Method of operating a thermal engine powered by a chemical reaction
Ross, John; Escher, Claus
1988-01-01
The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.
Method of operating a thermal engine powered by a chemical reaction
Ross, J.; Escher, C.
1988-06-07
The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.
Progress in reforming chemical engineering education.
Wankat, Phillip C
2013-01-01
Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.
Design and Control of Chemical Grouting : Volume 3 - Engineering Practice
DOT National Transportation Integrated Search
1983-04-01
Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...
Conceptests for a Chemical Engineering Thermodynamics Course
ERIC Educational Resources Information Center
Falconer, John L.
2007-01-01
Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…
Granular Activated Carbon Performance Capability and Availability.
1983-06-01
services were surveyed to determine availability of data and to develop a strategy for later computerized searches: * Chemical Abstracts; * Engineering ...Chemical Abstracts; * Engineering Abstracts; * Environmental Abstracts; * Selected Water Resources Abstracts; * Pollution Abstracts; and * the U.S...chemicals addressed, and scientific and engineering methods used. Publications were also reviewed for quality and consistency with the bulk of available data
A Rational Method for Ranking Engineering Programs.
ERIC Educational Resources Information Center
Glower, Donald D.
1980-01-01
Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)
Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko
2016-01-21
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...
40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...
40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...
40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...
Engineering Graphene Mechanical Systems
2012-07-05
strength material. On the basis of chemical /defect manipulation and recrystallization this technique allows wide-range engineering of mechanical... Engineering Graphene Mechanical Systems Maxim K. Zalalutdinov,† Jeremy T. Robinson,*,† Chad E. Junkermeier,‡ James C. Culbertson, Thomas L. Reinecke...Information ABSTRACT: We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically
A Stochastic Mixing Model for Predicting Emissions in a Direct Injection Diesel Engine.
1986-09-01
of chemical reactors. The fundamental concept of these models is coalescence/dis- persion micromixing . C1] Details of this method are provided in Appen...Togby,A.H., "Monte Carlo Methods of Simulating Micromixing in Chemical Reactors", Chemical Engineering Science, Vol.27, p.1 4 97, 1972. 46. Kattan,A...on a molecular level. 2. Micromixing or stream mixing refers to the mixing of particles on a molecular level. Until the coalescence and dispersion
Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.
Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai
2007-05-01
The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).
Engineering microbes for efficient production of chemicals
Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers
2015-04-28
This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
Drug Transport and Pharmacokinetics for Chemical Engineers
ERIC Educational Resources Information Center
Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok
2010-01-01
Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…
Rurality as an Asset for Inclusive Teaching in Chemical Engineering
ERIC Educational Resources Information Center
Gomez, Jamie; Svihla, Vanessa
2018-01-01
We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…
High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory
ERIC Educational Resources Information Center
Frey, Douglas D.; Guo, Hui; Karnik, Nikhila
2013-01-01
This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…
A Course in Electrochemical and Corrosion Engineering.
ERIC Educational Resources Information Center
Van Zee, John
1985-01-01
Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)
Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.
Gladden, Lynn F; Sederman, Andrew J
2017-06-07
This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research.
Development of Chemical Engineering Course Methods Using Action Research: Case Study
ERIC Educational Resources Information Center
Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina
2013-01-01
This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
NASA Technical Reports Server (NTRS)
Huang, C. J.; Motard, R. L.
1978-01-01
The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.
Tepper, Naama; Shlomi, Tomer
2011-01-21
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).
Design and Control of Chemical Grouting : Volume 4 - Executive Summary
DOT National Transportation Integrated Search
1983-04-01
This report focuses on the engineering practice of chemical grouting, summarizing the findings of a study to improve design and control techniques for chemical grouting in soils. Improved methods for the planning, control and evaluation of chemical g...
Advanced Chemical Modeling for Turbulent Combustion Simulations
2012-05-03
premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled
Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke
2017-06-01
Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...
40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...
40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...
40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...
40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...
NASA Technical Reports Server (NTRS)
Gordon, Sanford
1991-01-01
The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.
Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Fritzemeier, Marilyn L.; Skowronski, Raymund P.
1994-01-01
Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.
2006 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition
2006-06-28
methods that might counter or cancel our current military advantages • Defeat terrorist networks • Defend homeland in depth • Prevent acquisition or...Systems approach to the detection of chemical and biological agents with a focus on genetically engineered organisms ( GMOs )/genetically engineered...and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains. (capsize our power
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition.
Luo, Ling; Yang, Zhihao; Yang, Pei; Zhang, Yin; Wang, Lei; Lin, Hongfei; Wang, Jian
2018-04-15
In biomedical research, chemical is an important class of entities, and chemical named entity recognition (NER) is an important task in the field of biomedical information extraction. However, most popular chemical NER methods are based on traditional machine learning and their performances are heavily dependent on the feature engineering. Moreover, these methods are sentence-level ones which have the tagging inconsistency problem. In this paper, we propose a neural network approach, i.e. attention-based bidirectional Long Short-Term Memory with a conditional random field layer (Att-BiLSTM-CRF), to document-level chemical NER. The approach leverages document-level global information obtained by attention mechanism to enforce tagging consistency across multiple instances of the same token in a document. It achieves better performances with little feature engineering than other state-of-the-art methods on the BioCreative IV chemical compound and drug name recognition (CHEMDNER) corpus and the BioCreative V chemical-disease relation (CDR) task corpus (the F-scores of 91.14 and 92.57%, respectively). Data and code are available at https://github.com/lingluodlut/Att-ChemdNER. yangzh@dlut.edu.cn or wangleibihami@gmail.com. Supplementary data are available at Bioinformatics online.
Toward Genome-Based Metabolic Engineering in Bacteria.
Oesterle, Sabine; Wuethrich, Irene; Panke, Sven
2017-01-01
Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry. Copyright © 2017 Elsevier Inc. All rights reserved.
A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. This hinders the use and relevance of cell culture in high throughput chemical toxicity screening. To address this challenge, we engineered HEK293T cells to overexpress...
40 CFR 80.47 - Performance-based Analytical Test Method Approach.
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemistry and statistics, or at least a bachelor's degree in chemical engineering, from an accredited... be compensated for any known chemical interferences using good laboratory practices. (3) The test... section, individual test results shall be compensated for any known chemical interferences using good...
40 CFR 63.1414 - Test methods and emission estimation equations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable to the process vent. (iv) Design analysis based on accepted chemical engineering principles..., dry standard cubic meters per minute, at a temperature of 20 °C. (g) Engineering assessment may be... the highest daily emission rate. (1) Engineering assessment includes, but is not limited to, the...
40 CFR 63.1414 - Test methods and emission estimation equations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...
40 CFR 63.1414 - Test methods and emission estimation equations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...
Code of Federal Regulations, 2014 CFR
2014-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
40 CFR 63.1414 - Test methods and emission estimation equations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
40 CFR 63.1414 - Test methods and emission estimation equations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists
ERIC Educational Resources Information Center
Nadeau, Jay L.
2009-01-01
This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…
Activated carbon fibers and engineered forms from renewable resources
Baker, Frederick S
2013-02-19
A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.
Activated carbon fibers and engineered forms from renewable resources
Baker, Frederick S.
2010-06-01
A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...
State of Aircraft Turboshaft Engines by Means of Tribotechnical Diagnostic
NASA Astrophysics Data System (ADS)
Mihalčová, Janka
2018-03-01
The contribution describes concrete example of application of tribotechnical methods for the determination of the bearing wear state in aircraft turboshaft engines. Tribotechnical methods, which will be mentioned, deal with qualitative and quantitative characterization of particles occurred in oil. Here belong method optical emission spectrometry method with rotating disc electrode for determination of chemical elements concentration in oil. Method of optical particles counting for detection of particles distribution according to their scale, determination of their number and ferrographic analysis. Exploitation of these methods make it possible to determine quickly and correctly the friction regime and wearing of friction pair that is washed by oil in observed engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, D.W.; Linnhoff, B.
In Part I, criteria for heat engine and heat pump placement in chemical process networks were derived, based on the ''temperature interval'' (T.I) analysis of the heat exchanger network problem. Using these criteria, this paper gives a method for identifying the best outline design for any combined system of chemical process, heat engines, and heat pumps. The method eliminates inferior alternatives early, and positively leads on to the most appropriate solution. A graphical procedure based on the T.I. analysis forms the heart of the approach, and the calculations involved are simple enough to be carried out on, say, a programmablemore » calculator. Application to a case study is demonstrated. Optimization methods based on this procedure are currently under research.« less
National Nanotechnology Initiative Strategic Plan
2011-02-01
Engineering complex, theranostic-based nanoparticles and nanodevices to target therapies and diagnose the progress of treatments. • Adopting new materials...the occurrence, fate, and effects of naturally-occurring and engineered chemical contami- nants in aquatic environments, or research on methods of
The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines
NASA Technical Reports Server (NTRS)
Schweitzer, P H; Deluca, Frank, Jr
1942-01-01
A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.
Chen, Yun; Nielsen, Jens
2013-12-01
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computational methods in metabolic engineering for strain design.
Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L
2015-08-01
Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Systems biology solutions for biochemical production challenges.
Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J
2017-06-01
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.
He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao
2016-02-01
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
The Better Mousetrap...Can Be Built by Engineers.
ERIC Educational Resources Information Center
McBride, Matthew
2003-01-01
Describes the growth of the INSPEC database developed by the Institution of Electrical Engineers. Highlights include an historical background of its growth from "Science Abstracts"; production methods, including computerization; indexing, including controlled (thesaurus-based), uncontrolled, chemical, and numerical indexing; and the…
Review of Diesel Odor and Toxic Vapor Emissions
DOT National Transportation Integrated Search
1981-05-01
The purpose of the study was to attempt to assess the adequacy of the diesel engine exhaust chemical composition data base and instrumental analysis methods for the measurement of chemicals giving rise to sensory response, especially odor and irritat...
2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.
Covalent and non-covalent chemical engineering of actin for biotechnological applications.
Kumar, Saroj; Mansson, Alf
2017-11-15
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Engineering of filamentous bacteriophage for protein sensing
NASA Astrophysics Data System (ADS)
Brasino, Michael
Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
Process Security in Chemical Engineering Education
ERIC Educational Resources Information Center
Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.
2005-01-01
The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…
Surface Engineering and Patterning Using Parylene for Biological Applications
Tan, Christine P.; Craighead, Harold G.
2010-01-01
Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensors and biological microenvironments. A variety of substituted precursors enables direct coating of functionalised parylenes onto biomedical implants and microfluidics, providing a convenient method for designing biocompatible and bioactive surfaces. This article will review the emerging role and applications of parylene as a biomaterial for surface chemical modification and provide a future outlook.
Peristalticity-driven banded chemical garden
NASA Astrophysics Data System (ADS)
Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.
2018-05-01
Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.
