Chemical equilibrium modeling of detonation
Fried, Laurence E.; Bastea, Sorin
2010-05-19
Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Furthermore the history of HE materials is long, their condensed-phase chemical properties are poorly understood.
Learning of Chemical Equilibrium through Modelling-Based Teaching
ERIC Educational Resources Information Center
Maia, Poliana Flavia; Justi, Rosaria
2009-01-01
This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…
ERIC Educational Resources Information Center
Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju
2002-01-01
Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…
Computing Equilibrium Chemical Compositions
NASA Technical Reports Server (NTRS)
Mcbride, Bonnie J.; Gordon, Sanford
1995-01-01
Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.
NASA Astrophysics Data System (ADS)
Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju
2002-10-01
The purpose of this study was to investigate students' mental models of chemical equilibrium using dynamic science assessments. Research in chemical education has shown that students at various levels have misconceptions about chemical equilibrium. According to Chi's theory of conceptual change, the concept of chemical equilibrium has constraint-based features (e.g., random, simultaneous, uniform activities) that might prevent students from deeply understanding the nature of the concept of chemical equilibrium. In this study, we examined how students learned and constructed their mental models of chemical equilibrium in a cognitive apprenticeship context. Thirty 10th-grade students participated in the study: 10 in a control group and 20 in a treatment group. Both groups were presented with a series of hands-on chemical experiments. The students in the treatment group were instructed based on the main features of cognitive apprenticeship (CA), such as coaching, modeling, scaffolding, articulation, reflection, and exploration. However, the students in the control group (non-CA group) learned from the tutor without explicit CA support. The results revealed that the CA group significantly outperformed the non-CA group. The students in the CA group were capable of constructing the mental models of chemical equilibrium - including dynamic, random activities of molecules and interactions between molecules in the microworld - whereas the students in the non-CA group failed to construct similar correct mental models of chemical equilibrium. The study focuses on the process of constructing mental models, on dynamic changes, and on the actions of students (such as self-monitoring/self-correction) who are learning the concept of chemical equilibrium. Also, we discuss the implications for science education.
Exploring the Use of Multiple Analogical Models when Teaching and Learning Chemical Equilibrium
ERIC Educational Resources Information Center
Harrison, Allan G.; De Jong, Onno
2005-01-01
This study describes the multiple analogical models used to introduce and teach Grade 12 chemical equilibrium. We examine the teacher's reasons for using models, explain each model's development during the lessons, and analyze the understandings students derived from the models. A case study approach was used and the data were drawn from the…
2009-10-01
Beattie - Bridgeman Virial expansion The above equations are suitable for moderate pressures and are usually based on either empirical constants...CR 2010-013 October 2009 A Review of Equation of State Models, Chemical Equilibrium Calculations and CERV Code Requirements for SHS Detonation...Defence R&D Canada. A Review of Equation of State Models, Chemical Equilibrium Calculations and CERV Code Requirements for SHS Detonation
Chemical Principles Revisited: Chemical Equilibrium.
ERIC Educational Resources Information Center
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-02-28
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
NASA Astrophysics Data System (ADS)
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-01
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures
Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal
2015-04-07
This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy
Chemical Equilibrium Modeling of Hanford Waste Tank Processing: Applications of Fundamental Science
Felmy, Andrew R.; Wang, Zheming; Dixon, David A.; Hess, Nancy J.
2004-05-01
The development of computational models based upon fundamental science is one means of quantitatively transferring the results of scientific investigations to practical application by engineers in laboratory and field situations. This manuscript describes one example of such efforts, specifically the development and application of chemical equilibrium models to different waste management issues at the U.S. Department of Energy (DOE) Hanford Site. The development of the chemical models is described with an emphasis on the fundamental science investigations that have been undertaken in model development followed by examples of different waste management applications. The waste management issues include the leaching of waste slurries to selective remove non-hazardous components and the separation of Sr90 and transuranics from the waste supernatants. The fundamental science contributions include: molecular simulations of the energetics of different molecular clusters to assist in determining the species present in solution, advanced synchrotron research to determine the chemical form of precipitates, and laser based spectroscopic studies of solutions and solids.
Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.
Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J
2010-11-15
A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.
Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki
2013-09-15
To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Technical Reports Server (NTRS)
Grodzka, P.; Facemire, B.
1977-01-01
Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.
Simulations for Teaching Chemical Equilibrium
NASA Astrophysics Data System (ADS)
Huddle, Penelope A.; White, Margaret Dawn; Rogers, Fiona
2000-07-01
This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target. The requirements for the simulations are simple and inexpensive, making them accessible to even the poorest schools. The simulations can be adapted for all levels, from pupils who are first encountering equilibrium through students in tertiary education to qualified teachers who have experienced difficulty in teaching the topic. The simulations were piloted on four very different audiences. Minor modifications were then made before the Equilibrium Games as reported in this paper were tested on three groups of subjects: a Grade 12 class, college students, and university Chemistry I students. Marked improvements in understanding of the concept were shown in two of the three sets of subjects.
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
NASA Astrophysics Data System (ADS)
Li, Guanchen; Al-Abbasi, Omar; von Spakovsky, Michael R.
2014-10-01
This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H2 leftrightarrow FH + H.
NASA Astrophysics Data System (ADS)
Fowle, David A.; Fein, Jeremy B.
1999-10-01
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems. Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex
Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium
NASA Technical Reports Server (NTRS)
Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter
2013-01-01
This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.
Chemical Principles Revisited: Using the Equilibrium Concept.
ERIC Educational Resources Information Center
Mickey, Charles D., Ed.
1981-01-01
Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…
NASA Technical Reports Server (NTRS)
Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.
1992-01-01
A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.
Pal, Rama; Tewari, Saumyata; Rai, Jai P N
2009-10-01
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.
Vellela, Melissa; Qian, Hong
2009-10-06
Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.
Exploring Chemical Equilibrium in Hot Jovians
NASA Astrophysics Data System (ADS)
Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan
2016-01-01
It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.
Celen, Ipek; Buchanan, John R; Burns, Robert T; Robinson, R Bruce; Raman, D Raj
2007-04-01
Precipitation of phosphate minerals from liquid swine manure is an established means of reducing the orthophosphate (OP) concentration. This project investigated the usefulness of a chemical equilibrium model, Visual Minteq, for prescribing the amendments needed to maximize struvite precipitation from liquid swine manure and thus reduce the OP phosphorus concentration. The actual concentrations of Mg(2+), Ca(2+), K(+), OP, NH(4)(+), alkalinity and pH from a liquid swine manure system were used as inputs to the model. The model was modified to remove species with extremely low formation rates, because they would not significantly precipitate in the reaction occurring in a short retention-time process such as those envisioned for swine manure struvite-formation reactors. Using the model's output, a series of 19-L reactors were used to verify the results. Verification results demonstrated that Visual Minteq can be used to pre-determine the concentration of amendments required to maximize struvite recovery.
Chemical Equilibrium And Transport (CET)
NASA Technical Reports Server (NTRS)
Mcbride, B. J.
1991-01-01
Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.
Equilibrium and Sudden Events in Chemical Evolution
NASA Astrophysics Data System (ADS)
Weinberg, David H.; Andrews, Brett H.; Freudenburg, Jenna
2017-03-01
We present new analytic solutions for one-zone (fully mixed) chemical evolution models that incorporate a realistic delay time distribution for Type Ia supernovae (SNe Ia) and can therefore track the separate evolution of α-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNe Ia. Our solutions allow constant, exponential, or linear–exponential ({{te}}-t/{τ {sfh}}) star formation histories, or combinations thereof. In generic cases, α and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter η, while the equilibrium abundance ratio [α /{Fe}] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Systems with ongoing gas accretion develop metallicity distribution functions (MDFs) that are sharply peaked, while “gas starved” systems with rapidly declining star formation, such as the conventional “closed box” model, have broadly peaked MDFs. A burst of star formation that consumes a significant fraction of a system’s available gas and retains its metals can temporarily boost [α /{Fe}] by 0.1–0.3 dex, a possible origin for rare, α-enhanced stars with intermediate age and/or high metallicity. Other sudden transitions in system properties can produce surprising behavior, including backward evolution of a stellar population from high to low metallicity.
Computing Properties Of Chemical Mixtures At Equilibrium
NASA Technical Reports Server (NTRS)
Mcbride, B. J.; Gordon, S.
1995-01-01
Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.
Chemical equilibrium and reaction modeling of arsenic and selenium in soils
Technology Transfer Automated Retrieval System (TEKTRAN)
The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...
Delmau, LH
2001-12-18
A multivariate mathematical model describing the extraction of cesium from different mixtures of sodium hydroxide, sodium nitrate, sodium chloride, and sodium nitrite containing potassium at variable concentrations has been established. It was determined based on the cesium, potassium, and sodium distribution ratios obtained with simple systems containing single salts. These experimental data were modeled to obtain the formation constants of complexes formed in the organic phase based on specified concentrations of components in both organic and aqueous phases. The model was applied to five different SRS waste simulants, and the corresponding cesium extraction results were predicted satisfactorily, thus validating the model.
Samijlenko, Svitlana P; Yurenko, Yevgen P; Stepanyugin, Andriy V; Hovorun, Dmytro M
2010-01-28
This work deals with tautomeric transformations of uracil (Ura) and thymine (Thy) in their model complexes with the deprotonated carboxylic group. Essential changes in the UV spectra of the bases upon their interaction with NaAc, vanishing signals of both imino protons in (1)H NMR spectra, and a perceptible decrease in intensity of both IR bands, related to the stretching vibrations nu(C=O) of the carbonyl groups, imply involvement of enolic tautomers. Results of quantum chemical calculations of the double complexes of the Ura(Thy) tautomers with CH(3)COO(-) at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory proved to be incompatible with the spectral features: despite the fact that the complexes of the enolic tautomers are much closer in energy to the diketo ones as compared to isolated tautomers, the energy gap between them is such that in tautomeric equilibrium dominate diketo forms. Calculations of triple complexes of the type CH(3)COO(-):Ura(Thy) tautomer:Na(+), taking into account the effect of the Na(+) coordination with tautomers, show that three triple complexes formed by enolic tautomers appeared more stable than those formed by diketo ones. This makes the UV and (1)H NMR data understandable, but the high residual intensity of the nu(C=O) bands in the IR spectra remains unclear. At that ion, Na(+) itself was not able to disturb the tautomeric equilibrium in the coordination complexes of the type Ura(Thy) tautomer:Na(+). To evaluate the DMSO effect, the CPCM solvation model was applied to triple complexes of the Ura tautomers. It appeared that in the solution there is coexistence between the diketo and enolic tautomers in a ratio of 53%:47%. This makes possible reconciliation of our experimental data. The biological significance of high-energy tautomers of nucleotide bases is discussed.
Has Chemical Education Reached Equilibrium?
NASA Astrophysics Data System (ADS)
Moore, John W.
1997-06-01
The other day I got to thinking about whether something akin to Le Chatelier's principle operates in chemical education. That is, whenever someone alters the conditions under which we interact with students, there is a shift in the system that attempts to minimize or counteract the change.
Teaching Chemical Equilibrium with the Jigsaw Technique
NASA Astrophysics Data System (ADS)
Doymus, Kemal
2008-03-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Calculating Shocks In Flows At Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Palmer, Grant
1988-01-01
Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.
Teaching Chemical Equilibrium with the Jigsaw Technique
ERIC Educational Resources Information Center
Doymus, Kemal
2008-01-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students' understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes…
NASA Astrophysics Data System (ADS)
Bajwa, Kanwardeep S.; Aneja, Viney P.; Pal Arya, S.
Ammonia has recently gained importance for its increasing atmospheric concentrations and its role in the formation of aerosols. The anaerobic lagoon and spray method, commonly used for waste storage and disposal in confined animal feeding operations (CAFO), is a significant source of ammonia emissions. An accurate emission model for ammonia from aqueous surfaces can help in the development of emission factors. Data collected from field measurements made at hog waste lagoons in south eastern North Carolina, using the flow through dynamic chamber technique, were used to evaluate the Coupled mass transfer and Chemical reactions model and Equilibrium model developed by Aneja et al. [2001a. Measurement and modeling of ammonia emissions at waste treatment lagoon-Atmospheric Interface. Water, Air and Soil pollution: Focus 1, 177-188]. Sensitivity analysis shows that ammonia flux increases exponentially with lagoon temperature and pH, but a linear increase was observed with an increase in total ammoniacal nitrogen (TAN). Ammonia flux also shows a nonlinear increase with increasing wind speed. Observed ammonia fluxes were generally lower in the cold season than in the warm season when lagoon temperatures are higher. About 41% of the equilibrium model predictions and 43% of the Coupled model predictions are found to be within a factor of two of the observed fluxes. Several model performance statistics were used to evaluate the performance of the two models against the observed flux data. These indicate that the simpler Equilibrium model does as well as the Coupled model. The possible effects of the "artificial" environment within the chamber, which is different from that in the ambient atmospheric conditions above the open lagoon surface, on the measured fluxes are also recognized.
Mac Low, Mordecai-Mark; Glover, Simon C. O. E-mail: glover@uni-heidelberg.de
2012-02-20
Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.
Reniers, Genserik; Dullaert, Wout; Karel, Soudan
2009-08-15
Every company situated within a chemical cluster faces domino effect risks, whose magnitude depends on every company's own risk management strategies and on those of all others. Preventing domino effects is therefore very important to avoid catastrophes in the chemical process industry. Given that chemical companies are interlinked by domino effect accident links, there is some likelihood that even if certain companies fully invest in domino effects prevention measures, they can nonetheless experience an external domino effect caused by an accident which occurred in another chemical enterprise of the cluster. In this article a game-theoretic approach to interpret and model behaviour of chemical plants within chemical clusters while negotiating and deciding on domino effects prevention investments is employed.
The Conceptual Change Approach to Teaching Chemical Equilibrium
ERIC Educational Resources Information Center
Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer
2006-01-01
This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…
Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium
NASA Astrophysics Data System (ADS)
Massot, Marc; Graille, Benjamin; Magin, Thierry E.
2011-05-01
We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.
Helical axis stellarator equilibrium model
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.
Investigating High School Students' Understanding of Chemical Equilibrium Concepts
ERIC Educational Resources Information Center
Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.
2015-01-01
This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…
Analytical formulation of chemical derivatives in equilibrium plasma flows.
Orsini, Alessio
2008-12-01
Chemical derivatives are used in the mathematical modeling of transport phenomena in equilibrium plasma flows when chemical element diffusion and mixing or demixing effects are accounted for. They measure the variation of mixture chemical composition in response to changes in element fractions, pressure, or temperature. Currently, these quantities are calculated numerically, using finite differences. This approach, other than being computationally expensive and prone to numerical error, does not provide any insight into flow physics. Our work is aimed at introducing a fully analytical method for the calculation of chemical derivatives which bypasses the computational cost. It also provides a simple means of estimating their order of magnitude.
Chemical zonation in garnet: kinetics or chemical equilibrium?
NASA Astrophysics Data System (ADS)
Ague, Jay; Chu, Xu; Axler, Jennifer
2015-04-01
Chemical zonation in garnet is widely used to reconstruct the pressure (P), temperature (T), time (t), and fluid (f) histories of mountain belts. Zonation is thought to result largely from changing P - T - t - f conditions during growth as well as post-growth intracrystalline diffusion. Chemical zonation is conventionally interpreted to mean that at least some of the garnet interior was out of chemical equilibrium with the matrix during metamorphism. In this case, thermally-activated diffusion in garnet is too slow to equalize chemical potentials. However, in their groundbreaking paper, TajÄmanová et al. (2014) postulate that in high-grade rocks, chemical zonation may actually reflect attainment of equilibrium. In this scenario, diffusion is fast but viscous relaxation is slow such that the zonation patterns directly mirror internal pressure gradients within garnet. Such zoning would likely be very different than typical concentric growth zonation. Furthermore, Baumgartner et al. (2010) hypothesize that given significant variations in the molar volumes of garnet endmembers, diffusional relaxation may produce internal pressure gradients if the garnet behaves as a near constant-volume system. Consequently, growth zoning could be preserved by pressure variations within the garnet that equalize chemical potentials and slow or stop diffusion (i.e., the garnet is chemically heterogeneous but maintains internal chemical equilibrium due to the pressure variations). This mechanism predicts that areas of garnet with small compositional contrasts would undergo more diffusional relaxation than areas with large contrasts. Moreover, generation of large internal pressure gradients approaching 1 GPa would be expected to induce deformation (e.g., fracturing) in regions of large compositional gradients. Strongly growth-zoned amphibolite facies garnet from the Barrovian zones, Scotland (Ague and Baxter, 2007) shows neither of these features. The sharp compositional gradients are
Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham
2003-03-27
Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.
Equilibriumlike behavior in chemical reaction networks far from equilibrium.
Lubensky, David K
2010-06-01
In an equilibrium chemical reaction mixture, the number of molecules present obeys a Poisson distribution. We report that, surprisingly, the same is true of a large class of nonequilibrium reaction networks. In particular, we show that certain topological features imply a Poisson distribution, whatever the reaction rates. Such driven systems also obey an analog of the fluctuation-dissipation theorem. Our results shed light on the fundamental question of when equilibrium concepts might apply to nonequilibrium systems and may have applications to models of noise in biochemical networks.
Equilibrium properties of chemically reacting gases
NASA Technical Reports Server (NTRS)
1976-01-01
The equilibrium energy, enthalpy, entropy, specific heat at constant volume and constant pressure, and the equation of state of the gas are all derived for chemically reacting gas mixtures in terms of the compressibility, the mol fractions, the thermodynamic properties of the pure gas components, and the change in zero point energy due to reaction. Results are illustrated for a simple diatomic dissociation reaction and nitrogen is used as an example. Next, a gas mixture resulting from combined diatomic dissociation and atomic ionization reactions is treated and, again, nitrogen is used as an example. A short discussion is given of the additional complexities involved when precise solutions for high-temperature air are desired, including effects caused by NO produced in shuffle reactions and by other trace species formed from CO2, H2O and Ar found in normal air.
Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.
Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V
2016-05-26
The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.
On the Concept "Chemical Equilibrium": The Associative Framework.
