested a mild antibacterial activity against both Escherichia coli and Staphylococcus aureus. Finally, a dose-response correlation was observed between Waldhemia glabra essential oil concentration and viability of human breast adenocarcinoma cells MDA-MB-231 and MCF-7. Together with the GC-MS method, HS-SPME GC-MS proved to be a reliable technique to characterise the chemical composition of essential oil obtained from aromatic plants. Further studies will focus on W. glabra phytochemicals and their biological activity, in order to support traditional uses of the plant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Interface Reactions and Synthetic Reaction of Composite Systems

    PubMed Central

    Park, Joon Sik; Kim, Jeong Min

    2010-01-01

    Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.

  9. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.

    2014-05-01

    Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.

  10. Biological and Chemical Significance of Surface Microlayers in Aquatic Ecosystems

    ERIC Educational Resources Information Center

    Parker, B.; Barsom, G.

    1970-01-01

    Reviews methods of study, chemical composition, physical properties and ecology of surface microlayers in marine and fresh water habitats. Relates to problems of air and water pollution. Suggests areas for further research. (EB)

  11. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria

    PubMed Central

    Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean

    2014-01-01

    Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.

  12. Theoretical studies in interstellar cloud chemistry

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Prasad, S. S.

    1993-01-01

    This final report represents the completion of the three tasks under the purchase order no. SCPDE5620,1,2F. Chemical composition of gravitationally contracting, but otherwise quiescent, interstellar clouds and of interstellar clouds traversed by high velocity shocks, were modeled in a comprehensive manner that represents a significant progress in modeling these objects. The evolutionary chemical modeling, done under this NASA contract, represents a notable advance over the 'classical' fixed condition equilibrium models because the evolutionary models consider not only the chemical processes but also the dynamical processes by which the dark interstellar clouds may have assumed their present state. The shock calculations, being reported here, are important because they extend the limited chemical composition derivable from dynamical calculations for the total density and temperature structures behind the shock front. In order to be tractable, the dynamical calculations must severely simplify the chemistry. The present shock calculations take the shock profiles from the dynamical calculations and derive chemical composition in a comprehensive manner. The results of the present modeling study are still to be analyzed with reference to astronomical observational data and other contemporary model predictions. As far as humanly possible, this analysis will be continued with CRE's (Creative Research Enterprises's) IR&D resources, until a sponsor is found.

  13. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Piña, A. Aragón; Villaseñor, G. Torres; Jacinto, P. Santiago; Fernández, M. Monroy

    In the city of San Luis Potosi exists an important metallurgical plant and is known that in the adjacent urban zone, there is a high concentration of lead in the air, it is also supposed that most of the particles with lead have an anthropogenic origin because these particles show morphological characteristics and chemical composition very different in comparison with common lead minerals. In this work it was proved that most of the airborne particles with lead present in this urban zone, effectively came from the copper smelter. The airborne particles with lead were compared with particles with lead obtained starting from samples of slag and lead calcine of the copper smelter. To perform the comparative study, these particles were studied with energy dispersive X-ray microanalysis (EDS) in conjunction with scanning electron microscope to obtain chemical composition and associated morphological characteristics. Results suggest that these particles, composed of only one phase, are chemically distinct from any crustal lead mineral. Because of the complexity of the chemical composition of these particles (Pb, S, Cu, As, Fe, Zn, Cd, Sb, O), some of the airborne particles were analyzed by transmission microscopy in order to associate crystalline structure with any particular chemical phase.

  14. Semi-Continuous Measurements of Aerosol Chemical Composition During the Summer 2002 Yosemite National Park Special Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, J; Lee, T; Heath, J

    2003-02-16

    Semi-continuous measurements of fine particle composition were made over a period of several weeks in summer 2002 in Yosemite National Park, California. These included measurement of aerosol ionic composition (by PILS- Particle-Into-Liquid System) and aerosol carbon (by dual wavelength aethalometer and an R&P particulate carbon monitor). The data reveal that aerosol composition at the site is highly :variable in time, with a strong diurnal cycle. Interestingly, however, different diurnal cycles were sometimes observed for different chemical constituents of the particles. Organic carbon was observed to dominate fine particle mass, with some periods apparently associated with influx of smoke from wildfiresmore » in the western U.S. Measurements of fine particle carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. The ionic fraction of the aerosol was usually dominated by ammoniated sulfate. During most periods, PM{sub 2.5} nitrate was found primarily in sea salt particles from which chloride had been displaced. Strong variations in the extent of ammonia neutralization of sulfate were also observed. The ability to observe rapid changes in aerosol composition using these semi-continuous aerosol composition measurements is helpful for understanding the dynamic chemical composition of fine particles responsible for regional haze.« less

  15. Laboratory Inquiry for Determining the Chemical Composition of a Component in a Daily Use Detergent: Sodium Sesquicarbonate

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Kimura, Tomoyasu; Shigedomi, Kana

    2011-01-01

    An inquiry-based laboratory activity to determine the chemical composition of a component in alkaline detergents, sodium sesquicarbonate (SSC), is proposed. On the basis of introductory demonstrations by the instructor on the chemical properties and reactions of SSC, students propose the hypothetical composition of SSC and possible quantitative…

  16. Effects of a thermal perturbation on mineralogy and pore water composition in a clay-rock: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Gailhanou, H.; Lerouge, C.; Debure, M.; Gaboreau, S.; Gaucher, E. C.; Grangeon, S.; Grenèche, J.-M.; Kars, M.; Madé, B.; Marty, N. C. M.; Warmont, F.; Tournassat, C.

    2017-01-01

    The physical and chemical properties of clay-rocks are, at least partly, controlled by the chemical composition of their pore water. In evaluating the concept of disposing of radioactive waste in clay-rock formations, determining pore water composition is an important step in predicting how a clay-rock will behave over time and as a function of external forces, such as chemical and thermal perturbations. This study aimed to assess experimental and modeling methodology to calculate pore water composition in a clay-rock as a function of temperature (up to 80 °C). Hydrothermal alteration experiments were carried out on clay-rock samples. We conducted comprehensive chemical and mineralogical characterization of the material before and after reaction, and monitored how the chemical parameters in the liquid and gas phases changed. We compared the experimental results with the a priori predictions made by various models that differed in their hypotheses on the reactivity of the minerals present in the system. Thermodynamic equilibrium could not be assessed unequivocally in these experiments and most of the predicted mineralogy changes were too subtle to be tracked quantitatively. However, from observing the neo-formation of minerals such as goethite we were able to assess the prominent role of Fe-bearing phases in the outcome of the experiments, especially for the measured pH and pCO2 values. After calibrating the amount of reacting Fe-bearing phases with our data, we proposed a thermodynamic model that was capable of predicting the chemical evolution of the systems under investigation as well as the evolution of other systems already published in the literature, with the same clay-rock material but with significant differences in experimental conditions.

  17. Influence of ionization on the Gupta and on the Park chemical models

    NASA Astrophysics Data System (ADS)

    Morsa, Luigi; Zuppardi, Gennaro

    2014-12-01

    This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta; using the Gupta model, in the design of a thermal protection system, is recommended.

  18. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  19. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  20. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    NASA Astrophysics Data System (ADS)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  1. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  3. Chemical Composition of Cacti Wood and Comparison with the Wood of Other Taxonomic Groups.

    PubMed

    Maceda, Agustín; Soto-Hernández, Marcos; Peña-Valdivia, Cecilia B; Terrazas, Teresa

    2018-04-01

    The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (P < 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non-fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  4. There Is Still Room for Improvement: Presentation of a Neutral Borosilicate Glass with Improved Chemical Stability for Parenteral Packaging.

    PubMed

    Boltres, Bettine; Tratzky, Stephan; Kass, Christof; Eichholz, Rainer; Naß, Peter

    2016-01-01

    For pharmaceutical parenteral packaging the glass compositions have always been either Type I borosilicate or Type III soda-lime glass. As both the compositions and certain chemical and physical properties are mandated by international standards, there has not been room for any changes. However, by applying only minor adjustments, a borosilicate glass was developed that showed improved chemical stability. The chemical composition is still in the range of currently used borosilicate glasses, which makes it a Type I glass according to all current pharmacopeia. A study was performed on glass vials comparing the new glass with the standard FIOLAX(®) and two other publicly available glasses. In an extraction study with water at 121 °C the new glass showed the highest chemical stability with the lowest amount of extractables. In an accelerated ageing study, which was done with water, phosphate, and carbonate buffer at 40 °C for 12 months, the new glass also proved to have the lowest amount of leachables. In this article the new glass and the results from the studies are presented, showing the reader how much of an effect can be attained with only minor adjustments if the scientific fundamentals are clear. The pharmaceutical market has been quite constant and risk-oriented due to the high impact on the safety of the patient. As any change necessitates a complicated change process, this has, in consequence, lead the industry to resist changing the parenteral primary packaging material for decades. The main glasses have either been Type I borosilicate or Type III soda-lime glass. On the other hand, a combination of improved inspection systems and the development of more sensitive biologically based drugs has elevated the standards for parental packaging materials. For example, the measurement of extractables and leachables from the packaging material steadily came into focus. In this article, a new glass is presented that still belongs to the group of Type I borosilicate glasses according to all pharmacopeia. However, with some minor adjustments in the chemical composition it was possible to increase the chemical stability measurably. To prove this several studies were performed, of which the extraction study with water at 121 °C and the accelerated ageing study with water, phosphate, and carbonate buffer at 40 °C for 12 months are presented here. © PDA, Inc. 2016.

  5. Thermally emissive sensing materials for chemical spectroscopy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Zsolt; Ohodnicki, Paul R.

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less

  6. Body composition in athletes: assessment and estimated fatness.

    PubMed

    Malina, Robert M

    2007-01-01

    The study of body composition attempts to partition and quantify body weight or mass into its basic components. Body weight is a gross measure of the mass of the body, which can be studied at several levels from basic chemical elements and specific tissues to the entire body. Body composition is a factor that can influence athletic performance and as such is of considerable interest to athletes and coaches. This article provides an overview of models and methods used for studying body composition, changes in body composition during adolescence and the transition into adulthood, and applications to adolescent and young adult athletes.

  7. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    PubMed Central

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234

  8. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-03-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

  10. Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time

    NASA Astrophysics Data System (ADS)

    Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan

    2017-10-01

    Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.

  11. Stellar Parameters, Chemical composition and Models of chemical evolution

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.

    2018-04-01

    We present an in-depth study of metal-poor stars, based high resolution spectra combined with newly released astrometric data from Gaia, with special attention to observational uncertainties. The results are compared to those of other studies, including Gaia benchmark stars. Chemical evolution models are discussed, highlighting few puzzles that are still affecting our understanding of stellar nucleosynthesis and of the evolution of our Galaxy.

  12. The Chemical Composition of the Active Stars

    NASA Astrophysics Data System (ADS)

    Glazunova, L. V.

    The comparison of the results of the studies of the active stars' chemical composition obtained by different authors has been performed. It was concluded that the difference between the abundances of some elements in active and inactive stars becomes significant (> 3σ) only for the active stars with high chromospheric activity (lgR'HK > -4). This is the case primarily for the light elements, namely Li, Na and Al, as well as heavy elements with Z > 30.

  13. Level and Chemical Composition of Cryoglobulins in Schizophrenia

    NASA Astrophysics Data System (ADS)

    Khoyetsyan, Aren; Boyajyan, Anna; Melkumova, Maya

    The blood samples of 40 schizophrenic patients were tested for the presence of cryoglobulins (Cgs) and composition of Cgs was examined. The elevated levels of type III Cgs, containing complement components, were detected in all study subjects.

  14. Chemical Composition and Biological Investigations of Eryngium triquetrum Essential Oil from Algeria.

    PubMed

    Medbouhi, Ali; Merad, Nadjiya; Khadir, Abdelmounaim; Bendahou, Mourad; Djabou, Nassim; Costa, Jean; Muselli, Alain

    2018-01-01

    The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC-FID and GC/MS. Twenty-four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Sugars and organic acids in plum fruit affected by Plum pox virus.

    PubMed

    Usenik, Valentina; Marn, Mojca Virscek

    2017-05-01

    Plum pox virus (PPV) causes severe economic losses in stone fruit production, but little is known about its effect on plum fruit composition. In this study, the influence of PPV on sugars and organic acids was evaluated in a susceptible plum (Prunus domestica L.) cultivar. PPV infection significantly affected the content and composition of sugars and organic acids. The composition of necrotic tissue was modified the most. A short-time infected tree yielded fruit with similar sugar composition to fruit from a healthy tree, but the decline of organic acids was faster. Prematurely ripened symptomatic fruit had reduced fruit weight and low sugar content. Infected trees of the studied cultivar produce fruit of inferior quality. Fruits are not suitable for processing, especially when most of them exhibit visual symptoms of PPV infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    NASA Astrophysics Data System (ADS)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  17. Impact of variations in the chemical composition of vitreous mineral fibers on biopersistence in rat lungs and consequences for regulation.

    PubMed

    Bellmann, Bernd; Schaeffer, Helmut A; Muhle, Hartwig

    2010-08-01

    The chronic toxicity of vitreous fibers is substantially dependent on their biopersistence. Removal of fibers deposited in the respiratory tract is dependent on a combination of physiological clearance processes (like mechanical translocation) and physico-chemical processes like dissolution and leaching. This publication presents data of about 60 different fibers investigated in the biopersistence test which was standardized in the European Union. This test is based on in vivo investigation of biopersistence after intratracheal instillation in rats of a respirable fiber fraction, and it is a basis for the regulatory classification of vitreous fibers. Regression analysis is carried out employing the data of glass fiber compositions and the corresponding results of biopersistence tests (half-times). The study leads to a model that enables prediction of half-times for stone wool fibers as well as for glass wool fibers on the basis of their chemical composition. The aim of this paper was to investigate the stringency of the existing limits for the range of the chemical composition of glass and stone wools in view of the currently available data base. For regulatory purposes, however, this model is currently not sufficient to replace biopersistence tests completely.

  18. [Revisiting the chemical diversity in prostatic calculi: a SEM and FT-IR investigation].

    PubMed

    Dessombz, A; Méria, P; Bazin, D; Foy, E; Rouzière, S; Weil, R; Daudon, M

    2011-12-01

    Revisiting the chemical diversity of the crystalline phases of prostatic calculi by means of SEM and FT-IR analysis. A set of 32 prostatic calculi has been studied by FT-IR and SEM. FT-IR analysis has determined the chemical composition of each prostatic calculus and the SEM observation has described the morphology of the calculi surfaces and layers. Infrared analysis revealed that 90.7% of the stones were mainly composed of calcium phosphates. However, several mineral phases previously not reported in prostatic calculi were observed, as brushite or octocalcium phosphate pentahydrate. Prostatic calculi exhibited a diversity of crystalline composition and morphology. As previously reported for urinary calculi, relationships between composition and morphology of prostatic stones and étiopathogenic conditions could be of interest in clinical practice. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P; Santella, Michael L; Wilson, Keely A

    2008-01-01

    Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate thesemore » materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.« less

  20. Chemical Composition of Galactic Disk Stars

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Basak, N. Yu.; Gorbaneva, T. I.; Soubiran, C.; Kovtyukh, V. V.

    Abundances of Na, Al, Ca, in the stars of galactic disks are obtained. The separation of thin and stars on cinematic criterion was made early. The behavior of chemical element abundances with metallicity for studied stars was presented.

  1. Bio-composites based on cellulose acetate and kenaf fibers: Processing and properties

    NASA Astrophysics Data System (ADS)

    Pang, C.; Shanks, R. A.; Daver, F.

    2014-05-01

    Research on bio-composites is important because of its positive environmental impact. In this study, bio-composites based on plasticised cellulose acetate and kenaf fibers were prepared by solution casting and compression moulding methods. The fibers were chemically treated to remove lignin, hemicellulose and impurities. Mechanical, morphological and thermal properties of the bio-composites were studied. Introduction of chopped kenaf fibers increased the storage modulus. The flexural storage modulus of the composite was affected with the introduction of moisture. Moisture behaved similar to the effect of plasticiser, it reduced the modulus.

  2. Chemical and physical characterization of the first stages of protoplanetary disk formation

    NASA Astrophysics Data System (ADS)

    Hincelin, Ugo

    2012-12-01

    Low mass stars, like our Sun, are born from the collapse of a molecular cloud. The matter falls in the center of the cloud, creating a protoplanetary disk surrounding a protostar. Planets and other Solar System bodies will be formed in the disk. The chemical composition of the interstellar matter and its evolution during the formation of the disk are important to better understand the formation process of these objects. I studied the chemical and physical evolution of this matter, from the cloud to the disk, using the chemical gas-grain code Nautilus. A sensitivity study to some parameters of the code (such as elemental abundances and parameters of grain surface chemistry) has been done. More particularly, the updates of rate coefficients and branching ratios of the reactions of our chemical network showed their importance, such as on the abundances of some chemical species, and on the code sensitivity to others parameters. Several physical models of collapsing dense core have also been considered. The more complex and solid approach has been to interface our chemical code with the radiation-magneto-hydrodynamic model of stellar formation RAMSES, in order to model in three dimensions the physical and chemical evolution of a young disk formation. Our study showed that the disk keeps imprints of the past history of the matter, and so its chemical composition is sensitive to the initial conditions.

  3. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  4. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    PubMed

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Adsorption behaviour of hydrogarnet for humic acid

    NASA Astrophysics Data System (ADS)

    Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro

    2018-04-01

    Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.