-3228 Research Interests Application of numerical methods to process problems Fuel and chemical biochemistry and numerical methods), University of Wisconsin at Madison, 2009-2014 Professional Experience Stem Cells Under Defined Conditions," Tissue Engineering Part C Methods (2013)
Modern Cast Irons in Chemical Engineering
1934-11-09
fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition
Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L
2003-01-01
In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.
26 CFR 1.43-2 - Qualified enhanced oil recovery project.
Code of Federal Regulations, 2010 CFR
2010-04-01
... not obtained, to obtain a chemical or physical reaction (other than pressure) between the oil and the... following requirements— (1) The project involves the application (in accordance with sound engineering... engineering principles and whether the change in method will result in more than an insignificant increase in...
Rationale for Incorporating Health and Safety into the Curriculum.
ERIC Educational Resources Information Center
Fleischman, Marvin
1988-01-01
Presents a philosophical commentary on the need and rationale for incorporating safety and health into the chemical engineering curriculum. Proposes safety and health assessments as useful teaching methods. Describes an approach to bringing safety and health into undergraduate engineering curricula. Gives examples of integration of these curricula…
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...
Volatile organic compound emissions from engineered wood products
Steve Zylkowski; Charles Frihart
2017-01-01
Thirteen bonded engineered wood products representing those commonly used in building construction were evaluated for volatile organic chemicals using methods developed for interior bonded wood products. Although formaldehyde and acetaldehyde were emitted from all samples, they were not the dominant volatiles, which greatly depended on wood species and bonding...
Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses
ERIC Educational Resources Information Center
Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.
2010-01-01
Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…
A Flexible Self-Paced Course in Process Control.
ERIC Educational Resources Information Center
King, Franklin G.
1979-01-01
Describes an undergraduate chemical engineering course which has been taught by a self-paced instructional method at Howard University, Washington, D.C. The instructional method, course description, and students' grades are also discussed. (HM)
Lee, Junsung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Jean; Park, Ji-Ho
2016-03-23
Engineering of extracellular vesicles (EVs) without affecting biological functions remains a challenge, limiting the broad applications of EVs in biomedicine. Here, we report a method to equip EVs with various functional agents, including fluorophores, drugs, lipids, and bio-orthogonal chemicals, in an efficient and controlled manner by engineering parental cells with membrane fusogenic liposomes, while keeping the EVs intact. As a demonstration of how this method can be applied, we prepared EVs containing azide-lipids, and conjugated them with targeting peptides using copper-free click chemistry to enhance targeting efficacy to cancer cells. We believe that this liposome-based cellular engineering method will find utility in studying the biological roles of EVs and delivering therapeutic agents through their innate pathway.
40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... recovering monomer, reaction products, by-products, or solvent from a stripper operated in batch mode, and the primary condenser recovering monomer, reaction products, by-products, or solvent from a...
Center for Interface Science and Catalysis | Theory
& Stanford School of Engineering Toggle navigation Home Research Publications People About Academic to overcome challenges associated with the atomic-scale design of catalysts for chemical computational methods we are developing a quantitative description of chemical processes at the solid-gas and
A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng
2017-11-23
Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.
Ye, Lidan; Yang, Chengcheng; Yu, Hongwei
2018-01-01
With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.
Chemical Engineering in the "BIO" World.
Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele
2017-01-01
Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Researches on Preliminary Chemical Reactions in Spark-Ignition Engines
NASA Technical Reports Server (NTRS)
Muehlner, E.
1943-01-01
Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.
The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation
ERIC Educational Resources Information Center
Wankat, Phillip C.
2009-01-01
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
Chemical Engineering in Education and Industry.
ERIC Educational Resources Information Center
Wei, James
1986-01-01
Provides an historical overview of the origins, developments, and contributions of chemical engineering. Reviews the roles of the university and industry in the education of chemical engineers. Includes a listing of the major advances of chemical engineering since World War II. (ML)
Computer Applications in Balancing Chemical Equations.
ERIC Educational Resources Information Center
Kumar, David D.
2001-01-01
Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)
Group to Use Chemistry to Solve Developing Countries' Ills.
ERIC Educational Resources Information Center
O'Sullivan, Dermot A.
1983-01-01
Chemical engineers have begun savoring the first fruits of a massive effort to gather, determine, and evaluate data of physical properties and predictive methods for large numbers of compounds and mixtures processed in the chemical industry. The use of this centralized data source is highlighted. (Author/JN)
ERIC Educational Resources Information Center
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie
2016-01-01
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes
NASA Astrophysics Data System (ADS)
Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.
2017-08-01
The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
ERIC Educational Resources Information Center
Abu-Jdayil, Basim; Al-Attar, Hazim
2010-01-01
The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…
Micro Thermal and Chemical Systems for In Situ Resource Utilization on Mars
NASA Technical Reports Server (NTRS)
Wegeng, Robert S.; Sanders, Gerald
2000-01-01
Robotic sample return missions and postulated human missions to Mars can be greatly aided through the development and utilization of compact chemical processing systems that process atmospheric gases and other indigenous resources to produce hydrocarbon propellants/fuels, oxygen, and other needed chemicals. When used to reduce earth launch mass, substantial cost savings can result. Process Intensification and Process Miniaturization can simultaneously be achieved through the application of microfabricated chemical process systems, based on the rapid heat and mass transport in engineered microchannels. Researchers at NASA's Johnson Space Center (JSC) and the Department of Energy's Pacific Northwest National Laboratory (PNNL) are collaboratively developing micro thermal and chemical systems for NASA's Mission to Mars program. Preliminary results show that many standard chemical process components (e.g., heat exchangers, chemical reactors and chemical separations units) can be reduced in hardware volume without a corresponding reduction in chemical production rates. Low pressure drops are also achievable when appropriate scaling rules are applied. This paper will discuss current progress in the development of engineered microchemical systems for space and terrestrial applications, including fabrication methods, expected operating characteristics, and specific experimental results.
Chemical Engineering Students: A Distinct Group among Engineers
ERIC Educational Resources Information Center
Godwin, Allison; Potvin, Geoff
2013-01-01
This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
Thermal Response Of Composite Insulation
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul
1988-01-01
Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.
IC Post-Doctoral Fellowship Abstract and Bio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, Randy
2016-11-01
Whole cell biosensors (WCBs) utilize an organism’s natural ability to sense and respond to the environment. Through implementation of two different protein engineering methods, I seek to develop a WCB for the detection of important chemical signatures in the environment. I will reengineer the ligand binding profile of proteins known to alter transcription of genes, and I will engineer signal transduction in proteins already known to bind relevant compounds. In both cases, detection of compounds of interest will lead to the production of a measurable fluorescent signal within the organism. These approaches will provide the groundwork for the development ofmore » novel chemical sensing technologies that provide a cheap and efficient alternative to traditional methods for detection of compounds.« less
Indicators and Metrics for Evaluating the Sustainability of Chemical Processes
A metric-based method, called GREENSCOPE, has been developed for evaluating process sustainability. Using lab-scale information and engineering assumptions the method evaluates full-scale epresentations of processes in environmental, efficiency, energy and economic areas. The m...
The applicability of chemical alternatives assessment for engineered nanomaterials.
Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders
2017-01-01
The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC. © 2016 SETAC.
Dormer, Nathan H.; Berkland, Cory J.; Detamore, Michael S.
2013-01-01
Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods. PMID:20411333
Nolan Wilson Nolan Wilson Postdoctoral Researcher-Chemical Engineering Nolan.Wilson@nrel.gov | 303 Ph.D., Chemical and Biomolecular Engineering, Clemson University, 2014 M.S., Chemical and Biomolecular Engineering, Clemson University, 2012 B.S., Chemical Engineering, Auburn University, 2007 Professional
Richard T. (Rick) Elander | NREL
T. (Rick) Elander Photo of Rick Elander Richard Elander Researcher VI-Chemical Engineering Chemicals and AIChE Annual Meeting, multiple years Education M.S., Chemical Engineering (Biochemical Engineering), Colorado State University B.S., Chemical Engineering, University of Pennsylvania Professional
Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum
ERIC Educational Resources Information Center
Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.
2007-01-01
Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup
2015-11-15
The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry Other... less; or c. Provide engineering calculations, such as mass balance and flow rate calculations, that demonstrate that the control device is capable of reducing PM concentration from the chemical preparations...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry Other... less; or c. Provide engineering calculations, such as mass balance and flow rate calculations, that demonstrate that the control device is capable of reducing PM concentration from the chemical preparations...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry Other... less; or c. Provide engineering calculations, such as mass balance and flow rate calculations, that demonstrate that the control device is capable of reducing PM concentration from the chemical preparations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry Other... less; or c. Provide engineering calculations, such as mass balance and flow rate calculations, that demonstrate that the control device is capable of reducing PM concentration from the chemical preparations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Standards for Hazardous Air Pollutants for Area Sources: Chemical Preparations Industry Other... less; or c. Provide engineering calculations, such as mass balance and flow rate calculations, that demonstrate that the control device is capable of reducing PM concentration from the chemical preparations...
2012-06-01
Conducting metrology, surface analysis, and metallography/ fractography interrogations of samples to correlate microstructure with friction...are examined using a variety of methods such as metallography, chemical analysis, fractography , and hardness measurements. These methods assist in
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-07-01
Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c
Xiaowen Chen Photo of Xiaowen Chen Xiaowen Chen Researcher IV-Chemical Engineering Xiaowen.Chen Education Ph.D., Chemical Engineering, University of Maine, 2009 M.S., Chemical Engineering, University of Maine, 2005 B.S., Chemical Engineering in Polymer Science and Technology, Nanjing University of Science
ERIC Educational Resources Information Center
Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu
2014-01-01
Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…
Dong, Hao; Li, Xuemin; Xue, Changhu; Mao, Xiangzhao
2016-05-01
Natural astaxanthin (Ax) is an additive that is widely used because of its beneficial biochemical functions. However, the methods used to produce free Ax have drawbacks. Chemical saponification methods produce several by-products, and lipase-catalyzed hydrolysis methods are not cost effective. In this study, a bacterial strain of Stenotrophomonas sp. was selected to enzymatically catalyze the saponification of Ax esters to produce free all-trans-Ax. Through single-factor experiments and a Box-Behnken design, the optimal fermentation conditions were determined as follows: a seed culture age of 37.79 h, an inoculum concentration of 5.92%, and an initial broth pH of 6.80. Under these conditions, a fermentation curve was drawn, and the optimal fermentation time was shown to be 60 h. At 60 h, the degradation rate of the Ax esters was 98.08%, and the yield of free all-trans-Ax was 50.130 μg/mL. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:649-656, 2016. © 2016 American Institute of Chemical Engineers.
New approach in direct-simulation of gas mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren
1991-01-01
Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.
Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride
Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong
2017-01-01
Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992
ERIC Educational Resources Information Center
Miller, Ronald L.; Streveler, Ruth A.; Yang, Dazhi; Roman, Aidsa I. Santiago
2011-01-01
This paper summarizes progress on two related lines of chemical engineering education research: 1) identifying persistent student misconceptions in thermal and transport science (fluid mechanics, heat transfer, and thermodynamics); and, 2) developing a method to help students repair these misconceptions. Progress on developing the Thermal and…
Protein engineering for metabolic engineering: current and next-generation tools
Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.