ERIC Educational Resources Information Center
Gussarsky, Esther; Gorodetsky, Malka
1990-01-01
Word associations were used to map high school students' concepts of "chemical equilibrium" and "equilibrium." It was found that the preconception of the two concepts was differentiated on noncritical dimensions. (Author/CW)
ERIC Educational Resources Information Center
Niaz, Mansoor
1998-01-01
Reports on a study that constructs a Lakatosian teaching strategy that can facilitate conceptual change in students' understanding of chemical equilibrium. Results indicate that the experimental group performed better on tests. Contains 81 references. (DDR)
Computations of fluid mixtures including solid carbon at chemical equilibrium
NASA Astrophysics Data System (ADS)
Bourasseau, Emeric
2013-06-01
One of the key points of the understanding of detonation phenomena is the determination of equation of state of the detonation products mixture. Concerning carbon rich explosives, detonation products mixtures are composed of solid carbon nano-clusters immersed in a high density fluid phase. The study of such systems where both chemical and phase equilibriums occur simultaneously represents an important challenge and molecular simulation methods appear to be one of the more promising way to obtain some answers. In this talk, the Reaction Ensemble Monte Carlo (RxMC) method will be presented. This method allows the system to reach the chemical equilibrium of a mixture driven by a set of linearly independent chemical equations. Applied to detonation product mixtures, it allows the calculation of the chemical composition of the mixture and its thermodynamic properties. Moreover, an original model has been proposed to take explicitly into account a solid carbon meso-particle in thermodynamic and chemical equilibrium with the fluid. Finally our simulations show that the intrinsic inhomogeneous nature of the system (i.e. the fact that the solid phase is immersed in the fluid phase) has an important impact on the thermodynamic properties, and as a consequence must be taken into account.
ERIC Educational Resources Information Center
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
Sparse Partial Equilibrium Tables in Chemically Resolved Reactive Flow
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Laurence E.; Pudliner, Brian; McAbee, Tom
2004-07-01
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and hydrodynamics. Unfortunately, little is known concerning the detailed chemical kinetics of detonations in energetic materials. CHEETAH uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. CHEETAH supports a wide range of elements and condensed detonation products and can also be applied to gas detonations. A sparse hash table of equation of state values is used in CHEETAH to enhance the efficiency of kinetic reaction calculations. For large-scale parallel hydrodynamic calculations, CHEETAH uses parallel communication to updates to the cache. We present here details of the sparse caching model used in the CHEETAH coupled to an ALE hydrocode. To demonstrate the efficiency of modeling using a sparse cache model we consider detonations in energetic materials.
Sparse Partial Equilibrium Tables in Chemically Resolved Reactive Flow
Vitello, P; Fried, L E; Pudliner, B; McAbee, T
2003-07-14
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and hydrodynamics. Unfortunately, little is known concerning the detailed chemical kinetics of detonations in energetic materials. CHEETAH uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. CHEETAH supports a wide range of elements and condensed detonation products and can also be applied to gas detonations. A sparse hash table of equation of state values, called the ''cache'' is used in CHEETAH to enhance the efficiency of kinetic reaction calculations. For large-scale parallel hydrodynamic calculations, CHEETAH uses MPI communication to updates to the cache. We present here details of the sparse caching model used in the CHEETAH. To demonstrate the efficiency of modeling using a sparse cache model we consider detonations in energetic materials.
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes.
ERIC Educational Resources Information Center
Banerjee, Anil C.
1995-01-01
Discusses some of the conceptual difficulties encountered by undergraduate students in learning certain aspects of chemical equilibrium and thermodynamics. Discusses teaching strategies for dealing with these difficulties. (JRH)
Boltzmann equation solver adapted to emergent chemical non-equilibrium
Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann
2015-01-15
We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)
Non-equilibrium effects in high temperature chemical reactions
NASA Technical Reports Server (NTRS)
Johnson, Richard E.
1987-01-01
Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.
Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.
Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi
2016-01-19
We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.
The Lewis Chemical Equilibrium Program with parametric study capability
NASA Technical Reports Server (NTRS)
Sevigny, R.
1981-01-01
The program was developed to determine chemical equilibrium in complex systems. Using a free energy minimization technique, the program permits calculations such as: chemical equilibrium for assigned thermodynamic states; theoretical rocket performance for both equilibrium and frozen compositions during expansion; incident and reflected shock properties; and Chapman-Jouget detonation properties. It is shown that the same program can handle solid coal in an entrained flow coal gasification problem.
Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers
ERIC Educational Resources Information Center
Ganaras, Kostas; Dumon, Alain; Larcher, Claudine
2008-01-01
This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…
Using Analogies to Prevent Misconceptions about Chemical Equilibrium
ERIC Educational Resources Information Center
Sahin Pekmez, Esin
2010-01-01
The main purpose of this study was to find the effectiveness of using analogies to prevent misconceptions about chemical equilibrium. Nineteen analogies, which were based on dynamic aspects of chemical equilibrium and application of Le Chatelier's principle, were developed. The participations of this study consisted of 11th grade students (n: 151)…
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, and 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.
Nanomechanics Model for Static Equilibrium
NASA Astrophysics Data System (ADS)
Jung, Sunghoon
2002-09-01
This study presented a computational technique to model and simulate atomistic behavior of materials under static loads, Interatomic potential energy was used to maintain equilibrium among atoms under static loads and constraints, In addition, the atomistic model was coupled with the finite element analysis model so that more flexible loads and constraints could be applied to the atomistic model A multi-scale technique was also presented for some single wall nanotubes of both zigzag and armchair and then their effective stiffness were estimated Those designed nanotubes are woven into fabric composites, which can be used in various military applications including body armored, vehicles, and infantry transportation vehicles because advanced nano- composites could be much lighter and stronger than current ones, Some example problems were presented to illustrate the developed technique for the nano-composites and SWNTs, The proposed technique for nanomechanics can be used for design and analysis of materials at the atomic or molecular level,
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech
2017-01-01
It is first shown that recent problems in heavy-ion collisions at the LHC energies, connected with thermal description of the proton yield and the pion spectra at low transverse-momenta, can be simultaneously explained within a chemical non-equilibrium statistical hadronization framework. Then the predictions of this approach for the production of strange particles are presented.
Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks
ERIC Educational Resources Information Center
Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.
2011-01-01
Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…
A Better Way of Dealing with Chemical Equilibrium.
ERIC Educational Resources Information Center
Tykodi, Ralph J.
1986-01-01
Discusses how to address the concept of chemical equilibrium through the use of thermodynamic activities. Describes the advantages of setting up an equilibrium constant in terms of activities and demonstrates how to approximate those activities by practical measures such as partial pressures, mole fractions, and molar concentrations. (TW)
Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Boney, L. R.
1973-01-01
Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.
Students' Systematic Errors When Solving Kinetic and Chemical Equilibrium Problems.
ERIC Educational Resources Information Center
BouJaoude, Saouma
Although students' misconceptions about the concept of chemical equilibrium has been the focus of numerous investigations, few have investigated students' systematic errors when solving equilibrium problems at the college level. Students (n=189) enrolled in the second semester of a first year chemistry course for science and engineering majors at…
Chan, M.; Yen, T.F.
1980-11-01
A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.
Evidence-Based Approaches to Improving Chemical Equilibrium Instruction
ERIC Educational Resources Information Center
Davenport, Jodi L.; Leinhardt, Gaea; Greeno, James; Koedinger, Kenneth; Klahr, David; Karabinos, Michael; Yaron, David J.
2014-01-01
Two suggestions for instruction in chemical equilibrium are presented, along with the evidence that supports these suggestions. The first is to use diagrams to connect chemical reactions to the effects of reactions on concentrations. The second is the use of the majority and minority species (M&M) strategy to analyze chemical equilibrium…
Thermal Conductivity of Gas Mixtures in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Brokaw, Richard S.
1960-01-01
The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.
Speleothems as Examples of Chemical Equilibrium Processes.
ERIC Educational Resources Information Center
Wilson, James R.
1984-01-01
The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…
ERIC Educational Resources Information Center
Jameson, Cynthia J.
Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on chemical equilibrium calculations includes objectives, prerequisites, a discussion of the equilibrium constant (K), and ten…
Wave propagation in a quasi-chemical equilibrium plasma
NASA Technical Reports Server (NTRS)
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
Multicomponent Equilibrium Models for Testing Geothermometry Approaches
Cooper, D. Craig; Palmer, Carl D.; Smith, Robert W.; McLing, Travis L.
2013-02-01
Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.
Insights: Simple Models for Teaching Equilibrium and Le Chatelier's Principle.
ERIC Educational Resources Information Center
Russell, Joan M.
1988-01-01
Presents three models that have been effective for teaching chemical equilibrium and Le Chatelier's principle: (1) the liquid transfer model, (2) the fish model, and (3) the teeter-totter model. Explains each model and its relation to Le Chatelier's principle. (MVL)
NASA Astrophysics Data System (ADS)
Niaz, M.
The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.
Non-equilibrium modelling of transferred arcs
NASA Astrophysics Data System (ADS)
Haidar, J.
1999-02-01
A two-temperature, variable-density, arc model has been developed for description of high-current free-burning arcs, including departures from thermodynamic and chemical equilibrium in the plasma. The treatment includes the arc, the anode and the cathode and considers the separate energy balance of the electrons and the heavy particles, together with the continuity equations for these species throughout the plasma. The output includes a two-dimensional distribution for the temperatures and densities both of the electrons and of the heavy particles, plasma velocity, current density and electrical potential throughout the arc. For a 200 A arc in pure argon at 1 atm, we calculate large differences between the temperatures of the electrons and the heavy particles in the plasma region near the cathode tip, together with large departures from local chemical plasma equilibrium. In the main body of the arc at high plasma temperatures, we predict minor differences between the temperatures of the electrons and the heavy particles, which are inconsistent with recent measurements using laser-scattering techniques showing differences of up to several thousand degrees. However, we find that, for the region in front of the cathode tip, the ground-state level of the neutral atoms is overpopulated relative to the corresponding populations under conditions of LTE, in agreement with experimental observations. These departures from LTE are caused by the injection of a large mass flow of cold gas into the arc core due to arc constriction at the tip of the cathode.
Lathouri, Maria; Korre, Anna
2015-12-15
Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality
CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989
NASA Technical Reports Server (NTRS)
Mcbride, B.
1994-01-01
Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for
ERIC Educational Resources Information Center
Quilez, Juan
2009-01-01
With this paper, our main aim is to contribute to the realisation of the chemical reactivity concept, tracing the historical evolution of the concept of chemical affinity that eventually supported the concept of chemical equilibrium. We will concentrate on searching for the theoretical grounds of three key chemical equilibrium ideas: "incomplete…
ERIC Educational Resources Information Center
Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico; Dekkers, Hetty
1998-01-01
Describes an empirical study concerning the introduction of the concept of chemical equilibrium in chemistry classrooms in a way which challenges students' initial conceptions of chemical reactions. Contains 23 references. (DDR)
NASA Astrophysics Data System (ADS)
Morel, V.; Bultel, A.; Chéron, B. G.
2010-09-01
A 0D numerical approach including a Collisional-Radiative model is elaborated in the purpose of describing the behavior of the nascent plasma resulting from the interaction between a 4 ns/65 mJ/532 nm Q-switched Nd:YAG laser pulse and an aluminum sample in vacuum. The heavy species considered are Al, Al +, Al 2+ and Al 3+ on their different excited states and free electrons. The translation temperatures of free electrons and heavy species are assumed different ( T e and TA respectively). Numerous elementary processes are accounted for as electron impact induced excitation and ionization, elastic collisions, multiphoton ionization and inverse Bremsstrahlung. Atoms passing from the sample to gas phase are described by using classical vaporization theory so that the surface temperature is arbitrarily limited to values less than the critical point one at 6700 K. The laser flux density considered in the study is therefore moderate with a fluence lower than 7 J cm - 2 . This model puts forward the major influence of multiphoton ionization in the plasma formation, whereas inverse Bremsstrahlung turns out to be quasi negligible. The increase of electron temperature is mainly due to multiphoton ionization and Te does not exceed 10,000 K. The electron induced collisions play an important role during the subsequent phase which corresponds to the relaxation of the excited states toward Boltzmann equilibrium. The electron density reaches its maximum during the laser pulse with a value ≈ 10 22, 10 23 m - 3 depending highly on the sample temperature. The ionization degree is of some percents in our conditions.
Chemical-equilibrium calculations for aqueous geothermal brines
Kerrisk, J.F.
1981-05-01
Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.
Computer Series, 108. Computer Simulation of Chemical Equilibrium.
ERIC Educational Resources Information Center
Cullen, John F., Jr.
1989-01-01
Presented is a computer simulation called "The Great Chemical Bead Game" which can be used to teach the concepts of equilibrium and kinetics to introductory chemistry students more clearly than through an experiment. Discussed are the rules of the game, the application of rate laws and graphical analysis. (CW)
Modified NASA-Lewis chemical equilibrium code for MHD applications
NASA Technical Reports Server (NTRS)
Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.
1979-01-01
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.
Chemical equilibrium of ablation materials including condensed species
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.
Computer program determines chemical composition of physical system at equilibrium
NASA Technical Reports Server (NTRS)
Kwong, S. S.
1966-01-01
FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.
Chemical Equilibrium and Polynomial Equations: Beware of Roots.
ERIC Educational Resources Information Center
Smith, William R.; Missen, Ronald W.
1989-01-01
Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…
Composition and Thermodynamic Properties of Air in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Moeckel, W E; Weston, Kenneth C
1958-01-01
Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.
Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Kempton, Eliza M.-R.; Mbarek, Rostom
2015-12-01
Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At
Problem solving and chemical equilibrium: Successful versus unsuccessful performance
NASA Astrophysics Data System (ADS)
Camacho, Moises; Good, Ron
The purpose of this study was to describe the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Thirteen novices (five high-school students, five undergraduate majors, and three nonmajors) and ten experts (six doctoral students and four faculty members) were videotaped as they individually solved standard chemical equilibrium problems. The nature of the problems was such that they required more than mere recall or algorithmic learning and yet simple enough to provide the novices a reasonable chance of solving them. Extensive analysis of the think-aloud protocols produced 27 behavioral tendencies that can be used to describe and differentiate between successful and unsuccessful problem solvers. Successful solvers' perceptions of the problem were characterized by careful analysis and reasoning of the task, use of related principles and concepts to justify their answers, frequent checks of the consistency of answers and reasons, and better quality of procedural and strategic knowledge. Unsuccessful subjects had many knowledge gaps and misconceptions about the nature of chemical equilibrium. Even faculty experts were sometimes unable to correctly apply common chemical principles during the problem-solving process. Important theoretical concepts such as molar enthalpy, heat of reaction, free energy of formation, and free energy of reaction were rarely used by novices in explaining problems.
Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich
2016-07-27
An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.
Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise
ERIC Educational Resources Information Center
Bindel, Thomas H.
2012-01-01
A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…
Chemical equilibrium in high pressure molecular fluid mixtures
Shaw, M.S.
1993-09-01
The N{sub atoms}PT Monte Carlo simulation method has been reformulated to incorporate multiple species and chemical reactions with changes in total number of molecules. While maintaining a constant number of each type of atom, the number of molecules is changed by turning on and off the interactions of any particular position with other molecules. Chemical reactions are allowed as a correlated move of atoms to differnt molecular locations. Equilibrium chemical composition is determined as an average over the simulation along with equation of state quantities. A large set of simulations has been made with the system N{sub 2} + O{sub 2} {rightleftharpoons} NO covering a wide range in P and T. Both Hugoniot states and the CJ point have been determined and are shown to be sensitive to the potentials between unlike species.
General Equilibrium Models: Improving the Microeconomics Classroom
ERIC Educational Resources Information Center
Nicholson, Walter; Westhoff, Frank
2009-01-01
General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…
Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions
Friedly, John C.; Rubin, Jacob
1992-01-01
A new approach is applied to the problem of modeling solute transport accompanied by many chemical reactions. The approach, based on concepts of the concentration space and its stoichiometric subspaces, uses elements of the subspaces as primary dependent variables. It is shown that the resulting model equations are compact in form, isolate the chemical reaction expressions from flow expressions, and can be used for either equilibrium or kinetically controlled reactions. The implications of the results on numerical algorithms for solving the equations are discussed. The application of the theory is illustrated throughout with examples involving a simple but broadly representative set of reactions previously considered in the literature. Numerical results are presented for four interconnected reactions: a homogeneous complexation reaction, two sorption reactions, and a dissolution/precipitation reaction. Three cases are considered: (1) four kinetically controlled reactions, (2) four equilibrium-controlled reactions, and (3) a system with two kinetically controlled reactions and two equilibrium-controlled reactions.
NASA Astrophysics Data System (ADS)
Li, N.; Tan, T. Y.; Gösele, U.
2007-03-01
We formulate a global equilibrium model to describe the growth of one-dimensional nanostructures in the VLS process by including also the chemical tension in addition to the physical tensions, i.e. surface energies. The chemical tension derives from the Gibbs free energy change due to the growth of a crystal layer of an elementary thickness. The system global equilibrium is arrived at via the balance of the static physical tensions and the dynamic chemical tension. The model predicts and provides conditions for the growth of nanowires of all sizes exceeding a lower thermodynamic limit. The model also predicts the conditions distinguishing the growth of nanohillocks from nanowires. These predictions will allow the verification of the model by future experiments specifically designed for this purpose.
ERIC Educational Resources Information Center
Quilez-Pardo, Juan; Solaz-Portoles, Joan Josep
1995-01-01
Study of strategies and procedures of 170 students and 40 teachers when solving chemical equilibrium problems found misconceptions emerging through: misapplication of Le Chatelier's Principle, use of rote-learning recall, incorrect control of variables, limited use of chemical equilibrium law, lack of mastery of chemical equilibrium principles,…
Horowitz, Jordan M.
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
NASA Astrophysics Data System (ADS)
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Hartman, M.D.; Baron, J.S.; Ojima, D.S.
2007-01-01
Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.
Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.
Henriques, André M; Barbosa, André G H
2011-11-10
A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.
Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.
ERIC Educational Resources Information Center
Heald, Emerson F.
1978-01-01
Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)
Transport Coefficients for the NASA Lewis Chemical Equilibrium Program
NASA Technical Reports Server (NTRS)
Svehla, Roger A.
1995-01-01
The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.
Turbulence modeling for non-equilibrium flow
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1995-01-01
The work performed during this year has involved further assessment and extension of the k-epsilon-v(exp 2) model, and initiation of work on scalar transport. The latter is introduced by the contribution of Y. Shabany to this volume. Flexible, computationally tractable models are needed for engineering CFD. As computational technology has progressed, the ability and need to use elaborate turbulence closure models has increased. The objective of our work is to explore and develop new analytical frameworks that might extend the applicability of the modeling techniques. In past years the development of a method for near-wall modeling was described. The method has been implemented into a CFD code and its viability has been demonstrated by various test cases. Further tests are reported herein. Non-equilibrium near-wall models are needed for some heat transfer applications. Scalar transport seems generally to be more sensitive to non-equilibrium effects than is momentum transport. For some applications turbulence anisotropy plays a role and an estimate of the full Reynolds stress tensor is needed. We have begun work on scalar transport per se, but in this brief I will only report on an extension of the k-epsilon-v(exp 2) model to predict the Reynolds stress tensor.
Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem
NASA Technical Reports Server (NTRS)
Cox, Carey F.
2005-01-01
Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik
2011-01-01
We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Mcbride, Bonnie J.
1994-01-01
This report presents the latest in a number of versions of chemical equilibrium and applications programs developed at the NASA Lewis Research Center over more than 40 years. These programs have changed over the years to include additional features and improved calculation techniques and to take advantage of constantly improving computer capabilities. The minimization-of-free-energy approach to chemical equilibrium calculations has been used in all versions of the program since 1967. The two principal purposes of this report are presented in two parts. The first purpose, which is accomplished here in part 1, is to present in detail a number of topics of general interest in complex equilibrium calculations. These topics include mathematical analyses and techniques for obtaining chemical equilibrium; formulas for obtaining thermodynamic and transport mixture properties and thermodynamic derivatives; criteria for inclusion of condensed phases; calculations at a triple point; inclusion of ionized species; and various applications, such as constant-pressure or constant-volume combustion, rocket performance based on either a finite- or infinite-chamber-area model, shock wave calculations, and Chapman-Jouguet detonations. The second purpose of this report, to facilitate the use of the computer code, is accomplished in part 2, entitled 'Users Manual and Program Description'. Various aspects of the computer code are discussed, and a number of examples are given to illustrate its versatility.
Thermodynamics and Kinetics of Chemical Equilibrium in Solution.
ERIC Educational Resources Information Center
Leenson, I. A.
1986-01-01
Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)
Modeling Equilibrium of microRNA Expression
Chan, Lawrence W. C.
2011-01-01
MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331
Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal
2010-03-23
The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
Phase-field model of oxidation: Equilibrium
NASA Astrophysics Data System (ADS)
Sherman, Q. C.; Voorhees, P. W.
2017-03-01
A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below the Debye length LD, where charge neutrality in the oxide does not occur, is formulated. The phase-field model is validated in the Wagner limit using a sharp interface Gouy-Chapman model for the electrostatic double layer. The phase-field simulations show that equilibrium oxide films below the Wagner limit are charged throughout due to their inability to electrostatically screen charge over the length of the film, L . The character of the defect and charge distribution profiles in the oxide vary depending on whether reduced oxygen adatoms are present on the gas-oxide interface. The Fermi level in the oxide increases for thinner films, approaching the Fermi level of the metal in the limit L /LD→0 , which increases the driving force for adsorbed oxygen reduction at the gas-oxide interface.
Chemical equilibrium of minced turkey meat in organic acid solutions.
Goli, T; Abi Nakhoul, P; Zakhia-Rozis, N; Trystram, G; Bohuon, P
2007-02-01
The distribution of acid (HA), anions (A(-)), free protons (H(3)O(+)) and bound protons (H(b)), in homogenized turkey meat was evaluated at various meat/water mass ratios of (1/4-1/10) during titration with acetic acid (0.25N) or lactic acid (0.2N). H(b) concentration was determined by titration with hydrochloric acid (0.075N) and a correlation for [H(b)]=f(pH) was proposed. A procedure was used to calculate the fractions of the various species in equilibrium, starting from an initial acid concentration in a meat/water system and assuming the accuracy of the pK(a) value of the pure weak acids despite the chemical complexity of meat. Calculated results were in very good agreement (±0.15) with experimental pH values, whatever the acid, meat batch or meat/water mass ratios used. Less than 1% of the total protons were free (H(3)O(+)) and determined the meat pH.
Radiative equilibrium model of Titan's atmosphere
NASA Technical Reports Server (NTRS)
Samuelson, R. E.
1983-01-01
The present global radiative equilibrium model for the Saturn satellite Titan is restricted to the two-stream approximation, is vertically homogeneous in its scattering properties, and is spectrally divided into one thermal and two solar channels. Between 13 and 33% of the total incident solar radiation is absorbed at the planetary surface, and the 30-60 ratio of violet to thermal IR absorption cross sections in the stratosphere leads to the large temperature inversion observed there. The spectrally integrated mass absorption coefficient at thermal wavelengths is approximately constant throughout the stratosphere, and approximately linear with pressure in the troposphere, implying the presence of a uniformly mixed aerosol in the stratosphere. There also appear to be two regions of enhanced opacity near 30 and 500 mbar.
Radiative equilibrium model of Titan's atmosphere
NASA Astrophysics Data System (ADS)
Samuelson, R. E.
1983-02-01
The present global radiative equilibrium model for the Saturn satellite Titan is restricted to the two-stream approximation, is vertically homogeneous in its scattering properties, and is spectrally divided into one thermal and two solar channels. Between 13 and 33% of the total incident solar radiation is absorbed at the planetary surface, and the 30-60 ratio of violet to thermal IR absorption cross sections in the stratosphere leads to the large temperature inversion observed there. The spectrally integrated mass absorption coefficient at thermal wavelengths is approximately constant throughout the stratosphere, and approximately linear with pressure in the troposphere, implying the presence of a uniformly mixed aerosol in the stratosphere. There also appear to be two regions of enhanced opacity near 30 and 500 mbar.
NASA Technical Reports Server (NTRS)
1976-01-01
The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.
NASA Technical Reports Server (NTRS)
Paquette, John A.; Nuth, Joseph A., III
2011-01-01
Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
ERIC Educational Resources Information Center
Bilgin, Ibrahim
2006-01-01
The purpose of this study was to investigate the effectiveness of small group discussion on students' conceptual understanding of chemical equilibrium. Students' understanding of chemical equilibrium concepts was measured using the Misconception Identification Test. The test consisted of 30 items and administered as pre-posttests to a total of 81…
ERIC Educational Resources Information Center
Niaz, Mansoor
2001-01-01
Illustrates how a novel problem of chemical equilibrium based on a closely related sequence of items can facilitate students' conceptual understanding. Students were presented with a chemical reaction in equilibrium to which a reactant was added as an external effect. Three studies were conducted to assess alternative conceptions. (Author/SAH)
ERIC Educational Resources Information Center
Cheung, Derek; Ma, Hong-jia; Yang, Jie
2009-01-01
The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…
ERIC Educational Resources Information Center
Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer
2003-01-01
The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…
Identification and Analysis of Student Conceptions Used To Solve Chemical Equilibrium Problems.
ERIC Educational Resources Information Center
Voska, Kirk W.; Heikkinen, Henry W.
2000-01-01
Identifies and quantifies the chemistry conceptions used by students when solving chemical equilibrium problems requiring application of LeChatelier's Principle, and explores the feasibility of designing a paper and pencil test to accomplish these purposes. Eleven prevalent incorrect student conceptions about chemical equilibrium were identified…
The Adverse Effects of Le Chatelier's Principle on Teacher Understanding of Chemical Equilibrium
ERIC Educational Resources Information Center
Cheung, Derek
2009-01-01
Although the scientific inadequacy of Le Chatelier's principle has long been documented in the literature, the principle is still treated as a central concept of chemical equilibrium by textbook writers and teachers in many countries. In the past, researchers' interest has focused on student misconceptions about chemical equilibrium and has…
A Colorful Demonstration to Visualize and Inquire into Essential Elements of Chemical Equilibrium
ERIC Educational Resources Information Center
Eilks, Ingo; Gulacar, Ozcan
2016-01-01
One of the topics that chemistry teachers have a great challenge introducing is chemical equilibrium. When being introduced to chemical equilibrium, many students have difficulties in understanding that some reactions do not go to completion, as this contrasts most of their supposed prior experiences in chemistry lessons. Students may also…
Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Mbarek, Rostom; Kempton, Eliza M.-R.
2016-08-01
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.
Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.
Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele
2014-09-23
Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.
Chemical evolution of the Earth: Equilibrium or disequilibrium process?
NASA Technical Reports Server (NTRS)
Sato, M.
1985-01-01
To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.
Modeling rocky coastline evolution and equilibrium
NASA Astrophysics Data System (ADS)
Limber, P. W.; Murray, A. B.
2010-12-01
Many of the world’s rocky coastlines exhibit planform roughness in the form of alternating headlands and embayments. Along cliffed coasts, it is often assumed that headlands consist of rock that is more resistant to wave attack than in neighboring bays, because of either structural or lithologic variations. Bays would then retreat landward faster than headlands, creating the undulating planform profiles characteristic of a rocky coastal landscape. While the interplay between alongshore rock strength and nearshore wave energy is, in some circumstances, a fundamental control on coastline shape, beach sediment is also important. Laboratory experiments and field observations have shown that beach sediment, in small volumes, can act as an abrasive tool to encourage sea cliff retreat. In large volumes, though, sediment discourages wave attack on the cliff face, acting as a protective barrier. This nonlinearity suggests a means for headland persistence, even without alongshore variations in rock strength: bare-rock headlands could retreat more slowly than, or at the same rate as, neighboring sediment-filled embayments because of alongshore variations in the availability of beach sediment. Accordingly, nearshore sediment dynamics (i.e. sediment production from sea cliff retreat and alongshore sediment transport) could promote the development of autogenic planform geometry. To explore these ideas, we present numerical and analytical modeling of large-scale (> one kilometer) and long-term (millennial-scale) planform rocky coastline evolution, in which sediment is supplied by both sea cliff erosion and coastal rivers and is distributed by alongshore sediment transport. We also compare model predictions with real landscapes. Previously, our modeling exercises focused on a basic rocky coastline configuration where lithologically-homogeneous sea cliffs supplied all beach sediment and maintained a constant alongshore height. Results showed that 1) an equilibrium alongshore
The venous equilibrium model is widely used to describe hepatic clearance (CLH) of chemicals metabolized by the liver. If chemical delivery to the tissue does not limit CLH, this model predicts that CLH will approximately equal the product of intrinsic metabolic clearance and a t...
Formation of nitric acid hydrates - A chemical equilibrium approach
NASA Technical Reports Server (NTRS)
Smith, Roland H.
1990-01-01
Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.
Equilibrium statistical-thermal models in high-energy physics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2014-05-01
We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters
Evaluation of uncertainties in solid-aqueous-gas chemical equilibrium calculations
NASA Astrophysics Data System (ADS)
Novoselov, Alexey A.; Popov, Serguei; de Souza Filho, Carlos Roberto
2015-06-01
Thermodynamic calculations are traditionally carried out under the assumption of specified input parameters. Errors associated to the results are not often estimated. Here, we propose a novel algorithm that propagates the uncertainty intervals on thermodynamic constants to the uncertainty in chemical equilibrium compositions. The computing uses a dataset of uncertainties on thermodynamic parameters for minerals, solution species and gases consistent with the SUPCRT92 database. Also the algorithm of nonlinear optimization is thoroughly described and realized on a base of the CRONO software. This code can be incorporated into reactive mass transport models as a core for calculating equilibrium compositions. The performance of the algorithm is tested in an experimental system involving Mont Terri's Opalinus Clay interacting with pore water. Its effectiveness is also evaluated against Monte Carlo simulations and Latin Hypercube sampling.
Behera, Sailesh N; Betha, Raghu; Liu, Ping; Balasubramanian, Rajasekhar
2013-05-01
Aerosol acidity is one of the most important parameters that can influence atmospheric visibility, climate change and human health. Based on continuous field measurements of inorganic aerosol species and their thermodynamic modeling on a time resolution of 1h, this study has investigated the acidic properties of PM2.5 and their relation with the formation of secondary inorganic aerosols (SIA). The study was conducted by taking into account the prevailing ambient temperature (T) and relative humidity (RH) in a tropical urban atmosphere. The in-situ aerosol pH (pH(IS)) on a 12h basis ranged from -0.20 to 1.46 during daytime with an average value of 0.48 and 0.23 to 1.53 during nighttime with an average value of 0.72. These diurnal variations suggest that the daytime aerosol was more acidic than that caused by the nighttime aerosol. The hourly values of pH(IS) showed a reverse trend as compared to that of in-situ aerosol acidity ([H(+)]Ins). The pH(IS) had its maximum values at 3:00 and at 20:00 and its minimum during 11:00 to 12:00. Correlation analyses revealed that the molar concentration ratio of ammonium to sulfate (R(N/S)), equivalent concentration ratio of cations to anions (RC/A), T and RH can be used as independent variables for prediction of pH(IS). A multi-linear regression model consisting of RN/S, RC/A, T and RH was developed to estimate aerosol pH(IS).
Hysteresis in modeling of poroelastic systems: quasistatic equilibrium.
Guyer, R A; Kim, H Alicia; Derome, Dominique; Carmeliet, Jan; TenCate, J
2011-06-01
The behavior of hysteretic, coupled elastic and fluid systems is modeled. The emphasis is on quasistatic equilibrium in response to prescribed chemical potential (μ) protocols and prescribed stress (σ) protocols. Hysteresis arises in these models either from the presence of hysterons or from the presence of self-trapping internal fields. This latter mechanism is modeled in finite element calculations which serve to illustrate the creation of hysteresis in a range of circumstances that go from conventionally hysteretic systems, a sandstone, to systems like a wood fiber. An essential ingredient in the behavior of these systems, the interaction between the mechanical variables and the fluid variables, is accorded special attention. The proper venue for the exploration of these systems is (μ,σ) space and appropriate μ protocols, σ protocols, and combined μ-σ protocols.
NASA Astrophysics Data System (ADS)
Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini
2015-10-01
Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.
A rapid method for the computation of equilibrium chemical composition of air to 15000 K
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Erickson, Wayne D.
1988-01-01
A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.
The Adverse Effects of Le Châtelier's Principle on Teacher Understanding of Chemical Equilibrium
NASA Astrophysics Data System (ADS)
Cheung, Derek
2009-04-01
Although the scientific inadequacy of Le Châtelier's principle has long been documented in the literature, the principle is still treated as a central concept of chemical equilibrium by textbook writers and teachers in many countries. In the past, researchers' interest has focused on student misconceptions about chemical equilibrium and has neglected teacher misconceptions. This study aimed to determine how Le Châtelier's principle adversely affects teachers' ability to solve chemical equilibrium problems. This area of research is critically important because teachers cannot help their students understand what they themselves do not understand. In this study, a misconception test was developed and administered to a sample of 33 secondary chemistry teachers in Hong Kong. The test consisted of three open-ended chemical equilibrium questions. Analysis of teacher responses revealed that most of the 33 teachers failed the test as they relied on Le Châtelier's principle rather than the equilibrium law to tackle the three chemical equilibrium problems. Teachers' misconceptions about chemical equilibrium were categorized. Implications of these findings for chemistry teacher education and selection of curriculum content for school chemistry are discussed.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
Effect of a Perturbation on the Chemical Equilibrium: Comparison with Le Chatelier's Principle
ERIC Educational Resources Information Center
Torres, Emilio Martinez
2007-01-01
This article develops a general thermodynamic treatment to predict the direction of shift in a chemical equilibrium when it is subjected to a stress. This treatment gives an inequality that relates the change in the perturbed variable and the change that the equilibrium shift produces in the conjugated variable. To illustrate the generality of…
Polak, Micha; Rubinovich, Leonid
2011-10-06
Nanoconfinement entropic effects on chemical equilibrium involving a small number of molecules, which we term NCECE, are revealed by two widely diverse types of reactions. Employing statistical-mechanical principles, we show how the NCECE effect stabilizes nucleotide dimerization observed within self-assembled molecular cages. Furthermore, the effect provides the basis for dimerization even under an aqueous environment inside the nanocage. Likewise, the NCECE effect is pertinent to a longstanding issue in astrochemistry, namely the extra deuteration commonly observed for molecules reacting on interstellar dust grain surfaces. The origin of the NCECE effect is elucidated by means of the probability distributions of the reaction extent and related variations in the reactant-product mixing entropy. Theoretical modelling beyond our previous preliminary work highlights the role of the nanospace size in addition to that of the nanosystem size, namely the limited amount of molecules in the reaction mixture. Furthermore, the NCECE effect can depend also on the reaction mechanism, and on deviations from stoichiometry. The NCECE effect, leading to enhanced, greatly variable equilibrium "constants", constitutes a unique physical-chemical phenomenon, distinguished from the usual thermodynamical properties of macroscopically large systems. Being significant particularly for weakly exothermic reactions, the effects should stabilize products in other closed nanoscale structures, and thus can have notable implications for the growing nanotechnological utilization of chemical syntheses conducted within confined nanoreactors.
Relating Students' Reasoning To the History of Science: The Case of Chemical Equilibrium.
ERIC Educational Resources Information Center
Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico
1998-01-01
Relates the reasoning of students introduced to the concept of chemical equilibrium to the historical development of the concept. Concludes that the study of authentic historical sources may inspire the design of effective teaching activities. Contains 33 references. (DDR)
Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation.
Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun
2012-03-21
The construction of well-ordered 2D covalent networks via the dehydration of di-borate aromatic molecules was successfully realized through introducing a small amount of water into a closed reaction system to regulate the chemical equilibrium.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Quílez-Pardo, Juan; Solaz-Portolés, Joan Josep
The aim of this article was to study the reasons, strategies, and procedures that both students and teachers use to solve some chemical equilibrium questions and problems. Inappropriate conceptions on teaching and a lack of knowledge regarding the limited usefulness of Le Chatelier's principle, with its vague and ambiguous formulation and textbook presentation, may be some of the sources of misconceptions about the prediction of the effect of changing conditions on chemical equilibrium. To diagnose misconceptions and their possible sources, a written test was developed and administered to 170 1st-year university chemistry students. A chemical equilibrium problem, relating to the students' test, was solved by 40 chemistry teachers. First, we ascertained that teacher's conceptions might influence the problem-solving strategies of the learner. Based on this first aspect, our discussion also concerns students' and teachers' misconceptions related to the Le Chatelier's principle. Misconceptions emerged through: (a) misapplication and misunderstanding of Le Chatelier's principle; (b) use of rote-learning recall and algorithmic procedures; (c) incorrect control of the variables involved; (d) limited use of the chemical equilibrium law; (e) a lack of mastery of chemical equilibrium principles and difficulty in transferring such principles to new situations. To avoid chemical equilibrium misconceptions, a specific pattern of conceptual and methodological change may be considered.Received: 16 November 1993; Revised: 21 September 1994;
Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry
ERIC Educational Resources Information Center
Gonzalez-Gaitano, Gustavo; Tardajos, Gloria
2004-01-01
Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.
NASA Astrophysics Data System (ADS)
Rubi, J. M.; Bedeaux, D.; Kjelstrup, S.; Pagonabarraga, I.