  6. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  7. A new look at sulphur chemistry in hot cores and corinos

    NASA Astrophysics Data System (ADS)

    Vidal, Thomas H. G.; Wakelam, Valentine

    2018-03-01

    Sulphur-bearing species are often used to probe the evolution of hot cores because their abundances are particularly sensitive to physical and chemical variations. However, the chemistry of sulphur is not well understood in these regions, notably because observations of several hot cores have displayed a large variety of sulphur compositions, and because the reservoir of sulphur in dense clouds, in which hot cores form, is still poorly constrained. In order to help disentangle its complexity, we present a fresh comprehensive review of sulphur chemistry in hot cores along with a study of sulphur's sensibility to temperature and pre-collapse chemical composition. In parallel, we analyse the discrepencies that result from the use of two different types of models (static and dynamic) in order to highlight the sensitivity to the choice of model to be used in astrochemical studies. Our results show that the pre-collapse chemical composition is a critical parameter for sulphur chemistry in hot cores and that it could explain the different sulphur compositions observed. We also report that differences in abundances for a given species between the static and dynamic models can reach six orders of magnitude in the hot core, which reveals the key role of the choice of model in astrochemical studies.

  8. Phenolic composition and mouthfeel characteristics resulting from blending Chilean red wines.

    PubMed

    Cáceres-Mella, Alejandro; Peña-Neira, Alvaro; Avilés-Gálvez, Pamela; Medel-Marabolí, Marcela; Del Barrio-Galán, Rubén; López-Solís, Remigio; Canals, Joan Miquel

    2014-03-15

    The blending of wine is a common practice in winemaking to improve certain characteristics that are appreciated by consumers. The use of some cultivars may contribute phenolic compounds that modify certain characteristics in blended wines, particularly those related to mouthfeel. The aim of this work was to study the effect of Carménère, Merlot and Cabernet Franc on the phenolic composition, proanthocyanidin profile and mouthfeel characteristics of Cabernet Sauvignon blends. Significant differences in chemical composition were observed among the monovarietal wines. Separation using Sep-Pak C₁₈ cartridges revealed differences in the concentration but not in the proportion of various proanthocyanidins. Blending reduced polyphenol concentration differences among the various monovarietal wines. Although no major overall differences were observed after blending the monovarietal wines, this oenological practice produced clear differences in mouthfeel characteristics in such a way that the quality of the perceived astringency was different. This study showed that the use of a particular wine variety (Cabernet Sauvignon) in a higher proportion in wine blending produced blends that were less differentiable from the monovarietal wine, owing to a suppression effect, producing an apparent standardization of the wines regarding chemical composition. © 2013 Society of Chemical Industry.

  9. The Brittleness and Chemical Stability of Optimized Geopolymer Composites

    PubMed Central

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-01-01

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability. PMID:28772756

  10. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    PubMed

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  11. Municipal solid waste landfills harbor distinct microbiomes

    USGS Publications Warehouse

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  12. Quantification of the effects of secondary matrix on the analysis of sandstone composition, and a petrographic-chemical technique for retrieving original framework grain modes of altered sandstones.

    PubMed

    Cox, R; Lowe, D R

    1996-05-01

    Most studies of sandstone provenance involve modal analysis of framework grains using techniques that exclude the fine-grained breakdown products of labile mineral grains and rock fragments, usually termed secondary matrix or pseudomatrix. However, the data presented here demonstrate that, when the proportion of pseudomatrix in a sandstone exceeds 10%, standard petrographic analysis can lead to incorrect provenance interpretation. Petrographic schemes for provenance analysis such as QFL and QFR should not therefore be applied to sandstones containing more than 10% secondary matrix. Pseudomatrix is commonly abundant in sandstones, and this is therefore a problem for provenance analysis. The difficulty can be alleviated by the use of whole-rock chemistry in addition to petrographic analysis. Combination of chemical and point-count data permits the construction of normative compositions that approximate original framework grain compositions. Provenance analysis is also complicated in many cases by fundamental compositional alteration during weathering and transport. Many sandstones, particularly shallow marine deposits, have undergone vigorous reworking, which may destroy unstable mineral grains and rock fragments. In such cases it may not be possible to retrieve provenance information by either petrographic or chemical means. Because of this, pseudomatrix-rich sandstones should be routinely included in chemical-petrological provenance analysis. Because of the many factors, both pre- and post-depositional, that operate to increase the compositional maturity of sandstones, petrologic studies must include a complete inventory of matrix proportions, grain size and sorting parameters, and an assessment of depositional setting.

  13. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  14. 40 CFR 79.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion or other chemical or physical reaction. (d) Fuel manufacturer means any person who, for sale or... the chemical composition of a bulk fuel, or the mixture of chemical compounds in a bulk fuel, by... fuel. (h) Chemical composition means the name and percentage by weight of each compound in an additive...

  15. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco.

    PubMed

    Ait-Ouazzou, Abdenour; Lorán, Susana; Bakkali, Mohammed; Laglaoui, Amin; Rota, Carmen; Herrera, Antonio; Pagán, Rafael; Conchello, Pilar

    2011-11-01

    The present study reports on the antimicrobial activity and chemical composition of the essential oils (EOs) of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. The composition of these species was analysed by GC-MS, and 65 components were identified. Eucalyptus globulus EO showed a great similarity with EOs from other regions, with 1,8-cineole (79.85%) the major component. Also rich in this constituent was Rosmarinus officinalis (43.99%). However, the chemical profile of Thymus algeriensis was rather different, and for the first time such a high content of borneol (23.48%) has been described in this EO. The antimicrobial activity of these species has also been studied against seven pathogenic and spoiling bacteria of significant importance. According to the results, Thymus algeriensis showed the best bacteriostatic and bactericidal effect, followed by Eucalyptus globulus and Rosmarinus officinalis. As far as we know this is the first time that minimum inhibitory and bactericidal concentration values have been reported for Eucalyptus globulus EO. Our data support the possible use of this EO as well as Thymus algeriensis EO, as potential natural agents in preservatives for food and pharmaceutical products. Copyright © 2011 Society of Chemical Industry.

  16. Measurement of Selected Organic Trace Gases During TRACE-P

    NASA Technical Reports Server (NTRS)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  17. Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.

    2000-01-01

    Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo

    In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less

  19. Recent trends and important developments in propolis research

    PubMed Central

    2005-01-01

    The newest developments in propolis pharmacological research are summarized. The problem regarding biological studies, caused by the chemical variability of propolis, is discussed. The most important trends and developments in recent propolis research are outlined: biological studies performed with chemically characterized samples, bioassay-guided studies of active principles and comparative biological studies of propolis of different origin and chemical composition. These types of studies are extremely valuable with respect to propolis standardization and practical applications in therapy. They will allow scientists to connect a particular chemical propolis type to a specific type of biological activity and formulate recommendations for practitioners. PMID:15841275

  20. Study of the chemical composition of atmospheric aerosol particles in Hungary: a review

    NASA Astrophysics Data System (ADS)

    Mészáros, E.

    The methods used in Hungarian laboratories to study the chemical composition of atmospheric aerosol particles over the last 30 years are reviewed. Individual particles were identified by topochemical techniques and morphological identification with an electron microscope. Bulk analyses were also carried out by applying wet chemical methods, and more recently by the PIXE procedure. The results gained are summarized in connection with the general development of atmospheric aerosol science during the last decades. These studies demonstrated that cloud condensation nuclei are water soluble Aitken sized particles which are composed of sulfates. Neutralized and acidic sulfate particles constitute the main class of fine aerosol particles under continental and oceanic background conditions. Coarse particles contain mostly sodium, silicon and aluminium. The formation and origin of particles in different size ranges are also discussed.

  1. Review of Diesel Odor and Toxic Vapor Emissions

    DOT National Transportation Integrated Search

    1981-05-01

    The purpose of the study was to attempt to assess the adequacy of the diesel engine exhaust chemical composition data base and instrumental analysis methods for the measurement of chemicals giving rise to sensory response, especially odor and irritat...

  2. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral differences in murine bone.

  3. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  4. Study of morphology, chemical, and amino acid composition of red deer meat.

    PubMed

    Okuskhanova, Eleonora; Assenova, Bahytkul; Rebezov, Maksim; Amirkhanov, Kumarbek; Yessimbekov, Zhanibek; Smolnikova, Farida; Nurgazezova, Almagul; Nurymkhan, Gulnur; Stuart, Marilyne

    2017-06-01

    The aim of this study was to evaluate red deer (maral) meat quality based on chemical composition, pH, water-binding capacity (WBC), and amino acid content. Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH) was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions) was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%). Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g), threonine (5.38 g/100 g), and valine (5.84 g/100 g) predominated in maral meat, while phenylalanine (4.08 g/100 g), methionine (3.29 g/100 g), and tryptophan (0.94 g/100 g) were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food.

  5. Study of morphology, chemical, and amino acid composition of red deer meat

    PubMed Central

    Okuskhanova, Eleonora; Assenova, Bahytkul; Rebezov, Maksim; Amirkhanov, Kumarbek; Yessimbekov, Zhanibek; Smolnikova, Farida; Nurgazezova, Almagul; Nurymkhan, Gulnur; Stuart, Marilyne

    2017-01-01

    Aim: The aim of this study was to evaluate red deer (maral) meat quality based on chemical composition, pH, water-binding capacity (WBC), and amino acid content. Materials and Methods: Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH) was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions) was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Results: Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%). Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g), threonine (5.38 g/100 g), and valine (5.84 g/100 g) predominated in maral meat, while phenylalanine (4.08 g/100 g), methionine (3.29 g/100 g), and tryptophan (0.94 g/100 g) were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Conclusion: Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food. PMID:28717313

  6. [Study on chemical compositions and crystallinity changes of bamboo treated with gamma rays].

    PubMed

    Sun, Feng-Bo; Jiang, Ze-hui; Fei, Ben-hua; Lu, Fang; Yu, Zi-xuan; Chang, Xiang-zhen

    2011-07-01

    The structures and qualities of main chemical compositions in cell wall of bamboo treated with gamma rays were tested by nuclear magnetic resonance spectrometer (NMR) and X-ray Diffraction (XRD). The result indicated that the bamboo crystallinity increased at the beginning of irradiation process, while the crystallinity reduced when the irradiation dose was raised to about 100 kGy. During the whole irradiation process, hemicellulose degraded, and with the irradiation doses increased the non-phenolic lignin changed to the phenolic.

  7. Chemical composition of stars in Ruprecht 106 .

    NASA Astrophysics Data System (ADS)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  8. Assessment of chemical and material contamination in waste wood fuels--A case study ranging over nine years.

    PubMed

    Edo, Mar; Björn, Erik; Persson, Per-Erik; Jansson, Stina

    2016-03-01

    The increased demand for waste wood (WW) as fuel in Swedish co-combustion facilities during the last years has increased the import of this material. Each country has different laws governing the use of chemicals and therefore the composition of the fuel will likely change when combining WW from different origins. To cope with this, enhanced knowledge is needed on WW composition and the performance of pre-treatment techniques for reduction of its contaminants. In this study, the chemical and physical characteristics of 500 WW samples collected at a co-combustion facility in Sweden between 2004 and 2013 were investigated to determine the variation of contaminant content over time. Multivariate data analysis was used for the interpretation of the data. The concentrations of all the studied contaminants varied widely between sampling occasions, demonstrating the highly variable composition of WW fuels. The efficiency of sieving as a pre-treatment measure to reduce the levels of contaminants was not sufficient, revealing that sieving should be used in combination with other pre-treatment methods. The results from this case study provide knowledge on waste wood composition that may benefit its management. This knowledge can be applied for selection of the most suitable pre-treatments to obtain high quality sustainable WW fuels. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluating the influence of chemical weathering on the composition of the continental crust using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X.

    2011-12-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  11. Prediction of Combustion Gas Deposit Compositions

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.

    1985-01-01

    Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.

  12. Update on the Chemical Composition Of Crystalline, Smectite, and Amorphous Components for Rocknest Soil and John Klein and Cumberland Mudstone Drill Fines at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.; hide

    2015-01-01

    We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.

  13. Chemical regulation of body feather microbiota in a wild bird.

    PubMed

    Jacob, Staffan; Sallé, Louis; Zinger, Lucie; Chaine, Alexis S; Ducamp, Christine; Boutault, Léa; Russell, Andrew F; Heeb, Philipp

    2018-04-01

    The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host-microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high-throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad-spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co-occurrence or co-exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad-spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms. © 2018 John Wiley & Sons Ltd.

  14. Neutron diffraction study of the martensitic transformation and chemical order in Heusler alloy Ni 1.91Mn 1.29Ga 0.8

    DOE PAGES

    Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo; ...

    2015-11-05

    In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less

  15. In Vivo Evaluation of Chemical Composition of Eight Types of Urinary Calculi Using Spiral Computerized Tomography in a Chinese Population.

    PubMed

    Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun

    2015-09-01

    This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.

  16. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  17. Chemical Composition of Rainwater in Córdoba City, Argentina

    NASA Astrophysics Data System (ADS)

    López, M. L.; Asar, M. L.; Ceppi, S.; Bürgesser, R. E.; Avila, E.

    2013-05-01

    Sampling and chemical analysis of rainwater has proved to be a useful technique for studying its chemical composition and provides a greater understanding of local and regional dispersion of pollutants and their potential impacts to ecosystems through deposition processes. Samples of rainwater were collected during 2009-2012, in Córdoba city, Argentina. Two kind of sampling were performed: event-specific and sequential. The objective of the first of these was to determine the chemical concentration of the total rain, while the objective of the second one was to analyze the variability of the chemical concentration during an individual rain event. The total volume of each sample was divided in halves. One half was filtered through 0.45 μm membrane filter. After this, all the samples were reduced by evaporation to a final volume of 10 ml. The non-filtered samples were acidified and digested in accordance to the method 3050B of the Environmental Protection Agency (EPA) for acid digestion of sediments. Multi-elemental standard solutions in different concentrations were prepared by adequate dilutions. Gallium was added as an internal standard in all standard solutions and samples. Exactly 5 μL of these solutions were deposited on acrylic supports. When these droplets were dried, Synchrotron Radiation Total Reflection X-Ray Fluorescence technique was used for determining the chemical elements. Spectra were analyzed with the AXIL package for spectrum analysis. Due to the intrinsic characteristics of the total reflection technique, the background of the measurements is significantly reduced and there are no matrix effects, therefore quantification can be obtained from the linear correlation between fluorescence intensity and the concentration of the element of interest. The elements quantified were S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, and Pb. For all of them a calibration curve was performed in order to quantify their concentrations on the samples. The results show that the average pH in city rainwater was pH=6.5; the elements found in the samples were S, Ca, Cu, Cr, Sr, P, Fe, Mn, Pb, K, Ti, V, Zn and the average concentrations of these elements were below the limits established by World Health Organization for drinking water, and show a high natural variability. The temporal evolution of inorganic ion concentration during rain events was analyzed and the scavenging coefficients were calculated and compared with data from literature. A comparison was made between the rainwater chemical composition and chemical composition in the aerosols scavenging during the rain. This study is the first in Córdoba city to analyze the chemical composition of rainwater and constitute a base for future comparison of variability in pH and elemental composition.

  18. Chemical composition studies of flint with different origins

    NASA Astrophysics Data System (ADS)

    Zarina, Liga; Seglins, Valdis; Kostjukovs, Juris; Burlakovs, Juris

    2015-04-01

    Flint is a widely used material in the Stone Age because of its physical characteristics, which makes the material suitable for obtaining tools with sharp working edges. Chert, flint, chalcedony, agate and jasper in composition and several other physical characteristics are very similar. Therefore in archaeology most often they are determined simplified and are not distinguished, but described as flint or chert, denoting only the material in a general sense. However, in-depth studies it is necessary accurately identify the rock type and, in addition, to determine the origin of the flint and the conditions of the formation for the various archaeological research needs. As a typical example can be noted the localization problems in determining whether flint is local, or have emerged in the region through the exchange or by transportation. Flint consists mainly from quartz and mostly it has cryptocrystalline or amorphous structure. In nature it occurs as nodules and interbedded inclusions in sedimentary deposits as a result of digenesis processes when calcium carbonate is replaced with silicia. Bedded chert primarily is accumulations originated from excess alkalinity in the sediments. Flint can also be formed in the crystallization processes of the chemically unstable amorphous silicia. In this context, it should be noted that flint is naturally heterogeneous and very varied material by the physical properties and therefore problematic in many contemporary studies. In the study different origin flint samples from England, Denmark and Latvia were compared after their chemical composition. Flint nodules from Northern Europe chalk cliffs formed as inclusions in interbedded deposits or results of the digenesis and samples of chalcedony saturated dolomite from Latvia formed in hydrothermal processes were analysed using XRD and XRF methods. The obtained data were statistically analysed, identifying major, minor and trace elements and subsequently assessing the chemical composition characteristics of the various origins flint. The obtained data indicates that in the flint nodules the amount of silicia is large and relatively stable, as well the presence of other chemical elements are uniform and relatively homogeneous. In turn, in the chalcedony saturated dolomite can be observed the highly variable quantity of silicia, the unstable proportion of Ca-Mg and other key chemical elements and the constantly present rare earth elements, whose concentration can be significant. The performed analysis confirmed that with the chemical composition analysis it is possible to distinguish flint formed in the different geological conditions, as well as to evaluate the indicative characteristics.

  19. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  20. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.

    2014-07-01

    The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.