2014-01-01
Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443
Protein engineering for metabolic engineering: current and next-generation tools.
Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C
2013-05-01
Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic engineering and chemical conjugation of potato virus X.
Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F
2014-01-01
Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).
Wang, Guan; Zhang, Kai; Wang, Yindian; Zhao, Changwen; He, Bin; Ma, Yuhong; Yang, Wantai
2018-05-03
Surface engineering of individual living cells is a promising field for cell-based applications. However, engineering individual cells with controllable thickness by chemical methods has been rarely studied. This article describes the development of a new cytocompatible chemical strategy to decorate individual living cells. The thicknesses of the crosslinked shells could be conveniently controlled by the irradiation time, visible light intensity, or monomer concentration. Moreover, the lag phase of the yeast cell division was extended and their stability against lysis was improved, which could also be tuned by controlling the shell thickness.
NASA Astrophysics Data System (ADS)
Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
2017-07-01
The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.
ERIC Educational Resources Information Center
Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.
2015-01-01
Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…
Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... conducted by ``a licensed professional engineer or foreign equivalent who works in the chemical engineering... chemical engineering field. EPA views renewable fuel production to fall generally within the chemical... basic organic chemical manufacturers. Industry 424690 5169 Chemical and allied products merchant...
Investigation of chemically-reacting supersonic internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1985-01-01
This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.
Systems metabolic engineering design: Fatty acid production as an emerging case study
Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V
2014-01-01
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660
Systems metabolic engineering design: fatty acid production as an emerging case study.
Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V
2014-05-01
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.
Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J
2016-01-01
Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.
Argonne Chemical Sciences & Engineering - Awards Home
Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and
Next-generation genome-scale models for metabolic engineering.
King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O
2015-12-01
Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 63.8105 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... component is synthesized by chemical reaction or separation activity and then transferred to another vessel... using an engineering assessment as discussed in § 63.1257(d)(2)(ii), test data using Method 18 of 40 CFR... individual unit of equipment used for the purpose of recovering chemicals for fuel value (i.e., net positive...
ERIC Educational Resources Information Center
Hohn, Keith L.
2007-01-01
A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.
Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R
2015-07-01
The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth John
1994-01-01
An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.
Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong
2005-11-01
A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.
2017-08-14
Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of...Specialty Separations” Oral Presentation during the 2014 Chemical Engineering Department Symposium (Key Note Speaker), University of Puerto Rico, Mayaguez...Leadership Award in the College of Engineering of the University of Puerto Rico, May, 2015. 3. Distinguished Professor of Chemical Engineering
Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective
ERIC Educational Resources Information Center
Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.
2012-01-01
Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…
A Route Towards Sustainability Through Engineered Polymeric Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeja-Jayan, B; Kovacik, P; Yang, R
2014-05-30
Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniquesmore » engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.« less
Chemical Engineering Division Activities
ERIC Educational Resources Information Center
Chemical Engineering Education, 1978
1978-01-01
The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)
The Navy/NASA Engine Program (NNEP89): A user's manual
NASA Technical Reports Server (NTRS)
Plencner, Robert M.; Snyder, Christopher A.
1991-01-01
An engine simulation computer code called NNEP89 was written to perform 1-D steady state thermodynamic analysis of turbine engine cycles. By using a very flexible method of input, a set of standard components are connected at execution time to simulate almost any turbine engine configuration that the user could imagine. The code was used to simulate a wide range of engine cycles from turboshafts and turboprops to air turborockets and supersonic cruise variable cycle engines. Off design performance is calculated through the use of component performance maps. A chemical equilibrium model is incorporated to adequately predict chemical dissociation as well as model virtually any fuel. NNEP89 is written in standard FORTRAN77 with clear structured programming and extensive internal documentation. The standard FORTRAN77 programming allows it to be installed onto most mainframe computers and workstations without modification. The NNEP89 code was derived from the Navy/NASA Engine program (NNEP). NNEP89 provides many improvements and enhancements to the original NNEP code and incorporates features which make it easier to use for the novice user. This is a comprehensive user's guide for the NNEP89 code.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
Kinchin Photo of Christopher Kinchin Christopher Kinchin Researcher III-Chemical Engineering . Education B.S., Chemical Engineering, Texas Tech University M.S., Chemical Engineering, University of North
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
3D printing for the design and fabrication of polymer-based gradient scaffolds.
Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P
2017-07-01
To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient. Copyright © 2017. Published by Elsevier Ltd.
Frontiers in Chemical Sensors: Novel Principles and Techniques
NASA Astrophysics Data System (ADS)
Orellana, Guillermo; Moreno-Bondi, Maria Cruz
This third volume of Springer Series on Chemical Sensors and Biosensors aims to enable the researcher or technologist to become acquainted with the latest principles and techniques that keep on enlarging the applications in this fascinating field. It deals with the novel luminescence lifetime-based techniques for interrogation of sensor arrays in high-throughput screening, cataluminescence, chemical sensing with hollow waveguides, new ways in sensor design and fabrication by means of either combinatorial methods or engineered indicator/support couples.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2016-05-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2017-03-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Engineering chemical interactions in microbial communities.
Kenny, Douglas J; Balskus, Emily P
2018-03-05
Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.
Singh, Milind; Berkland, Cory; Detamore, Michael S
2008-12-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.
Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less
ERIC Educational Resources Information Center
Ramkrishna, D.; And Others
1989-01-01
This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…
Flame Movement and Pressure Development in an Engine Cylinder
NASA Technical Reports Server (NTRS)
Marvin, Charles F , Jr; Best, Robert D
1932-01-01
This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.
Biomedical engineering for health research and development.
Zhang, X-Y
2015-01-01
Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.
A New Venture in Graduate Education: Co-Op Ph.D. Programme in Chemical Engineering.
ERIC Educational Resources Information Center
Fahidy, Thomas Z.
1980-01-01
Describes a cooperative Ph.D. program at the University of Waterloo, Ontario, Canada, in which industrial and governmental employers participate with the Department of Chemical Engineering in training chemical engineers. (CS)
Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model
NASA Astrophysics Data System (ADS)
Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.
2011-05-01
The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.
Identification of informative features for predicting proinflammatory potentials of engine exhausts.
Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei
2017-08-18
The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.
Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models
NASA Astrophysics Data System (ADS)
Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.
2017-12-01
A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).
Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods
ERIC Educational Resources Information Center
Maase, Eric L.; High, Karen A.
2008-01-01
"Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…
Non-thermal plasma technology for the development of antimicrobial surfaces: a review
NASA Astrophysics Data System (ADS)
Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe
2016-05-01
Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.
Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering
2005-01-01
Tissue Engineering Tao Jianga, Cyril M. Pilaneb, Cato T. Laurencina’b"c’ * a Department of Chemical Engineering , University of Virginia, Charlottesville...Chair of Orthopaedic Surgery Professor of Biomedical and Chemical Engineering 400 Ray C. Hunt Drive, Suite 330 University of Virginia Charlottesville...an alternative therapeutic approach for skeletal regeneration. Tissue engineering has been defined as the application of biological, chemical , and
Nicholson Photo of Scott Nicholson Scott Nicholson Researcher I-Chemical Engineering through Industry (MFI) tool Education B.S. in chemical engineering with a minor in economics, Tufts Affiliations American Institute of Chemical Engineers
Systems metabolic engineering for chemicals and materials.
Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup
2011-08-01
Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael
2011-01-24
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.
Methods for producing 3-hydroxypropionic acid and other products
Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.
2016-07-12
This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
Polyamide copolymers having 2,5-furan dicarboxamide units
Chisholm, Bret Ja; Samanta, Satyabrata
2017-09-19
Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.
Method for producing 3-hydroxypropionic acid and other products
Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.
2016-08-30
This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2013 CFR
2013-01-01
... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...
Advanced Computer Simulations of Military Incinerators
2004-12-01
Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in
Singh, Milind; Berkland, Cory
2008-01-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499
Protein engineering approaches to chemical biotechnology.
Chen, Zhen; Zeng, An-Ping
2016-12-01
Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.
At Age 100, Chemical Engineering Education Faces Changing World.
ERIC Educational Resources Information Center
Krieger, James
1988-01-01
Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)
Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.
ERIC Educational Resources Information Center
Russell, T. W. F.
1985-01-01
Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)
NASA Astrophysics Data System (ADS)
Wong, Michael S.; Lee, Gil U.
2005-07-01
This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session chairs, Hyperion Catalysis International, Inc., Nanophase Technologies, Inc., and the executive board of the NSEF.
Dhamankar, Himanshu; Prather, Kristala L J
2011-08-01
The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electrochemical energy engineering: a new frontier of chemical engineering innovation.
Gu, Shuang; Xu, Bingjun; Yan, Yushan
2014-01-01
One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.
Job Prospects for Chemical Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…
Teaching Chemical Engineers about Teaching
ERIC Educational Resources Information Center
Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie
2013-01-01
The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…
Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
2014-01-01
Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...
2018-03-28
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
Skuse, Gary R; Lamkin-Kennard, Kathleen A
2013-01-01
Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Saikrishna Mukkamala Saikrishna Mukkamala Researcher IV-Chemical Engineering Saikrishna.Mukkamala thermochemical, biochemical pathways Bio product and fuel characterization Education M.S. Chemical Engineering , University of Maine B.S. Chemical Engineering, JNTU-India Featured Publications S. Mukkamala, M.C. Wheeler
Career Opportunities in Chemistry and Chemical Engineering.
ERIC Educational Resources Information Center
Glover, Trienne
This pamphlet discusses career and employment opportunities in chemical engineering. Necessary college preparation is described and median salaries by degree are tabulated. Nontraditional careers in chemistry are also described. Future demand for chemists and chemical engineers is projected to 1985 and the availability of jobs for women and…
Confined Detonations and Pulse Detonation Engines
2003-01-01
chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES
Characterisation of nanomaterial hydrophobicity using engineered surfaces
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal
2017-03-01
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective
NASA Astrophysics Data System (ADS)
Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.
2012-05-01
Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.
Hailey Boyer Photo of Hailey Boyer Hailey Boyer Undergraduate IV-Chemical Engineering Hailey.Boyer studying chemical engineering at the University of South Carolina. She was hired through as an intern at via the Hybrid-Sulfur process Electrochemical modeling Education B.S. Chemical Engineering, University
Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan
2010-01-01
Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…
Appropriate Programs for Foreign Students in U.S. Chemical Engineering Curricula.
ERIC Educational Resources Information Center
Findley, M. E.
Chemical engineers in developing countries may need abilities in a number of diverse areas including management, planning, chemistry, equipment, processes, politics, and improvisation. Chemical engineering programs for foreign students can be arranged by informed advisers with student input for inclusion of some of these areas in addition to…
Brewing as a Comprehensive Learning Platform in Chemical Engineering
ERIC Educational Resources Information Center
Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.
2016-01-01
Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…
Frontiers in Chemical Engineering. Research Needs and Opportunities.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…
Enhancing the Undergraduate Computing Experience in Chemical Engineering CACHE Corporation
ERIC Educational Resources Information Center
Edgar, Thomas F.