2013-07-01
Chemical cycle kinetics is customarily analyzed by means of the law of mass action which describes how the concentrations of the substances vary with time. The connection of this approach with non-equilibrium thermodynamics (NET) has traditionally been restricted to the linear domain close to equilibrium in which the reaction rates are linear functions of the affinities. We show, by a pertinent formulation of the concept of local equilibrium in the mesoscopic description along the reaction coordinates, that the connection between kinetic and thermodynamic approaches is deeper than thought and holds in the nonlinear domain far from equilibrium, for higher values of the affinity. This new perspective indicates how to overcome the inherent limitation of classical NET in treating cyclic reactions, providing a description of closed and open cycles operating far from equilibrium, in accordance with thermodynamic principles. We propose that the new set of equations are tested and used for data reduction in chemical reaction kinetics.
Non-Equilibrium Modeling of Inductively Coupled RF Plasmas
2015-01-01
Technical Paper 3. DATES COVERED (From - To) January 2015-March 2015 4. TITLE AND SUBTITLE Non-Equilibrium Modeling of Inductively Coupled RF Plasmas...Mar 2015. PA#15120 14. ABSTRACT This paper discusses the modeling of non-equilibrium effects in inductively coupled plasma facilities. The model...98) Prescribed by ANSI Std. 239.18 NON-EQUILIBRIUMMODELING OF INDUCTIVELY COUPLED RF PLASMAS Alessandro Munafò1, Jean-Luc Cambier2, and Marco
A Unified Graphical Representation of Chemical Thermodynamics and Equilibrium
ERIC Educational Resources Information Center
Hanson, Robert M.
2012-01-01
During the years 1873-1879, J. Willard Gibbs published his now-famous set of articles that form the basis of the current perspective on chemical thermodynamics. The second article of this series, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," published in 1873, is particularly notable…
Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion
NASA Technical Reports Server (NTRS)
Erickson, W. D.; Prabhu, R. K.
1986-01-01
A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2006-01-01
Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…
Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products
Shaw, M.S.
1993-06-01
A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.
A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, J.-S.; Chen, K.-H.; Choi, Y.
1992-01-01
A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.
Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.
Armao, Joseph J; Lehn, Jean-Marie
2016-10-17
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing.
Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.
Hess, H; Ross, Jennifer L
2017-03-22
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Shikata, Toshiyuki; Minakawa, Ayako; Okuyama, Kenji
2009-10-29
The structure, dynamics, and hydration behavior of a collagen model polypeptide, (L-prolyl-L-prolylglycyl)(10) (PPG10), were investigated in pure water and dilute acetic acid over a wide temperature range using broadband dielectric relaxation (DR) techniques that spanned frequencies from 1 kHz to 20 GHz. All samples showed pronounced dielectric dispersion with two major relaxation processes around 3 MHz and 20 GHz. Because DR measurements sensitively probe dipoles and their dynamics, the structures and ionization states of the carboxy and amino termini of aqueous PPG10 were precisely determined from the relaxation times and strengths in the 3 MHz frequency range. In solution, PPG10 formed mixtures of monodisperse rods as triple helices with lengths and diameters of 8.6 and 1.5 nm, respectively, and monomeric random coils with radii of approximately 1.4 nm. Ionization of the C-terminus was suppressed by the addition of acetic acid in both states. The fraction of random coils (f(coil)) was found to be a function of temperature (T) and the concentration of PPG10 (c). At low temperatures, small f(coil) values were found, which increased with temperature to reach f(coil) = 1 at approximately 60 degrees C, irrespective of c. This phenomenon, well-known as a triple helix-to-single coil transition, is discussed on the basis of the chemical reaction, (PPG10)(3) <==> 3PPG10, with an equilibrium constant of K = 3(c/55.6)(2)f(coil)(3)(1 - f(coil))(-1). The standard enthalpy change evaluated from Arrhenius plots (ln K versus T(-1)) was found to change dramatically at the same transition temperature that was previously determined by using optical rotation experiments. The other major DR process, observed at approximately 20 GHz, was assigned to free and hydrated water molecules and used to determine the average hydration number (m) per PPG10. The m values for the triple helix and random coil state at 25 degrees C were evaluated to be m(th) = 60-70 and m(coil) = 250-270. The m
Turbulence modeling for non-equilibrium flows
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1993-01-01
Two projects are reported. The first is the development and testing of an eddy viscosity transport model. This project also is a starting point for our work on developing computational tools for solving turbulence models in complex geometries. The second project is a stochastic analysis of the realizability of Reynolds stress transport models.
A continuum model for flocking: Obstacle avoidance, equilibrium, and stability
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas Alexander
The modeling and investigation of the dynamics and configurations of animal groups is a subject of growing attention. In this dissertation, we present a partial-differential-equation based continuum model of flocking and use it to investigate several properties of group dynamics and equilibrium. We analyze the reaction of a flock to an obstacle or an attacking predator. We show that the flock response is in the form of density disturbances that resemble Mach cones whose configuration is determined by the anisotropic propagation of waves through the flock. We investigate the effect of a flock 'pressure' and pairwise repulsion on an equilibrium density distribution. We investigate both linear and nonlinear pressures, look at the convergence to a 'cold' (T → 0) equilibrium solution, and find regions of parameter space where different models produce the same equilibrium. Finally, we analyze the stability of an equilibrium density distribution to long-wavelength perturbations. Analytic results for the stability of a constant density solution as well as stability regimes for constant density solutions to the equilibrium equations are presented.
Phylogenies support out-of-equilibrium models of biodiversity.
Manceau, Marc; Lambert, Amaury; Morlon, Hélène
2015-04-01
There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium.
Equilibrium Distribution of Mutators in the Single Fitness Peak Model
NASA Astrophysics Data System (ADS)
Tannenbaum, Emmanuel; Deeds, Eric J.; Shakhnovich, Eugene I.
2003-09-01
This Letter develops an analytically tractable model for determining the equilibrium distribution of mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness peak model, which has been used in Eigen’s quasispecies equations in order to understand various aspects of evolutionary dynamics. As with the quasispecies model, our model for mutator-nonmutator equilibrium undergoes a phase transition in the limit of infinite sequence length. This “repair catastrophe” occurs at a critical repair error probability of ɛr=Lvia/L, where Lvia denotes the length of the genome controlling viability, while L denotes the overall length of the genome. The repair catastrophe therefore occurs when the repair error probability exceeds the fraction of deleterious mutations. Our model also gives a quantitative estimate for the equilibrium fraction of mutators in Escherichia coli.
A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Kuczmarski, M. A.
1993-01-01
Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.
A novel local equilibrium model for shaped tokamak plasmas
Yu Weihong; Zhou Deng; Xiang Nong
2012-07-15
A model is proposed for a local up-down symmetric equilibrium in the vicinity of a specified magnetic surface with given elongation and triangularity. Different from the Miller's model [R. L. Miller et al., Phys. Plasmas 5, 973 (1998)], the derivative of the Shafranov shift in the present model is self-consistently determined. The equilibrium accounts for all the essential features, like the elongation, the triangularity, and the Shafranov shift etc., of a shaped cross section. Hence, it can be used for investigation of radially localized plasma modes, like reversed shear Alfvenic eigenmodes and ballooning mode, etc., and it is also suitable for local equilibrium construction used for flux tube plasma simulations.
Systematic Approach to Calculate the Concentration of Chemical Species in Multi-Equilibrium Problems
ERIC Educational Resources Information Center
Baeza-Baeza, Juan Jose; Garcia-Alvarez-Coque, Maria Celia
2011-01-01
A general systematic approach is proposed for the numerical calculation of multi-equilibrium problems. The approach involves several steps: (i) the establishment of balances involving the chemical species in solution (e.g., mass balances, charge balance, and stoichiometric balance for the reaction products), (ii) the selection of the unknowns (the…
Student Misconceptions in Chemical Equilibrium as Related to Cognitive Level and Achievement.
ERIC Educational Resources Information Center
Wheeler, Alan E.; Kass, Heidi
Reported is an investigation to determine the nature and extent of student misconceptions in chemical equilibrium and to ascertain the degree to which certain misconceptions are related to chemistry achievement and to performance on specific tasks involving cognitive transformations characteristic of the concrete and formal operational stages of…
ERIC Educational Resources Information Center
Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki
2009-01-01
The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…
Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions
ERIC Educational Resources Information Center
Prezhdo, Oleg V.; Craig, Colleen F.; Fialkov, Yuriy; Prezhdo, Victor V.
2007-01-01
The study demonstrates that the solvent present in a system can highly alter and control the chemical equilibrium of a system. The results show that the dipole moment and polarizibility of a system can be highly altered by using different mixed solvents.
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
Analogies in the Teaching of Chemical Equilibrium: A Synthesis/Analysis of the Literature
ERIC Educational Resources Information Center
Raviolo, Andres; Garritz, Andoni
2009-01-01
This paper presents a thorough literature review of the analogies used to teach chemical equilibrium. The main objective is to compile all the analogies that have been found to be of service to the teacher and the student. Additionally, we categorize and analyze analogies in relation to the following aspects: representation of the dynamic nature…
A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education
ERIC Educational Resources Information Center
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2014-01-01
A novel didactic sequence is proposed for the teaching of chemical equilibrium. This teaching sequence takes into account the historical and epistemological evolution of the concept, the alternative conceptions and learning difficulties highlighted by teaching science and research in education, and the need to focus on both the students'…
ERIC Educational Resources Information Center
Cheung, Derek
2009-01-01
Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…
ERIC Educational Resources Information Center
Kaya, Ebru
2013-01-01
This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of…
A time-accurate implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun
1992-01-01
A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.
ERIC Educational Resources Information Center
Piquette, Jeff S.; Heikkinen, Henry W.
2005-01-01
This study explores general-chemistry instructors' awareness of and ability to identify and address common student learning obstacles in chemical equilibrium. Reported instructor strategies directed at remediating student alternate conceptions were investigated and compared with successful, literature-based conceptual change methods. Fifty-two…
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Dogan, Alev
2016-01-01
This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…
ERIC Educational Resources Information Center
Ozmen, Haluk
2007-01-01
This study investigated the effectiveness of conceptual change texts in remediating high school students' alternative conceptions concerning chemical equilibrium. A quasi-experimental design was used in this study. The subjects for this study consisted of a total 78 tenth-grade students, 38 of them in the experimental group and 40 of them in the…
Heavy ion collisions and the pre-equilibrium exciton model
Betak, E.
2012-10-20
We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Atomistic modeling of thermodynamic equilibrium of plutonium
NASA Astrophysics Data System (ADS)
Lee, Tongsik; Valone, Steve; Baskes, Mike; Chen, Shao-Ping; Lawson, Andrew
2012-02-01
Plutonium metal has complex thermodynamic properties. Among its six allotropes at ambient pressure, the fcc delta-phase exhibits a wide range of anomalous behavior: extraordinarily high elastic anisotropy, largest atomic volume despite the close-packed structure, negative thermal expansion, strong elastic softening at elevated temperature, and extreme sensitivity to dilute alloying. An accurate description of these thermodynamic properties goes far beyond the current capability of first-principle calculations. An elaborate modeling strategy at the atomic level is hence an urgent need. We propose a novel atomistic scheme to model elemental plutonium, in particular, to reproduce the anomalous characteristics of the delta-phase. A modified embedded atom method potential is fitted to two energy-volume curves that represent the distinct electronic states of plutonium in order to embody the mechanism of the two-state model of Weiss, in line with the insight originally proposed by Lawson et al. [Philos. Mag. 86, 2713 (2006)]. By the use of various techniques in Monte Carlo simulations, we are able to provide a unified perspective of diverse phenomenological aspects among thermal expansion, elasticity, and phase stability.
Bourasseau, Emeric; Maillet, Jean-Bernard
2011-04-21
This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.
A numerical model of non-equilibrium thermal plasmas. II. Governing equations
Li HePing; Zhang XiaoNing; Xia Weidong
2013-03-15
Governing equations and the corresponding physical properties of the plasmas are both prerequisites for studying the fundamental processes in a non-equilibrium thermal plasma system numerically. In this paper, a kinetic derivation of the governing equations used for describing the complicated thermo-electro-magneto-hydrodynamic-chemical coupling effects in non-equilibrium thermal plasmas is presented. This derivation, which is achieved using the Chapman-Enskog method, is completely consistent with the theory of the transport properties reported in the previous paper by the same authors. It is shown, based on this self-consistent theory, that the definitions of the specific heat at constant pressure and the reactive thermal conductivity of two-temperature plasmas are not necessary. The governing equations can be reduced to their counterparts under local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE) conditions. The general method for the determination of the boundary conditions of the solved variables is also discussed briefly. The two papers establish a self-consistent physical-mathematical model that describes the complicated physical and chemical processes in a thermal plasma system for the cases both in LTE or LCE conditions and under non-equilibrium conditions.
An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1987-01-01
An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.
Derivation of the chemical-equilibrium rate coefficient using scattering theory
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1977-01-01
Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.
NASA Astrophysics Data System (ADS)
Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.
2011-05-01
Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.
Phase Transitions and Equilibrium Measures in Random Matrix Models
NASA Astrophysics Data System (ADS)
Martínez-Finkelshtein, A.; Orive, R.; Rakhmanov, E. A.
2015-02-01
The paper is devoted to a study of phase transitions in the Hermitian random matrix models with a polynomial potential. In an alternative equivalent language, we study families of equilibrium measures on the real line in a polynomial external field. The total mass of the measure is considered as the main parameter, which may be interpreted also either as temperature or time. Our main tools are differentiation formulas with respect to the parameters of the problem, and a representation of the equilibrium potential in terms of a hyperelliptic integral. Using this combination we introduce and investigate a dynamical system (system of ODEs) describing the evolution of families of equilibrium measures. On this basis we are able to systematically derive a number of new results on phase transitions, such as the local behavior of the system at all kinds of phase transitions, as well as to review a number of known ones.
Effect of a Perturbation on the Chemical Equilibrium: Comparison with Le Châtelier's Principle
NASA Astrophysics Data System (ADS)
Martínez Torres, Emilio
2007-03-01
This article develops a general thermodynamic treatment to predict the direction of shift in a chemical equilibrium when it is subjected to a stress. This treatment gives an inequality that relates the change in the perturbed variable and the change that the equilibrium shift produces in the conjugated variable. To illustrate the generality of this approach, it has been applied to predict the direction of shift caused by changes of pressure, volume, and amount of substance. In this last case, the well-known unexpected shift in the ammonia synthesis equilibrium upon addition of nitrogen is easily explained. From the above referred inequality and the stability criteria of thermodynamics some conclusions have been obtained about the direction of shift in terms of extensive and extensive variables. This article is suitable for physical chemistry courses.
Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium
NASA Astrophysics Data System (ADS)
Sugisaki, Ryuichi; Nagamine, Koichiro
1995-06-01
The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.
NASA Astrophysics Data System (ADS)
Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed
2016-10-01
The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.
Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays
NASA Astrophysics Data System (ADS)
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2015-06-01
This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.
Knowledge Management through the Equilibrium Pattern Model for Learning
NASA Astrophysics Data System (ADS)
Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine
Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.
Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Phase-field-crystal models and mechanical equilibrium
NASA Astrophysics Data System (ADS)
Heinonen, V.; Achim, C. V.; Elder, K. R.; Buyukdagli, S.; Ala-Nissila, T.
2014-03-01
Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.
NASA Astrophysics Data System (ADS)
Kaya, Ebru
2013-05-01
This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of chemical equilibrium was taught by using argumentative practices and the participants were encouraged to participate in the lessons actively. However, the instructor taught the same subject by using the lecturing method without engaging argumentative activities in the control group. The Chemical Equilibrium Concept Test and Written Argumentation Survey were administered to all participants to assess their conceptual understanding and the quality of their arguments, respectively. The analysis of covariance results indicate that argumentation practices significantly improved conceptual understanding of the experimental group when compared to the control group. Furthermore, the results show that the pre-service teachers exposed to argumentative practices constructed more quality arguments than those in the control group after the instruction. Based on these results, it can be concluded that the instruction based on argumentative practices is effective in concept teaching in science education. Therefore, argumentation should be explicitly taught in teacher education besides elementary and secondary education.
Liu, Yi; Liu, Ping; Lin, Lu; Zhao, Yueqin; Zhong, Wenjuan; Wu, Lunjie; Zhou, Zhemin; Sun, Weifeng
2016-09-01
The maturation mechanism of nitrile hydratase (NHase) of Pseudomonas putida NRRL-18668 was discovered and named as "self-subunit swapping." Since the NHase of Bordetella petrii DSM 12804 is similar to that of P. putida, the NHase maturation of B. petrii is proposed to be the same as that of P. putida. However, there is no further information on the application of NHase according to these findings. We successfully rapidly purified NHase and its activator through affinity his tag, and found that the cell extracts of NHase possessed multiple types of protein ingredients including α, β, α2β2, and α(P14K)2 who were in a state of chemical equilibrium. Furthermore, the activity was significantly enhanced through adding extra α(P14K)2 to the cell extracts of NHase according to the chemical equilibrium. Our findings are useful for the activity enhancement of multiple-subunit enzyme and for the first time significantly increased the NHase activity according to the chemical equilibrium.
Wong, Fiona; Wania, Frank
2011-06-01
Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.
Felmy, Andrew R.; Mason, Marvin J.; Qafoku, Odeta; Dixon, David A.
2005-04-19
This symposium manuscript describes the development of an accurate aqueous thermodynamic model for predicting the speciation of Sr in the waste tanks at the Hanford site. A systematic approach is described that details the studies performed to define the most important inorganic and organic complexation reactions as well as the effects of other important metal ions that compete with Sr for complexation reactions with the chelates. By using this approach we were able to define a reduced set of inorganic complexation, organic complexation, and competing metal reactions that best represent the much more complex waste tank chemical system. A summary is presented of the final thermodynamic model for the system Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O from 25 to 75 ºC that was previously published in a variety of sources. Previously unpublished experimental data are also given for the competing metal Ni as well for certain chemical systems, Na-Sr-CO3-PO4-H2O, and for the solubility of amorphous iron hydroxide in the presence of several organic chelating agents. These data were not used in model development but were key to the final selection of the specific chemical systems prioritized for detailed study.
NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION
Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikic, Zoran; Linker, Jon A.
2013-08-20
The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 A and 131 A channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model.
NASA Technical Reports Server (NTRS)
Steinberger, Craig J.
1991-01-01
The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.
Non-Equilibrium Turbulence and Two-Equation Modeling
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
NASA Astrophysics Data System (ADS)
Salvage, Karen M.; Yeh, Gour-Tsyh
1998-08-01
This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations
Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo
2014-11-25
Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.
ERIC Educational Resources Information Center
Bindel, Thomas H.