  1. Chemical Diversity in Lippia alba (Mill.) N. E. Brown Germplasm

    PubMed Central

    Camêlo, Lídia Cristina Alves; Pinheiro, José Baldin; Andrade, Thiago Matos; Alves, Péricles Barreto

    2015-01-01

    The aim of this study was to perform chemical characterization of Lippia alba accessions from the Active Germplasm Bank of the Federal University of Sergipe. A randomized block experimental design with two replications was applied. The analysis of the chemical composition of the essential oils was conducted using a gas chromatograph coupled to a mass spectrometer. The chemical composition of the essential oils allowed the accessions to be allocated to the following six groups: group 1: linalool, 1,8-cineole, and caryophyllene oxide; group 2: linalool, geranial, neral, 1,8-cineol, and caryophyllene oxide; group 3: limonene, carvone, and sabinene; group 4: carvone, limonene, g-muurolene, and myrcene; group 5: neral, geranial, and caryophyllene oxide; and group 6: geranial, neral, o-cymene, limonene, and caryophyllene oxide. PMID:26075292

  2. Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing.

    PubMed

    Mustajärvi, Lukas; Eriksson-Wiklund, Ann-Kristin; Gorokhova, Elena; Jahnke, Annika; Sobek, Anna

    2017-11-15

    Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.

  3. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    NASA Astrophysics Data System (ADS)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  4. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  5. Investigations for Thermal and Electrical Conductivity of ABS-Graphene Blended Prototypes

    PubMed Central

    Singh, Rupinder; Sandhu, Gurleen S.; Penna, Rosa; Farina, Ilenia

    2017-01-01

    The thermoplastic materials such as acrylonitrile-butadiene-styrene (ABS) and Nylon have large applications in three-dimensional printing of functional/non-functional prototypes. Usually these polymer-based prototypes are lacking in thermal and electrical conductivity. Graphene (Gr) has attracted impressive enthusiasm in the recent past due to its natural mechanical, thermal, and electrical properties. This paper presents the step by step procedure (as a case study) for development of an in-house ABS-Gr blended composite feedstock filament for fused deposition modelling (FDM) applications. The feedstock filament has been prepared by two different methods (mechanical and chemical mixing). For mechanical mixing, a twin screw extrusion (TSE) process has been used, and for chemical mixing, the composite of Gr in an ABS matrix has been set by chemical dissolution, followed by mechanical blending through TSE. Finally, the electrical and thermal conductivity of functional prototypes prepared from composite feedstock filaments have been optimized. PMID:28773244

  6. Computer program determines chemical equilibria in complex systems

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Zeleznik, F. J.

    1966-01-01

    Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.

  7. Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response.

    PubMed

    López, Pilar; Martín, José

    2005-12-22

    In spite of the importance of chemoreception in sexual selection of lizards, only a few studies have examined the composition of chemical signals, and it is unknown whether and how chemicals provide honest information. Chemical signals might be honest if there were a trade-off between sexual advertisement and the immune system. Here, we show that proportions of cholesta-5,7-dien-3-ol in femoral secretions of male Iberian wall lizards (Podarcis hispanica) were related to their T-cell-mediated immune response. Thus, only males with a good immune system may allocate higher amounts of this chemical to signalling. Furthermore, females selected scents of males with higher proportions of cholesta-5,7-dien-3-ol and lower proportions of cholesterol. Thus, females might base their mate choice on the males' quality as indicated by the composition of their chemical signals.

  8. Effect of teapot materials on the chemical composition of oolong tea infusions.

    PubMed

    Liao, Zih-Hui; Chen, Ying-Jie; Tzen, Jason Tze-Cheng; Kuo, Ping-Chung; Lee, Maw-Rong; Mai, Fu-Der; Rairat, Tirawat; Chou, Chi-Chung

    2018-01-01

    The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Chemical evolution in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Torres-Peimbert, S.

    1986-01-01

    A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.

  10. Perfluorinated Compounds, Polychlorinated Biphenyls, and Organochlorine Pesticide Contamination in Composite Food Samples from Dallas, Texas, USA

    PubMed Central

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf; Birnbaum, Linda

    2010-01-01

    Objectives The objective of this article is to extend our previous studies of persistent organic pollutant (POP) contamination of U.S. food by measuring perfluorinated compounds (PFCs), organochlorine pesticides, and polychlorinated biphenyls (PCBs) in composite food samples. This study is part of a larger study reported in two articles, the other of which reports levels of polybrominated diphenyl ethers and hexabromocyclododecane brominated flame retardants in these composite foods [Schecter et al. 2010. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclodecane (HBCD) in composite U.S. food samples, Environ Health Perspect 118:357–362]. Methods In this study we measured concentrations of 32 organochlorine pesticides, 7 PCBs, and 11 PFCs in composite samples of 31 different types of food (310 individual food samples) purchased from supermarkets in Dallas, Texas (USA), in 2009. Dietary intake of these chemicals was calculated for an average American. Results Contamination varied greatly among chemical and food types. The highest level of pesticide contamination was from the dichlorodiphenyltrichloroethane (DDT) metabolite p,p′- dichlorodiphenyldichloroethylene, which ranged from 0.028 ng/g wet weight (ww) in whole milk yogurt to 2.3 ng/g ww in catfish fillets. We found PCB congeners (28, 52, 101, 118, 138, 153, and 180) primarily in fish, with highest levels in salmon (PCB-153, 1.2 ng/g ww; PCB-138, 0.93 ng/g ww). For PFCs, we detected perfluorooctanoic acid (PFOA) in 17 of 31 samples, ranging from 0.07 ng/g in potatoes to 1.80 ng/g in olive oil. In terms of dietary intake, DDT and DDT metabolites, endosulfans, aldrin, PCBs, and PFOA were consumed at the highest levels. Conclusion Despite product bans, we found POPs in U.S. food, and mixtures of these chemicals are consumed by the American public at varying levels. This suggests the need to expand testing of food for chemical contaminants. PMID:20146964

  11. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  12. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  13. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation (Postprint)

    DTIC Science & Technology

    2012-01-01

    this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite

  14. An investigation of interurban variations in the chemical composition and mutagenic activity of airborne particulate organic matter using an integrated chemical class/bioassay system

    NASA Astrophysics Data System (ADS)

    Butler, J. P.; Kneip, T. J.; Daisey, J. M.

    Previous investigations in this laboratory have demonstrated that the mutagenic activities of extractable particulate organic matter (EOM) from cities which differ in their principal fuels and meteorology can vary significantly. To gain a better understanding of these interurban variations, an Integrated Chemical Class/Biological Screening System was developed and used for a more detailed examination of differences in the chemical composition and mutagenic activity of EOM. The screening system involved coupling in situ Ames mutagenicity determinations on high performance thin layer chromatography (HPTLC) plates with class specific chemical analyses on a second set of plates. The system was used to screen for mutagenic activity and selected chemical classes (including PAH, nitro-PAH, phenols, carboxylic acids, carbonyls, aza-arenes and alkylating agents) in EOM from the following sites: New York City; Elizabeth, N.J.; Mexico City; Beijing, China; Philadelphia, PA; and the Caldecott Tunnel (CA). The results of this study demonstrated mutagenic activity and chemical compositional differences in HPTLC subfractions of particulate organic matter from these cities and from the Caldecott Tunnel. The greatest interurban differences in chemical classes were observed for the phenols, carbonyl compounds and alkylating agents. Interurban variations in mutagenic activities were greatest for EOM subfractions of intermediate polarity. These differences are probably related to interurban differences in the fuels used, types of sources and atmospheric conditions. The relationships between these variables are not well understood at present.

  15. Embedded fragments from U.S. military personnel--chemical analysis and potential health implications.

    PubMed

    Centeno, José A; Rogers, Duane A; van der Voet, Gijsbert B; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G; Chapman, Gail D; Olabisi, Ayodele O; Wagner, Dean J; Stojadinovic, Alexander; Potter, Benjamin K

    2014-01-23

    The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.

  16. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    PubMed Central

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members. PMID:24464236

  17. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE PAGES

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  18. Measurements of Organic Composition of Aerosol and Rainwater Samples Using Offline Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Ridley, K. J.; Canagaratna, M. R.; Croteau, P.; Budisulistiorini, S. H.; Cui, T.; Green, H. S.; Surratt, J. D.; Jayne, J. T.; Kroll, J. H.

    2016-12-01

    A thorough understanding of the sources, evolution, and budgets of atmospheric organic aerosol requires widespread measurements of the amount and chemical composition of atmospheric organic carbon in the condensed phase (within particles and water droplets). Collecting such datasets requires substantial spatial and temporal (long term) coverage, which can be challenging when relying on online measurements by state-of-the-art research-grade instrumentation (such as those used in atmospheric chemistry field studies). Instead, samples are routinely collected using relatively low-cost techniques, such as aerosol filters, for offline analysis of their chemical composition. However, measurements made by online and offline instruments can be fundamentally different, leading to disparities between data from field studies and those from more routine monitoring. To better connect these two approaches, and take advantage of the benefits of each, we have developed a method to introduce collected samples into online aerosol instruments using nebulization. Because nebulizers typically require tens to hundreds of milliliters of solution, limiting this technique to large samples, we developed a new, ultrasonic micro-nebulizer that requires only small volumes (tens of microliters) of sample for chemical analysis. The nebulized (resuspended) sample is then sent into a high-resolution Aerosol Mass Spectrometer (AMS), a widely-used instrument that provides key information on the chemical composition of aerosol particulate matter (elemental ratios, carbon oxidation state, etc.), measurements that are not typically made for collected atmospheric samples. Here, we compare AMS data collected using standard on-line techniques with our offline analysis, demonstrating the utility of this new technique to aerosol filter samples. We then apply this approach to organic aerosol filter samples collected in remote regions, as well as rainwater samples from across the US. This data provides information on the sample composition and changes in key chemical characteristics across locations and seasons.

  19. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  20. The Chemical Composition and Mixing State of Sea Spray Aerosol and Organic Aerosol in the Winter-Spring Arctic

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.

    2016-12-01

    The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.

  1. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species.

    PubMed

    Ghaffar, Abdul; Yameen, Muhammad; Kiran, Shumaila; Kamal, Shagufta; Jalal, Fatima; Munir, Bushra; Saleem, Sadaf; Rafiq, Naila; Ahmad, Aftab; Saba, Iram; Jabbar, Abdul

    2015-11-18

    Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs) extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan). EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%), α-pinene (31.4%), citrinyl acetate (13.3%), eugenol (11.8%) and terpenene-4-ol (10.2%) were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani). Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH) radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively) followed by E. camaldulensis (81.9% and 83.3%, respectively). The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  2. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  3. Chemical analyses of micrometre-sized solids by a miniature laser ablation/ionisation mass spectrometer (LMS)

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor

    2017-04-01

    Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.

  4. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  5. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym.

    PubMed

    Angioni, Alberto; Barra, Andrea; Arlorio, Marco; Coisson, Jean Daniel; Russo, Maria T; Pirisi, Filippo M; Satta, Maurizio; Cabras, Paolo

    2003-02-12

    The chemical composition of the essential oil of the Sardinian dwarf curry plant [Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym] was studied. Genetic analysis suggested the presence of two chemotypes; morphological and chemical differences confirmed the presence of two chemotypes (A and B). The maximum yields were 0.18 and 0.04% (v/w) for flowering tops and stems, respectively. The concentrations of nerol and its esters (acetate and propionate), limonene, and linalool reach their highest values during the flowering stage both in flowers and in stems. Besides the essential oil, type B showed an interesting antifungal activity.

  6. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.

    PubMed

    Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin

    2016-01-01

    The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.

  7. Chemical composition, stratigraphy, and depositional environments of the Black River Group (Middle Ordovician), southwestern Ohio.

    USGS Publications Warehouse

    Stith, David A.

    1981-01-01

    The chemical composition and stratigraphy of the Black River Group in southwestern Ohio were studied. Chemical analyses were done on two cores of the Black River from Adams and Brown Counties, Ohio. These studies show that substantial reserves of high-carbonate rock are present in the Black River at depths of less than 800 ft, in proximity to Cincinnati and the Ohio River. Stratigraphic studies show that the Black River Group has eight marker beds in its middle and upper portions and three distinct lithologic units in its lower portion; these marker beds and units are present throughout southwestern Ohio. The Black River Group correlates well with the High Bridge Group of Kentucky. Depositional environments of the Black River are similar to those of the High Bridge and to present-day tidal flats in the Bahamas.-Author

  8. Progress in the Analysis of Complex Atmospheric Particles.

    PubMed

    Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup

    2016-06-12

    This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  9. A practical approach to determine dose metrics for nanomaterials.

    PubMed

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  10. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide.

    PubMed

    Azam, Andaleeb; Khan, Ikhtiar; Mahmood, Abid; Hameed, Abdul

    2013-10-01

    Future concentration of carbon dioxide in the atmosphere is very important due to its apparent economic and environmental impact in terms of climate change. However, a compressive assessment of its effect on the nutritional and chemical characteristics of food crops has yet to be established. In the present study the impact of elevated atmospheric CO2 on the yield, chemical composition and nutritional quality of three root vegetables, carrot (Daucus carota L. cv. T-1-111), radish (Raphanus sativus L. cv. Mino) and turnip (Brassica rapa L. cv. Grabe) has been investigated. The yield of carrot, radish and turnip increased by 69, 139 and 72%, respectively, when grown under elevated CO2 conditions. Among the proximate composition, protein, vitamin C and fat contents decreased significantly for all the vegetables while sugar and fibre contents were increased. Response of the vegetables to elevated CO2 , in terms of elemental composition, was different with a significant decrease in many important minerals. Elevated CO2 decreased the amount of majority of the fatty acids and amino acids in these vegetables. It was observed that elevated CO2 increased the yield of root vegetables but many important nutritional parameters including protein, vitamin C, minerals, essential fatty acids and amino acids were decreased. © 2013 Society of Chemical Industry.

  11. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  12. Influence of substrate rocks on Fe Mn crust composition

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Morgan, Charles L.

    1999-05-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  13. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  14. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  15. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary biological aerosol particles in the coarse mode (Pöhlker et al. 2012). We applied STXM-NEXAFS analysis, SEM-EDX analysis and NanoSIMS analysis to investigate the morphology, chemical composition and isotopic composition of aerosol samples. Biogenic salt particles emitted from active biota in the rainforest were found to be enriched in the heavier sulphur isotope, whereas particles with a high organic mass fraction modified by condensation of VOC oxidation products and/or cloud processing were significantly depleted in the heavier sulphur isotope compared to the seed particles. This indicates either a depleted gas phase source of sulphur dioxide contributed to the sulphate formation via the H2O2, O3 or OH oxidation pathway or an unaccounted reaction pathway which depletes the heavier isotope in the product sulphate contributes to the secondary sulphate formation in the pristine Amazon rainforest. Harris, E., et al., Science 340, 727-730, 2013 Pöhlker, C., Science 337, 1075-1078, 2012

  16. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    NASA Astrophysics Data System (ADS)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal stability by thermogravimetric analysis in a subsequent experiment. Overlay plots, combining individual weight loss curves, demonstrate that the experimental factors, solvent system and extraction time, produce effects on the thermal stability of the treated biomass samples. These data also indicated that the individual lignocellulosic materials had unique responses to the type of solvent used for pretreatment. Increasing extraction time had either no correlation with or a positive effect on thermal stability of the biomass samples.

  17. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are demonstrated in the aerosol mass spectra shown in Figure 2. The aromatic aerosol also demonstrates strong chemical reactivity when exposed to laboratory air, indicating substantial stored chemical potential. Oxidatoin and solubility studies wil be presented and implicatoins for prebiotic chemistry o nTitan will be discussed.

  18. Developing a predictive model for the chemical composition of soot nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Violi, Angela; Michelsen, Hope; Hansen, Nils

    In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed amore » series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.« less

  19. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    NASA Astrophysics Data System (ADS)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  20. Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study

    PubMed Central

    Banatao, Diosdado R.; Pastine, Stefan J.

    2018-01-01

    An innovative recycling process for thermoset polymer composites developed by Connora Technologies (Hayward, CA, USA) was studied. The process efficacy has already been tested, and it is currently working at the plant level. The main aspect investigated in the present paper was the environmental impact by means of the Life Cycle Assessment (LCA) method. Because of the need to recycle and recover materials at their end of life, the Connora process creates a great innovation in the market of epoxy composites, as they are notoriously not recyclable. Connora Technologies developed a relatively gentle chemical recycling process that induces the conversion of thermosets into thermoplastics. The LCA demonstrated that low environmental burdens are associated with the process itself and, furthermore, impacts are avoided due to the recovery of the epoxy-composite constituents (fibres and matrix). A carbon fibre (CF) epoxy-composite panel was produced through Vacuum Resin Transfer Moulding (VRTM) and afterwards treated using the Connora recycling process. The LCA results of both the production and the recycling phases are reported. PMID:29495571

  1. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    PubMed Central

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  2. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    PubMed

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-03

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  3. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  4. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.

    PubMed

    Kumar, Sachin; Raj, Shammy; Kolanthai, Elayaraja; Sood, A K; Sampath, S; Chatterjee, Kaushik

    2015-02-11

    Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(ε-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.