2006-01-01
This white paper focuses on the integration and enhancement of the computing experience for undergraduates throughout the chemical engineering curriculum. The computing experience for undergraduates in chemical engineering should have continuity and be coordinated from course to course, because a single software solution is difficult to achieve in…
An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores
ERIC Educational Resources Information Center
O'Connor, Kim C.
2007-01-01
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Work-Based Higher Degrees: Responding to the Knowledge Needs of Chemical Engineers
ERIC Educational Resources Information Center
Winberg, Christine
2007-01-01
University-workplace partnerships are strategies increasingly called for in higher education. This article reports on collaborative knowledge production between employed professional chemical engineers (registered for higher degrees) and their university-based supervisors (researchers in the field of chemical engineering). The study draws on a…
Job Prospects for Chemical Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…
Patterning methods for polymers in cell and tissue engineering.
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2012-06-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.
Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel
Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum
2017-01-01
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314
Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K
2014-04-01
Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W; Whedon, William E
1928-01-01
This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.
1993-09-01
Chiras , Daniel D. Environmental Science . Redwood City, California: The Benjamin/Cummings Publishing Company, Inc., 1991. Cummings-Saxton, J., L...Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in...Engineering and Environmental Management Raymond A. Sable, B. Architecture Captain, USAF, R.A. September 1993 Approved for public release; distribution
Metabolic engineering of the shikimate pathway
Juminaga, Darmawi; Keasling, Jay D.
2017-01-10
The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.
Countermeasures to Hazardous Chemicals,
1989-04-01
Chemical Engineers (AIChE), 3. Hazardous Materials Advisery, Council (HMAC), (not the same as the Memphis/Shelby County HMAC), 4. American Petroleum...retired chemical engineers , will volunteer to avos t the I wcal communities in their pl. ining efforts. S1i !NSTITrTE OF HAZARDOUS MATERIALS MANAGEMENT The... chemicals may be considered to be a man-made wind. Such large gas volumes can be produced by blowcr equipment incorporating surplus jet engines . Such blowers
Numerical Simulation of Chemical Weapon Detonations
1996-08-01
Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions. To support the...U.S. Army Corps of Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions...Length 6" As part of the development of a chemical agent confinement structure for use by the Huntsville Corps of Engineers , SwRI performed arena tests on
ERIC Educational Resources Information Center
Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.
2013-01-01
A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…
ERIC Educational Resources Information Center
Gupta, Anju
2015-01-01
This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…
Results of the 2010 Survey on Teaching Chemical Reaction Engineering
ERIC Educational Resources Information Center
Silverstein, David L.; Vigeant, Margot A. S.
2012-01-01
A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…
Heat Exchanger Lab for Chemical Engineering Undergraduates
ERIC Educational Resources Information Center
Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.
2015-01-01
Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…
Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula
ERIC Educational Resources Information Center
Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence
2018-01-01
Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…
ERIC Educational Resources Information Center
Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.
2016-01-01
Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…
Peer-Assisted Tutoring in a Chemical Engineering Curriculum: Tutee and Tutor Experiences
ERIC Educational Resources Information Center
Kieran, Patricia; O'Neill, Geraldine
2009-01-01
Peer-Assisted Tutorials (PATs), a form of Peer-Assisted Learning (PAL), were introduced to a conventional 4-year honours degree programme in Chemical Engineering. PATs were designed to support students in becoming more self-directed in their learning, to develop student confidence in tackling Chemical Engineering problems and to promote effective…
Method for preparing small volume reaction containers
Retterer, Scott T.; Doktycz, Mitchel J.
2017-04-25
Engineered reaction containers that can be physically and chemically defined to control the flux of molecules of different sizes and charge are disclosed. Methods for constructing small volume reaction containers through a combination of etching and deposition are also disclosed. The methods allow for the fabrication of multiple devices that possess features on multiple length scales, specifically small volume containers with controlled porosity on the nanoscale.
Applications of Electrical Impedance Tomography (EIT): A Short Review
NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.
Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J
2018-05-11
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Preparation and measurement methods for studying nanoparticle aggregate surface chemistry.
Szakal, Christopher; McCarthy, James A; Ugelow, Melissa S; Konicek, Andrew R; Louis, Kacie; Yezer, Benjamin; Herzing, Andrew A; Hamers, Robert J; Holbrook, R David
2012-07-01
Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.
ERIC Educational Resources Information Center
Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.
2013-01-01
A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…
Genetic engineering and sustainable production of ornamentals: current status and future directions.
Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate
2012-07-01
Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.
USING SIMULATION FOR POLLUTION PREVENTION
The ability to design or modify chemical processes in a way that minimizes the formation of unwanted by-products is an ongoing goal for process engineers. Two simulation and design methods are discussed here: Process Integration (PI) developed by El-Halwagi and Manousiouthakis a...
Biologically-based pharmacokinetic models are being increasingly used in the risk assessment of environmental chemicals. These models are based on biological, mathematical, statistical and engineering principles. Their potential uses in risk assessment include extrapolation betwe...
Teaching Applied Chemistry in a Pollution Control Context.
ERIC Educational Resources Information Center
Sell, Nancy J.
1982-01-01
Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)
ATMOSPHERIC RELEASES OF HEXAVALENT CHROMIUM FROM HARD CHROMIUM PLATING OPERATIONS
The University of Central Florida Department of Civil and Environmental Engineering is investigating methods for improved estimation of chemical releases which require reporting under provisions of SARA Title III (Toxic Release Inventory, Form R). This paper describes results fr...
Engineering microbes for tolerance to next-generation biofuels
2011-01-01
A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production. PMID:21936941
Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes
Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook
2014-01-01
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540
A Pharmacokinetic Study of the Effects of Stress on Chemical Exposure.
2000-03-01
CHEMICAL EXPOSURE THESIS Presented to the Faculty of the Graduate School of Engineering and Management of the Air Force Institute of Technology Air...EFFECTS OF STRESS ON CHEMICAL EXPOSURE THESIS Sierra H. Suhajda, B.S. Lieutenant, USAF Presented to the Faculty of the Graduate School of Engineering ...War Syndrome: Dueling studies focus on stress versus environmental exposures as cause of ills," Chemical and Engineering News, 75: 4-5 (13 January
26 CFR 1.414(r)-2 - Line of business.
Code of Federal Regulations, 2010 CFR
2010-04-01
... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...
26 CFR 1.414(r)-2 - Line of business.
Code of Federal Regulations, 2014 CFR
2014-04-01
... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...
26 CFR 1.414(r)-2 - Line of business.
Code of Federal Regulations, 2013 CFR
2013-04-01
... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...
26 CFR 1.414(r)-2 - Line of business.
Code of Federal Regulations, 2012 CFR
2012-04-01
... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...
26 CFR 1.414(r)-2 - Line of business.
Code of Federal Regulations, 2011 CFR
2011-04-01
... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...
Detection of unburned fuel as contaminant in engine oil by a gas microsensor array
NASA Astrophysics Data System (ADS)
Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.
2007-05-01
We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).
NASA Astrophysics Data System (ADS)
Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul
Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.
A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach
Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.
1996-01-01
A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.
Modeling of wastewater treatment system of car parks from petroleum products
NASA Astrophysics Data System (ADS)
Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.
2018-05-01
The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.
Microfluidic tools toward industrial biotechnology.
Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G
2016-11-01
Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.
Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo
2016-07-01
Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability.
ERIC Educational Resources Information Center
Abraham, Nithin Susan; Abulencia, James Patrick
2011-01-01
This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…
, followed by the completion of a M.S. in Chemical Engineering from the Colorado School of Mines. She received her Ph.D. in Chemical Engineering. Her thesis, which was performed at NREL under the direction of 2001-2005 Ph.D. Chemical Engineering, Colorado School of Mines, Golden, CO Research Fellowship at the
Chemical Engineering Education Revisited.
ERIC Educational Resources Information Center
Theodore, Louis
1978-01-01
The opinion is presented that chemical engineering education seems to emphasize the professor's research and/or professional interests with little regard for the real needs of the student who intends to become a practicing engineer. (BB)
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-01-01
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603
Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua
2018-05-01
In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.
1996-06-01
GenPharm International, Inc. created the first transgenic dairy cow . The cow was used to produce human milk proteins for infant formula. 1990 A four...engineering techniques, biological compounds such as human insulin , growth hormone, and blood clotting factors can be produced in fermentors containing...the gene for rat insulin . 1977 Walter Gilbert and Allan Maxam at Harvard University devised a method for sequencing DNA using chemicals rather than
Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning
2011-11-16
method we have previously explored the formation of specialized fibers for several applications, including tissue engineering,28 superhydrophobic fab...dissolved during the first exposure and subsequent Figure 9. Multilayer fiber mat with outer superhydrophobic fibers and inner enzyme containing fibers
Patterning Methods for Polymers in Cell and Tissue Engineering
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2017-01-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment. PMID:22258887
D'Amora, Ugo; D'Este, Matteo; Eglin, David; Safari, Fatemeh; Sprecher, Christoph M; Gloria, Antonio; De Santis, Roberto; Alini, Mauro; Ambrosio, Luigi
2018-02-01
The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.
Overview of Pulse Detonation Propulsion Technology
2001-04-01
PROPULSION TECHNOLOGY M. L. Coleman CHEMICAL PROPULSION INFORMATION AGENCY THE JOHNS HOPKINS UNIVERSITY. WHITING SCHOOL OF ENGINEERING -COLUMBIA...U. 20 R. Santoro, "Advanced Propulsion Research: A Focus of the Penn State Propulsion Engineering Research Center," Chemical Propulsion Information...Detonation Engine ," AIAA 95-3155 (July 1995), U-A. NASA Marshall Space Flight Center Space Transportation Day 2000 Presentation Material, Advance Chemical
ERIC Educational Resources Information Center
Palit, Sukanchan
2016-01-01
Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…
Chemical Engineering Data Analysis Made Easy with DataFit
ERIC Educational Resources Information Center
Brenner, James R.
2006-01-01
The outline for half of a one-credit-hour course in analysis of chemical engineering data is presented, along with a range of typical problems encountered later on in the chemical engineering curriculum that can be used to reinforce the data analysis skills learned in the course. This mini course allows students to be exposed to a variety of ChE…
Lignin Valorization: Emerging Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T
Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii)more » thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.« less
A review of photocatalysts prepared by sol-gel method for VOCs removal.
Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin
2010-05-28
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.
Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.
Li, Mingji; Borodina, Irina
2015-02-01
Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
NASA Technical Reports Server (NTRS)
Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.
1997-01-01
Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.
Nondestructive reactivation of chemical protective garments. Final report, June 1985-July 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.W.; Chang, S.Y.; Klemperer, E.