2010-01-01
Entropy analyses as a function of the extent of reaction are presented for a number of physicochemical processes, including vaporization of a liquid, dimerization of nitrogen dioxide, and the autoionization of water. Graphs of the total entropy change versus the extent of reaction give a visual representation of chemical equilibrium and the second…
Junkers, Thomas; Barner-Kowollik, Christopher; Coote, Michelle L
2011-12-01
In a recent article (W. Meiser, M. Buback, Assessing the RAFT Equilibrium Constant via Model Systems: An EPR Study, Macromol. Rapid Commun. 2011, 18, 1490-1494), it is claimed that evidence is found that unequivocally proves that quantum mechanical calculations assessing the equilibrium constant and fragmentation rate coefficients in dithiobenzoate-mediated reversible addition fragmentation transfer (RAFT) systems are beset with a considerable uncertainty. In the present work, we show that these claims made by Meiser and Buback are beset with a model dependency, as a critical key parameter in their data analysis - the addition rate coefficient of the radicals attacking the C=S double bond in the dithiobenzoate - induces a model insensitivity into the data analysis. Contrary to the claims made by Meiser and Buback, their experimental results can be brought into agreement with the quantum chemical calculations if a lower addition rate coefficient of cyanoisopropyl radicals (CIP) to the CIP dithiobenzoate (CPDB) is assumed. To resolve the model dependency, the addition rate coefficient of CIP radicals to CPDB needs to be determined as a matter of priority.
Reactive Solute Transport in Streams: 1. Development of an Equilibrium-Based Model
NASA Astrophysics Data System (ADS)
Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.
1996-02-01
An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.
Reactive solute transport in streams. 1. Development of an equilibrium- based model
Runkel, R.L.; Bencala, K.E.; Broshears, R.E.; Chapra, S.C.
1996-01-01
An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.
Rates of coalescence for common epidemiological models at equilibrium
Koelle, Katia; Rasmussen, David A.
2012-01-01
Coalescent theory provides a mathematical framework for quantitatively interpreting gene genealogies. With the increased availability of molecular sequence data, disease ecologists now regularly apply this body of theory to viral phylogenies, most commonly in attempts to reconstruct demographic histories of infected individuals and to estimate parameters such as the basic reproduction number. However, with few exceptions, the mathematical expressions at the core of coalescent theory have not been explicitly linked to the structure of epidemiological models, which are commonly used to mathematically describe the transmission dynamics of a pathogen. Here, we aim to make progress towards establishing this link by presenting a general approach for deriving a model's rate of coalescence under the assumption that the disease dynamics are at their endemic equilibrium. We apply this approach to four common families of epidemiological models: standard susceptible-infected-susceptible/susceptible-infected-recovered/susceptible-infected-recovered-susceptible models, models with individual heterogeneity in infectivity, models with an exposed but not yet infectious class and models with variable distributions of the infectious period. These results improve our understanding of how epidemiological processes shape viral genealogies, as well as how these processes affect levels of viral diversity and rates of genetic drift. Finally, we discuss how a subset of these coalescent rate expressions can be used for phylodynamic inference in non-equilibrium settings. For the ones that are limited to equilibrium conditions, we also discuss why this is the case. These results, therefore, point towards necessary future work while providing intuition on how epidemiological characteristics of the infection process impact gene genealogies. PMID:21920961
Computation of eigenfrequencies for equilibrium models including turbulent pressure
NASA Astrophysics Data System (ADS)
Sonoi, T.; Belkacem, K.; Dupret, M.-A.; Samadi, R.; Ludwig, H.-G.; Caffau, E.; Mosser, B.
2017-03-01
Context. The space-borne missions CoRoT and Kepler have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called "surface effect" and a key ingredient to solve it is turbulent pressure for the computation of both the equilibrium models and the oscillations. While 3D hydrodynamic simulations help to include properly the turbulent pressure in the equilibrium models, the way this surface effect is included in the computation of stellar oscillations is still subject to uncertainties. Aims: We aim at determining how to properly include the effect of turbulent pressure and its Lagrangian perturbation in the adiabatic computation of the oscillations. We also discuss the validity of the gas-gamma model and reduced gamma model approximations, which have been used to compute adiabatic oscillations of equilibrium models including turbulent pressure. Methods: We use a patched model of the Sun with an inner part constructed by a 1D stellar evolution code (CESTAM) and an outer part by the 3D hydrodynamical code (CO5BOLD). Then, the adiabatic oscillations are computed using the ADIPLS code for the gas-gamma and reduced gamma model approximations and with the MAD code imposing the adiabatic condition on an existing time-dependent convection formalism. Finally, all those results are compared to the observed solar frequencies. Results: We show that the computation of the oscillations using the time-dependent convection formalism in the adiabatic limit improves significantly the agreement with the observed frequencies compared to the gas-gamma and reduced gamma model approximations. Of the components of the perturbation of the turbulent pressure, the perturbation of the density and advection term is found to contribute most to the frequency shift. Conclusions: The turbulent pressure is certainly the dominant factor responsible for the
NASA Astrophysics Data System (ADS)
Malijevský, Alexandr; Lísal, Martin
2009-04-01
We present a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical nanopores. We use a density functional theory (DFT) to investigate the effects of temperature, pore geometry, bulk pressure, transition layering, and capillary condensation on a dimerization reaction that mimics the nitric oxide dimerization reaction, 2NO⇌(NO)2, in carbonlike slit and cylindrical nanopores in equilibrium with a vapor reservoir. In addition to the DFT calculations, we also utilize the reaction ensemble Monte Carlo method to supplement the DFT results for reaction conversion. This work is an extension of the previous DFT study by Tripathi and Chapman [J. Chem. Phys. 118, 7993 (2003)] on the dimerization reactions confined in the planar slits.
NASA Astrophysics Data System (ADS)
Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno
2016-04-01
The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash
Evaluation of a predictive model for air/surface adsorption equilibrium constants and enthalpies.
Arp, Hans Peter H; Goss, Kai-Uwe; Schwarzenbach, René P
2006-01-01
A model used to predict equilibrium adsorption to surfaces using a poly-parameter linear free-energy relationship as well as an empirical model used to predict enthalpies of adsorption of volatile compounds were evaluated with new experimental data to cover semivolatile compounds and a larger variability of compound classes. Equilibrium adsorption constants on a quartz surface ranging over seven orders of magnitude were measured for 142 compounds, and enthalpies of adsorption on a quartz surface from -33.7 to -99.8 kJ/mol were measured for 76 compounds. Agreement between experimental and predicted data was within a factor of two (82.1%) or three (100.0%) for the equilibrium adsorption constants and within 20% for the enthalpy of adsorption values. Thus, the scatter in the validation data sets reported here were practically the same as that for the calibration data sets used to derive the models. The few outliers that we identified in the prediction of equilibrium adsorption constants likely are caused by either shortcomings of the reported sorbate parameters or the occurrence of chemical speciation in the water layer on the surface of the quartz.
Pharmaceutical Industry and Trade Liberalization Using Computable General Equilibrium Model
Barouni, M; Ghaderi, H; Banouei, AA
2012-01-01
Background Computable general equilibrium models are known as a powerful instrument in economic analyses and widely have been used in order to evaluate trade liberalization effects. The purpose of this study was to provide the impacts of trade openness on pharmaceutical industry using CGE model. Methods: Using a computable general equilibrium model in this study, the effects of decrease in tariffs as a symbol of trade liberalization on key variables of Iranian pharmaceutical products were studied. Simulation was performed via two scenarios in this study. The first scenario was the effect of decrease in tariffs of pharmaceutical products as 10, 30, 50, and 100 on key drug variables, and the second was the effect of decrease in other sectors except pharmaceutical products on vital and economic variables of pharmaceutical products. The required data were obtained and the model parameters were calibrated according to the social accounting matrix of Iran in 2006. Results: The results associated with simulation demonstrated that the first scenario has increased import, export, drug supply to markets and household consumption, while import, export, supply of product to market, and household consumption of pharmaceutical products would averagely decrease in the second scenario. Ultimately, society welfare would improve in all scenarios. Conclusion: We presents and synthesizes the CGE model which could be used to analyze trade liberalization policy issue in developing countries (like Iran), and thus provides information that policymakers can use to improve the pharmacy economics. PMID:23641393
NASA Astrophysics Data System (ADS)
Xingxing, Chen; Zhihui, Wang; Yongliang, Yu
2016-11-01
Hypersonic chemical non-equilibrium gas flows around blunt nosed bodies are studied in the present paper to investigate the Reynolds analogy relation on curved surfaces. With a momentum and energy transfer model being applied through boundary layers, influences of molecular dissociations and recombinations on skin frictions and heat fluxes are separately modeled. Expressions on the ratio of Cf / Ch (skin friction coefficient to heat flux) are presented along the surface of circular cylinders under the ideal dissociation gas model. The analysis indicates that molecular dissociations increase the linear distribution of Cf / Ch, but the nonlinear Reynolds analogy relation could ultimately be obtained in flows with larger Reynolds numbers and Mach numbers, where the decrease of wall heat flux by molecular recombinations signifies. The present modeling and analyses are also verified by the DSMC calculations on nitrogen gas flows.
Runkel, Robert L.
2010-01-01
OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.
Modeling Inflation Using a Non-Equilibrium Equation of Exchange
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.
2013-01-01
Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
First-principles models of equilibrium tellurium isotope fractionation
NASA Astrophysics Data System (ADS)
Haghnegahdar, M. A.; Schauble, E. A.; Fornadel, A. P.; Spry, P. G.
2013-12-01
In this study, equilibrium mass-dependent isotopic fractionation among representative Te-bearing species is estimated with first-principles thermodynamic calculations. Tellurium is a group 16 element (along with O, S, and Se) with eight stable isotopes ranging in mass from 120Te to 130Te, and six commonly-occurring oxidation states: -II, -I, 0, +II, +IV, and +VI. In its reduced form, Te(-II), tellurium has a unique crystal-chemical role as a bond partner for gold and silver in epithermal and orogenic gold deposits, which likely form when oxidized Te species (e.g., H2TeO3, TeO32-) or perhaps polytellurides (e.g., Te22-) interact with precious metals in hydrothermal solution. Te(IV) is the most common oxidation state at the Earth's surface, including surface outcrops of telluride ore deposits, where tellurite and tellurate minerals form by oxidation. In the ocean, dissolved tellurium tends to be scavenged by particulate matter. Te(VI) is more abundant than Te(IV) in the ocean water (1), even though it is thought to be less stable thermodynamically. This variety of valence states in natural systems and range of isotopic masses suggest that tellurium could exhibit geochemically useful isotope abundance variations. Tellurium isotope fractionations were determined for representative molecules and crystals of varying complexity and chemistry. Gas-phase calculations are combined with supermolecular cluster models of aqueous and solid species. These in turn are compared with plane-wave density functional theory calculations with periodic boundary conditions. In general, heavyTe/lightTe is predicted to be higher for more oxidized species, and lower for reduced species, with 130Te/125Te fractionations as large as 4‰ at 100οC between coexisting Te(IV) and Te(-II) or Te(0) compounds. This is a much larger fractionation than has been observed in naturally occurring redox pairs (i.e., Te (0) vs. Te(IV) species) so far, suggesting that disequilibrium processes may control
NASA Astrophysics Data System (ADS)
Shannon, Joseph Charles
Much of the research concerning pedagogical content knowledge (PCK) in science education has been focused on its nature and development rather than how it is dynamically employed in the classroom with respect to specific topics. Research on how PCK is linked with actual classroom decisions has been limited since its tacit nature makes it challenging to identify what dimensions of PCK a teacher employs in various aspects of their practice. This study, using a multi-method case study design, examined four chemistry teachers' (two 1 st year and two 3rd year) decision-making during the planning, teaching, and reflection stages of their practice to determine PCK's influence for the topic of chemical equilibrium. The research occurred in undergraduate chemistry classrooms and special emphasis was placed on examining discourse to illuminate the relationships between how a teacher recognizes the need for a decision, what pedagogical 'moves' were chosen for implementation, and how talk was utilized to execute it. Findings indicated there were distinct differences between 1st and 3rd year teachers' PCK and how they employed it in their practice. The various types of knowledge and beliefs supporting the teachers' model of PCK such as subject matter knowledge, knowledge of student understanding, knowledge of instructional strategies as well as knowledge and beliefs about teaching and their learners influenced their decision-making ability during pre-lesson planning which subsequently influenced their communicative approach in the classroom. Two patterns were observed. Teachers with less teaching experience displayed a model of PCK characterized by an underdeveloped and sometimes fragmented understanding of the topic as well as a fragile knowledge of student understanding. As a result of having limited resources to draw on in the classroom they relied on a controlling communicative approach, thereby inhibiting the elicitation and incorporation of student thinking and
Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents
NASA Astrophysics Data System (ADS)
Dzhioev, Alan A.; Kosov, Daniel S.; von Oppen, Felix
2013-04-01
We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.
Chemicals loading in acetylated bamboo assisted by supercritical CO2 based on phase equilibrium data
NASA Astrophysics Data System (ADS)
Silviana, Petermann, M.
2015-12-01
Indonesia has a large tropical forest. However, the deforestation still appears annually and vastly. This reason drives a use of bamboo as wood alternative. Recently, there are many modifications of bamboo in order to prolong the shelf life. Unfortunately, the processes need more chemicals and time. Based on wood modification, esterifying of bamboo was undertaken in present of a dense gas, i.e. supercritical CO2. Calculation of chemicals loading referred to ASTM D1413-99 by using the phase equilibrium data at optimum condition by a statistical design. The results showed that the acetylation of bamboo assisted by supercritical CO2 required 14.73 kg acetic anhydride/m3 of bamboo for a treatment of one hour.
Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents.
Dzhioev, Alan A; Kosov, Daniel S; von Oppen, Felix
2013-04-07
We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.
Equilibrium model constraints on baryon cycling across cosmic time
NASA Astrophysics Data System (ADS)
Mitra, Sourav; Davé, Romeel; Finlator, Kristian
2015-09-01
Galaxies strongly self-regulate their growth via energetic feedback from stars, supernovae, and black holes, but these processes are among the least understood aspects of galaxy formation theory. We present an analytic galaxy evolution model that directly constrains such feedback processes from observed galaxy scaling relations. The equilibrium model, which is broadly valid for star-forming central galaxies that dominate cosmic star formation, is based on the ansatz that galaxies live in a slowly evolving equilibrium between inflows, outflows, and star formation. Using a Bayesian Monte Carlo Markov chain approach, we constrain our model to match observed galaxy scaling relations between stellar mass and halo mass, star formation rate, and metallicity from 0 < z < 2. A good fit (χ2 ≈ 1.6) is achieved with eight free parameters. We further show that constraining our model to any two of the three data sets also produces a fit to the third that is within reasonable systematic uncertainties. The resulting best-fitting parameters that describe baryon cycling suggest galactic outflow scalings intermediate between energy and momentum-driven winds, a weak dependence of wind recycling time on mass, and a quenching mass scale that evolves modestly upwards with redshift. This model further predicts a stellar mass-star formation rate relation that is in good agreement with observations to z ˜ 6. Our results suggest that this simple analytic framework captures the basic physical processes required to model the mean evolution of stars and metals in galaxies, despite not incorporating many canonical ingredients of galaxy formation models such as merging or disc formation.
A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring
Dick, Jeffrey M.; Shock, Everett L.
2013-01-01
Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the
Manning, Thomas; Kean, Greg; Thomas, Jessica; Thomas, Khaleh; Corbitt, Michael; Gosnell, Donna; Ware, Ronald; Fulp, Sonya; Jarrard, Joey; Phillips, Dennis
2009-01-01
Iron chelators are being examined as a potential class of pharmaceutical agents to battle different types of cancer as well as iron overload diseases. In recent studies, iron binding species such as desferrioxamine, triapine, tachpyridine, Dp44Mt, and PIH have been tested in cell line tests and clinical trials. Using published chemical equilibrium values (stability constants, equilibrium constants), it is argued that an iron chelator cannot competitively remove iron from a heme-containing biomolecule (i.e. hemoglobin (Hb), myoglobin) causing a cancerous cell to die. This type of reaction (DFO(aq) + [Fe(2+,3+)-Hb] --> [Fe(2+,3+)-DFO] + Hb) has been proposed in a number of published studies using circumstantial evidence. It is argued that iron chelators can potentially interact with iron from ferritin or iron that has precipitated or flocculated as oxyhydroxide under physiological pH's. It is argued that chelators can interfere with various physiological processes by binding cations such as Ca(2+), Zn(2+) or K(+). A number of siderophores and natural products that have the ability to bind Fe(3+)/Fe(2+) as well as other cations are discussed in terms of their potential pharmaceutical activity as chelators. Chemical equilibria between cations and pharmaceutical agents, which are rarely quantitated in explaining medicinal mechanisms, are used to show that chelators can bind and remove iron and other cations from physiologically important systems required for cell survival and propagation.
Modeling dune response using measured and equilibrium bathymetric profiles
Fauver, Laura A.; Thompson, David M.; Sallenger, Asbury H.
2007-01-01
Coastal engineers typically use numerical models such as SBEACH to predict coastal change due to extreme storms. SBEACH model inputs include pre-storm profiles, wave heights and periods, and water levels. This study focuses on the sensitivity of SBEACH to the details of pre-storm bathymetry. The SBEACH model is tested with two initial conditions for bathymetry, including (1) measured bathymetry from lidar, and (2) calculated equilibrium profiles. Results show that longshore variability in the predicted erosion signal is greater over measured bathymetric profiles, due to longshore variations in initial surf zone bathymetry. Additionally, patterns in predicted erosion can be partially explained by the configuration of the inner surf zone from the shoreline to the trough, with surf zone slope accounting for 67% of the variability in predicted erosion volumes.
Non-Equilibrium Ionization Modeling of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Rimple, Remington; Murphy, Nicholas Arnold; Shen, Chengcai
2017-01-01
Coronal Mass Ejections, or CMEs, are solar events that eject plasma and magnetic flux into interplanetary space. Contemporary sources have noted that the onset of CMEs are caused by some instability of the coronal magnetic field, and further allows heating of plasma upon expansion. Additionally, plasma that leaves the lower solar corona does not remain in ionization equilibrium due to the rapid expansion of plasma. We investigate the evolution of charge states of CME plasma using non-equilibrium ionization (NEI) modeling. These NEI models include radiative cooling and serve as baseline studies for special cases where no heat is being added to the plasma. Each of the simulated CMEs have initial conditions characteristic of active regions. Various function inputs, such as initial temperature, density and final velocity, allow us to examine the influence of certain parameters on the charge state evolution. The results of our project show that plasma originating from active regions display charge state evolutions substantially dependent on initial density and temperature. The CMEs starting with higher plasma density often show an abundance of lower charge states above the freeze-in height. Simulations starting from higher temperatures often show abundance peaks at charge states with closed electron shells.
LLNL Chemical Kinetics Modeling Group
Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J
2008-09-24
The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.