  5. An Experimental Study in the Mechanical Response of Polymer Modified Geopolymers

    DTIC Science & Technology

    2012-04-01

    Compressive and Bending Strength of Fly ash Geopolymers ... 22 LIST OF TABLES Page Table 1. Chemical Composition of Aluminosilicates in Mass... geopolymer matrix composites .” Ceramic Transactions, 153, 227-250. 3. Davidovits J., 1991. “ Geopolymers , inorganic polymeric materials.” Journal of...Understanding the relationship between geopolymer composition , microstructure and mechanical properties.” Colloids and Surfaces.A, Physicochemical

  6. Trilateral Design and Test Code for Military Bridging and Gap-Crossing Equipment

    DTIC Science & Technology

    2005-05-01

    Property data should be provided for individual lamina and for the ( laminat - ed) composite . The required lamina properties are identified in...Resistance Welding ....... a Brazing ......................... X Machining ..................... a Chemical Composition : Element... Machining .................. b Chemical Composition : Element % Si .................................. 0.2 max Fe

  7. The Bulk Elemental Composition of any Terrestrial Planets in the Alpha Centauri System

    NASA Astrophysics Data System (ADS)

    Lineweaver, C. H.; Schonberger, B. F. G.; Robles, J. A.

    2010-04-01

    Based on the devolatilization patterns in the solar system, and on the differences in the chemical compositions of the Sun and Alpha Centauri, we make estimates of the chemical composition of any Earth-like planets in the Alpha Centauri system.

  8. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    PubMed

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  10. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil.

    PubMed

    Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor

    2013-08-30

    There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.

  11. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  12. Mechanical properties of moso bamboo treated with chemical agents

    Treesearch

    Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai

    2013-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermal–mechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...

  13. Investigation of cellular fatty acid composition of Xanthomonas spp. as chemical markers of productivity and quality of xanthan gum.

    PubMed

    Miranda, Andrea Lobo; Costa, Samantha Serra; Assis, Denilson de Jesus; Andrade, Bianca Bomfim; de Souza, Carolina Oliveira; Oliveira, Maria Beatriz Prior Pinto; Guimarães, Alaíse Gil; Druzian, Janice Izabel

    2018-07-15

    In this study, we investigated the cellular fatty acid profiles of different Xanthomonas pathovars producing xanthan gum and explored the fatty acid composition to identify chemical markers of xanthan gum productivity and quality. Three Xanthomonas pathovars were studied. The fermentation was conducted for 168 h. Samples from the fermented medium were collected for extraction, quantification, and characterization of xanthan. The unsaturated/saturated (U/S) fatty acid ratio in Xanthomonas cells during fermentation was correlated with production, viscosity, and molecular weight of the gum obtained at each 24 h. The Xanthomonas axonopodis pv manihotis 290 strain showed a higher U/S ratio for major cell fatty acids (C16:1ω7/C16:0) as compared with the other two strains; this high ratio was directly associated with xanthan production. No correlation was observed between cellular fatty acid composition and characteristics of xanthan synthesized. Thus, it was possible to determine a production chemical marker for xanthan gum in Xanthomonas strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  15. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay.

    PubMed

    Qwele, K; Hugo, A; Oyedemi, S O; Moyo, B; Masika, P J; Muchenje, V

    2013-03-01

    The present study determined the chemical composition, fatty acid (FA) content and antioxidant capacity of meat from goats supplemented with Moringa oleifera leaves (MOL) or sunflower cake (SC) or grass hay (GH). The meat from goat supplemented with MOL had higher concentrations of total phenolic content (10.62±0.27 mg tannic acid equivalent E/g). The MOL significantly scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) radical to 93.51±0.19% (93.51±0.19%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical to 58.95±0.3% than other supplements. The antioxidative effect of MOL supplemented meat on catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and lipid oxidation (LO) was significantly (P<0.05) higher than other meat from goat feed on grass hay or those supplemented with sunflower seed cake. The present study indicated that the anti-oxidative potential of MOL may play a role in improving meat quality (chemical composition, colour and lipid stability). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers.

    PubMed

    Gopalan Nair, Kalaprasad; Dufresne, Alain; Gandini, Alessandro; Belgacem, Mohamed Naceur

    2003-01-01

    The purpose of this study was to chemically modify the surface of chitin whiskers and to investigate the effect of the incorporation of these modified whiskers into a natural rubber (NR) matrix on the properties of the ensuing nanocomposite. Different chemical coupling agents were tested, namely, phenyl isocyanate (PI), alkenyl succinic anhydride (ASA) (Accosize 18 from American Cyanamid), and 3-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (TMI). The extent of chemical modification was evaluated by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and surface energy analysis. After chemical modification, nanocomposite films were obtained using a toluene natural rubber solution in which the whiskers were dispersed. Their mechanical properties were found to be inferior to those of unmodified chitin/NR composites presented in our previous study. In fact, even though there is an increase in filler-matrix interaction as a result of chemical modification of the chitin whiskers, this does not contribute to the improvement in the mechanical properties of the resulting nanocomposite. It is concluded that this loss of performance is due to the partial destruction of the three-dimensional network of chitin whiskers assumed to be present in the unmodified composites.

  17. Chemomic and chemometric approach based on ultra-fast liquid chromatography with ion trap time-of-flight mass spectrometry to reveal the difference in the chemical composition between Da-Cheng-Qi decoction and its three constitutional herbal medicines.

    PubMed

    Wang, Mengru; Li, Yuanyuan; Huang, Yin; Tian, Yuan; Xu, Fengguo; Zhang, Zunjian

    2014-05-01

    Da-Cheng-Qi decoction (DCQT) is a traditional purgative Chinese decoction with a history of 2000 years. To study the effect of interactions between the ingredients on the overall chemical composition of DCQT, a chemomic and chemometric approach based on ultra-fast liquid chromatography with ion trap time-of-flight mass spectrometry was developed and validated. After mixing and decocting all four ingredients to make the DCQT, the concentrations of some chemicals are significantly different from those in single herb decoction and 24 of them were identified and tentatively characterized by comparing their data with those of standard compounds or literature data. No new chemicals were formed during mixing and decoction. Our findings indicated that there are interactions between these natural medicines during the mixing and preparation process. The 24 identified chemicals could be used as chemical markers for optimizing prescription and evaluation of consistent quality, and the strategy in the present study could be applied for other multiherb formulae. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  19. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  20. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  1. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glassesmore » fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NC B values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.« less

  3. Mapping of compositional properties of coal using isometric log-ratio transformation and sequential Gaussian simulation - A comparative study for spatial ultimate analyses data.

    PubMed

    Karacan, C Özgen; Olea, Ricardo A

    2018-03-01

    Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.

  4. The Influence of Chemical Composition and Relative Humidity on the Optical Properties of Aerosols During the Southern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Simoes de Sa, S.; Jimenez, J. L.

    2013-12-01

    Atmospheric particles are produced from a wide variety of both anthropogenic and natural sources and play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. To address this impact, in situ measurements of aerosol optical, chemical and hygroscopic properties were performed during the Southern Oxidant and Aerosol Study (SOAS), which took place in the summer of 2013. Ground based measurements of sub-micron aerosol in the southeastern United States were made to investigate the influence of chemical composition and hygroscopicity on aerosol optical properties. We report the wavelength dependence of aerosol extinction cross sections measured with a novel broadband cavity enhanced spectrometer covering a wavelength range of 360-420 nm using two light emitting diodes (LED) and a separate cavity ring down (CRDS) channel. The sensitivity of the relative humidity dependence of extinction based on the type of aerosol present is examined and we show that the optical properties and hygroscopicity of aerosols are greatly influenced by the fraction of sulfate and organics within the particles. Additional data analysis from the SOAS campaign will be presented. The results, thus far, illustrate that the variability in aerosol chemical composition can impact visibility and climate forcing in this region.

  5. Chemical compatibility of some ceramic matrix composite structures with fusion reactor helium coolant at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, F.J.; Ghoniem, N.M.

    The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several potential fiber coatings are studied. Helium coolant is assumed to contain O{sub 2} and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicated that the upper useful temperature limit for SiC/SiC composites, frommore » the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO{sub 2} condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reactor conditions. Further development of chemically stable interface materials is required.« less

  6. Cactus stem (Opuntia ficus-indica Mill): anatomy, physiology and chemical composition with emphasis on its biofunctional properties.

    PubMed

    Ventura-Aguilar, Rosa Isela; Bosquez-Molina, Elsa; Bautista-Baños, Silvia; Rivera-Cabrera, Fernando

    2017-12-01

    Cactus stem (Opuntia ficus-indica Mill) is native to Mesoamerica and marketed in different forms such as fresh, frozen or pre-cooked. Worldwide, this vegetable is recognized for its pharmaceutical actions, including its antioxidant, diuretic, anticarcinogenic, anti-inflammatory, anti-diabetic, and anti-hypercholesterolemic properties, as well as their antiviral and antispermatogenic effects. However, not all of these properties have been associated with its chemical composition; therefore, this review aims to present and integrate information available on the physiology and anatomy of cactus stem and its chemical composition, focusing on some of the many factors that determine its biofunctionality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Chemical mixing model studies of lunar orbital geochemical data - Apollo 16 and 17 highlands compositions

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1982-01-01

    Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.

  8. An Overview on Indications and Chemical Composition of Aromatic Waters (Hydrosols) as Functional Beverages in Persian Nutrition Culture and Folk Medicine for Hyperlipidemia and Cardiovascular Conditions

    PubMed Central

    Hamedi, Azadeh; Moheimani, Seyed Mahmoud; Sakhteman, Amirhossein; Etemadfard, Hamed; Moein, Mahmoodreza

    2017-01-01

    Hydrosol beverages in Persian nutrition culture and ethnomedicine are the side products of essential oil industry that are used as delicious drinks or safe remedies. To investigate indications and chemical composition of hydrosol beverages for hyperlipidemia and cardiovascular conditions, Fars province was selected as the field of study. Ethnomedical data were gathered by questionnaires. The constituents of hydrosols were extracted with liquid/liquid extraction and analyzed by gas chromatography–mass spectrometry. Statistical analysis were used to cluster their constituents and find the relevance of their composition. A literature survey was also performed on plants used to prepare them. Thymol was the major or second major component of these beverages, except for wormwood and olive leaf hydrosols. Based on clustering methods, although some similarities could be found, composition of barberry, will fumitory, dill, and aloe hydrosols have more differences than others. These studies may help in developing some functional beverages or new therapeutics. PMID:29228785

  9. Bamboo reinforced polymer composite - A comprehensive review

    NASA Astrophysics Data System (ADS)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  10. The Management of Lead Concentrate Acquisition in "Trepca"

    NASA Astrophysics Data System (ADS)

    Haxhiaj, Ahmet; Fan, Maoming; Haxhiaj, Bajram

    Based on the placement of lead and its consumption in industry branches, the paper deals with the composition of lead in the ores of Kopaonik, grinding and flotation recovery of galena. In the flotation process, the flotation machine, the flotation reagents, chemical composition of the flotation concentrates and tailings were discussed in this paper. Verification of the chemical composition of Pb concentrates with Pb, Zn, and Ag, etc. was conducted in this study. It is special that the ratio of Pb to Zn in Kopaonik massive composition is 1.4:1.0. During the flotation, lead tends to float with concentrate more than allowed. In this investigation, effects have been made to minimize the loss of Pb to concentrates. This paper as such gave the first effects in optimizing of these parameters with positive effects in the flotation process in Trepca.

  11. Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites.

    PubMed

    Jacob, Maya; Varughese, K T; Thomas, Sabu

    2005-01-01

    Hybrid biofibers (sisal and oil palm) were incorporated into natural rubber matrix. The water absorption characteristics of the composites were evaluated with reference to fiber loading. The influence of temperature on water sorption of the composites is also analyzed. Moisture uptake was found to be dependent on the properties of the biofibers. The mechanism of diffusion in the gum sample was found to be Fickian in nature, while in the loaded composites, it was non-Fickian. Sisal and oil palm fibers were subjected to different treatments such as mercerization and silanation. The effect of chemical modification on moisture uptake was also analyzed. Chemical modification was seen to decrease the water uptake in the composites. The thermodynamic parameters of the sorption process were also evaluated. Activation energy was found to be maximum for the gum sample.

  12. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  13. Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX

    NASA Astrophysics Data System (ADS)

    Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.

    2017-12-01

    Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in models to estimate the chemical composition of BBOA emissions.

  14. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  15. Growth, chemical composition and soil properties of Tipuana speciosa (Benth.) Kuntze seedlings irrigated with sewage effluent

    NASA Astrophysics Data System (ADS)

    Ali, Hayssam M.; Khamis, Mohamed H.; Hassan, Fatma A.

    2012-06-01

    This study was carried out at a greenhouse of Sabahia Horticulture Research Station, Alexandria, Egypt, to study the effect of sewage effluent on the growth and chemical composition of Tipuana speciosa (Benth.) Kuntze seedlings as well as on soil properties for three stages. The irrigation treatments were primary-treated wastewater and secondary-treated wastewater, in addition to tap water as control. Therefore, the treated wastewater was taken from oxidation ponds of New Borg El-Arab City. Results of these study revealed that the primary effluent treatment explored the highest significant values for vegetative growth and biomass, compared to the other treatments. In addition, the higher significant concentration and uptake of chemical composition in different plant parts were obtained from the primary effluent treatment during the three stages of irrigation. It was found that the concentration of heavy metals in either plant or soil was below as compared to the world-recommended levels. These findings suggested that the use of sewage effluent in irrigating T. speciosa seedlings grown in calcareous soil was beneficial for the improvement of soil properties and production of timber trees, and also important for the safe manner of disposal of wastewater.

  16. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    PubMed

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  17. Comparison of bioactivities and phenolic composition of Choerospondias axillaris peels and fleshes.

    PubMed

    Li, Qian; Chen, Jun; Li, Ti; Liu, Chengmei; Liu, Wei; Liu, Jiyan

    2016-05-01

    Choerospondias axillaris is both an edible and medicinal fruit. It has a growing popularity and economic importance due to its nutritive value and medicinal effects, but comprehensive information on the chemical composition and bioactivity of its fruits is still lacking. Therefore the aim of this study was to investigate the antioxidant, antimicrobial and antiproliferative effects and chemical composition of peel polyphenolic (PP) and flesh polyphenolic (FP) extracts from C. axillaris. The phenolics and flavonoids of peel were significantly higher than those of flesh. Ultra-performance liquid chromatography (UPLC) and ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight-mass spectrometry (UPLC/ESI-QTOF-MS(2) ) analysis revealed that (+)-catechin and oligomeric procyanidins were the most abundant compounds in PP and FP. Both extracts exhibited strong ferric-reducing antioxidant power, total antioxidant activity and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•) )-scavenging ability. PP showed a significantly higher antimicrobial effect against tested strains than that of FP, in a dose-dependent manner. Furthermore, both extracts inhibited the growth of HepG2 and Caco-2 cells in a dose- and time-dependent manner, with IC50 values of 39.31 and 47.49 µg mL(-1) to HepG2 cells and 101.90 and 102.61 µg mL(-1) to Caco-2 cells respectively. This is the first detailed report on the chemical composition and bioactivities of C. axillaris fruits. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Studies related to the surfaces of the moon and planets. [a discussion of vapor deposition and glasses of lunar composition

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1974-01-01

    A variety of glasses of lunar composition were prepared with different amounts of Fe and Ti under both reducing and oxidizing conditions, and also by sputter-deposition and thermal evaporation and condensation. These materials were analyzed by wet chemical, electron microprobe, ESR, Mossbauer and magnetic methods. The effects of darkening processes on surface soils of airless bodies are discussed along with the effects of vapor phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith.

  19. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  20. Chemical composition of acid precipitation in central Texas

    Treesearch

    Hal B. H., Jr. Cooper; Jerry M. Demo

    1976-01-01

    Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...

  1. Relating the Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils to its Photochemical Degradation in Arctic Surface Waters.

    NASA Astrophysics Data System (ADS)

    Ward, C.; Cory, R. M.

    2015-12-01

    Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.

  2. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    PubMed

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in error by 5-6.7 mDa.

  3. Nickel tungstate (NiWO4) nanoparticles/graphene composites: preparation and photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyyedamirhossein; Farsi, Hossein; Moghiminia, Shokufeh; Zubkov, Tykhon; Lightcap, Ian V.; Riley, Andrew; Peters, Dennis G.; Li, Zhihai

    2018-05-01

    Nickel tungstate/graphene composite was synthesized in various compositions with application of a hydrothermal method. Chemical composition and morphology of each sample was studied via application of x-ray diffraction and transmission electron microscopy techniques. In the continuous, a photosystem was obtained by deposition of composite sample on a fluorine-doped tin oxide electrode with application of electrophoretic method. Electrode morphology was studied by employment of atomic force microscopy and SEM techniques. Eventually, light conversion properties and involved mechanism of fabricated photosystem was studied with application of the Mott–Schottky method. Our results confirmed that the optimum ratio between graphene and nickel tungstate is in the regime of 1:1.

  4. Absolute parameters and chemical composition of the binary star OU Gem

    NASA Astrophysics Data System (ADS)

    Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.

    2014-10-01

    The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.

  5. Characterization of emissions composition for selected household products available in Korea.

    PubMed

    Kwon, Ki-Dong; Jo, Wan-Kuen; Lim, Ho-Jin; Jeong, Woo-Sik

    2007-09-05

    The present study investigated the emission composition for 59 household products currently sold in Korea, using a headspace analysis. The chemical composition and concentrations of total volatile organic compounds (VOCs) broadly varied along with products, even within the same product category. Up to 1-17 organic compounds were detected in the headspace gas phase of any one of the products. The chemical composition of certain household products determined in the current study was different from that of other studies from other countries. Between 4 and 37 compounds were detected in the headspace gas phase of each product class. Several compounds were identified in more than one product class. Of the 59 household products analyzed, 58 emitted one or more of the 72 compounds at chromatographic peak areas above 10(4). There were 11 analytes which occurred with a frequency of more than 10%: limonene (44.2%), ethanol (30.5%), acetone (18.6%), alpha-pinene (18.6%), o,m,p-xylenes (18.6%), decane (17.0%), toluene (17.0%), beta-myrcene (11.9%), ammonia (10.2%), ethylbenzene (10.2%), and hexane (10.2%).