In the near future, chemical protective combat uniforms may be worn by Army personnel on a continuous basis. Activated carbon, the operative component, has diminished capacity for sorbing chemical agents after it has been exposed to dirt, sweat, cigarette smoke, engine exhaust, petroleum products and numerous other elements routinely present in the battlefield environment. This report summarizes the development of two nondestructive methods for cleaning and reactivating soiled chemical protective garments. Complete reactivation was achieved when the aqueous i-propanol iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam ormore » Kynol activated carbon fiber material, was applied in nonaqueous solvent. Subsequently, a nonaqueous solvent method that requires less handling was chosen in designing a truck-mounted system. It features non-agitative flow of methylene chloride and methanol around the chemical-protective garments suspended between ultrasonic transducers. Both methods restore full sorptivity to the Type III foam liner. There is a one-time 10% loss of activated carbon without any loss of sorptivity. The volatile solvents are more easily removed, and can be economically recovered. Overall features of a mobile unit have been sketched.« less
Guest Editorial: The Professional Status of European Chemists and Chemical Engineers.
Salzer, Reiner; Taylor, Philip; Majcen, Nineta H; De Angelis, Francesco; Wilmet, Sophie; Varella, Evangelia; Kozaris, Ioannis
2015-07-06
Which country pays its chemists and chemical engineers the highest salaries? Where can I find a new job quickest? Which chemical sub-discipline offers most jobs? Reliable answers for these and other questions have been derived from the first European employment survey for chemists and chemical engineers, which was carried out in 2013. Here we publish the first general evaluation of the results of this survey. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia
2014-05-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.
Discussion on the Development of Green Chemistry and Chemical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.
METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS
The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...
Hughson, Michael D; Cruz, Thayana A; Carvalho, Rimenys J; Castilho, Leda R
2017-07-01
The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight-through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3-step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single-use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931-940, 2017. © 2017 American Institute of Chemical Engineers.
Introducing High School Students and Science Teachers to Chemical Engineering.
ERIC Educational Resources Information Center
Bayles, Taryn Melkus; Aguirre, Fernando J.
1992-01-01
Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…
Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience
ERIC Educational Resources Information Center
Seif, Mujan; Beck, Matthew
2018-01-01
Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…
ERIC Educational Resources Information Center
Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael
2013-01-01
We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
40 CFR 63.11950 - What emissions calculations must I use for an emission profile?
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...
Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering
ERIC Educational Resources Information Center
McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary
2011-01-01
Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…
The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes
ERIC Educational Resources Information Center
Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick
2018-01-01
We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…
The Use of the Software MATLAB To Improve Chemical Engineering Education.
ERIC Educational Resources Information Center
Damatto, T.; Maegava, L. M.; Filho, R. Maciel
In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…
Chemical Engineering in the Spectrum of Knowledge.
ERIC Educational Resources Information Center
Sutija, Davor P.; Prausnitz, John M.
1990-01-01
Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)
Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu
2015-06-01
Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress
2009-07-13
Process Safety, American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. See...example, Testimony by Dennis C. Hendershot, Staff Consultant, Center for Chemical Process Safety, American Institute of Chemical Engineers , before...CRS Report for Congress Prepared for Members and Committees of Congress Chemical Facility Security: Reauthorization, Policy Issues, and
Metabolic Engineering for the Production of Natural Products
Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng
2014-01-01
Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617
Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei
2018-04-01
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.
2013-01-01
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038
Compact scheme for systems of equations applied to fundamental problems of mechanics of continua
NASA Technical Reports Server (NTRS)
Klimkowski, Jerzy Z.
1990-01-01
Compact scheme formulation was used in the treatment of boundary conditions for a system of coupled diffusion and Poisson equations. Models and practical solutions of specific engineering problems arising in solid mechanics, chemical engineering, heat transfer and fuid mechanics are described and analyzed for efficiency and accuracy. Only 2-D cases are discussed and a new method of numerical treatment of boundary conditions common in the fundamental problems of mechanics of continua is presented.
Coexistence of superconductivity and magnetism by chemical design
NASA Astrophysics Data System (ADS)
Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.
2010-12-01
Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.
Chemical labelling for visualizing native AMPA receptors in live neurons
NASA Astrophysics Data System (ADS)
Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru
2017-04-01
The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.
Chemical Engineering from Washington University in St. Louis and a B.S. in Chemical Engineering from the Number 6,284,384. Gregory M. Wilson, et al., "Pressure Equalization System for Chemical Vapor
Future fundamental combustion research for aeropropulsion systems
NASA Technical Reports Server (NTRS)
Mularz, E. J.
1985-01-01
Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.
Code of Federal Regulations, 2014 CFR
2014-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
NASA Astrophysics Data System (ADS)
Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long
2018-05-01
The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.
Advanced Combustion Numerics and Modeling - FY18 First Quarter Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.
This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less
An Alternative Route to Chemical Engineering for Minority and Other Students.
ERIC Educational Resources Information Center
Cussler, E. L.
The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…
Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems
Bernstein, Hans C; Carlson, Ross P
2012-01-01
This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
Natural Convection in Enclosed Porous or Fluid Media
ERIC Educational Resources Information Center
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
New Concerns Emerge as Zebra Mussel Spreads.
ERIC Educational Resources Information Center
Walter, Martha L., Ed.
1992-01-01
Reports on the Zebra Mussel invasion of North American inland waterways. Discusses United States Army Corps of Engineers operations that may facilitate or be affected by the spread of Zebra Mussels, the threat to native clams, chemical and mechanical control methods, natural solutions, and ongoing research. (MCO)
This research program was initiated with the objective of developing, codifying and testing a group of chemical analytical methods for measuring toxic compounds in the exhaust of distillate-fueled engines (i.e. diesel, gas turbine, Stirling, or Rankin cycle powerplants). It is a ...
Bio-Inspired Navigation of Chemical Plumes
2006-07-01
Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The
Challenges and opportunities in synthetic biology for chemical engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, YZ; Lee, JK; Zhao, HM
Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.
Toca, Angel
2006-01-01
Through the first half of the 20th century, chemical engineering was established as an academic option in the training of specialists for the North-American and European chemical industry, whereas it was not a special field of study in Spain until the 1990s. The reason for this delay was a battle of interests between chemist and industrial engineers to control this career during the first Francoism. This article will try to show the development and professionalization of specialists for the Spanish chemical industry.
Challenges and opportunities in synthetic biology for chemical engineers
Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin
2012-01-01
Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925
Challenges and opportunities in synthetic biology for chemical engineers.
Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin
2013-11-15
Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.
Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran
2013-04-19
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol.
Granström, Tom Birger; Izumori, Ken; Leisola, Matti
2007-02-01
Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of D-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.
Progress in Metabolic Engineering of Saccharomyces cerevisiae
Nevoigt, Elke
2008-01-01
Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282
NASA Astrophysics Data System (ADS)
Chan, Barbara P.
2005-04-01
Collagen gel is a natural biomaterial commonly used in tissue engineering because of its close resemblance to nature, negligible immunogenecity and excellent biocompatibility. However, unprocessed collagen gel is mechanically weak, highly water binding and vulnerable to chemical and enzymatic attacks that limits its use in tissue engineering in particular tissues for weight-bearing purposes. The current project aimed to strengthen and stabilize collagen scaffolds using a photochemical crosslinking technique. Photochemical crosslinking is rapid, efficient, non-thermal and does not involve toxic chemicals, comparing with other crosslinking methods such as glutaraldehyde and gamma irradiation. Collagen scaffolds were fabricated using rat-tail tendon collagen. An argon laser was used to process the collagen gel after equilibrating with a photosensitizing reagent. Scanning electronic microscope was used to characterize the surface and cross-sectional morphology of the membranes. Physico-chemical properties of the collagen scaffolds such as water-binding capacity, mechanical properties and thermostability were studied. Photochemical crosslinking significantly reduced the water-binding capacity, a parameter inversely proportional to the extent of crosslinking, of collagen scaffolds. Photochemical crosslinking also significantly increased the ultimate stress and tangent modulus at 90% of the rupture strain of the collagen scaffolds. Differential scanning calorimetry analysis showed a significantly higher shrinkage temperature and absence of the denaturation peak during the thermoscan comparing with the controls. This means greater thermostability in the photochemically crosslinked collagen scaffolds. This study demonstrates that the photochemical crosslinking technology is able to enhance the physicochemical propterties of collagen scaffolds by strengthening, stabilizing and controlling the swelling ratio of the collagen scaffolds so as to enable their use for tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less
Microbial and Bioconversion Production of D-xylitol and Its Detection and Application
Chen, Xi; Jiang, Zi-Hua; Chen, Sanfeng; Qin, Wensheng
2010-01-01
D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review. PMID:21179590
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
NASA Astrophysics Data System (ADS)
Spitznagel, J. A.; Wood, Susan
1988-08-01
The Software Engineering institute is a federally funded research and development center sponsored by the Department of Defense (DOD). It was chartered by the Undersecretary of Defense for Research and Engineering on June 15, 1984. The SEI was established and is operated by Carnegie Mellon University (CUM) under contract F19628-C-0003, which was competitively awarded on December 28, 1984, by the Air Force Electronic Systems Division. The mission of the SEI is to provide the means to bring the ablest minds and the most effective technology to bear on the rapid improvement of the quality of operational software in mission-critical computer systems; to accelerate the reduction to practice of modern software engineering techniques and methods; to promulgate the use of modern techniques and methods throughout the mission-critical systems community; and to establish standards of excellence for the practice of software engineering. This report provides a summary of the programs and projects, staff, facilities, and service accomplishments of the Software Engineering Institute during 1987.
Riley, Mark R; Gerba, Charles P; Elimelech, Menachem
2011-03-31
The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms.
Biological approaches for addressing the grand challenge of providing access to clean drinking water
2011-01-01
The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms. PMID:21453515
Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho
2014-07-01
We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.
Education of Sustainability Engineers
NASA Astrophysics Data System (ADS)
Oleschko, K.; Perrier, E.; Tarquis, A. M.
2010-05-01
It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.
US Frontiers of Engineering Symposia
2015-02-01
Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant Investigator at the University of Colorado...speech was given by Dr . Alan I. Taub, professor of materials science and engineering at the University of Michigan, Report Documentation Page Form...at the Hotel du Pont in Wilmington, Delaware. Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant
Zadran, Sohila; Levine, Raphael D
2013-01-01
Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.
A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal
Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin
2010-01-01
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature. PMID:20640156
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... primary condenser recovering monomer, reaction products, by-products, or solvent from a stripper operated in batch mode, and the primary condenser recovering monomer, reaction products, by-products, or...
Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution
ERIC Educational Resources Information Center
Subramanian, Venkat R.
2006-01-01
High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…
Class and Home Problems: Optimization Problems
ERIC Educational Resources Information Center
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard
2011-01-01
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
Group Discussions in the Chemistry Classroom and the Problem-Solving Skills of Students.
ERIC Educational Resources Information Center
Fasching, James L.; Erickson, Bette LaSere
1985-01-01
Five years ago, an introductory chemistry course for chemists and chemical engineers was redesigned to stress the scientific method, problem-solving, and reasoning skills. Describes: (1) changes made in the course; (2) impacts on student achievement; and (3) student ratings of the course. (JN)
46 CFR 56.75-25 - Detail requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Detail requirements. 56.75-25 Section 56.75-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... dirt of any kind. Any suitable chemical or mechanical cleaning method may be used to provide a clean...