Non-Equilibrium Zeldovich-Von Neumann-Doring Theory and Reactive Flow Modeling of Detonation
Tarver, C M; Forbes, J W; Urtiew, P A
2002-05-02
This paper discusses the Non-Equilibrium Zeldovich - von Neumann - Doring (NEZND) theory of self-sustaining detonation waves and the Ignition and Growth reactive flow model of shock initiation and detonation wave propagation in solid explosives. The NEZND theory identified the non-equilibrium excitation processes that precede and follow the exothermic decomposition of a large high explosive molecule into several small reaction product molecules. The thermal energy deposited by the leading shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reactions can occur. The induction time for the onset of the initial endothermic reactions can be calculated using high pressure, high temperature transition state theory. Since the chemical energy is released well behind the leading shock front of a detonation wave, a physical mechanism is required for this chemical energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. For practical predictions of shock initiation and detonation in hydrodynamic codes, phenomenological reactive flow models have been developed. The Ignition and Growth reactive flow model of shock initiation and detonation in solid explosives has been very successful in describing the overall flow measured by embedded gauges and laser interferometry. This reactive flow model uses pressure and compression dependent reaction rates, because time resolved experimental temperature data is not yet available. Since all chemical reaction rates are ultimately controlled by temperature, the next generation of reactive flow models will use temperature dependent reaction rates. Progress on a
NASA Astrophysics Data System (ADS)
Michaelis, Christopher Harold
2001-07-01
The motion of a gas may be studied from the microscopic or macroscopic point of view. At the microscopic level, molecules are constantly moving and colliding, and occasionally reacting to form new species. The accepted model for describing gases at the microscopic level is the Boltzmann equation. In contrast, macroscopic models rely on the conservation laws, combined with constitutive relations, which approximate the molecular relaxation in a gas. The resulting set of equations, called the Navier- Stokes equations, represent an approximation to the Boltzmann equation for small non-equilibrium. For flows that are sufficiently rarefied, the Navier- Stokes equations no longer represent an accurate approximation of the Boltzmann equation. Numerical solutions of the Boltzmann equation may be obtained through the direct simulation of molecular motion. Such approaches are termed Monte Carlo, or particle methods. In principle, particle methods can be used to simulate all flows, regardless of the degree of non-equilibrium. There are many instances where neither approach is ideal. One such example is the reentry of a blunt body through the atmosphere. Ahead of the body, there is a very strong shock wave that cannot be adequately modeled by the Navier-Stokes equations, due to the degree of non- equilibrium. At the surface of the blunt body, the temperature is substantially colder than the surrounding flow, resulting in a large increase in the density next to the surface. In this region, where the flow is near- continuum, particle methods are not computationally efficient. A numerical method that utilizes the Navier-Stokes equations in regions of near-continuum flow and a particle method everywhere else is ideal. In this study, a hybrid scheme, for the efficient numerical simulation of flows with thermal and chemical non-equilibrium, is successfully demonstrated. The hybrid method was applied to extreme, high Mach number flows, where vibrational and chemical relaxation are
Westbrook, C.K.; Pitz, W.J.
1993-12-01
This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.
A radial non-uniform helicon equilibrium discharge model
NASA Astrophysics Data System (ADS)
Cheng, Yu-Guo; Cheng, Mou-Sen; Wang, Mo-Ge; Li, Xiao-Kang
2014-10-01
Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece—Gould (TG) waves-plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.
Equilibrium model for biodegradation and adsorption of mixtures in GAC columns
Erlanson, B.C.; Dvorak, B.I.; Speitel, G.E. Jr.; Lawler, D.F.
1997-05-01
Microbial activity in granular activated carbon (GAC) columns has received much attention over the last 15 years because biodegradation of one or more chemicals might increase the GAC service life, thereby decreasing costs. An equilibrium model for simultaneous biodegradation and adsorption was developed and verified with existing data. For simplicity the model was restricted to only two components: one biodegradable and one not. The results from modeling over 300 hypothetical situations identified conditions where biodegradation significantly extends the service life of granular activated carbon (GAC) columns. When the nonbiodegradable chemical controls the service life, the only significant gains in service life occurred when the biodegradable and nonbiodegradable chemical had similar adsorbabilities. When the biodegradable chemical controls the service life, the service life was 1.2--7 times that with adsorption alone, depending on the relative adsorbability of the two chemicals. The increase in service life can be maximized by ensuring that biodegradation begins as soon as possible after start-up. The model provides a good screening tool for initial assessments of process feasibility, preliminary economic analyses, and planning of detailed experimental and computer modeling studies. Examples are presented using benzene and TCE to illustrate how the general trends presented apply to specific cases.
Equilibrium modeling of the TFCX poloidal field coil system
Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.
1984-04-01
The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed.
Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.
1976-01-01
A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.
Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo
2014-12-21
Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.
NASA Astrophysics Data System (ADS)
Muryanto, S.; Djatmiko Hadi, S.
2016-11-01
Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.
Radiative-convective equilibrium models of Uranus and Neptune
Appleby, J.F.
1986-03-01
The present study of Uranus and Neptune radiative-convective equilibrium models gives emphasis to such aspects of the stratospheric energy balance as the influence of aerosol heating and convective penetration. The results obtained for Uranus imply that a continuum absorber may be a significant factor in the stratosphere despite the great distance from the sun. The results obtained for Neptune show that such a continuum absorber could significantly contribute to the energy balance within a localized stratospheric region, although it probably cannot furnish sufficient power to account for the observed IR spectrum irrespective of its vertical distribution. Attention is accordingly given to the convective penetration that could arise under such rapid vertical mixing that CH4's condensation cannot occur before the gas is carried above the condensation region. 64 references.
Computable general equilibrium model fiscal year 2013 capability development report
Edwards, Brian Keith; Rivera, Michael Kelly; Boero, Riccardo
2016-05-17
This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.
NASA Technical Reports Server (NTRS)
Johnson, R. E.
1986-01-01
Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.
NASA Technical Reports Server (NTRS)
Zeleznik, Frank J.; Gordon, Sanford
1960-01-01
The Brinkley, Huff, and White methods for chemical-equilibrium calculations were modified and extended in order to permit an analytical comparison. The extended forms of these methods permit condensed species as reaction products, include temperature as a variable in the iteration, and permit arbitrary estimates for the variables. It is analytically shown that the three extended methods can be placed in a form that is independent of components. In this form the Brinkley iteration is identical computationally to the White method, while the modified Huff method differs only'slightly from these two. The convergence rates of the modified Brinkley and White methods are identical; and, further, all three methods are guaranteed to converge and will ultimately converge quadratically. It is concluded that no one of the three methods offers any significant computational advantages over the other two.
Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Englert, Gerald W.; Kochendorfer, Fred D.
1959-01-01
The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.
Master equation for a chemical wave front with perturbation of local equilibrium.
Dziekan, P; Lemarchand, A; Nowakowski, B
2011-08-28
In order to develop a stochastic description of gaseous reaction-diffusion systems, which includes a reaction-induced departure from local equilibrium, we derive a modified expression of the master equation from analytical calculations based on the Boltzmann equation. We apply the method to a chemical wave front of Fisher-Kolmogorov-Petrovsky-Piskunov type, whose propagation speed is known to be sensitive to small perturbations. The results of the modified master equation are compared successfully with microscopic simulations of the particle dynamics using the direct simulation Monte Carlo method. The modified master equation constitutes an efficient tool at the mesoscopic scale, which incorporates the nonequilibrium effect without need of determining the particle velocity distribution function.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.
Kumar, Gundampati Ravi; Sharma, Anurag; Kumari, Moni; Jagannadham, Medicherla V; Debnath, Mira
2011-08-01
Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (A(MG1)) into another (I(MG2)).
LIFE Chamber Chemical Equilibrium Simulations with Additive Hydrogen, Oxygen, and Nitrogen
DeMuth, J A; Simon, A J
2009-09-03
In order to enable continuous operation of a Laser Inertial confinement Fusion Energy (LIFE) engine, the material (fill-gas and debris) in the fusion chamber must be carefully managed. The chamber chemical equilibrium compositions for post-shot mixtures are evaluated to determine what compounds will be formed at temperatures 300-5000K. It is desired to know if carbon and or lead will deposit on the walls of the chamber, and if so: at what temperature, and what elements can be added to prevent this from happening. The simulation was conducted using the chemical equilibrium solver Cantera with a Matlab front-end. Solutions were obtained by running equilibrations at constant temperature and constant specific volume over the specified range of temperatures. It was found that if nothing is done, carbon will deposit on the walls once it cools to below 2138K, and lead below 838K. Three solutions to capture the carbon were found: adding pure oxygen, hydrogen/nitrogen combo, and adding pure nitrogen. The best of these was the addition of oxygen which would readily form CO at around 4000K. To determine the temperature at which carbon would deposit on the walls, temperature solutions to evaporation rate equations needed to be found. To determine how much carbon or any species was in the chamber at a given time, chamber flushing equations needed to be developed. Major concerns are deposition of carbon and/or oxygen on the tungsten walls forming tungsten oxides or tungsten carbide which could cause embrittlement and cause failure of the first wall. Further research is needed.
Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Torkzaban, S.; Leij, F. J.; Simunek, J.
2014-12-01
Colloid retention and release is well known to depend on a wide variety of physical, chemical, and microbiological factors that may vary temporally in the subsurface environment. We present equilibrium, kinetic, combined equilibrium and kinetic, and two-site kinetic models of colloid release during transient physicochemical conditions. Our mathematical modeling approach relates colloid release under transient conditions to changes in the fraction of the solid surface area that contributes to retention. The developed models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of E. coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity, respectively. The retention and release of 20 nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca2+ than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2 mM CaCl2 solution, and release of NPs only occurred after exchange of Ca2+ by Na+ and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider Born repulsion and nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque. Collectively, experimental and modeling results indicate that episodic colloid transport in the
Revised method for calculating cloud densities in equilibrium models
NASA Astrophysics Data System (ADS)
Wong, M. H.; Atreya, S. K.; Kuhn, W. R.
2013-12-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are simple but still useful for several reasons. They calculate the wet adiabatic lapse rate, they determine saturation-limited mixing ratios of condensing species, and they calculate the stabilizing effect of latent heat release and molecular weight stratification. Equilibrium cloud condensation models (ECCMs) also calculate a type of condensate density---a condensate "unit density"---that only equates to cloud density under specific circumstances, because microphysics and dynamics are not considered in ECCMs. Unit densities are calculated for every model altitude by requiring that condensed material remains at the level where it condenses. Many ECCMs in use trace their heritage to Weidenschilling and Lewis (1973; Icarus 20, 465--476; hereafter WL73), which contains an error that affects only the calculation of condensate unit density. The error led to densities too high by a factor of the atmospheric scale height divided by unit length, which is about 3x10^6 at Jupiter's ammonia cloud level. We will describe the condensate unit density calculation error in WL73, and provide a new algorithm based on the local change in vapor mixing ratio, rather than the difference between integrated column masses as in WL73. The new algorithm satisfies conservation of mass. Using a simple scaling law to parameterize dynamics in terms of updraft speed and duration, condensate unit densities from ECCMs can be converted to cloud densities. We validate the technique for the terrestrial case, by comparing model predictions with representative densities of cirrus and cumulus clouds. For cirrus and cumulus updraft parameters, respectively, we find cloud densities of 0.01--0.2 g m-3 and 0.8--7 g m-3, in excellent agreement with observations and models of terrestrial clouds of these types. Implications for models of planetary and exoplanetary atmospheres will be discussed. [This material is based upon
Coupling of an average-atom model with a collisional-radiative equilibrium model
Faussurier, G. Blancard, C.; Cossé, P.
2014-11-15
We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.
Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.
Millership, C; Phillips, J J; Main, E R G
2016-05-08
Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch.
An Equilibrium-Based Model of Gas Reaction and Detonation
Trowbridge, L.D.
2000-04-01
During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.
Cao Yang . E-mail: ycao@cs.ucsb.edu; Gillespie, Dan . E-mail: GillespieDT@mailaps.org; Petzold, Linda . E-mail: petzold@engineering.ucsb.edu
2005-07-01
In this paper, we introduce a multiscale stochastic simulation algorithm (MSSA) which makes use of Gillespie's stochastic simulation algorithm (SSA) together with a new stochastic formulation of the partial equilibrium assumption (PEA). This method is much more efficient than SSA alone. It works even with a very small population of fast species. Implementation details are discussed, and an application to the modeling of the heat shock response of E. Coli is presented which demonstrates the excellent efficiency and accuracy obtained with the new method.
NASA Astrophysics Data System (ADS)
Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.
2006-03-01
This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism
Ren, Zhuyin; Pope, Stephen B; Vladimirsky, Alexander; Guckenheimer, John M
2006-03-21
This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism
Chemical reactions simulated by ground-water-quality models
Grove, David B.; Stollenwerk, Kenneth G.
1987-01-01
Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.
NASA Astrophysics Data System (ADS)
Javoy, Marc
1999-10-01
This article presents a critical review of method, concepts and prejudices used bv modelists of the Earth's chemical composition over approximate the last fifty years and of the resulting compositions. Brief descriptions are given of admitted accretion mechanisms, of the starting materials most often considered and of the major parameters and recurrent concepts: 'reduced" state, mantle homogeneity vs heterogeneity, 'low pressure' core formation, 'great impact', refractory, lithophile, siderophile, compatible, incompatible character of elements, depleted and degassed mantle, Urey ratio, as well as the description of a commonly-used instrument, possibly harmful to Iogic, the famous Ockham's razor. Differences between models are now restricted to the lower mantle composition:the 'primary' (before crust differentiation) upper mentle varies little from model to model and the idea of a 10-15% combined Si-O-S concentration as representing the necessary light elements in the core is gaining more and more ground. The dominant type of model derives more or less directly from the CI cabonaceous composition by complete devolatilization and reduction. Its mantle is homogeneous and convecting mainly in a one-level mode, in accordence with dominant geophysicists' views but in rather strong disagreement with geochemical data and models which insist on the strong decoupling between lower and upper mantle. Its low Si excess is generally supposed to have been absorbed by the core, whereas its high refractory lithophile element (RLE) content creates mass balance problems relative to presently observed mantle and crust concentrations. The alternative type is a two-lavel mantle with a Si and Fe-rich, RLE-poor, lower mantle, previously based mainly on seismic and mineral physics data, and now also on geochemical and cosmochemical arguments.
New radiative-convective equilibrium models for EGPs
NASA Astrophysics Data System (ADS)
Goukenleuque, C.
2001-11-01
A radiative equilibrium atmospheric model for HD 209458 b is presented. Opacity from alkalii metals (K, Na) in the visible have been included, using vertical abundance profiles of alkalii atoms calculated by Tim Brown (preprint, 2001) and accounting for photoionization by the parent star's radiation. Absorption from the neutral Potassium and Sodium atoms strongly reduces the planetary reflected flux in the 0.4-0.8 μ m wavelength range. Although these atoms (whose modelling of the line profiles may overestimate the absorption in the wings and underestimate the absorption in the line cores) are remarkably depleted in the upper atmosphere (above the 1-mbar level) through photoionization, they tend to increase the effective temperature of the planet by more than 100 K. In addition, convective adjustment and correction for water vapor abundance have been applied to a model for a Jupiter-like planet at 1 AU orbiting a solar-type star. This work was made possible thanks to the National Research Council Research Associate Program.
A Synthesis of Equilibrium and Historical Models of Landform Development.
ERIC Educational Resources Information Center
Renwick, William H.
1985-01-01
The synthesis of two approaches that can be used in teaching geomorphology is described. The equilibrium approach explains landforms and landform change in terms of equilibrium between landforms and controlling processes. The historical approach draws on climatic geomorphology to describe the effects of Quaternary climatic and tectonic events on…
Conversion of Chemical Reaction Energy into Useful Work in the Van't Hoff Equilibrium Box
ERIC Educational Resources Information Center
Bazhin, N. M.; Parmon, V. N.
2007-01-01
The ideal van't Hoff equilibrium box is described in detail. It shows that van't Hoff equilibrium box divided in two parts can simultaneously produce heat and useful work without violation of the first law of thermodynamics.
Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry
Tole, M.P. . School of Environmental Studies); Armannsson, H. ); Pang Zhonghe . Lab. for Geothermal); Arnorsson, S. . Science Inst.)
1993-02-01
Aquifer temperatures of 13 geothermal wells in Iceland whose measured reservoir temperatures range from 47 to 325 C have been estimated from the chemical composition of the discharged fluid by considering simultaneously temperature dependent equilibria between many mineral phases and the solution. This approach to chemical geothermometry was initially proposed by Reed and Spycher. Its advantage over individual solute geothermometers such as the silica and the Na-K and Na-K-Ca geothermometers is that it allows a distinction to be made between equilibrated and non-equilibrated waters. However, care should be taken in interpreting the results of multi-mineral/solute equilibria as the results depend on both the thermodynamic data base used for mineral solubilities and the activities of end-member minerals in solid solutions. When using old analytical data attention has to be paid to analytical methods, especially in the case of important constituents present at low concentrations in the fluid, such as aluminium, for which analytical results obtained by two methods yielded very different equilibrium temperatures. The results for selected wells in Iceland, presented here, indicate that the geothermometry results are with few exceptions within 20 C of measured aquifer temperatures, and within 10 C for about half the wells considered. The method responds rapidly to changes such as cooling or mixing.
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S
2011-07-01
Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p < 0.05), indicating that homogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue homogenates.
Identification and analysis of student conceptions used to solve chemical equilibrium problems
NASA Astrophysics Data System (ADS)
Voska, Kirk William
This study identified and quantified chemistry conceptions students use when solving chemical equilibrium problems requiring the application of Le Chatelier's principle, and explored the feasibility of designing a paper and pencil test for this purpose. It also demonstrated the utility of conditional probabilities to assess test quality. A 10-item pencil-and-paper, two-tier diagnostic instrument, the Test to Identify Student Conceptualizations (TISC) was developed and administered to 95 second-semester university general chemistry students after they received regular course instruction concerning equilibrium in homogeneous aqueous, heterogeneous aqueous, and homogeneous gaseous systems. The content validity of TISC was established through a review of TISC by a panel of experts; construct validity was established through semi-structured interviews and conditional probabilities. Nine students were then selected from a stratified random sample for interviews to validate TISC. The probability that TISC correctly identified an answer given by a student in an interview was p = .64, while the probability that TISC correctly identified a reason given by a student in an interview was p=.49. Each TISC item contained two parts. In the first part the student selected the correct answer to a problem from a set of four choices. In the second part students wrote reasons for their answer to the first part. TISC questions were designed to identify students' conceptions concerning the application of Le Chatelier's principle, the constancy of the equilibrium constant, K, and the effect of a catalyst. Eleven prevalent incorrect conceptions were identified. This study found students consistently selected correct answers more frequently (53% of the time) than they provided correct reasons (33% of the time). The association between student answers and respective reasons on each TISC item was quantified using conditional probabilities calculated from logistic regression coefficients. The
NASA Astrophysics Data System (ADS)
Smits, K. M.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.