  6. Chemical composition of wildland and agricultural biomass burning particles measured downwind during the BBOP study

    NASA Astrophysics Data System (ADS)

    Onasch, T. B.; Shilling, J. E.; Wormhoudt, J.; Sedlacek, A. J., III; Fortner, E.; Pekour, M. S.; Chand, D.; Zhou, S.; Collier, S.; Zhang, Q.; Kleinman, L. I.; Lewis, E. R.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.; Freedman, A.; Williams, L. R.

    2017-12-01

    The Biomass Burning Observation Project (BBOP), a Department of Energy (DOE) sponsored study, measured emissions from wildland fires in the Pacific Northwest and agricultural burns in the Central Southeastern US from the DOE Gulfstream-1 airborne platform over a four month period in 2013. Rapid physical, chemical and optical changes in biomass burning particles were measured downwind (< 3 hours temporally) from wildland fires. The chemical composition of the particulate emissions was characterized using an Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) and a Single Particle Soot Photometer (SP2) and the measurement results will be presented in the context of the fire location, combustion conditions, and optical property measurements, including extinction and single scattering albedos. The SP-AMS was operated with both laser and resistively heated tungsten vaporizers, alternating between laser on and off. With the laser vaporizer off, the instrument operated as a standard high resolution AMS. Under these sampling conditions, the non-refractory chemical composition, including the level of oxidation (i.e., O:C, H:C, and organic mass/organic carbon ratios, OM:OC), of the biomass burning particles was characterized as a function of the fuel type burned, modified combustion efficiency, and degree of oxidation during downwind transport. With the laser vaporizer on, the SP-AMS was also sensitive to the refractory black carbon (rBC) content, in addition to the non-refractory components. The chemical measurements will be correlated with simultaneous optical measurements. We will also present preliminary results from laboratory studies on tar balls and SP-AMS OA quantification while operating with both laser and tungsten vaporizers.

  7. A Continuation of Base-line Studies for Environmentally Monitoring Space Transportation Systems at John F. Kennedy Space Center. Volume 2; Chemical Studies of Rainfall and Soil Analysis

    NASA Technical Reports Server (NTRS)

    Madsen, B. C.

    1980-01-01

    The results of a study which was designed to monitor, characterize, and evaluate the chemical composition of precipitation (rain) which fell at the Kennedy Space Center, Florida (KSC) during the period July 1977 to March 1979 are reported. Results which were obtained from a soil sampling and associated chemical analysis are discussed. The purpose of these studies was to determine the environmental perturbations which might be caused by NASA space activities.

  8. The simulation method of chemical composition of vermicular graphite iron on the basis of genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.

    2017-09-01

    The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design

  9. Chemical composition of fat and oil products

    USDA-ARS?s Scientific Manuscript database

    Fats and oils are an important dietary component, and contribute to the nutritional and sensory quality of foods. This chapter focuses on the chemical composition of fats and oils, and how these compositions affect the functional properties of fats and oils in foods. The focus will remain on the mos...

  10. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X. M.

    2012-04-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  11. Comparison surface characteristics and chemical composition of conventional metallic and nickel-free brackets.

    PubMed

    Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto

    2015-01-01

    This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.

  12. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content.

    PubMed

    Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T

    2016-12-01

    Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.

  13. [The influence of spray drying process conditions on physical, chemical properties and lung inhaling performance of Panax notoginseng saponins - tanshinone II A composite particles].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-06-01

    This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.

  14. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.

  15. Constituent composition and biological activity of Nepeta manchuriensis essential oil

    USDA-ARS?s Scientific Manuscript database

    The essential oil present in the aerial parts of the plant Nepeta manchuriensis was prepared by steam distillation using clevenger apparatus. The chemical composition of the oil was studied by GCMS. Sabinene, elemol, selinene, 4-terpineol, menthatriene and neoisothujol are the major components and r...

  16. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Teng, Jie; Yu, Jin-gang; Tan, Ao-shuang; Fu, Ding-fa; Zhang, Hui

    2018-01-01

    Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.

  17. Studies on microstructure and mechanical behaviour of A7075- Flyash/SiC hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR

    2018-02-01

    Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.

  18. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  19. Chemical similarity and local community assembly in the species rich tropical genus Piper.

    PubMed

    Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J

    2016-11-01

    Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.

  20. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  1. Identification of provenance rocks based on EPMA analyses of heavy minerals

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Sano, N.; Ueki, T.; Yonaga, Y.; Yasue, K. I.; Masakazu, N.

    2017-12-01

    Information on mountain building is significant in the field of geological disposal of high-level radioactive waste, because this affects long-term stability in groundwater flow system. Provenance analysis is one of effective approaches for understanding building process of mountains. Chemical compositions of heavy minerals, as well as their chronological data, can be an index for identification of provenance rocks. The accurate identification requires the measurement of as many grains as possible. In order to achieve an efficient provenance analysis, we developed a method for quick identification of heavy minerals using an Electron Probe Micro Analyzer (EPMA). In this method, heavy mineral grains extracted from a sample were aligned on a glass slide and mounted in a resin. Concentration of 28 elements was measured for 300-500 grains per sample using EPMA. To measure as many grains as possible, we prioritized swiftness of measurement over precision, configuring measurement time of about 3.5 minutes for each grain. Identification of heavy minerals was based on their chemical composition. We developed a Microsoft® Excel® spread sheet input criteria of mineral identification using a typical range of chemical compositions for each mineral. The grains of <80 wt.% or >110 wt.% total were rejected. The criteria of mineral identification were revised through the comparison between mineral identification by optical microscopy and chemical compositions of grains classified as "unknown minerals". Provenance rocks can be identified based on abundance ratio of identified minerals. If no significant difference of the abundance ratio was found among source rocks, chemical composition of specific minerals was used as another index. This method was applied to the sediments of some regions in Japan where provenance rocks had lithological variations but similar formation ages. Consequently, the provenance rocks were identified based on chemical compositions of heavy minerals resistant to weathering, such as zircon and ilmenite.This study was carried out under a contract with Ministry of Economy, Trade and Industry of Japan as part of its R&D supporting program for developing geological disposal technology.

  2. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Treesearch

    T.J. Johnson; R.J. Yokelson; S.K. Akagi; I.R. Burling; D.R. Weise; S.P. Urbanski; C.E. Stockwell; J. Reardon; E.N. Lincoln; L.T.M. Profeta; A. Mendoza; M.D.W. Schneider; R.L. Sams; S.D. Williams; C.E. Wold; D.W.T. Griffith; M. Cameron; J.B. Gilman; C. Warneke; J.M. Roberts; P. Veres; W.C. Kuster; J de Gouw

    2014-01-01

    Project RC-1649, "Advanced Chemical Measurement of Smoke from DoD-prescribed Burns" was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement...

  3. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study.

    PubMed

    Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I

    2014-06-01

    Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Progress in the analysis of complex atmospheric particles

    DOE PAGES

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...

    2016-06-01

    This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less

  5. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    PubMed

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  6. Chemical taxonomy of the hinge-ligament proteins of bivalves according to their amino acid compositions.

    PubMed Central

    Kikuchi, Y; Tamiya, N

    1987-01-01

    The proteins in the hinge ligaments of molluscan bivalves were subjected to chemotaxonomic studies according to their amino acid compositions. The hinge-ligament protein is a new class of structure proteins, and this is the first attempt to introduce chemical taxonomy into the systematics of bivalves. The hinge-ligament proteins from morphologically close species, namely mactra (superfamily Mactracea) or scallop (family Pectinidae) species, showed high intraspecific homology in their compositions. On the other hand, inconsistent results were obtained with two types of ligament proteins in pearl oyster species (genus Pinctada). The results of our chemotaxonomic analyses were sometimes in good agreement with the morphological classifications and sometimes inconsistent, implying a complicated phylogenetic relationship among the species. PMID:3593265

  7. Trace Element Composition of Phytoplankton Along the US GEOTRACES Pacific Zonal Transect: Comparing Single-Cell SXRF Quotas, Chemical Leaching, and Bulk Particle Digestion

    NASA Astrophysics Data System (ADS)

    Ohnemus, D.; Rauschenberg, S.; Twining, B. S.

    2014-12-01

    The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.

  8. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  9. Effect of laser fluence and ambient gas pressure on surface morphology and chemical composition of hydroxyapatite thin films deposited using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroaki; Hasegawa, Tsukasa; Miyake, Akiko; Tashiro, Yuichiro; Komasa, Satoshi; Hashimoto, Yoshiya

    2018-01-01

    The dependence of the surface morphology and chemical composition of hydroxyapatite (HA) thin films on the laser fluence and ambient gas pressure during their formation by pulsed laser deposition was studied as the first step to investigate the effect of physical and chemical interactions between the ablated chemical species and ambient gas molecules on HA film formation. It was found that a higher fluence could decrease the number of large protrusions on the surface of HA thin films. However, too high a fluence caused a phosphorus deficiency from the stoichiometric value, particularly in the case of lower ambient gas pressure. It was also found that for lower fluences, the atomic species among the ablated chemical species were easily scattered by collision processes with ambient gas molecules. This was caused by the lower velocity of the ablated chemical species and higher ambient gas pressure, which induced a shorter mean free path. In addition, these collision processes played an important role in the adsorption, migration, and re-evaporation of the ablated chemical species on the substrate via chemical reactions.

  10. Rapid, Contactless and Non-Destructive Testing of Chemical Composition of Samples

    NASA Astrophysics Data System (ADS)

    Ivanov, O.; Vaseashta, A.; Stoychev, L.

    Our results demonstrate that a new effect can be induced in each solid in a wide spectral range of electromagnetic irradiation. In the present manuscript we prove experimentally that one of the possible applications of this effect is for an express contactless control of the chemical composition of a series of samples, in this case, coins. The method has wide applicability ranging from defense and homeland security to several applications requiring rapid and nondestructive identification of chemical composition.

  11. Evaluation of the chemical and nutritional characteristics of almonds (Prunus dulcis (Mill). D.A. Webb) as influenced by harvest time and cultivar.

    PubMed

    Summo, Carmine; Palasciano, Marino; De Angelis, Davide; Paradiso, Vito M; Caponio, Francesco; Pasqualone, Antonella

    2018-04-30

    Several authors studied the effect of harvest time on chemical and nutritional composition of almonds, but the results are partly conflicting, probably due to differences in the cultivars considered and to different agronomic and climatic conditions in the growing areas. In this paper the influence of harvest time and cultivar on the chemical and nutritional composition of almonds (Prunus dulcis (Mill). D.A. Webb) was evaluated. Ten cultivars were considered, grown in the same orchard and subjected to the same agronomical regime. Almonds were collected at two different harvest times: i) when the fruits were unripe, but already edible, and showed green and moist hull, and ii) when the fruits were ripe, with dry brown hull. The analyses of proximate composition, fatty acid profile, total phenolic compounds and antioxidant activity were carried out. Lipid content increased (p<0.001) during ripening, while both protein and carbohydrate content decreased (p<0.01). Fatty acid composition showed a not univocal behavior during ripening and was highly influenced by cultivar. Total phenolic compounds and antioxidant activity varied among cultivars but increased during ripening with the exception of Marcona cv. Genco and Francolì cvs were found to be phenolic-rich cultivars. Harvest time and cultivars significantly influenced the chemical and nutritional composition of almonds. Genotype strongly influenced fatty acid composition and total phenolic compounds. The changes of bioactive compounds and antioxidant activity suggest that the synthesis of antioxidants occur also in the last stage of ripening. Unripe almonds, a valuable niche product, showed interesting nutritional value. This article is protected by copyright. All rights reserved.

  12. Intramolecular Isotopic Studies: Chemical Enhancements and Alternatives

    NASA Astrophysics Data System (ADS)

    Hayes, J. M.

    2016-12-01

    As mass spectroscopic and NMR-based methods now appropriately flourish, chemical techniques should not be forgotten. First, the methods developed by pioneering intramolecular analysts can be reapplied to new samples. Second, they can be extended. The synthesis of intramolecular isotopic standards is particularly important and straightforward. It requires only that a chemical reaction has no secondary products. An example is provided by the addition of carbon dioxide to a Grignard reagent. The reaction proceeds with an isotope effect. The isotopic composition of the carboxyl group in the acid which is produced is thus not equal to that of the starting carbon dioxide but the unconsumed CO2 can be recovered and analyzed. A simple titration can show that all the rest of the CO2 is in the product acid. The isotopic composition of the carboxyl group can then be calculated by difference. The product is an intramolecular isotopic standard, an organic molecule in which the isotopic composition of a specific carbon position is known accurately. Both analysts and reviewers can thus gain invaluable confidence in the accuracy of instrumental results. A second example: the haloform reaction quantitatively degrades methyl ketones, producing a carboxylic acid which can be decarboxylated to determine the isotopic composition of the parent carbonyl and a haloform (CHI3, for example) that can be combusted to determine the isotopic composition of the methyl group. Ketones thus analyzed can be combined with Grignard reagents to yield carbon skeletons in which the isotopic compositions of internal and terminal -CH2- and -CH3 groups are known accurately. In general, analysts accustomed to demanding quantitative reactions should remember the power of mass balances and recognize that many organic-chemical reactions, while not quantitative, lack side products and can be driven to the total consumption of at least one reactant.

  13. Chemical aspects of the formation of the solar system

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1978-01-01

    Application of Alfven's theory for the formation of the solar system and the constraints imposed by the chemical composition of space materials are discussed with reference to chemical processes involved in the formation of the solar system. Evidence for the chemical properties of the space medium and the chemical consequences of the postulated physical differentiation processes are outlined, and interpretations based on structure and composition of meteorite material are indicated. A large range of topics, including processes involving chemical differentiation, temperature effects, and isotope fractionation, are examined.

  14. Chemical compositions and precipitation timing of basement carbonate vein from fossil spreading ridge of South China Sea

    NASA Astrophysics Data System (ADS)

    Ding, W.; Chen, Y.

    2016-12-01

    Eighteen calcium carbonate veins within the igneous basement recovered close to the fossil spreading ridge of the South China Sea during the Integrated Ocean Drilling Program (IODP) Expedition 349 were investigated. These carbonates are of primarily either calcite or aragonite, or some mixed aragonite and calcite, with rarely ankerite. The chemical (Ca, Mg, Sr, Mn, Fe) contents and isotopic (87Sr/86Sr, δ18O, δ18C) compositions of the veins were determined to study the evolving chemistry of hydrothermal fluids and to constrain the timing of vein formation. The carbonate δ18O values range from -5.0 to -0.2 ‰ PDB, indicating these are typical low temperature basement carbonates. Chemical analyses show distinct Mg/Ca and Sr/Ca ratios for aragonite and calcite. 87Sr/86Sr ratios show negative correlations with both the depth and δ18O-calculated formation temperature, and are independent of mineralogy with both aragonite and calcite, indicating more geochemically evolved carbonated have precipitated from warmer fluids. The hightest 87Sr/86Sr ratios of vein samples at each drill site are believed to reflect the contemporaneous seawater compositions when carbonates precipitated. No unambiguous precipitation ages can be constrained by correlating 87Sr/86Sr ratios with the global seawater Sr isotope evolution. However, based on correlations of vein chemical composition with depth and formation temperature, as well as the Neogene post-spreading magmatism, we hypothesize 10 Ma is a particular time favoring the formation of carbonate veins in our study area.

  15. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  16. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.

  17. Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.

    2018-05-01

    The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.

  18. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  19. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  20. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  1. Production of refractory chamotte particle-reinforced geopolymer composite

    NASA Astrophysics Data System (ADS)

    Kovářík, T.; Kullová, L.; Rieger, D.

    2016-04-01

    Geopolymer resins are obtained by alkaline activation of aluminosilicate sources where raw calcined clays are one of the suitable potentialities. Besides the fact that chemical composition has an essential effect on final properties of the geopolymer binder, the type of filler strongly affected resulting properties of such granular composite. However, very few comparative studies have been done on detail description of composite systems: binder - granular filler, in relation to aggregate gradation design and rheology properties of the mixture. The aim of this work is to develop and describe granular composite concerning workability of the mixture and kinetics of geopolymerization/polycondensation through flow behaviour. The rheological measurements indicated that initial viscosities of the mixtures and their evolution are different for various proportions of the filler. Moreover, it was demonstrated that increase in complex viscosity responds to the creation of chemical bonds and the formation of structural network. Finally, a correlation of the mechanism of geopolymer formation was carried out by differential scanning calorimetry (DSC).

  2. The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material.

    PubMed

    Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo

    2017-10-01

    The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.

  3. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  4. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D. E.; Bullock, E.; Clark, B. C.; hide

    2006-01-01

    We measured the chemical compositions of material from 23 particles in aerogel and residue in 7 craters in aluminum foil, collected during passage of the Stardust spacecraft through the coma of Comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size-scale analyzed, 180 nanograms. The mean chemical composition of this Wild 2 material agrees with the CI meteorite composition for the refractory elements Mg, Si, Cr, Fe, and Ni to 35%, and for Ca and Mn to 50%. The data suggest the moderately volatile elements Cu, Zn, and Ga may be enriched in this Wild 2 material.