46 CFR 56.75-25 - Detail requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Detail requirements. 56.75-25 Section 56.75-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... dirt of any kind. Any suitable chemical or mechanical cleaning method may be used to provide a clean...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 56.75-25 - Detail requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Detail requirements. 56.75-25 Section 56.75-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... dirt of any kind. Any suitable chemical or mechanical cleaning method may be used to provide a clean...
46 CFR 56.75-25 - Detail requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Detail requirements. 56.75-25 Section 56.75-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... dirt of any kind. Any suitable chemical or mechanical cleaning method may be used to provide a clean...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 56.75-25 - Detail requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Detail requirements. 56.75-25 Section 56.75-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... dirt of any kind. Any suitable chemical or mechanical cleaning method may be used to provide a clean...
Using Visualization and Computation in the Analysis of Separation Processes
ERIC Educational Resources Information Center
Joo, Yong Lak; Choudhary, Devashish
2006-01-01
For decades, every chemical engineer has been asked to have a background in separations. The required separations course can, however, be uninspiring and superficial because understanding many separation processes involves conventional graphical methods and commercial process simulators. We utilize simple, user-friendly mathematical software,…
40 CFR 63.11502 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...
40 CFR 63.11502 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...
Chemical-text hybrid search engines.
Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J
2010-01-01
As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendse, Hemant P.
Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoinmore » College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.« less
Military Engineers and Chemical Warfare Troops (Inzhenernye Voiska Khimicheskie Voiska),
MILITARY FORCES(FOREIGN), *MILITARY ORGANIZATIONS, MILITARY ENGINEERING , INFANTRY, AMPHIBIOUS OPERATIONS, MINELAYING, ARMORED VEHICLES, NUCLEAR...RADIATION, DOSIMETERS, CHEMICAL WARFARE, PROTECTIVE CLOTHING, DECONTAMINATION, HEALTH PHYSICS.
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
2011-01-01
Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as compared to other chemicals, which supported the notion that the metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among different research papers. PMID:21689458
Resilience in ecotoxicology: Toward a multiple equilibrium concept
Bundschuh, Mirco; Schulz, Ralf; Allen, Craig R.; Angeler, David G.
2017-01-01
The term resilience describes stress–response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application.
General linear methods and friends: Toward efficient solutions of multiphysics problems
NASA Astrophysics Data System (ADS)
Sandu, Adrian
2017-07-01
Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..
Opportunities for Merging Chemical and Biological Synthesis
Wallace, Stephen; Balskus, Emily P.
2014-01-01
Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284
chemical reaction engineering and transport phenomena Analytical analysis of complex bio-derived samples and Lignin Areas of Expertise Analytical analysis of complex samples Chemical reaction engineering and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Liu, Yang; Zhu, Guanghui
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
WCC Home - Women Chemists Committee
National Awards." Chemical & Engineering News, February 22, 2016. *Jacobs, M. "ACS's Work is not Done." Chemical & Engineering News, February 1, 2016. WCC also contributed to the ACS Chemists Committee (WCC) is: "Empowering women throughout the chemical enterprise" The Women
Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses
ERIC Educational Resources Information Center
Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff
2013-01-01
Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…
ERIC Educational Resources Information Center
Shaeiwitz, Joseph A.; Turton, Richard
2006-01-01
The chemical engineering profession is in the midst of a significant evolution, perhaps a revolution. As the profession moves toward product development and design and away from petroleum and chemical process development and design, a new paradigm for chemical engineering education is evolving. Therefore, a new generation of capstone design…
From Petroleum to Penicillin. The First Hundred Years of Modern Chemical Engineering: 1859-1959.
ERIC Educational Resources Information Center
Burnett, J. N.
1986-01-01
Presents a description of the course "From Petroleum to Penicillin" which examines chemical engineering and the chemical industry from a scientific, social and symbolic view. Explains the goals, organization, and requirements of the course. Lists case study and lecture topics. (ML)
Computing Properties Of Chemical Mixtures At Equilibrium
NASA Technical Reports Server (NTRS)
Mcbride, B. J.; Gordon, S.
1995-01-01
Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.
Fuel Cell Car Design Project for Freshman Engineering Courses
ERIC Educational Resources Information Center
Duke, Steve R.; Davis, Virginia A.
2014-01-01
In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…
Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.
ERIC Educational Resources Information Center
Savage, Phillip E.; Blaine, Steven
1991-01-01
A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)
Incorporating Six Sigma Methodology Training into Chemical Engineering Education
ERIC Educational Resources Information Center
Dai, Lenore L.
2007-01-01
Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…
40 CFR 80.1450 - What are the registration requirements under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...
40 CFR 80.1450 - What are the registration requirements under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...
40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...
40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...
40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...
40 CFR 80.1450 - What are the registration requirements under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... professional work experience in the chemical engineering field or related to renewable fuel production. (B) For... third-party engineering review and written report and verification of the information provided pursuant... professional engineer licensed in the United States with professional work experience in the chemical...
40 CFR 80.1450 - What are the registration requirements under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...
ERIC Educational Resources Information Center
Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo
2009-01-01
Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…
Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory
ERIC Educational Resources Information Center
Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra
2017-01-01
We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…
Controlling the cell adhesion property of silk films by graft polymerization.
Dhyani, Vartika; Singh, Neetu
2014-04-09
We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, R.L.; Robeck, G.G.
1958-06-01
Laboratory and engineering studies were conducted to determine the design criteria and cost estimated of providing and operating devices to protect against radiological, biological and chemical warfare agents that may contaminate shore based Naval water supplies. Small disposable columns of mixed cation-anion exchange resins will remove the soluble radionuclides enough to suffice for immediate drinking and culinary purposes. Chemical warfare agents are so numerous and varied that it is not feasible to provide a single protective device to cope with them. Chlorination with free available chlorine residuals of 1 mg liter will handle most biological warfare agents.
Tactical Unmanned Ground Vehicle Related Research References (BTA Study)
1993-03-01
draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000
Bio-based extraction and stabilization of anthocyanins.
Roy, Anirban; Mukherjee, Rudra Palash; Howard, Luke; Beitle, Robert
2016-05-01
This work reports a novel method of recovering anthocyanin compounds from highly-pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass-acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601-605, 2016. © 2016 American Institute of Chemical Engineers.
1991-03-01
Sulfides BT Bioaccumulation Trigger L LP Ccn tract Laboratory Methods COC Chemical of Concern Corps U.S. Army Corps of Engineers cm centimeter cy cubic... Hydrocarbon (Compound) LOD Limit of Detection LPAH Low Molecular Weight Polynuclear Aromatic Hydrocarbon (Compound) MCLP Modified Contract Laboratory Method...Aromatic Hydrocarbons (HPAHs) (8 samples); * Benzofluoranthenes (7 samples); * Anthracene (6 samples); * Benzo(a)anthracene (6 samples); * Dibenzo(a,h
Mycobacteria inactivation using Engineered Water Nanostructures (EWNS).
Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip
2014-08-01
Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. Copyright © 2014 Elsevier Inc. All rights reserved.
Reverse engineering and identification in systems biology: strategies, perspectives and challenges.
Villaverde, Alejandro F; Banga, Julio R
2014-02-06
The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?
Engineering, Colorado School of Mines B.S. Chemical Engineering, University of Maryland Featured Publications studied plasma-assisted chemical vapor deposition chemistry and transparent conducting oxide growth as a exploring the fundamental limits of CdTe performance using molecular beam epitaxy. Education Ph.D. Chemical
An approach in building a chemical compound search engine in oracle database.
Wang, H; Volarath, P; Harrison, R
2005-01-01
A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.
NASA Astrophysics Data System (ADS)
Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.
2010-04-01
Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.
Raj, Hans; Szymanski, Wiktor; de Villiers, Jandré; Puthan Veetil, Vinod; Quax, Wim J; Shimamoto, Keiko; Janssen, Dick B; Feringa, Ben L; Poelarends, Gerrit J
2013-08-19
Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.
1997-01-01
Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, D.Y.
1997-05-01
Scientific research on photocatalytic oxidation of hazardous chemicals has been conducted extensively over the last three decades. Use of solar radiation in photocatalytic detoxification and disinfection has only been explored in the last decade. Developments of engineering scale systems, design methodologies, and commercial and industrial applications have occurred even more recently. A number of reactor concepts and designs including concentrating and nonconcentrating types and methods of catalyst deployment have been developed. Some commercial and industrial field tests of solar detoxification systems have been conducted. This paper reviews the engineering developments of the solar photocatalytic detoxification and disinfection processes, including systemmore » design methodologies.« less
Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress
2010-11-15
American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. See also...American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. 57 The DHS...CRS Report for Congress Prepared for Members and Committees of Congress Chemical Facility Security: Reauthorization, Policy Issues, and
New Laboratory Course for Senior-Level Chemical Engineering Students
ERIC Educational Resources Information Center
Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.
2009-01-01
A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…
Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program
ERIC Educational Resources Information Center
O'Connor, Kim C.
2005-01-01
There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…
Code of Federal Regulations, 2010 CFR
2010-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
ERIC Educational Resources Information Center
Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.
2006-01-01
The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…
15 CFR 1150.3 - Approved markings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
15 CFR 1150.3 - Approved markings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
15 CFR 1150.3 - Approved markings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
More Genetic Engineering With Cloned Hemoglobin Genes
NASA Technical Reports Server (NTRS)
Bailey, James E.
1992-01-01
Cells modified to enhance growth and production of proteins. Method for enhancing both growth of micro-organisms in vitro and production of various proteins or metalbolites in these micro-organisms provides for incorporation of selected chromosomal or extrachormosomal deoxyribonucleic acid (DNA) sequences into micro-organisms from other cells or from artificial sources. Incorporated DNA includes parts encoding desired product(s) or characteristic(s) of cells and parts that control expression of productor characteristic-encoding parts in response to variations in environment. Extended method enables increased research into growth of organisms in oxygen-poor environments. Industrial applications found in enhancement of processing steps requiring oxygen in fermentation, enzymatic degradation, treatment of wastes containing toxic chemicals, brewing, and some oxidative chemical reactions.
A Simple Educational Method for the Measurement of Liquid Binary Diffusivities
ERIC Educational Resources Information Center
Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.
2014-01-01
A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…
[The use of micromycetes for cleaning parts of aircraft].
Dotsenko, G N; Feofilova, E P; Tereshina, V M; Memorskaia, A S
2001-01-01
The mycelial Fungi Penicillium funiculosum, P. citrinum, P. expansum, P. chrysogenum, Aspergillus ochraceus, A. alliaceus, A. luchaensis, A. flavus, and A. niger were isolated from enrichment cultures. These fungi actively destruct carbon deposits formed during exploitation of aircraft. A biotechnological method for removing fouling from parts of aircraft engines (PAE) was developed. This method is less laborious, more rapid and ecologically clean than contemporary chemical methods. Scanning microscopy was suggested to use for estimating the degree of decarbonization of PAE surfaces.
Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar
2017-09-01
The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.
Different Technical Applications of Carbon Nanotubes.
Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A
2015-12-01
Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-01-01
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-06-23
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.
Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali
2011-11-11
Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
Technician Career Opportunities in Engineering Technology.
ERIC Educational Resources Information Center
Engineers' Council for Professional Development, New York, NY.
Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…
Defect-engineered graphene chemical sensors with ultrahigh sensitivity.
Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun
2016-05-25
We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.
The role of chemical engineering in medicinal research including Alzheimer's.
Kontogeorgis, Georgios M
2015-01-01
Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.
Enhanced coupling of light into a turbid medium through microscopic interface engineering
Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.
2017-01-01
There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light–matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers. PMID:28701381
Zymomonas mobilis: a novel platform for future biorefineries.
He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun
2014-01-01
Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.
An Approach to Help Departments Meet the New ABET Process Safety Requirements
ERIC Educational Resources Information Center
Vaughen, Bruce K.
2012-01-01
The proposed program criteria changes by the Accreditation Board for Engineering and Technology, Inc. (ABET), for chemical, biochemical, biomolecular, and similarly named programs includes a fundamental awareness expectation of the hazards involved in chemical processing for a graduating chemical engineer. As of July 2010, these four new words…
Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela
2017-10-17
Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.
[Development of domain specific search engines].
Takai, T; Tokunaga, M; Maeda, K; Kaminuma, T
2000-01-01
As cyber space exploding in a pace that nobody has ever imagined, it becomes very important to search cyber space efficiently and effectively. One solution to this problem is search engines. Already a lot of commercial search engines have been put on the market. However these search engines respond with such cumbersome results that domain specific experts can not tolerate. Using a dedicate hardware and a commercial software called OpenText, we have tried to develop several domain specific search engines. These engines are for our institute's Web contents, drugs, chemical safety, endocrine disruptors, and emergent response for chemical hazard. These engines have been on our Web site for testing.
NASA Technical Reports Server (NTRS)
Collins, Jacob
2008-01-01
This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.
Propulsion Technology Lifecycle Operational Analysis
NASA Technical Reports Server (NTRS)
Robinson, John W.; Rhodes, Russell E.
2010-01-01
The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.
Development of a Spray System for an Unmanned Aerial Vehicle Platform
2008-09-01
Applied Engineering in Agriculture Vol. 25(6): 803‐809 2009 American Society of Agricultural and Biological Engineers ISSN 0883-8542 803...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 804 APPLIED ENGINEERING IN AGRICULTURE non‐chemical or least toxic chemical techniques...and electrically shielded (fig. 4). 806 APPLIED ENGINEERING IN AGRICULTURE Figure 2. Computer‐aided model and design of the tank with baffles, and
[Advances in metabolic engineering of Escherichia coli for isoprene biosynthesis].
Guo, Jing; Cao, Yujin; Xian, Mo; Liu, Huizhou
2016-08-25
As an important industrial chemical, isoprene is mainly used as a precursor for synthetic rubbers. In addition, it also has wide applications in the field of pharmaceutical and chemical intermediates, food, adhesives and aviation fuel. Compared with conventional petrochemical routes, production of isoprene in microbial systems has been the research focus considering environment friendly and sustainable development features. This article summarizes the metabolic pathways and key enzymes of isoprene biosynthesis, reviews current methods and strategies in improving isoprene production of Escherichia coli, and also gives some basic ideas and expectation.
Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep; Singh, Suman
Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)
2013-11-01
flushing filter, disinfection with injected chlorine dioxide (chlorine dioxide is generated onboard from two component chemicals, sulfuric acid...Management System 400 80 250-8000 (10000) Sulfuric Acid and Purate for ClO2 generation Yes 0.005-0.028 8-18 Decreased sediment, potential corrosion...feed chemicals, Purate and sulfuric acid. 5. Operational and Maintenance Cost: Estimated operating and maintenance cost is $80/1000 m3 of ballast
CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-03-01
Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)
Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing
Babczyk, Patrick; Conzendorf, Clelia; Klose, Jens; Schulze, Margit; Harre, Kathrin; Tobiasch, Edda
2014-01-01
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade. PMID:26237251
Chemical labelling for visualizing native AMPA receptors in live neurons
Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru
2017-01-01
The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders. PMID:28387242
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1992-01-01
Viewgraphs are presented on the following topics: the grand challenge of combustion engineering; research of probability density function (PDF) methods at Sandia; experiments of turbulent jet flames (Masri and Dibble, 1988); departures from chemical equilibrium; modeling turbulent reacting flows; superequilibrium OH radical; pdf modeling of turbulent jet flames; scatter plot for CH4 (methane) and O2 (oxygen); methanol turbulent jet flames; comparisons between predictions and experimental data; and turbulent C2H4 jet flames.
Studying Transonic Gases With a Hydraulic Analog
NASA Technical Reports Server (NTRS)
Wagner, W.; Lepore, F.
1986-01-01
Water table for hydraulic-flow research yields valuable information about gas flow at transonic speeds. Used to study fuel and oxidizer flow in high-pressure rocket engines. Method applied to gas flows in such equipment as furnaces, nozzles, and chemical lasers. Especially suitable when wall contours nonuniform, discontinuous, or unusually shaped. Wall shapes changed quickly for study and evaluated on spot. Method used instead of computer simulation when computer models unavailable, inaccurate, or costly to run.
This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...
Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)
ERIC Educational Resources Information Center
Bendig, Regina B.
2009-01-01
The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... sample run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...
CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues
ERIC Educational Resources Information Center
Piergiovanni, Polly R.
2012-01-01
Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…
Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education
ERIC Educational Resources Information Center
Klein, James A.; Davis, Richard A.
2011-01-01
This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…
ERIC Educational Resources Information Center
Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel
2018-01-01
Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…
Thermal analysis of regenerative-cooled pylon in multi-mode rocket based combined cycle engine
NASA Astrophysics Data System (ADS)
Yan, Dekun; He, Guoqiang; Li, Wenqiang; Zhang, Duo; Qin, Fei
2018-07-01
Combining pylon injector with rocket is an effective method to achieve efficient mixing and combustion in the RBCC engine. This study designs a fuel pylon with active cooling structure, and numerically investigates the coupled heat transfer between active cooling process in the pylon and combustion in the combustor in different modes. Effect of the chemical reaction of the fuel on the flow, heat transfer and physical characteristics is also discussed. The numerical results present a good agreement with the experimental data. Results indicate that drastic supplementary combustion caused by rocket gas and secondary combustion caused by the fuel injection from the pylon result in severe thermal load on the pylon. Although regenerative cooling without cracking can reduce pylon's temperature below the allowable limit, a high-temperature area appears in the middle and nail section of the pylon due to the coolant's insufficient convective heat transfer coefficient. Comparatively, endothermic cracking can provide extra chemical heat sink for the coolant and low velocity contributes to prolong the reaction time to increase the heat absorption from chemical reaction, which further lowers and unifies the pylon surface temperature.
Hirsch, Daniela B; Baieli, María F; Urtasun, Nicolás; Lázaro-Martínez, Juan M; Glisoni, Romina J; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J
2018-03-01
A cation exchange matrix with zwitterionic and multimodal properties was synthesized by a simple reaction sequence coupling sulfanilic acid to a chitosan based support. The novel chromatographic matrix was physico-chemically characterized by ss-NMR and ζ potential, and its chromatographic performance was evaluated for lysozyme purification from diluted egg white. The maximum adsorption capacity, calculated according to Langmuir adsorption isotherm, was 50.07 ± 1.47 mg g -1 while the dissociation constant was 0.074 ± 0.012 mg mL -1 . The process for lysozyme purification from egg white was optimized, with 81.9% yield and a purity degree of 86.5%, according to RP-HPLC analysis. This work shows novel possible applications of chitosan based materials. The simple synthesis reactions combined with the simple mode of use of the chitosan matrix represents a novel method to purify proteins from raw starting materials. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:387-396, 2018. © 2017 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Galan, Berta; Muñoz, Iciar; Viguri, Javier R.
2016-09-01
This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.
77 FR 51786 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... to increasing the number and quality of the nation's scientists and engineers. Application... Engineering, Biosciences, Chemical Engineering, Chemistry, Civil Engineering, Cognitive, Neural, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems.more » Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.« less
Bohlke, Nina; Budisa, Nediljko
2014-01-01
One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543
[Biosynthesis of adipic acid].
Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe
2013-10-01
Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato
2017-02-01
Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.
Song, Minjung
2017-07-01
The CRISPR/Cas9 gene editing system was originally derived from the prokaryotic adaptive immune system mediated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas). The system has been successfully applied to genome editing in eukaryotes and has contributed to remarkable advances in the life sciences, in areas ranging from agriculture to genetic disease therapies. For efficient editing and extending the influence of this system, proper delivery of its components is crucial. Both viral and nonviral delivery methods are reviewed here, along with the advantages and disadvantages of each. In addition, we review ex vivo and in vivo CRISPR/Cas9 applications for disease therapies. Related remarkable studies are highlighted and relevant startup companies and their drug development pipelines are described. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1035-1045, 2017. © 2017 American Institute of Chemical Engineers.
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
The various chemical reactions that occur and that could possibly occur in the RCS engines utilizing hydrazine-type fuel/nitrogen tetroxide propellant systems, prior to ignition (preignition), during combustion, and after combustion (postcombustion), and endeavors to relate the hard-start phenomenon to some of these reactions are discussed. The discussion is based on studies utilizing a variety of experimental techniques and apparatus as well as current theories of chemical reactions and reaction kinetics. The chemical reactions were studied in low pressure gas flow reactors, low temperature homogeneous- and heterogeneous-phase reactors, simulated two-dimensional (2-D) engines, and scaled and full size engines.
NASA Technical Reports Server (NTRS)
Tran, Donald H.; Snyder, Christopher A.
1992-01-01
A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.
Light-energy conversion in engineered microorganisms.
Johnson, Ethan T; Schmidt-Dannert, Claudia
2008-12-01
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.
Drug Solubility: Importance and Enhancement Techniques
Savjani, Ketan T.; Gajjar, Anuradha K.; Savjani, Jignasa K.
2012-01-01
Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics. PMID:22830056
Generation of structural topologies using efficient technique based on sorted compliances
NASA Astrophysics Data System (ADS)
Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.
My contribution to broadening the base of chemical engineering.
Sargent, Roger W H
2011-01-01
This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.
Engineering modular polyketide synthases for production of biofuels and industrial chemicals.
Cai, Wenlong; Zhang, Wenjun
2018-04-01
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon Nanostructures in Bone Tissue Engineering
Perkins, Brian Lee; Naderi, Naghmeh
2016-01-01
Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212
Reverse engineering and identification in systems biology: strategies, perspectives and challenges
Villaverde, Alejandro F.; Banga, Julio R.
2014-01-01
The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? PMID:24307566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westbrook, Charles K.; Mehl, Marco; Pitz, William J.