  5. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  6. Size-Differentiated Chemical Composition of Re-Suspended Soil Dust from the Desert Southwest United States

    EPA Science Inventory

    As part of the Desert Southwest Coarse Particulate Matter Study which characterized the composition of fine and coarse particulate matter in Pinal County, AZ, several source samples were collected from several different soil types to assist in source apportionment analysis of the...

  7. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil

    EPA Science Inventory

    Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

  8. PREFACE TO SPECIAL SECTION: SOUTHERN OXIDANTS STUDY 1999 ATLANTA SUPERSITE PROJECT (SOS3)

    EPA Science Inventory

    The Atlanta Supersites Project consisted of a one-month intensive field program to compare advanced methods for measurement of PM2.5 mass, chemical composition, including single particle composition in real-time, and aerosol precursor species. The project was the first of EPA's ...

  9. Genome-wide association study of Arabidopsis thaliana identifies determinants of natural variation in seed oil composition

    USDA-ARS?s Scientific Manuscript database

    The renewable source of highly reduced carbon provided by plant triacylglycerols fills an ever increasing demand for food, biodiesel and industrial chemicals. Each of these uses requires different compositions of fatty acid proportions in seed oils. Identifying the genes responsible for variation in...

  10. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  11. Porous multi-component material for the capture and separation of species of interest

    DOEpatents

    Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A

    2016-06-21

    A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.

  12. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California

    USGS Publications Warehouse

    Kennedy, V.C.; Kendall, C.; Zellweger, G.W.; Wyerman, T.A.; Avanzino, R.J.

    1986-01-01

    The chemical and isotopic composition of rainfall and stream water was monitored during a storm in the Mattole River basin of northwestern California. About 250 mm of rain fell during 6 days (???80% within a 42 h period) in late January, 1972, following 24 days of little or no precipitation. River discharge near Petrolia increased from 22 m3 s-1 to a maximum of 1300 m3 s-1 while chloride and silica concentrations decreased only from 3.2 to 2.1 and 11.5 to 8.6 mgl-1, respectively. Meanwhile, the isotopic composition of the river changed from ??D = - 42???, ??180 = - 6.8??? and 40 tritium units (T.U.) to extreme values at highest flow of ??D = - 35???, ??180 = - 5.9??? and 25 T.U. in response to volume-weighted rainfall averaging ??D = - 19.5???, ??180 = - 3.1??? and 18 T.U. Despite much rainfall of a composition quite different from that of the prestorm river water, "buffering" processes in the watershed greatly restricted changes in the chemical and isotopic content of the river during storm runoff. Because of the physical and hydrologic characteristics of the watershed, major contributions of groundwater to stormflow are very unlikely. The large increase in dissolved chemical load observed at maximum river discharge required that extensive interaction with, and presumably penetration of, soils occurred within a few hours time. Such a large increase in chemical load also required subsurface stormflow throughout a high proportion of the watershed. Chemical and isotopic stabilization of stormflow is believed to be due mainly to displacement of prestorm soil water, with some effects on river chemistry due to rapid rain-soil interactions. The isotopic and chemical composition of prestorm soil moisture cannot readily be predicted a priori because of possible variability in rainfall composition, evaporation, and exchange with atmospheric moisture, nor can it be assumed that baseflow has a predictable relation to the chemical or isotopic composition of water displaced from soils during storms. Therefore, it seems inappropriate to draw conclusions as to the relative proportions of groundwater and rainfall in runoff from a particular storm based only on the average compositions of rainfall, stormflow, and prestorm river water, as has been done in most previous isotope hydrograph studies. Given the great variation in hydrology, topography, soil characteristics, rainfall intensity and quantity, etc. from place to place, the relative amount of overland flow, subsurface flow from the unsaturated zone and of groundwater in stormflow can vary greatly in time and space. ?? 1986.

  13. Experimental Constraints on the Chemical Differentiation of Mercurys Mantle

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as being the most reduced terrestrial planet with the highest core/mantle ratio. Results from MESSENGER spacecraft have shown that its surface is FeO-poor (2-4 wt%) and S-rich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. In addition several features suggest important melting stages of the Mercurian mantle: widespread volcanic deposits on its surface, a high crustal thickness (approximately 10% of the planet's volume) and chemical compositions of its surface suggesting several stages of differentiation and remelting processes. Therefore it is likely that igneous processes like magma ocean crystallization and continuous melting have induced chemical and mineralogical heterogeneities in the Mercurian mantle. The extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Melting experiments with bulk Mercury-analogue compositions are scarce and with poorly con-trolled starting compositions. Therefore additional experimental data are needed to better understand the differentiation processes that lead to the observed chemical compositions of Mercury's surface.

  14. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  15. Identity method-a new tool for studying chemical fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackowiak, M., E-mail: majam@if.pw.edu.pl

    Event-by-event fluctuations of the chemical composition of the hadronic system produced in nuclear collisions are believed to be sensitive to properties of the transition between confined and deconfined strongly interacting matter. In this paper a new technique for the study of chemical fluctuation, the identity method, is introduced and its features are discussed. The method is tested using data on central PbPb collisions at 40 A GeV registered by the NA49 experiment at the CERN SPS.

  16. Chemical analysis of the moon at the surveyor v landing site.

    PubMed

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1967-11-03

    The chemical composition of the lunar surface material at a maria landing site has been determined by the alpha-scattering technique. Oxygen, silicon, and aluminum have been identified in the preliminary evaluation of the data. The general chemical composition is similar to that of a silicate of a basaltic type.

  17. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Treesearch

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  18. PHYSIO-CHEMICAL CHARACTERIZATION OF IRON TUBERCULATION FROM A SINGLE DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Corrosion of iron pipes in Drinking Water Distribution Systems (DWDS) contributes to the formation of tubercles whose physio-chemical properties are influenced by the composition of the waters in the distribution system. Thus the objective of this study was to assess the extent o...

  19. Characterization of chemical, biological and antiproliferative properties of fermented black carrot juice,shalgam

    USDA-ARS?s Scientific Manuscript database

    Shalgam juice is a dark red-colored and sour fermented beverage produced and consumed in Turkey. The main ingredient of shalgam juice is black carrot, which is rich in anthocyanins. In this study, commercially available shalgam juice was characterized by determining its chemical composition and anti...

  20. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  1. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  2. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  3. Chemical Fingerprinting of Materials Developed Due to Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.

  4. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    PubMed

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P < 0.01). Rinsing tended to increase (P < 0.06) ADL content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not differ (P = 0.99), and estimates of cornstalk intake tended to be greater (P = 0.09) in strip-grazed compared to continuously grazed cows. These data indicate that diet composition can be predicted by chemical components or NIRS by ruminal collection of diet samples among cattle grazing corn residues.

  5. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  6. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  7. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  8. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  9. Variation in chemical composition and allelopathic potential of mixoploid Trigonella foenum-graecum L. with developmental stages.

    PubMed

    Omezzine, Faten; Bouaziz, Mohamed; Simmonds, Monique S J; Haouala, Rabiaa

    2014-04-01

    This study was conducted to evaluate the influence of developmental stages (vegetative, flowering and fruiting) of mixoploid fenugreek aerial parts on their chemical composition and allelopathic potential, assessed on lettuce germination and seedling growth. Aqueous and organic extracts significantly delayed germination, reduced its rate and affected seedling growth. Ethyl acetate and methanol extracts of aerial parts harvested at vegetative stage were the most toxic for lettuce germination and seedling growth, respectively. LC-MS/MS analysis of T. foenum-graecum aerial parts methanolic extract showed nine different flavonol glycosides (quercetin and kaempferol glucosides). Chemical composition of aerial parts differed with the developmental stage; indeed, at the vegetative and fruiting stages, analysis revealed the presence of 9 compounds as compared to only 6 compounds at the flowering stage. Thus, it is necessary to follow the qualitative changes of allelochemicals production at different developmental stages to identify the most productive one. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  11. Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.

    PubMed

    Bechoff, Aurélie; Cissé, Mady; Fliedel, Geneviève; Declemy, Anne-Laure; Ayessou, Nicolas; Akissoe, Noel; Touré, Cheikh; Bennett, Ben; Pintado, Manuela; Pallet, Dominique; Tomlins, Keith I

    2014-04-01

    Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (p<0.05). Consumers (n=160) evaluated drink acceptability on a 9-point verbal hedonic scale. Three classes of behaviour were identified: (a) those who preferred syrup (43% of consumers); (b) those who preferred infusion (36%); and (c) those who preferred all of the samples (21%). Acceptability of 'syrup likers' was positively correlated to sweet taste, reducing sugar content and inversely correlated to acidic taste and titratable acidity (p<0.10). Acceptability of 'infusion likers' was positively correlated to the taste of Hibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A miniature laser ablation mass spectrometer for quantitative in situ chemical composition investigation of lunar surface

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Grimaudo, Valentine; Mezger, Klaus; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Wurz, Peter

    2016-04-01

    The chemical composition of planetary bodies, moons, comets and asteroids is a key to understand their origin and evolution [Wurz,2009]. Measurements of the elemental and isotopic composition of rocks yield information about the formation of the planetary body, its evolution and following processes shaping the planetary surface. From the elemental composition, conclusions about modal mineralogy and petrology can be drawn. Isotope ratios are a sensitive indicator for past events on the planetary body and yield information about origin and transformation of the matter, back to events that occurred in the early solar system. Finally, measurements of radiogenic isotopes make it possible to carry out dating analyses. All these topics, particularly in situ dating analyses, quantitative elemental and highly accurate isotopic composition measurements, are top priority scientific questions for future lunar missions. An instrument for precise measurements of chemical composition will be a key element in scientific payloads of future landers or rovers on lunar surface. We present a miniature laser ablation mass spectrometer (LMS) designed for in situ research in planetary and space science and optimised for measurements of the chemical composition of rocks and soils on a planetary surface. By means of measurements of standard reference materials we demonstrate that LMS is a suitable instrument for in situ measurements of elemental and isotopic composition with high precision and accuracy. Measurements of soil standards are used to confirm known sensitivity coefficients of the instrument and to prove the power of LMS for quantitative elemental analyses [Neuland,2016]. For demonstration of the capability of LMS to measure the chemical composition of extraterrestrial material we use a sample of Allende meteorite [Neuland,2014]. Investigations of layered samples confirm the high spatial resolution in vertical direction of LMS [Grimaudo,2015], which allows in situ studying of past surface processes on a planetary surface. Analyses of Pb isotopes show that the statistical uncertainty for the age determination by LMS is about ±100 Myrs, if abundance of 206Pb and 207Pb is 20ppm and 2ppm respectively [Riedo,2013]. These Pb isotopes have abundances of tens to hundreds of ppm in lunar KREEP [Nemchin,2008]. We demonstrate the measurement capabilities of LMS for petrographic and mineralogical analyses, for isotopic studies and dating analyses, which are key topics for future missions to the Moon. Having the LMS instrument installed on a lunar rover would allow measuring the chemical composition of many rock and soil samples, distributed over a certain area, inside the South Pole Aitken Basin for example. LMS measurements would yield valuable conclusions about age and mineralogy. References: [Wurz,2009]Wurz,P. et al. 2009, AIP Conf.Proc., CP1144:70-75. [Grimaudo,2015]Grimaudo, V. et al. 2015, Anal.Chem. 87: 2037-2041. [Neuland,2014]Neuland, M.B. et al. 2014, Planet.Space Sci.101:196-209. [Neuland,2016]Neuland M.B. et al. 2016, Meas. Sci. Technol.,submitted. [Riedo,2013]Riedo A. et al., 2013 Planet. Space Sci. 87: 1-13. [Nemchin,2008]Nemchin et al., 2008 Geochim. Cosmochim.Acta 72:668-689.

  13. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.

    PubMed

    Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P

    2017-03-01

    Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.

  14. Impact glasses from the ultrafine fraction of lunar soils

    NASA Technical Reports Server (NTRS)

    Norris, J. A.; Keller, L. P.; Mckay, D. S.

    1993-01-01

    The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.

  15. Assessment of kidney stone and prevalence of its chemical compositions.

    PubMed

    Pandeya, A; Prajapati, R; Panta, P; Regmi, A

    2010-09-01

    Kidney stone analysis is the test done on the stone which cause problems when they block the flow of urine through or out of the kidneys. The stones cause severe pain and are also associated with morbidity and renal damage. There is also no clear understanding on the relative metabolic composition of renal calculi. Hence, the study is aimed to find out the chemical composition of it which can guide treatment and give information that may prevent more stones from forming. The study was carried out on the stones that had been sent to the department of Biochemistry (n = 99; M = 61; F = 38; Mean age: 33.6 +/- 14.4 years) Approximately 98.9% of stones were composed of oxalate, 95.9% of Calcium, 85.8% of phosphate, 62.6% of Urate, 46.4% of Ammonium and very few percentages of Carbonate.

  16. Gas- and particle-phase chemical composition measurements onboard the G-1 research aircraft during the GoAmazon campaign.

    NASA Astrophysics Data System (ADS)

    Shilling, J.; Pekour, M. S.; Fortner, E.; Hubbe, J. M.; Longo, K.; Martin, S. T.; Mei, F.; Springston, S. R.; Tomlinson, J. M.; Wang, J.

    2014-12-01

    The Green Ocean Amazon (GoAmazon) campaign conducted from January 2014 - December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the DOE G-1 research aircraft was deployed from February 17th - March 25th 2014 and September 6th - October 5th 2014 to investigate aerosol and cloud properties aloft. An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were part of the G-1 research aircraft payload and were used to investigate aerosol gas- and particle-phase chemical composition. Here we present preliminary analysis of the aerosol and gas phase chemical composition. PTR-MS measurements show that isoprene and its oxidation products are the dominant VOCs during research flights. HR-AMS measurements reveal that the particle phase is dominated by organic material with smaller concentrations of sulfate and nitrate observed. Organic particle concentrations are enhanced when encountering the urban plume from Manaus. During the wet season, we observe increased concentrations of organic particle when passing through low-altitude clouds. PMF analysis of the organic mass spectra shows that the chemical composition of the particles observed in-cloud is distinctly different from particles observed outside clouds. We will also compare measurements made during the wet and dry seasons.

  17. Study on the chemical composition features of Longquan celadon excavated from the Chuzhou site of Huai'an City in Jiangsu Province by EDXRF

    NASA Astrophysics Data System (ADS)

    Li, Li; Feng, Song-Lin; Feng, Xiang-Qian; Xu, Qing; Yan, Ling-Tong; Ma, Bo; Huo, Hua

    2011-07-01

    A mass of Longquan celadon shards were excavated from the Chuzhou site of Huai'an City in Jiangsu Province, China. These celadon shards were fired during the period of the Late Yuan Dynasty to the Tianshun era of the Ming Dynasty, as identified by archaeologists at Nanjing Museum. In order to research the chemical composition features of this ancient celadon porcelain, energy dispersive X-ray fluorescence (EDXRF) for non-destructive analysis was used to determine the chemical composition of the porcelain body and glaze in these shards. The results indicate that Ti and Fe in the body of Longquan celadon are characteristic elements which can distinguish porcelain produced during the Late Yuan Dynasty from those produced in the Ming Dynasties. The results of the principal component analysis (PCA) show that different body and glaze raw materials were used for the production of porcelain in different periods and the raw materials of the body and glaze are also different for various vessel shapes. The chemical compositions in the porcelain body of civilian ware are slightly different. The imperial and civilian Longquan celadon porcelains produced during the Hongwu era to the Tianshun era of the Ming Dynasty are distinguishable by the MnO, Fe2O3, Rb2O and SrO content in their porcelain glaze.

  18. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    PubMed

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  19. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    PubMed Central

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  20. Inter- and intra-group compositional variations in Apollo 15 pyroclastic green glass - An electron- and ion-microprobe study

    NASA Technical Reports Server (NTRS)

    Galbreath, K. C.; Shearer, C. K.; Papike, J. J.; Shimizu, N.

    1990-01-01

    Results are presented on major- and trace-element abundance analyses of Apollo 15 pyroclastic green glasses from groups A, B, C, D, and E, carried out using electron- and ion-microprobe techniques. The diagrams depicting Sr, Zr, Ba, and Nd vs Co variations indicate the presence of a high-Co trend in groups A and D and a low-Co trend in groups B and C. Group-E glasses were found to be significantly enriched in Sr, relative to the other four glass groups. Chemical data of this study were integrated with previous data to evaluate various magmatic processes that have been proposed in the past to explain chemical variations in the lunar green glass. Results of calculations using a source mixing model suggest that the Apollo 15 green glasses represent multiple eruptive events from three chemically distinct but compositionally variable source regions.

  1. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzmán, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2009-02-01

    Variations in the chemical composition of fossil biogenic carbonates, and in particular of mollusc shells, have been used in a range of palaeoenvironmental reconstructions. It is of primary importance, therefore, to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Holocene and Pleistocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusc shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to verify the conservation state of shell samples is insufficient.

  2. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2008-02-01

    Variations on chemical composition in fossil biogenic carbonates, and in particular of mollusk shells, have been used in a range of palaeoenvironmental reconstructions. Therefore, it is of primary importance to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Pleistocene and Holocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusk shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to attest shell sample conservation state should not be considered as sufficient.

  3. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2012-10-01

    Commercially pure titanium samples were exposed to grit blasting and acid-alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  4. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    PubMed Central

    Sabel, N.; Robertson, A.; Nietzsche, S.; Norén, J. G.