This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less
Westbrook, Charles K.; Mehl, Marco; Pitz, William J.; ...
2016-07-11
This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less
Stable heterologous expression of biologically active terpenoids in green plant cells
Ikram, N. Kusaira B. K.; Zhan, Xin; Pan, Xi-Wu; King, Brian C.; Simonsen, Henrik T.
2015-01-01
Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavors, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requires many steps and difficult chemical reactions, resulting in a low final yield or incorrect stereochemistry. Several drug candidates with terpene skeletons are difficult to obtain by chemical synthesis due to their large number of chiral centers. Thus, biological production remains the preferred method for industrial production for many of these compounds. However, because these chemicals are often found in low abundance in the native plant, or are produced in plants which are difficult to cultivate, there is great interest in engineering increased production or expression of the biosynthetic pathways in heterologous hosts. Although there are many examples of successful engineering of microbes such as yeast or bacteria to produce these compounds, this often requires extensive changes to the host organism's metabolism. Optimization of plant gene expression, post-translational protein modifications, subcellular localization, and other factors often present challenges. To address the future demand for natural products used as drugs, new platforms are being established that are better suited for heterologous production of plant metabolites. Specifically, direct metabolic engineering of plants can provide effective heterologous expression for production of valuable plant-derived natural products. In this review, our primary focus is on small terpenoids and we discuss the benefits of plant expression platforms and provide several successful examples of stable production of small terpenoids in plants. PMID:25852702
Resilience in ecotoxicology: Toward a multiple equilibrium concept.
Bundschuh, Mirco; Schulz, Ralf; Schäfer, Ralf B; Allen, Craig R; Angeler, David G
2017-10-01
The term resilience describes stress-response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application. Environ Toxicol Chem 2017;36:2574-2580. © 2017 SETAC. © 2017 SETAC.
Research and engineering assessment of biological solubilization of phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.
This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less
Remote Chemical Sensing Using Quantum Cascade Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Warren W.; Schultz, John F.
2003-01-30
Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures ofmore » illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.« less
Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies
Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...
2017-09-21
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
ERIC Educational Resources Information Center
Journal of Engineering Education, 1972
1972-01-01
Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…
ERIC Educational Resources Information Center
Sheehan, Madoc; Schneider, Phil; Desha, Cheryl
2012-01-01
Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an…
ERIC Educational Resources Information Center
Garces, Andres; Sanchez-Barba, Luis Fernando
2011-01-01
We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…
ERIC Educational Resources Information Center
Santoro, Marina; Mazzotti, Marco
2006-01-01
Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…
Chen, D; Wu, T; Yuan, Y
1996-11-01
To investigate the existence of the non-species specific antibody in plasma of the employees working in an automobile engine testing workshop, and to use it as a scanning marker of various hazards, the heat-stress protein antigen method and western blot technique were used. This study showed that employees working in the automoblile engine testing workshop were affected by various hazards, such as noise, toxic chemicals (carbon monoxide, lead fume, benzene, and so on), and there existed non-species specific antibodies against protein 103,900 and 54,200 of rat liver in their plasma, which were postulated as the specific products produced by exposure to occupational hazards, such as noise, carbon monoxide, et al.
On Unsaturated Soil Mechanics - Personal Views on Current Research
NASA Astrophysics Data System (ADS)
Pande, G. N.; Pietruszczak, S.
2015-09-01
This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.
Moradi, Ali; Pramanik, Sumit; Ataollahi, Forough; Abdul Khalil, Alizan; Kamarul, Tunku; Pingguan-Murphy, Belinda
2014-01-01
Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV–DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering. PMID:27877731
ERIC Educational Resources Information Center
Li, Xuesong; Van Wie, Bernard J.
2016-01-01
The difficulty in covering chemical engineering concepts using traditional lectures and whiteboard teaching approaches means today's students' learning demands are unfulfilled, so alternate methods are needed. Desktop learning modules (DLMs) are designed to show industrial fluid flow and heat transfer concepts in a standard classroom so students…
Who Would Have Thought? The Story of a Food Engineer.
Lund, Daryl B
2017-02-28
Food engineering is a hybrid of food science and an engineering science, like chemical engineering in my particular case, resulting in the application of chemical engineering principles to food systems and their constituents. With the complexity of food and food processing, one generally narrows his or her interests, and my primary interests were in the kinetics of reactions important in foods, thermal processing, deposition of unwanted materials from food onto heated surfaces (fouling), and microwave heat transfer in baking. This review describes how I developed an interest in these topics and the contributions I have hopefully made to understanding food and to the application of engineering.
Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game
ERIC Educational Resources Information Center
Orbey, Nese; Clay, Molly; Russell, T.W. Fraser
2014-01-01
An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…
Survey of Alternative Fuels for Corps of Engineers Diesel Engine Powered Dredges.
1984-04-01
due to its physical and chemical properties ; as a result, the extent of engine and fuel system modifications must be considered. Engine performance...17,200 17,629 18,884 Cetane Number 54 24 * 16 21 50 • Not available / 00 -30- H-Coal The physical properties shown in Table 4 would strongly...have the desirable physical and chemical properties been defined to make them totally acceptable as a fuel source. The 1973 oil embargo signaled the
New Directions for Biomedical Engineering
ERIC Educational Resources Information Center
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
Nanoscale chemical imaging by photoinduced force microscopy
Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung
2016-01-01
Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870
Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde.
Wang, Xiaotong; Ma, Bing; Chang, Jiang
2015-01-01
Vascular extracellular matrices (vECMs) have shown potential for small-diameter blood vessel tissue engineering applications. However, problems such as chemical instability and easy calcification are still remained. Chemical crosslinking using crosslinkers such as glutaraldehyde (GA) can improve mechanical properties and proteolysis resistance of vECMs, but leads to calcification and cytotoxicity. Procyanidins (PC) can crosslink ECMs with anti-calcification property and cytocompatibility, but the mechanical properties and chemical stability are unsatisfactory. A novel co-crosslinking technique using PC and GA was developed, which combines the advantages of both PC and GA for enhancing mechanical properties and stability of vECMs with reduced calcification and cytotoxicity. Fresh carotid were decellularized and then crosslinked by PC and subsequent GA for 6 h respectively. The mechanical properties, dynamic release of PC, enzymatic degradation, calcification and cytotoxicity of crosslinked samples were evaluated. The co-crosslinked vECMs showed enhanced tensile strength, chemical and biological stability, comparable anti-calcification property as compared to pure PC-crosslinked samples. Cytotoxicity assay showed that the co-crosslinked vECMs were cytocompatible for supporting the adhesion and proliferation of HUVECs. Co-crosslinking with PC and GA might be a useful method for preparation of vECM scaffolds with potential applications in small-diameter blood vessel tissue engineering.
Cyanobacterial metabolic engineering for biofuel and chemical production.
Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota
2016-12-01
Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical engineering challenges and investment opportunities in sustainable energy.
Heller, Adam
2008-01-01
The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.
Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2016-11-01
To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Metabolic engineering of yeast for production of fuels and chemicals.
Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack
2013-06-01
Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.
1978-01-01
Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
Metabolic engineering tools in model cyanobacteria.
Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota
2018-03-26
Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
40 CFR 721.6498 - Modified polyisocyanates (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical... efficient and well-maintained application equipment, engineering controls and personal protective equipment.... Engineering controls should serve as the first, most effective means of reducing airborne polyisocyanate and...
ERIC Educational Resources Information Center
Sanders, Howard J., Ed.
1982-01-01
Presents findings on employment situations for chemists and chemical engineers, focusing on: (1) comparison of chemists and chemical engineers; (2) salaries; (3) career planning; and (4) demand, indicated to be decidedly less than in previous years as a result of the deep business recession. (JN)
Chemists, Engineers Probe Mutual Problems.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1980
1980-01-01
Summarizes recommendations made in a workshop sponsored by the American Chemical Society concerning issues involving the diverging viewpoints of chemistry and chemical engineering. Includes recommendations regarding curricula, salary differences, and the need to change attitudes of chemistry faculty toward industry and industrial chemistry. (CS)
Fusion Power—A Chemical Engineering View of the Integrated Enterprise
NASA Astrophysics Data System (ADS)
Manganaro, James L.
2003-03-01
The purpose of this article was to achieve the beginning of an understanding of the integrated fusion enterprise from raw materials through power generation to decommissioning and waste disposal. The particular view point is that of a technically trained person who is only casually acquainted with the field. Emphasis is given to the chemical engineering aspects of controlled fusion power. It is concluded that there are indeed many areas in which the discipline of chemical engineering may contribute to the fusion effort. These areas include separation technology by physical and chemical means, heat and mass transfer in a packed bed blanket, tritium removal from molten coolants, distillation technology for isotope separation, and preparation of deuterium and lithium feed materials.
Swanson, Jacob; Kittelson, David; Pui, David; Watts, Winthrop
2010-10-01
This paper is part of the Journal of the Air & Waste Management Association's 2010 special issue on combustion aerosol measurements. The issue is a combination of papers that synthesize and evaluate ideas and perspectives that were presented by experts at a series of workshops sponsored by the Coordinating Research Council that aimed to evaluate the current and future status of diesel particulate matter (DPM) measurement. Measurement of DPM is a complex issue with many stakeholders, including air quality management and enforcement agencies, engine manufacturers, health experts, and climatologists. Adoption of the U.S. Environmental Protection Agency 2007 heavy-duty engine DPM standards posed a unique challenge to engine manufacturers. The new standards reduced DPM emissions to the point that improvements to the gravimetric method were required to increase the accuracy and the sensitivity of the measurement. Despite these improvements, the method still has shortcomings. The objectives of this paper are to review the physical and chemical properties of DPM that make gravimetric measurement difficult at very low concentrations and to review alternative metrics and methods that are potentially more accurate, sensitive, and specific. Particle volatility, size, surface area, and number metrics are considered, as well as methods to quantify them. Although the authors believe that an alternative method is required to meet the needs of engine manufacturers, the methods reviewed in the paper are applicable to other areas where the gravimetric method detection limit is approached and greater accuracy and sensitivity are required. The paper concludes by suggesting a method to measure active surface area, combined with a method to separate semi-volatile and solid fractions to further increase the specificity of the measurement, has potential for reducing the lower detection limit of DPM and enabling engine manufacturers to reduce DPM emissions in the future.
NASA Technical Reports Server (NTRS)
Cocchiaro, James E. (Editor); Filliben, Jeff D. (Editor); Watson, Anne H. (Editor)
1997-01-01
In the Propellant Development and Characterization Subcommittee (PDCS) meeting, topics included: the analysis, characterization, and processing of propellants and propellant ingredients; chemical reactivity; liquid propellants; test methods; rheology; surveillance and aging; and process engineering. In the Safety and Environmental Protection Subcommittee (S&EPS) meeting, topics covered included: hydrazine propellant vapor detection methods; toxicity of propellants and propellants; explosives safety; atmospheric modeling and risk assessment of toxic releases; reclamation, disposal, and demilitarization methods; and remediation of explosives or propellant contaminated sites.