    2012-01-01

    Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical and mineral composition of the enamel. A demineralized lesion was created in second primary molars from 18 individuals. Depths of lesions were then related to individual chemical content of the enamel. Enamel responded to demineralization with different lesion depths and this was correlated to the chemical composition. The carbon content in sound enamel was shown to be higher where lesions developed deeper. The lesion was deeper when the degree of porosity of the enamel was higher. PMID:22629152

  5. Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia.

    PubMed

    Kalashnikov, A O; Ivanyuk, G Yu; Mikhailova, J A; Sokharev, V A

    2017-07-31

    We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Fe magn , P 2 O 5 , CO 2 and SiO 2 . We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.

  6. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    NASA Astrophysics Data System (ADS)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  7. Characterization and prediction of chemical functions and weight fractions in consumer products.

    PubMed

    Isaacs, Kristin K; Goldsmith, Michael-Rock; Egeghy, Peter; Phillips, Katherine; Brooks, Raina; Hong, Tao; Wambaugh, John F

    2016-01-01

    Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization.

  8. Relation of asphalt chemistry to physical properties and specifications.

    DOT National Transportation Integrated Search

    1984-01-01

    This report constitutes a synthesis of published information concerning the chemical composition and characteristics of asphalt cements used in highway construction. The general relations between chemical composition and physical properties and speci...

  9. Discrimination of Radix Polygoni Multiflori from different geographical areas by UPLC-QTOF/MS combined with chemometrics.

    PubMed

    Tang, Jin-Fa; Li, Wei-Xia; Zhang, Fan; Li, Yu-Hui; Cao, Ying-Jie; Zhao, Ya; Li, Xue-Lin; Ma, Zhi-Jie

    2017-01-01

    Nowadays, Radix Polygoni Multiflori (RPM, Heshouwu in Chinese) from different geographical origins were used in clinic. In order to characterize the chemical profiles of different geographical origins of RPM samples, ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) combined with chemometrics (partial least squared discriminant analysis, PLS‑DA) method was applied in the present study. The chromatography, chemical composition and MS information of RPM samples from 18 geographical origins were acquired and profiled by UPLC-QTOF/MS. The chemical markers contributing the differentiation of RPM samples were observed and characterized by supervised PLS‑DA method of chemometrics. The chemical composition differences of RPM samples derived from 18 different geographical origins were observed. Nine chemical markers were tentatively identified which could be used as specific chemical markers for the differentiation of geographical RPM samples. UPLC-QTOF/MS method coupled with chemometrics analysis has potential to be used for discriminating different geographical TCMs. Results will help to develop strategies for conservation and utilization of RPM samples.

  10. Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi

    NASA Astrophysics Data System (ADS)

    Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina

    2016-07-01

    An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.

  11. Chemical compositions of primitive solar system particles

    NASA Technical Reports Server (NTRS)

    Sutton, Steve R.; Bajt, S.

    1994-01-01

    Chemical studies of micrometeorites are of fundamental importance primarily because atmospheric entry selection effects (such as destruction of friable objects) are less significant than those for conventional meteorites. As a result, particles that have experienced very little postaccretional processing have a significant chance of surviving the Earth encounter and subsequent collection. Thus, chemical analyses of these relatively unaltered micrometeorites may lead to a better understanding of the compositions of the most primitive materials in the solar system and thereby constrain the conditions (physical and chemical) that existed in the early solar nebula. Micrometeorites have been collected from the stratosphere, polar ices, and ocean sediments, but the stratospheric collection is the best source for the most unaltered material because they are small and are not heated to their melting points. Despite the fact that the stratospheric micrometeorites have masses in the nanogram range, a variety of microanalytical techniques have been applied to bulk chemical analyses with part-per-million sensitivity. In some cases, multi-disciplinary studies (e.g., chemistry and mineralogy) have been performed on individual particles. The first-order conclusion is that the chondrite-like particles are chemically similar to carbonaceous chondrites but in detail are distinct from members of the conventional meteorite collection. The purpose of this paper is to provide an overview of the results to date and identify important areas for further study.

  12. Synthesis and characterization of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Jasna, M.; Anjana, R.; Jayaraj, M. K.

    2017-08-01

    Recently, flexible organic optoelectronics have got great attention because of their light weight, mechanical flexibility and cost effective fabrication process. Conjugated polymers like PEDOT: PSS are widely used for the transparent electrode applications due to its chemical stability, high conductivity, flexibility and optical transparency in the visible region. Conductivity of the PEDOT: PSS polymer can be enhanced by adding organic solvents or conducting nano fillers like CNT, graphene, etc. Carbon nanotubes are good nano fillers to enhance the conductivity and mechanical strength of PEDOT: PSS composite film. Inthe present work, the effect of gold nano particles in PEDOT: PSS/CNT composite is studied. The conductivity enhancement in PEDOT: PSS/CNT thin films can be attributed to the formation of CNT network in the polymer matrix and conformational change of the PEDOT from benzoid to quinoid structure. Even though the conductivity was enhanced, the transparency of the composite thin films decreased with increase in CNT concentration. To overcome this problem, gold nano particles were attached to CNT walls via chemical route. AuMWCNT/PEDOT: PSS composite films were prepared by spin coating method. TEM images confirmed the decoration of gold nano particles on CNT walls. Electrical and optical properties of the composite films were studied. This simple solution processed conducting films are suitable for optoelectronic applications

  13. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    PubMed Central

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015

  14. High-alumina low-silica HT stone wool fibers: a chemical compositional range with high biosolubility.

    PubMed

    Guldberg, Marianne; Jensen, Søren Lund; Knudsen, Torben; Steenberg, Thomas; Kamstrup, Ole

    2002-04-01

    Man-made vitreous fibers (MMVF) are classified within the European Union (EU) as carcinogenic category 3 (possibly carcinogenic), but criteria exist to exonerate fibers from this classification. The HT stone wool fiber type is a MMVF that fulfills European regulatory requirements for exoneration from classification as a carcinogen based on in vivo testing. The chemical composition of the fibers and the results of the in vivo and in vitro studies that defined the chemical compositional range for a CAS registry number for these fibers are presented and discussed. Results from in vitro dissolution measurements at pH 4.5 of 52 fiber compositions (9-23 wt% Al(2)O(3) and 32-47 wt% SiO(2)) ranging from traditional stone wool to the biosoluble HT fibers are presented. The results are evaluated as a function of the ratio Al/(Al+Si) in the glass network and as a function of the fraction of Si-O-Si linkages in the glass. It is suggested that the dissolution mechanism for these fibers relates to the density of the surface silica layer on dissolving fibers and that the fraction of Si-O-Si linkages influences this. (c) 2002 Elsevier Science (USA).

  15. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    PubMed

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  16. Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.

    PubMed

    Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla

    2009-01-01

    There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.

  17. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    PubMed

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chemical and sensory differences between high price and low price extra virgin olive oils.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Conti, Paolo; Alfei, Barbara; Caprioli, Giovanni; Ricciutelli, Massimo; Sagratini, Gianni; Fedeli, Donatella; Gabbianelli, Rosita; Pacetti, Deborah

    2018-03-01

    The aim of the study was to identify new potential chemical markers of extra virgin olive oil (EVOO) quality by using a multicomponent analysis approach. Sixty-six EVOOs were purchased from the Italian market and classified according to their price as low price EVOOs (LEVOOs) and high price EVOOs (HEVOOs) costing 3.60-5.90euro/L and 7.49-29.80euro/L respectively. Sensory and chemical parameters strictly related to olive oil quality have been investigated, like volatile substances, polar phenolic substances, antioxidant activity, fatty acid composition, and α-tocopherol. Significant differences in terms of chemical composition and sensory features have been highlighted between the two EVOOs classes investigated, proving a generally lower level of quality of LEVOOs, clearly showed also by means of principal component analysis. Among the most interesting outcomes, R ratio (free tyrosol and hydroxytyrosol over total free and bound forms), measuring the extent of secoiridoids hydrolysis, resulted to be significantly higher in LEVOOs than in HEVOOs. Other key differences were found in the volatile substances composition, in the stearic acid percentage and in p-coumaric acid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    PubMed

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  20. Aging of Secondary Organic Aerosol from β-Pinene: Changes in Chemical Composition, Density and Morphology

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, M.; Hastie, D. R.

    2013-12-01

    Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.

  1. Dielectric functions, chemical and atomic compositions of the near surface layers of implanted GaAs by In+ ions

    NASA Astrophysics Data System (ADS)

    Kulik, M.; Kołodyńska, D.; Bayramov, A.; Drozdziel, A.; Olejniczak, A.; Żuk, J.

    2018-06-01

    The surfaces of (100) GaAs were irradiated with In+ ions. The implanted samples were isobaric annealed at 800 °C and then of dielectric function, the surface atomic concentrations of atoms and also the chemical composition of the near surface layers in these implanted semiconductor samples were obtained. The following investigation methods were used: spectroscopic ellipsometry (SE), Rutherford backscattering spectrometry analyses (RBSA) and X-ray photoelectron spectroscopy (XPS) in the study of the above mentioned quantities, respectively. The change of the shape spectra of the dielectric functions at about 3.0 eV phonon energy, diffusion of In+ ions as well as chemical composition changes were observed after ion implantation and the thermal treatment. Due to displacement of Ga ions from GaAs by the In+ ions the new chemical compound InAs was formed. The relative amounts Ga2O3 and As2O3 ratio increase in the native oxide layers with the fluences increase after the thermal treatment of the samples. Additionally, it was noticed that the quantities of InO2 increase with the increasing values of the irradiated ions before thermal treatment.

  2. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  3. The Lewis Chemical Equilibrium Program with parametric study capability

    NASA Technical Reports Server (NTRS)

    Sevigny, R.

    1981-01-01

    The program was developed to determine chemical equilibrium in complex systems. Using a free energy minimization technique, the program permits calculations such as: chemical equilibrium for assigned thermodynamic states; theoretical rocket performance for both equilibrium and frozen compositions during expansion; incident and reflected shock properties; and Chapman-Jouget detonation properties. It is shown that the same program can handle solid coal in an entrained flow coal gasification problem.

  4. Influence of Bulk Chemical Composition on Relative Sensitivity Factors for 55Mn/52Cr by SIMS: Implications for the 53Mn-53Cr Chronometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzel, J; Jacobsen, B; Hutcheon, I D

    2009-09-09

    The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigatemore » a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between glasses with similar Mn/Cr ratios but variable Fe and Na content. We are developing an approach that uses multivariate analysis to evaluate the importance of different chemical components in controlling the RSF and predict the RSF of unknowns when standards of appropriate composition are not available. Our analysis suggests that Fe, Si, and Na are key compositional factors in these silicate standards. The RSF is positively correlated with Fe and Si and negatively correlated with Na. Work is currently underway to extend this analysis to a wider range of chemical compositions and to evaluate the variability of RSF on measurements obtained by NanoSIMS.« less

  5. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  6. Thermal degradation of the tensile strength of unidirectional boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.

  7. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  8. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  9. Identification of specific organic contaminants in different units of a chemical production site.

    PubMed

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process. The chemical composition of the inflow samples showed a very heterogenic composition and strongly varied, reflecting that large scale industrial synthesis is carried out in batches. The outflow contained mainly unspecific chlorinated educts or intermediates of industrial syntheses as well as compounds which are known as typical constituents of municipal wastewaters.

  10. Measurements of Positive Ambient Ions in Lamont OK as Part of the Holistic Interaction of Shallow Clouds Aerosols and Land Ecosystems (HISCALE II) Field Campaign

    NASA Astrophysics Data System (ADS)

    Abdelhamid, A.; Stark, H.; Worsnop, D. R.; Nowak, J. B.; Kuang, C.; Bullard, R.; Browne, E. C.

    2017-12-01

    Atmospheric ions control the electrical properties of the atmosphere, influence chemical composition via ion-molecule and/or ion-catalyzed reactions, and affect new particle formation. Understanding the role of ions in these processes requires knowledge of ionic chemical composition. Due to the low concentration of ions, chemical composition measurements have historically been challenging. Recent advances in mass spectrometry, such as the atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF), are now making these measurements more feasible. Here, we present measurements of ambient cations during the HISCALE II field campaign (August- September 2016) in Lamont, OK. We discuss how the chemical composition of cations varies over the course of the campaign including before, during, and after new particle formation events. We specifically focus on the composition of organic nitrogen ions due to the potential importance of these compounds in atmospheric nucleation. We compare our results to measurements of neutral organic nitrogen compounds in order to gain insight into how organic nitrogen is chemically transformed in the atmosphere and how this influences new particle formation.

  11. Chemical composition and ruminal nutrient degradability of fresh and ensiled amaranth forage.

    PubMed

    Seguin, Philippe; Mustafa, Arif F; Donnelly, Danielle J; Gélinas, Bruce

    2013-12-01

    Amaranth is a crop with potential as a source of forage for ruminants that has not been well characterized. A study was conducted to determine the impact of ensiling on the nutritional quality and ruminal degradability of forage from two amaranth cultivars adapted to North America (i.e. Plainsman and D136). In particular, quantification and some microscopic characterization of oxalate found in amaranth were performed as it is an antiquality compound of concern. There were limited interactions between cultivars and ensiling for most variables. Differences in chemical composition between amaranth cultivars were also limited. Ensiling reduced non-structural carbohydrate and true protein contents. The proportion of acid detergent protein was high in fresh and ensiled forages of both cultivars (average of 177 g kg(-1) crude protein). Total oxalate content averaged 30 and 25 g kg(-1) in fresh and ensiled forages respectively. Ensiling reduced soluble oxalate content. Crystals observed in amaranth were calcium oxalate druses found mostly in idioblast cells in leaf mesophyll and parenchyma of primary and secondary veins. In situ ruminal degradability data indicated that both fresh and ensiled amaranth are highly degradable in the rumen. This study confirms that amaranth is a suitable forage for ruminant animals. Its chemical composition is comparable, for most variables, to that of other commonly used forage species. © 2013 Society of Chemical Industry.

  12. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level.

    PubMed

    Hunter, Jacobus J; Volschenk, Cornelis G

    2018-05-01

    The study aimed to unravel vineyard row orientation (NS, EW, NE-SW, NW-SE) and grape ripeness level (23, 25, 27 °Balling) implications for grape and wine composition and sensory properties/style (non-wooded/wooded wines) of Vitis vinifera L. cv. Shiraz (rootstock 101-14 Mgt). Soluble solid/titratable acidity ratios were lowest for EW, whereas warmer canopy sides (NW, N, NE) advanced grape ripening. Skin anthocyanins and phenolics generally decreased with ripening. NW-SE rows and S, SE, E and NE canopy sides showed highest skin total anthocyanins and phenolics. Wine total anthocyanins and phenolics increased with grape ripening; EW had lower values. Wine phenolic contents differed between canopy sides; N, NE, E and SE tended higher. Wine sensory profiles increased with grape ripening. For non-wooded wines, NW-SE and NE-SW row orientations generally resulted in highest scores, followed by NS. For EW rows, the N side presented better wines. Wood addition enhanced specific sensory descriptor perceptions. A large collection of wine styles surfaced in the same vineyard and terroir, increasing options to contribute positively to sustainable products. The study generated globally applicable, novel information vital for unlocking and valorising terroir/site potential for grape and wine chemical composition and wine sensory/style properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals.

    PubMed

    Wei, Lee Seong; Wee, Wendy

    2013-06-01

    This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use.

  14. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity.

    PubMed

    Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S

    2015-12-01

    Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.

  15. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  16. Preliminary survey of propulsion using chemical energy stored in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Baldwin, Lionel V; Blackshear, Perry L

    1958-01-01

    Ram-jet cycles that use the chemical energy of dissociated oxygen for propulsion in the ionosphere are presented. After a review of the properties and compositions of the upper atmosphere, the external drag, recombination kinetics, and aerodynamic-heating problems of an orbiting ram jet are analyzed. The study indicates that the recombination ram jet might be useful for sustaining a satellite at an altitude of about 60 miles. Atmospheric composition and recombination-rate coefficients were too uncertain for more definite conclusions. The ram jet is a marginal device even in the optimistic view.

  17. Study of mass flow distribution and chemical composition of comets from solar induced X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1979-01-01

    The expected performance of an X-ray detector as an instrument aboard a mission to a comet was evaluated. The functions of the detector are both nondispersive analysis of chemical composition and measurement of mass flow from the comet nucleus. Measurements are to be carried out at a distance from the comet. The approach distances considered are of the order of 1000 km and 100 km. A new type of X-ray detector, a proportional scintillation detector, is considered as an X-ray counter for nondispersive elemental analysis.

  18. Damping mechanisms in chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Goldsby, Jon C.

    1993-01-01

    Evaluating the damping of reinforcement fibers is important for understanding their microstructures and the vibrational response of their structural composites. In this study the damping capacities of two types of chemically vapor deposited silicon carbide fibers were measured from -200 C to as high as 800 C. Measurements were made at frequencies in the range 50 to 15000 Hz on single cantilevered fibers. At least four sources were identified which contribute to fiber damping, the most significant being thermoelastic damping and grain boundary sliding. The mechanisms controlling all sources and their potential influence on fiber and composite performance are discussed.

  19. Chemical composition of natural waters of contaminated area: The case for the Imandra Lake catchment (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.

    2016-03-01

    The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.

  20. Characterization and Prediction of Chemical Functions and ...

    EPA Pesticide Factsheets

    Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-b

  1. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  2. EAST VERSUS WEST IN THE US: CHEMICAL CHARACTERISTICS OF PM 2.5 DURING THE WINTER OF 1999

    EPA Science Inventory

    The chemical composition of PM2.5 was investigated at four sites (Rubidoux, CA, Phoenix, AZ, Philadelphia, PA, and RTP, NC) in January and February of 1999. Three samplers were used to determine both the overall mass and the chemical composition of the aerosol. Teflon filters wer...

  3. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.

  4. On the competition among aerosol number, size and composition in predicting CCN variability: a multi-annual field study in an urbanized desert.

    PubMed

    Crosbie, E; Youn, J-S; Balch, B; Wonaschütz, A; Shingler, T; Wang, Z; Conant, W C; Betterton, E A; Sorooshian, A

    2015-02-10

    A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012-2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm -3 ), highest in winter (430 cm -3 ) and have a secondary peak during the North American monsoon season (July to September; 372 cm -3 ). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm -3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82% of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41% (pre-monsoon) and 36% (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.

  5. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2014-09-10

    Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise ZnO nanostructures, will help in formulating specific strategies for obtaining enhanced energy generation from thermopower waves.

  6. Progress in the Analysis of Complex Atmospheric Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.

    2016-06-16

    This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less

  7. [Research progress on enlargement of medicinal resources of Paridis Rhizome].

    PubMed

    Cheng, Li; Zhen, Yan; Chen, Min; Huang, Lu-qi

    2015-08-01

    Currently, as an important raw material of Chinese traditional patent medicines, Paridis Rhizome is in great demand, which led to its price increases. In order to protect the wild resources and satisfy market demand of Paridis rhizome, the researches in various directions were conducted, involved its chemical composition, pharmacological action, clinical application, resource investigation, artificial cultivation, etc. Herein, the chemical studies of genus Paridis Rhizome, aerial parts of Paridis Rhizome gummy and starchy Paridis Rhizome, and the studies of endophyte in Paridis Rhizome were reviewed and analyzed in order to explore the substitutes of Paridis Rhizome, and provide the reference for the enlargement of medicinal resources of Paridis Rhizome. It manifests that the steroidal saponins, the important chemical compositions in Paridis Rhizome were tested in genus Paridis Rhizome, aerial parts of Paridis Rhizome, gummy Paridis Rhizome and the endophyte in Paridis Rhizome. However, the further experimental studies and clinical verification works should be carried out to confirm the final substitute.

  8. Characterization of Chemical Composition of Pericarpium Citri Reticulatae Volatile Oil by Comprehensive Two-Dimensional Gas Chromatography with High-Resolution Time-of-Flight Mass Spectrometry.

    PubMed

    Qin, Kunming; Zheng, Lijuan; Cai, Hao; Cao, Gang; Lou, Yajing; Lu, Tulin; Shu, Yachun; Zhou, Wei; Cai, Baochang

    2013-01-01

    Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.

  9. Chemical characterization of oak heartwood from Spanish forests of Quercus pyrenaica (Wild.). Ellagitannins, low molecular weight phenolic, and volatile compounds.

    PubMed

    Fernandez de Simón, Brígida; Sanz, Miriam; Cadahía, Estrella; Poveda, Pilar; Broto, Miguel

    2006-10-18

    The need for new sources of quality wood supply for cooperage has led to looking into the possibility of utilizing Quercus pyrenaica Wild. oak, a species native to the Iberian peninsula, as an alternative to other European (Quercus robur and Qurecus petraea) and American (Quercus alba) oaks. The low molecular weight phenolic composition, ellagitannins, and volatile compounds (including a wide range of compound families such as volatile phenols, furanic compounds, lactones, phenyl ketones, other lignin-derived compounds, and volatile compounds related to off-flavors) of green heartwood from Spanish forest regions were studied by HPLC and GC, in order to know its enological characteristics. The chemical composition of Q. pyrenaica is similar to that of other species commonly used in cooperage to make barrels, showing only quantitative differences that were more significant with respect to American than to French species. The four provenance regions studied showed similar chemical composition, with high variability among individuals, often higher than the variability among regions of provenance, but in line with that described in other European and American oak woods. Therefore, this species must be considered to be suitable for aging wine.

  10. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  11. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  12. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate. © 2013 John Wiley & Sons Ltd.

  13. AEROSOL CHEMICAL CHARACTERISTION ON BOARD THE DOE G1 AIRCRAFT USING A PARTICLE INTO LIQUID SAMPLER DURING THE TEXAQS 2000 EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEE,Y.N.; SONG,Z.; LIU,Y.

    2001-01-13

    Knowledge of aerosol chemical composition is key to understanding a number of properties of ambient aerosol particles including sources, size/number distribution, chemical evolution, optical properties and human health effects. Although filter based techniques have been widely used to determine aerosol chemical constituents, they generally cannot provide sufficiently fast time resolution needed to investigate sources and chemical evolution that effect aerosol chemical, size and number changes. In order to gain an ability to describe and predict the life cycles of ambient aerosols as a basis for ambient air quality control, fast and sensitive determination of the aerosol chemical composition must bemore » made available. To help to achieve this goal, we deployed a newly developed technique, referred to as PILS (particle-into-liquid-sampler), on the DOE G1 aircraft during the 2000 Texas Air Quality Study (TexAQS 2000) to characterize the major ionic species of aerosol particles with aerodynamic size smaller than 2.5 {micro}m (PM 2.5). The results obtained are examined in the context of other simultaneously collected data for insights into the measurement capability of the PILS system.« less

  14. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  15. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making itmore » difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values« less

  16. Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Zhang, Fang; Li, Zhanqing; Sun, Li; Wang, Zhenzhu; Li, Ping; Sun, Yele; Ren, Jingye; Wang, Yuying; Cribb, Maureen; Yuan, Cheng

    2017-05-01

    With the aim of understanding the impact of aerosol particle size and chemical composition on CCN activity, the size-resolved cloud condensation nuclei (CCN) number concentration (NCCN), particle number size distribution (PSD) (10-600 nm), and bulk chemical composition of particles with a diameter < 1.0 μm (PM1) were measured simultaneously at Xinzhou, a suburban site in northern China, from 22 July to 26 August 2014. The NCCN was measured at five different supersaturations (SS) ranging from 0.075%-0.76%. Diurnal variations in the aerosol number concentration (NCN), NCCN, the bulk aerosol activation ratio (AR), the hygroscopicity parameter (κchem), and the ratio of 44 mass to charge ration (m/z 44) to total organic signal in the component spectrum (f44), and the PSD were examined integrally to study the influence of particle size and chemical composition on CCN activation. We found that particle size was more related to the CCN activation ratios in the morning, whereas in the afternoon ( 1400 LST), κchem and f44 were more closely associated with the bulk AR. Assuming the internal mixing of aerosol particles, NCCN was estimated using the bulk chemical composition and real-time PSD. We found that the predicted CCN number concentrations were underestimated by 20-30% at SS < 0.2% probably due to the measurement uncertainties. Estimates were more accurate at higher SS levels, suggesting that the hygroscopicity parameter based on bulk chemical composition information can provide a good estimate of CCN number concentrations. We studied the impacts of new particle formation (NPF) events on size-resolved CCN activity at the ;growth; stage and ;leveling-off; stage during a typical NPF event by comparing with the case during non-NPF event. It has been found that CCN activation was restrained at the ;growth; stage during which larger particle diameters were needed to reach an activation diameter(Da), and the bulk AR decreased as well. However, during the ;leveling-off; stage, a lower Da was observed and CCN activation was greatly enhanced.

  17. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities

    PubMed Central

    Krall, Jenna R.; Mulholland, James A.; Russell, Armistead G.; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E.; Waller, Lance A.; Sarnat, Stefanie Ebelt

    2016-01-01

    Background: Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. Objectives: We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. Methods: We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. Results: We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. Conclusions: We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97–103; http://dx.doi.org/10.1289/EHP271 PMID:27315241

  18. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities.

    PubMed

    Krall, Jenna R; Mulholland, James A; Russell, Armistead G; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E; Waller, Lance A; Sarnat, Stefanie Ebelt

    2017-01-01

    Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97-103; http://dx.doi.org/10.1289/EHP271.

  19. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  20. Chemical composition and antifungal activity of the essential oils of Schinus weinmannifolius collected in the spring and winter.

    PubMed

    Hernandes, Camila; Taleb-Contini, Silvia H; Bartolomeu, Ana Carolina D; Bertoni, Bianca W; França, Suzelei C; Pereira, Ana Maria S

    2014-09-01

    Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.

  1. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral substances. A set of solid phases of the multisystem is formed with the mineral composition of the crystalline rocks of the Fennoscandian (Baltic) shield taken into account. The processes of forming the surface waters in the "water - rock - atmosphere" system depending on the degree of interaction (ξ) of rocks with aqueous solutions under open conditions (100 kg of atmosphere, 1000 kg of water, T-5oC, P-1 bar and rock (100 g) - the rock average composition: 1) Inari terrane rocks, 2) granulites of the Lapland granulite belt were investigated. Clarke concentrations of S, C, F, Zn, Ni, Pb, Cu (Vinogradov, 1962) were taken into account in order to determine their influence on forming the chemical composition of water solutions, and water migration coefficients (Perelman, 1989). Comparison of the modeling results with the monitoring results of the source of river Paz shows that the chemical composition of waters of lake Inari as well as the upper flow of river Paz is formed by interactions of surface waters, ground waters, and fissure waters with granulites of the Lapland granulite belt, as well as gneisses, diorites and granitoids of Inari terrane of the northern Fennoscandia. Thermodynamic modeling determined that the chemical composition of surface waters is formed as a result of interaction of atmospheric precipitation with intrusive and sedimentary rocks of the northern Fennoscandia, containing clarke concentrations of S, C, F, Zn, Ni, Pb, Cu. The obtained model solutions indicate that surface waters are formed within the considered system as a result of "water-rock-atmosphere" interaction.

  2. ADHESIVES WITH DIFFERENT PHS: EFFECT ON THE MTBS OF CHEMICALLY ACTIVATED AND LIGHT-ACTIVATED COMPOSITES TO HUMAN DENTIN

    PubMed Central

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-01-01

    Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37°C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm2. Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min−1). Data were analyzed using two-way ANOVA and Tukey’s tests (p<0.05). Results: The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª). However, with use of the chemically activated composite (B2B), PB (7.8±3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2±7.6ª). Conclusion: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly. PMID:19089142

  3. Adhesives with different pHs: effect on the MTBS of chemically activated and light-activated composites to human dentin.

    PubMed

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-08-01

    To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm*min-1). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7+/-7.1 feminine; PB+Z100 = 23.8+/-5.7 feminine). However, with use of the chemically activated composite (B2B), PB (7.8+/-3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2+/-7.6 feminine). The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.

  4. Chemical composition of black rockfish (Sebastes melanops) fillets and byproducts

    USDA-ARS?s Scientific Manuscript database

    Black rockfish are important in the near shore fishery of Southeast Alaska. They are the only species among the pelagic shelf rockfishes for which there is a directed fishery in state waters. The purpose of this study was to determine the composition black rockfish fillets and its major processing b...

  5. Moisture sorption properties of composite boards from esterified aspen fiber

    Treesearch

    C. Clemons; R. A. Young; R. M. Rowell

    1992-01-01

    One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...

  6. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  7. Triacylglycerols Composition and Volatile Compounds of Virgin Olive Oil from Chemlali Cultivar: Comparison among Different Planting Densities

    PubMed Central

    Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar

    2012-01-01

    The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139

  8. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    EPA Science Inventory

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  9. ASSOCIATIONS BETWEEN TRACE ELEMENTAL COMPOSITION OF PM2.5 AND MORTALITY AND MORBIDITY IN PHILADELPHIA

    EPA Science Inventory

    A large number of studies have reported associations between particulate matter (PM) and mortality and morbidity. Since PM is a chemically non-specific index and a mixture of a variety of chemical components from multiple sources, it is possible that use of the total PM mass as ...

  10. Chemical and biological diversity of the volatiles of five Artemisia species from far east of Russia

    USDA-ARS?s Scientific Manuscript database

    Aim of the present study was to investigate the chemical composition and biological activity of essential oils from aerial parts of Artemisia argyi, A. feddei, A. gmelinii, A. manshurica, A. olgensis (Asteraceae). Plants were collected in the Far East region (Primorski Krai) of the Russian Federatio...

  11. Soil fauna and plant litter decomposition in tropical and subalpine forests

    Treesearch

    G. Gonzalez; T.R. Seastedt

    2001-01-01

    The decomposition of plant residues is influenced by their chemical composition, the physical-chemical environment, and the decomposer organisms. Most studies interested in latitudinal gradients of decomposition have focused on substrate quality and climate effects on decomposition, and have excluded explicit recognition of the soil organisms involved in the process....

  12. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    PubMed

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  13. [Morphology, anatomy, ontogeny and chemical composition of inflorescences volatile secondary metabolites of Lippia alba (Verbenaceae) at three stages of development].

    PubMed

    Parra-Garcés, María Isabel; Caroprese-Araque, José Fernando; Arrieta-Prieto, Dagoberto; Stashenko, Elena

    2010-12-01

    There is an increased interest to know and scientifically validate traditional knowledge of medicinal plants. Lippia alba belongs to Verbenaceae family and has been of interest, not only because of its worldwide extensive distribution, but also for its variable use as antiviral, bactericide, citostatic, analgesic and sedative. To study this, the morphology and ontogeny of Lippia alba inflorescences and the chemical composition of its volatile secondary metabolites were analyzed during three different stages of development. Plants were collected at the experimental crop field in CENIVAM, Bucaramanga, Colombia. The inflorescence's morphology and ontogeny, and the chemical composition of volatile secondary metabolites were analyzed using a stereoscopic microscope and chromatographic and spectroscopic techniques. Fresh material corresponding to each stage was fixed in F.A.A (formol, acetic acid and alcohol), included in paraffin and cutted in transversal and longitudinal sections. Sections were stained with safranine-fastgreen, photographed and decribed. The chemical composition of volatile secondary metabolites at each ontogenic stage, was extracted by solid phase micro-extraction in the headspace mode and analyzed by gas chromatography coupled to mass spectrometry. Stage I showed a meristematic mass of cells in vegetative apex and bracts, with an outline of floral whorls. In Stage III. the stamens were adnate, epipetals and didynamous, bicarpelar and syncarpic gynoecium, with superior ovary and decurrent stigma. The main secondary metabolites detected were the bicyclosesquiphellandrene followed by carvone, limonene and trans-beta-farnesene, that constituted the 78% of the total relative amounts of compounds. Other metabolites such as beta-copaene, gamma-amorphene and cis-beta-guaiene, were reported for the first time in this study. When compared to other studies, morphological differences reported in this study are possibly related to adaptation to environmental conditions or pollinators, which let us suggest that there is no specific ontogenic pattern. Similarly, the qualitative and quantitative variations in the detected compounds could be explained because one or more of them are used as precursors of others.

  14. Biomass Morphology Subjected to Different Chemical Treatment

    NASA Astrophysics Data System (ADS)

    Sutan, Norsuzailina Mohamed; Masjida Mazlan, Siti; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur

    2018-03-01

    A growing interest of sugarcane bagasse fibre composite has been observed in recent years due to its attractiveness properties such as low specific weight, renewable source and producible with low investment at low cost. However, these materials have a low interfacial adhesion between fibre and matrix which lead to reduction in certain mechanical properties of the composite. To overcome this problem, studies show that certain chemical treatments on the surface of the fibres are some alternatives that significantly increase the adhesion reinforcement/matrix, in some cases improving its mechanical properties. The objective of this study was to evaluate the effect of different type of chemical treatment which are alkali and acid treatment on sugarcane bagasse fibre surface morphology. Seeking to improve the adhesion fibre matrix, the fibre has been treated with 5% of NaOH and 5% of HCL solution with added of bagasse fibre used in the range of 0% to 3% of cement weight respectively. Through SEM investigation, it is confirmed that chemical treatment helps to remove hemicelluloses from raw bagasse fiber as well as improved fibre matrix adhesion.

  15. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  16. Consumer product chemical weight fractions from ingredient lists

    EPA Science Inventory

    Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific gu...

  17. The Chemical Composition of Maple Syrup

    ERIC Educational Resources Information Center

    Ball, David W.

    2007-01-01

    Maple syrup is one of several high-sugar liquids that humans consume. However, maple syrup is more than just a concentrated sugar solution. Here, we review the chemical composition of maple syrup. (Contains 4 tables and 1 figure.)

  18. Chemical investigations of male and female leaf extracts from Schinus molle L.

    PubMed

    Garzoli, Stefania; Laghezza Masci, Valentina; Turchetti, Giovanni; Pesci, Lorenzo; Tiezzi, Antonio; Ovidi, Elisa

    2018-05-29

    The pepper-tree Schinus molle is an evergreen ornamental plant with various and diversified list of medical uses. In this article we analysed the chemical composition of male and female leaves of this plant during the off-flowering and flowering seasons. The leaf extracts were obtained by using a sequential extraction with solvents of different polarities and the chemical composition was investigated by GC-MS. The results showed a total of twenty-three components, in which elemol is the most abundant constituent followed by bicyclogermacrene, γ-eudesmol, α-eudesmol, β-eudesmol and isocalamendiol. The petroleum ether and diethyl ether extracts from male and female flowering and off-flowering leaves consisted of sesquiterpene hydrocarbons as a major constituent followed by monoterpene hydrocarbons, while the acetone extracts showed a different composition. The obtained results show differences in the chemical composition between male and female and flowering and not flowering.

  19. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    USGS Publications Warehouse

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources.

  20. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

Top