2010-12-01
In the shallow subsurface immediately below the land-atmosphere interface, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications where it becomes necessary to understand and predict the spatial and temporal distribution of soil moisture. The validation of numerical models that are designed to capture these processes is difficult due to the inherent complexities of the problem in field systems and the scarcity of field or laboratory data with accurately known hydraulic and thermal parameters of soils, thus limiting the testing and refinement of heat and water transfer theories. In addition, it is often assumed in traditional soil physics applications that water vapor concentration in the air adjacent to the water phase in soil pores is always in equilibrium with liquid water, i.e., vaporization occurs instantaneously, which can result in over prediction of evaporation from soil. The goal of this work is to perform controlled experiments under transient conditions of soil moisture and temperature using soil with accurately known hydraulic/thermal properties and use this data to test existing theories and develop appropriate numerical models. In this work, water vapor flow under varying temperature gradients was implemented based on a concept that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion. In order to validate this new approach, we developed a long column apparatus equipped with a network of sensors and generated data under well-controlled thermal boundary conditions at the soil surface. Water saturation, capillary pressure, temperature, relative humidity and column weight to record total mass of water in the column were continuously monitored. Results from numerical simulations based on the conventional equilibrium and non-equilibrium approaches were compared with
Reduction of chemical reaction models
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1991-01-01
An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.
Testing Equilibrium Models of Molecular Gas in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Wong, Tony
We propose to study the molecular gas fractions and physical conditions of diffuse molecular clouds in the Magellanic Clouds using ultraviolet (UV) and optical absorption spectra, principally from the Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope (HST) archives. We will use these data to constrain the abundance of molecular hydrogen (H_2) undetectable in CO emission surveys and to test equilibrium models that seek to predict the H_2 mass fraction and the H_2/HI ratio as functions of metallicity, column density, and thermal pressure. Our approach complements HI and CO surveys by providing direct estimates of HI and H_2 column densities. For sight lines where sufficiently high resolution spectra are available, we will use the excitation of CI to determine thermal pressures, allowing us to test models that assume thermodynamic equilibrium in order to determine the HI-H_2 balance. The recently completed Spitzer Legacy surveys of the MCs provide images of PAH emission on sub-parsec scales, which may provide a means to model the distribution and small-scale clumping of gas in the vicinity of the absorption sight lines, and thus connect the absorption data with the much coarser resolution radio data. We will investigate this possibility and the implications that small-scale clumping have for comparisons with theoretical models. A preliminary analysis of the FUSE and HST data is already underway, and we present a few early results. We seek support to continue this effort over the next two years and to disseminate our results. Our methodology is novel in several respects. It includes the use of high-resolution optical spectra to derive component models for the FUSE absorption spectra, in order to derive more accurate column densities, especially for the higher J transitions of H_2 which provide key diagnostics of density and radiation field strength. Such component models will also aid in the analysis of the CI spectra. We will work to increase
Equilibrium models of coronal loops that involve curvature and buoyancy
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy
NASA Astrophysics Data System (ADS)
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Qafoku, Odeta; Felmy, Andrew R.
2007-01-01
The development of an accurate aqueous thermodynamic model is described for oxalate species in the Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O system at 25°C. The model is valid to high ionic strength (as high as 10m) and from very acid (10m H2SO4) to neutral and basic conditions. The model is based upon the equations of Pitzer and co-workers. The necessary ion-interaction parameters are determined by comparison with experimental data taken from the literature or determined in this study. The proposed aqueous activity and solubility model is valid for a range of applications from interpretation of studies on mineral dissolution at circumneutral pH to the dissolution of high-level waste tank sludges under acidic conditions.
Non-equilibrium Ionization Modeling of Simulated Pseudostreamers in a Solar Corona Model
NASA Astrophysics Data System (ADS)
Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon; Reeves, Katharine K.; Murphy, Nicholas A.
2015-04-01
Time-dependent ionization is important for diagnostics of coronal streamers, where the thermodynamic time scale could be shorter than the ionization or recombination time scales, and ions are therefor in non-equilibrium ionization states. In this work, we perform post-processing time-dependent ionization calculations for a three dimensional solar corona and inner heliosphere model from Predictive Sciences Inc. (Mikić & Linker 1999) to analyze the influence of non-equilibrium ionization on emission from coronal streamers. Using the plasma temperature, density, velocity and magnetic field distributions provided by the 3D MHD simulation covering the Whole Sun Month (Carrington rotation CR1913, 1996 August 22 to September 18), we calculate non-equilibrium ionization states in the region around a pseudostreamer. We then obtain the synthetic emissivities with the non-equilibrium ion populations. Under the assumption that the corona is optically thin, we also obtain intensity profiles of several emission lines. We compare our calculations with intensities of Lyman-alpha lines and OVI lines from SOHO/Ultraviolet Coronagraph Spectrometer (UVCS) observations at 14 different heights. The results show that intensity profiles of both Lyman-alpha and OVI lines match well UVCS observations at low heights. At large heights, OVI intensites are higher for non-equilibrium ionization than equilibrium ionization inside this pseudostreamer. The assumption of ionization equilibrium would lead to a underestimate of the OVI intensity by about ten percent at a height of 2 solar radii, and the difference between these two ionization cases increases with height. The intensity ratio of OVI 1032 line to OVI 1037 lines is also obtained for non-equilibrium ionization modeling.
ERIC Educational Resources Information Center
Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna
2016-01-01
A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…
ERIC Educational Resources Information Center
ilhan, Nail; Yildirim, Ali; Yilmaz, Sibel Sadi
2016-01-01
In recent years, many countries have adopted a context-based approach for designing science curricula for education at all levels. The aim of this study was to determine the effectiveness of a Context-Based Chemistry Course (CBCC) as compared with traditional/existing instruction, on 11th grade students' learning about chemical equilibrium,…
ERIC Educational Resources Information Center
Ozmen, Haluk
2008-01-01
This study aims to determine prospective science student teachers' alternative conceptions of the chemical equilibrium concept. A 13-item pencil and paper, two-tier multiple choice diagnostic instrument, the Test to Identify Students' Alternative Conceptions (TISAC), was developed and administered to 90 second-semester science student teachers…
ERIC Educational Resources Information Center
Borge, Javier
2015-01-01
G, G°, ?rG, ?rG°, ?G, and ?G° are essential quantities to master the chemical equilibrium. Although the number of publications devoted to explaining these items is extremely high, it seems that they do not produce the desired effect because some articles and textbooks are still being written with some of these quantities that appear to be…
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Geban, Omer
2006-01-01
The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…
ERIC Educational Resources Information Center
Furio, C.; Calatayud, M. L.; Barcenas, S. L.; Padilla, O. M.
2000-01-01
Focuses on learning difficulties in procedural knowledge, and assesses the procedural difficulties of grade 12 and first- and third-year university students based on common sense reasoning in two areas of chemistry--chemical equilibrium and geometry, and polarity of molecules. (Contains 55 references.) (Author/YDS)
Model atmospheres for cool stars. [varying chemical composition
NASA Technical Reports Server (NTRS)
Johnson, H. R.
1974-01-01
This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.
Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological systems
de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their
HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis
Gray S. Cahng
2005-09-01
Advanced High Temperature gas-cooled Reactors (HTR) currently being developed (GFR, VHTR - Very High Temperature gas-cooled Reactor, PBMR, and GT-MHR) are able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel pebble / block is addressed through the use of the Dancoff correction factor in the resonance treatment. In addition, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. Although HTR fuel is rather homogeneously dispersed in the fuel graphite matrix, the heterogeneity effects in between fuel kernels and pebbles cannot be ignored. The double-heterogeneous lattice model recently developed at the Idaho National Engineering and Environmental Laboratory (INEEL) contains tens of thousands of cubic fuel kernel cells, which makes it very difficult to deplete the fuel, kernel by kernel (KbK), for the EqFC analysis. In addition, it is not possible to preserve the cubic size and packing factor in a spherical fuel pebble. To avoid these difficulties, a newly developed and validated HTR pebble-bed Kernel-by-Kernel spherical (KbK-sph) model, has been developed and verified in this study. The objective of this research is to introduce the KbK-sph model and super whole Pebble lattice model (PLM). The verified double-heterogeneous KbK-sph and pebble homogeneous lattice model (HLM) are used for the fuel burnup chracteristics analysis and important safety parameters validation. This study summarizes and compares the KbK-sph and HLM burnup analyzed results. Finally, we discus the Monte-Carlo coupling with a fuel depletion and buildup code - Origen-2 as a fuel burnup
Influence of boundary slip effect on thermal environment in thermo-chemical non-equilibrium flow
NASA Astrophysics Data System (ADS)
Miao, Wenbo; Zhang, Liang; Li, Junhong; Cheng, Xiaoli
2014-12-01
A kind of new hypersonic vehicle makes long-time flight in transitional flow regime where boundary slip effect caused by low gas density will have an important influence on the thermal environment around the vehicles. Numerical studies on the boundary slip effect as hypersonic vehicles fly in high Mach number has been carried out. The method for solving non-equilibrium flows considering slip boundary, surface catalysis and chemical reactions has been built up, and been validated by comparing the thermal environment results with STS-2 flight test data. The mechanism and rules of impact on surface heat flux by different boundary slip level (Knudsen number from 0.01 to 0.05) has been investigated in typical hypersonic flow conditions. The results show that the influence mechanisms of boundary slip effect are different on component diffusion heat flux and convective heat flux; slip boundary increases the near wall temperature which diminish the convective heat; whereas enhances the near wall gas diffusion heat because of the internal energy's growing. Component diffusion heat flux takes a smaller portion of the total heat flux, so the slip boundary reduces the total wall heat flux. As Knudsen number goes up, the degree of rarefaction increases, the influences of slip boundary on convective and component diffusion heat flux are both enhanced, total heat flux grows by a small margin, and boundary slip effect is more distinct.
The Coupling of Related Demonstrations to Illustrate Principles in Chemical Kinetics and Equilibrium
NASA Astrophysics Data System (ADS)
Pacer, Richard A.
1997-05-01
Two very simple lecture demonstrations, both involving the reaction of magnesium with one or more dilute acids, are linked together to illustrate principles in chemical kinetics and equilibrium. In the first, crumpled Mg ribbon is placed in the nipple of a baby bottle holding 200 mL of 0.40 M HCl. The bottle is inverted into a large beaker of water, and the volume of H2 gas generated in one minute is measured. the experiment is repeated with 0.60 M HCl. The rate law, Rate = k[H+]n, is developed from the data. In the second, equal lengths of Mg ribbon are placed in small beakers or Petri dishes, on an overhead projector, containing equal (0.80 to 1.0 M) concentrations of HCl, H3BO3, and CH3CO2H. Acids are not identified; students are merely told that 'Acids A, B, and C are of the same molarity.' Students are then asked to explain why the rates are so different, which serves as a lead-in for the instructor to explain the meaning of a Ka value. Students readily conclude that one of the acids must be a strong acid, but are puzzled by the other two. [The enormous difference in the Ka values of acetic and boric acids results in a striking difference in their reaction rates.
Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C
2011-06-02
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.
Non-invasive estimation of dissipation from non-equilibrium fluctuations in chemical reactions.
Muy, S; Kundu, A; Lacoste, D
2013-09-28
We show how to extract an estimate of the entropy production from a sufficiently long time series of stationary fluctuations of chemical reactions. This method, which is based on recent work on fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying dynamics and is applicable even when only partial information is available. We apply it to simple stochastic models of chemical reactions involving a finite number of states, and for this case, we study how the estimate of dissipation is affected by the degree of coarse-graining present in the input data.
Making Models of Chemical Compounds.
ERIC Educational Resources Information Center
Hoehn, Robert G.
1992-01-01
Describes the benefits and techniques of having students create models of chemical compounds. This hands-on approach uses colored paper and other inexpensive materials to construct the models. A step-by-step approach provides objectives, materials, an explanation on how to calculate chemical ratios, procedures, follow-up activities, and a resource…
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
DasGupta, S.; Schonberg, J.A.; Kim, I.Y.; Wayner, P.C.Jr. )
1993-05-01
The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamaker constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.
NASA Technical Reports Server (NTRS)
Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.
2013-01-01
Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.
Modeling of equilibrium hollow objects stabilized by electrostatics.
Mani, Ethayaraja; Groenewold, Jan; Kegel, Willem K
2011-05-18
The equilibrium size of two largely different kinds of hollow objects behave qualitatively differently with respect to certain experimental conditions. Yet, we show that they can be described within the same theoretical framework. The objects we consider are 'minivesicles' of ionic and nonionic surfactant mixtures, and shells of Keplerate-type polyoxometalates. The finite-size of the objects in both systems is manifested by electrostatic interactions. We emphasize the importance of constant charge and constant potential boundary conditions. Taking these conditions into account, indeed, leads to the experimentally observed qualitatively different behavior of the equilibrium size of the objects.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
Technology Transfer Automated Retrieval System (TEKTRAN)
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
The lagRST Model: A Turbulence Model for Non-Equilibrium Flows
NASA Technical Reports Server (NTRS)
Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.
2011-01-01
This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.
Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Larsson, Johan
2013-01-01
A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Constant Entropy Properties for an Approximate Model of Equilibrium Air
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick; Hodge, Marion E.
1961-01-01
Approximate analytic solutions for properties of equilibrium air up to 15,000 K have been programmed for machine computation. Temperature, compressibility, enthalpy, specific heats, and speed of sound are tabulated as constant entropy functions of temperature. The reciprocal of acoustic impedance and its integral with respect to pressure are also given for the purpose of evaluating the Riemann constants for one-dimensional, isentropic flow.
Equilibrium and volumetric data and model development of coal fluids
Robinson, R.L. Jr.; Gasem, K.A.M.; Park, J.
1992-04-28
The long term goal of our efforts is to develop accurate predictive methods for description of equilibrium phase properties for a variety of types of mixtures and operating conditions. The specific objectives of the work specified herein include: (1) development of an experimental facility having the capability to provide data on equilibrium phase compositions (solubilities) and liquid densities, and doing so with greater accuracy and speed than our previous facility, (2) measurement of equilibrium phase properties for systematically-selected mixtures-specifically those containing important solute gases (such as hydrogen, carbon monoxide, methane, ethane, carbonyl sulfide, ammonia) in a series of heavy paraffinic, naphthenic and aromatic solvents (e.g., n-decane, n-eicosane, n-octacosane, n-hexatriacontane, cyclohexane, Decalin, perhydrophenanthrene, perhydropyrene, benzene, naphthalene, phenanthrene, pyrene), (3) testing/development of correlation frameworks for representing the phase behavior of fluids of the type encountered in coal conversion processes, and (4) generalization of parameters in the correlation frameworks to enable accurate predictions for systems of the type studied, permitting predictions to be made for systems and conditions other than those for which experimental data are available.
Spectral Modeling in Astrophysics - The Physics of Non-equilibrium Clouds
NASA Astrophysics Data System (ADS)
Ferland, Gary; Williams, Robin
2016-02-01
Collisional-radiative spectral modeling plays a central role in astrophysics, probing phenomena ranging from the chemical evolution of the Universe to the energy production near supermassive black holes in distant quasars. The observed emission lines form in non-equilibrium clouds that have very low densities by laboratory standards, and are powered by energy sources which themselves are not in equilibrium. The spectrum is the result of a large number of microphysical processes, thermal statistics often do not apply, and analytical theory cannot be used. Numerical simulations are used to understand the physical state and the resulting spectrum. The greatest distinction between astrophysical modeling and conventional plasma simulations lies in the range of phenomena that must be considered. A single astronomical object will often have gas with kinetic temperatures of T˜10^6 K, 10^4 K, and T≤ 10^3 K, with the physical state ranging from molecular to fully ionized, and emitting over all wavelengths between the radio and x-ray. Besides atomic, plasma, and chemical physics, condensed matter physics is important because of the presence of small solid `grains' which affect the gas through catalytic reactions and the infrared emission they produce. The ionization, level populations, chemistry, and grain properties must be determined self-consistently, along with the radiation transport, to predict the observed spectrum. Although the challenge is great, so are the rewards. Numerical spectral simulations allow us to read the message contained in the spectrum emitted by objects far from the Earth that existed long ago.
Novel non-equilibrium modelling of a DC electric arc in argon
NASA Astrophysics Data System (ADS)
Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.
2016-06-01
A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.
Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi
2014-03-05
By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice.
Disequilibrium Textures vs Equilibrium Modelling: Geochronology at the Crossroads
NASA Astrophysics Data System (ADS)
Villa, I. M.
2007-12-01
Observations made by electron microscopy show the processes affecting minerals at the atomic scale. The majority of reported analyses demonstrate chemical disequilibrium. A classic example are overgrowths of one mineral generation by a secondary one, which may be recognized on textural grounds. Disequilibrium recrystallization is promoted by water, which is everywhere on this planet (granites, contact aureoles, regional metamorphism, faults). It is mostly easier and energetically less costly to recrystallize a mineral at any temperature than to induce genuine volume diffusion in it. However, these observations are only relevant to geochronologists if chemical disequilibria are also accompanied by isotopic disequilibria. If a mineral mixture gives a mixed isotope record, then the interpretation of ages does not come cheap. If, on the contrary, diffusive reequilibration of the isotopic record is faster than that of chemical heterogeneities, then the petrology and microchemistry of a mineral could be ignored and its apparent age termed a "cooling age". First principle arguments and experimental data of the last decade concordantly show that the diffusivity of radiogenic isotopes is never higher than that of major elements forming the mineral structure. And indeed, end- member ages of mineral mixtures can be unravelled if the petrogenesis is understood. This was first shown by CL images of zircon grains (Gebauer et al, Schweiz Min Pet Mitt 68 (1988) 485-490). Similar progress was reported on monazite (Williams et al, Ann Rev Earth Planet Sci 35 (2007) 137-175), amphibole (Belluso et al, Eur J Mineral 12 (2000) 45-62), K-feldspar (Nyfeler et al, Schweiz Min Pet Mitt 78 (1998) 11-21), biotite (Villa et al, Water Rock Interaction 10 (2001) 1589-92). The mechanism for resetting the isotope record in nature thus seems more dependent on the availability of water to enhance disequilibrium recrystallization than on reaching a preset temperature. Intercomparison of laboratory
NASA Astrophysics Data System (ADS)
Kanda, Naoki; Asano, Takayuki; Itoh, Toshiyuki; Onoda, Makoto
1995-12-01
Anthocyanins are found in the flowers and fruits of natural plants. Since their color depends on pH, they are sometines used as a pH indicator. Since these sequences are reversible, they are also useful in demonstrating chemical equilibrium in the repetitive color changes of anthocyanins from flowers by controlling pH conditions. We prepared the polysaccharide beads conatining water extracts of red cabbage as calcium alginate. The beads showed a clear red color under acidic conditions, turned blue at neutral pH of 7, and orange-yellow at pH of 13. This color change could be demonstrated over and over. Because the color changes of these polysaccharide beads depended darmatically on pH, junior high students in science classes called them "chameleon balls" when we demonstrated this reaction for them. In this paper we describe how polysaccharide beads, which are made from calcium alginate with natural pigments, served as a teaching tool for the chemical equilibrium of anthocyanins under different pH conditions. Preparation of the chameleon ball is very easy. The most important thing is that making the chameleon ball is great fun. The ball should therefore be viewed not only as a handmade pH indicator but also an interesting teaching tool of the chemical equilibrium reaction.
Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit
Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo
2007-07-01
The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts
Computer model of one-dimensional equilibrium controlled sorption processes
Grove, D.B.; Stollenwerk, K.G.
1984-01-01
A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)
NASA Astrophysics Data System (ADS)
Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.
2007-01-01
In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.
Booij, Kees; Tucca, Felipe
2015-09-15
The use of passive sampling methods for monitoring hydrophobic organic chemicals frequently requires the determination of equilibration times and partition coefficients in the laboratory. These experiments are often carried out by exposing passive samplers in a finite water volume, and errors are easily made when the obtained results are applied to the field, where water volumes are essentially infinite. The effect of water volume on the equilibration rate constant is discussed, using a mechanistic model. Application of this model to two literature reports illustrates that aqueous concentrations in the field may be underestimated by a factor of 10 or more, when the water volume effect is neglected. Finally, it is shown that the concept of "sorption capacity" (sampler mass times partition coefficient) allows for a more intuitive understanding of the passive sampling process in small and large water volumes, which may reduce the risk of laboratory-field extrapolation errors.
Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele
2012-03-07
Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein.
A dynamic physicochemical model for chemical phosphorus removal.
Hauduc, H; Takács, I; Smith, S; Szabo, A; Murthy, S; Daigger, G T; Spérandio, M
2015-04-15
A dynamic physico-chemical model for chemical phosphorus removal in wastewater is presented as a tool to optimize chemical dosing simultaneously while ensuring compliant effluent phosphorus concentration. This new model predicts the kinetic and stoichiometric variable processes of precipitation of hydrous ferric oxides (HFO), phosphates adsorption and co-precipitation. It is combined with chemical equilibrium and physical precipitation reactions in order to model observed bulk dynamics in terms of pH. The model is calibrated and validated based on previous studies and experimental data from Smith et al. (2008) and Szabo et al. (2008) as a first step for full-plant implementation. The simulation results show that the structure of the model describes adequately the mechanisms of adsorption and co-precipitation of phosphate species onto HFO and that the model is robust under various experimental conditions.
Vertical sorting and the morphodynamics of bed-form-dominated rivers: An equilibrium sorting model
NASA Astrophysics Data System (ADS)
Blom, Astrid; Parker, Gary; Ribberink, Jan S.; de Vriend, Huib J.
2006-02-01
A modeling framework is developed for taking into account the effects of sediment sorting in the morphodynamic modeling of bed-form-dominated rivers for the case of equilibrium or stationary conditions dominated by bed load transport. To this end, the Blom and Parker (2004) framework for sediment continuity is reduced to an equilibrium sorting model. The predicted equilibrium sorting profile is mainly determined by the probability density function (PDF) of bed form trough elevations and by a lee sorting function. The PDF of trough elevations needs to be known from either model predictions or measurements. A simple formulation for the lee sorting function is suggested, yet data on the avalanche mechanism down lee faces of dunes is required so as to improve the function and make it generic. The equilibrium sorting model is calibrated and verified using data from flume experiments. The agreement between the predicted and measured equilibrium sorting profiles is reasonable, although the model does not reproduce an observed coarse top layer. In a hydraulic-morphodynamic model this equilibrium sorting model may be applied instantaneously if the timescale of large-scale morphological changes is much larger than the ones of changes in vertical sorting and dune dimensions.
TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.
Farley, Kevin J; Carbonaro, Richard F; Fanelli, Christopher J; Costanzo, Robert; Rader, Kevin J; Di Toro, Dominic M
2011-06-01
The tableau input coupled kinetic equilibrium transport-unit world model (TICKET-UWM) has been developed as a screening model for assessing potential environmental risks associated with the release of metals into lakes. The model is based on a fully implicit, one-step solution algorithm that allows for simultaneous consideration of dissolved and particulate phase transport; metal complexation to organic matter and inorganic ligands; precipitation of metal hydroxides, carbonates, and sulfides; competitive interactions of metals and major cations with biotic ligands; a simplified description of biogeochemical cycling of organic carbon and sulfur; and dissolution kinetics for metal powders, massives, and other solid forms. Application of TICKET-UWM to a generalized lake in the Sudbury area of the Canadian Shield is presented to demonstrate the overall cycling of metals in lakes and the nonlinear effects of chemical speciation on metal responses. In addition, the model is used to calculate critical loads for metals, with acute toxicity of Daphnia magna as the final endpoint. Model results show that the critical loads for Cu, Ni, Pb, and Zn varied from 2.5 to 39.0 g metal/m(2) -year and were found to be one or more orders of magnitude higher than comparable loads for pesticides (lindane, 4,4'-DDT) and several polyaromatic hydrocarbon (PAH) compounds. In sensitivity calculations, critical metal-loading rates were found to vary significantly as a function of the hydraulic detention time, water hardness, and metal dissolution kinetic rates.
Yeh, G.T.; Salvage, K.M.; Gwo, J.P.; Zachara, J.M.; Szecsody, J.E.
1998-07-01
The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.
Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications
NASA Technical Reports Server (NTRS)
Thompson, W. R.; Zollweg, John A.; Gabis, David H.
1992-01-01
A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.
Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure
NASA Astrophysics Data System (ADS)
Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di
2016-02-01
A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.
Equilibrium models of mass distribution and collisional lifetimes of asteroids
NASA Technical Reports Server (NTRS)
Williams, David R.; Wetherill, George
1993-01-01
An understanding of the steady state distribution expected in the present day asteroid belt is important to our understanding of the collisional evolution of the asteroids and their physical properties. We have extended earlier work to show that, in the absence of gravity, a simple power law distribution as a function of mass with constant exponent will give an equilibrium distribution of asteroids for all bodies much smaller than the largest asteroids. This result holds for realistic fragmentation mechanisms and is independent of the physical properties of the asteroids. Inclusion of the effects of gravity on disruption and fragmentation of asteroids precludes an analytic solution to this problem, and rules out a simple power law distribution. We are currently calculating numerical solutions in order to determine the expected steady state mass distribution in the asteroid belt.
Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)
NASA Technical Reports Server (NTRS)
Elghobashi, S.
1977-01-01
The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.
The Fizz Keeper, a Case Study in Chemical Education, Equilibrium, and Kinetics.
ERIC Educational Resources Information Center
Howald, Reed A.
1999-01-01
The loss of carbon dioxide from carbonated beverages provides an interesting case of the combination of equilibrium and kinetic principles. Adding air with a commercial device (the Fizz Keeper) has a negligible effect on various equilibria present but will slow diffusion in the gas space of a resealed bottle, decreasing the rate at which…
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?
ERIC Educational Resources Information Center
Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana
2008-01-01
In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…
ERIC Educational Resources Information Center
Cwikel, Dori; And Others
1986-01-01
Dicusses the use of the separatory cylinder in student laboratory experiments for investigating equilibrium distribution of a solute between immiscible phases. Describes the procedures for four sets of experiments of this nature. Lists of materials needed and quantities of reagents are provided. (TW)
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1981-01-01
A decomposition of the molecular energy is presented that is motivated by the atom superposition and electron delocalization physical model of chemical binding. The energy appears in physically transparent form consisting of a classical electrostatic interaction, a zero order two electron exchange interaction, a relaxation energy, and the atomic energies. Detailed formulae are derived in zero and first order of approximation. The formulation extends beyond first order to any chosen level of approximation leading, in principle, to the exact energy. The structure of this energy decomposition lends itself to the fullest utilization of the solutions to the atomic sub problems to simplify the calculation of the molecular energy. If nonlinear relaxation effects remain minor, the molecular energy calculation requires at most the calculation of two center, two electron integrals. This scheme thus affords the prospects of substantially reducing the computational effort required for the calculation of molecular energies.
NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program
NASA Technical Reports Server (NTRS)
Fishbach, Laurence H.; Gordon, Sanford
1988-01-01
The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.
NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Gordon, S.
1989-01-01
The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.
Models of supply function equilibrium with applications to the electricity industry
NASA Astrophysics Data System (ADS)
Aromi, J. Daniel
Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Modeling Mathematical Programs with Equilibrium Constraints in Pyomo
Hart, William E.; Siirola, John Daniel
2015-07-01
We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
NASA Technical Reports Server (NTRS)
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material.
Dean, David S; Démery, Vincent; Parsegian, V Adrian; Podgornik, Rudolf
2012-03-01
Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.
The intrinsic role of nanoconfinement in chemical equilibrium: evidence from DNA hybridization.
Rubinovich, Leonid; Polak, Micha
2013-05-08
Recently we predicted that when a reaction involving a small number of molecules occurs in a nanometric-scale domain entirely segregated from the surrounding media, the nanoconfinement can shift the position of equilibrium toward products via reactant-product reduced mixing. In this Letter, we demonstrate how most-recently reported single-molecule fluorescence measurements of partial hybridization of ssDNA confined within nanofabricated chambers provide the first experimental confirmation of this entropic nanoconfinement effect. Thus, focusing separately on each occupancy-specific equilibrium constant, quantitatively reveals extra stabilization of the product upon decreasing the chamber occupancy or size. Namely, the DNA hybridization under nanoconfined conditions is significantly favored over the identical reaction occurring in bulk media with the same reactant concentrations. This effect, now directly verified for DNA, can be relevant to actual biological processes, as well as to diverse reactions occurring within molecular capsules, nanotubes, and other functional nanospaces.
Parametrizing coarse grained models for molecular systems at equilibrium
NASA Astrophysics Data System (ADS)
Kalligiannaki, E.; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plecháč, P.; Harmandaris, V.
2016-10-01
Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
Addition to the Lewis Chemical Equilibrium Program to allow computation from coal composition data
NASA Technical Reports Server (NTRS)
Sevigny, R.
1980-01-01
Changes made to the Coal Gasification Project are reported. The program was developed by equilibrium combustion in rocket engines. It can be applied directly to the entrained flow coal gasification process. The particular problem addressed is the reduction of the coal data into a form suitable to the program, since the manual process is involved and error prone. A similar problem in relating the normal output of the program to parameters meaningful to the coal gasification process is also addressed.
Modeling Complex Chemical Systems: Problems and Solutions
NASA Astrophysics Data System (ADS)
van Dijk, Jan
2016-09-01
Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.
Development of Plasma Equilibrium Response Model for Optimized Plasma Control of KSTAR tokamak
NASA Astrophysics Data System (ADS)
Jeon, Youngmu; Park, Jong-Kyu; Park, Young-Seok; Hwang, Y. S.
2004-11-01
Plasma equilibrium response models for an optimized control system design are developed with KSTAR tokamak configurations. In a simple filament model, plasma column is assumed as a single ring filament with rigid displacements, and constitutes circuits with external conductors (coils, passive plate, and vacuum vessel segments). Perturbed equilibrium response model, based on CREATE-L deformable plasma response model [1], assumes that the plasma evolves through a sequence of MHD equilibria. Prediction characteristics of both models are described in terms of open loop characteristics of vertical motion of plasma, and validated by comparison with TSC (Tokamak Simulation Code) simulations. Additionally, applications of the plasma equilibrium response models to design of optimal plasma controllers are described. [1] R. Albanese, and F. Villone, Nucl. Fusion 38 723 (1998)
Thornton, Peter E; Wang, Weile; Law, Beverly E.; Nemani, Ramakrishna R
2009-01-01
The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.
NASA Technical Reports Server (NTRS)
Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.
1974-01-01
A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.
Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J
2016-09-01
We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.
Khantuleva, Tatiana A; Shalymov, Dmitry S
2017-03-06
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'.
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle
NASA Astrophysics Data System (ADS)
Khantuleva, Tatiana A.; Shalymov, Dmitry S.
2017-03-01
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue 'Horizons of cybernetical physics'.
Distance-dependent diffusion-controlled reaction of •NO and O2•- at chemical equilibrium with ONOO-.
Botti, Horacio; Möller, Matías N; Steinmann, Daniel; Nauser, Thomas; Koppenol, Willem H; Denicola, Ana; Radi, Rafael
2010-12-16
The fast reaction of (•)NO and O(2)(•-) to give ONOO(-) has been extensively studied at irreversible conditions, but the reasons for the wide variations in observed forward rate constants (3.8 ≤ k(f) ≤ 20 × 10(9) M(-1) s(-1)) remain unexplained. We characterized the diffusion-dependent aqueous (pH > 12) chemical equilibrium of the form (•)NO + O(2)(•-) = ONOO(-) with respect to its dependence on temperature, viscosity, and [ONOO(-)](eq) by determining [ONOO(-)](eq) and [(•)NO](eq). The equilibrium forward reaction rate constant (k(f)(eq)) has negative activation energy, in contrast to that found under irreversible conditions. In contradiction to the law of mass action, we demonstrate that the equilibrium constant depends on ONOO(-) concentration. Therefore, a wide range of k(f)(eq) values could be derived (7.5-21 × 10(9) M(-1) s(-1)). Of general interest, the variations in k(f) can thus be explained by its dependence on the distance between ONOO(-) particles (sites of generation of (•)NO and O(2)(•-)).
Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.
2010-01-10
Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 °C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 °C, in contrast to the models and
Pizer, William; Burtraw, Dallas; Harrington, Winston; Newell, Richard; Sanchirico, James; Toman, Michael
2003-03-31
This document provides technical documentation for work using detailed sectoral models to calibrate a general equilibrium analysis of market and non-market sectoral policies to address climate change. Results of this work can be found in the companion paper, "Modeling Costs of Economy-wide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Model".
Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model
NASA Astrophysics Data System (ADS)
Tu, Yuhai
1996-03-01
We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for d
Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.
Bianca, C; Lemarchand, A
2014-06-14
This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
Politics, Organizations, and Choice: Applications of an Equilibrium Model
ERIC Educational Resources Information Center
Roos, Leslie L., Jr.
1972-01-01
An economic model of consumer choice is used to link the separate theories that have dealt with comparative politics, job satisfaction, and organizational mobility. The model is used to structure data taken from studies of Turkish and French elites on environmental change, organizational mobility, and satisfaction. (Author/DN)
Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads.
Chiou, Ming Shen; Li, Hsing Ya
2002-07-22
The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).
NASA Technical Reports Server (NTRS)
Gordon, Sanford
1991-01-01
The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.
Self-consistent chemical model of partially ionized plasmas
Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.
2011-01-15
A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
NASA Astrophysics Data System (ADS)
Rezai, Raheleh; Ebrahimi, Farshad
2014-04-01
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.
Computable general equilibrium model fiscal year 2014 capability development report
Edwards, Brian Keith; Boero, Riccardo
2016-05-11
This report provides an overview of the development of the NISAC CGE economic modeling capability since 2012. This capability enhances NISAC's economic modeling and analysis capabilities to answer a broader set of questions than possible with previous economic analysis capability. In particular, CGE modeling captures how the different sectors of the economy, for example, households, businesses, government, etc., interact to allocate resources in an economy and this approach captures these interactions when it is used to estimate the economic impacts of the kinds of events NISAC often analyzes.
Equilibrium pricing in an order book environment: Case study for a spin model
NASA Astrophysics Data System (ADS)
Meudt, Frederik; Schmitt, Thilo A.; Schäfer, Rudi; Guhr, Thomas
2016-07-01
When modeling stock market dynamics, the price formation is often based on an equilibrium mechanism. In real stock exchanges, however, the price formation is governed by the order book. It is thus interesting to check if the resulting stylized facts of a model with equilibrium pricing change, remain the same or, more generally, are compatible with the order book environment. We tackle this issue in the framework of a case study by embedding the Bornholdt-Kaizoji-Fujiwara spin model into the order book dynamics. To this end, we use a recently developed agent based model that realistically incorporates the order book. We find realistic stylized facts. We conclude for the studied case that equilibrium pricing is not needed and that the corresponding assumption of a "fundamental" price may be abandoned.
Unsteady non-equilibrium model of laser induced detonation wave
NASA Astrophysics Data System (ADS)
Oshima, Takeharu; Fujiwara, Toshitaka
1992-12-01
Now that laser propulsion is hoped to become a next-generation space propulsion system, it is important to analyze the mechanisms of LSD (Laser-Supported Detonation) wave caused by laser absorption. The performance of laser propulsion is determined mainly by laser absorption efficiency. To absorb laser energy effectively, it is necessary to generate sufficient free electrons in the laser absorbing zone. Thus, the LSD wave must be monitored. At first, the incident laser energy vaporizes the solid propellant and produces free electrons. These free electrons start laser absorption and as a result produce high temperature and pressure. Then an ignition occurs and this grows into a detonation wave. Four types of physico-chemical processes take place in the LSD wave. First, laser energy is first absorbed by free electrons through inverse bremsstrahlung. Next this energy is distributed to heavy particles (atoms and ions) through elastic and inelastic collision processes, and is lost partly by bremsstrahlung as radiation energy. Based on such backgrounds, this LSD wave is simulated by using a plane one-dimensional numerical analysis to clarify the mechanism on the ignition phenomenon in a laser-sustained plasma. In this study, a TVD (Total Variation Diminishing) code which takes account of real gas effects is utilized.
Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1998-01-01
This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.
Chemical kinetics and combustion modeling
Miller, J.A.
1993-12-01
The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.
Chemical vapor deposition modeling for high temperature materials
NASA Technical Reports Server (NTRS)
Goekoglu, Sueleyman
1992-01-01
The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.
NASA Astrophysics Data System (ADS)
Wu, Yi; Sun, Hao; Tanaka, Yasunori; Tomita, Kentaro; Rong, Mingzhe; Yang, Fei; Uesugi, Yoshihiko; Ishijima, Tatsuo; Wang, Xiaohua; Feng, Ying
2016-10-01
The influence of the gas flow rate on the N2 arc behavior was investigated based on a previously established nonchemical equilibrium (non-CE) model. This numerical non-CE model was adopted in the N2 nozzle arc in a model circuit breaker. The arc behaviors of both the arc burning and arc decay phases were obtained at different gas flow rates in both the non-CE and local thermal equilibrium (LTE) model. To better understand the influence of the gas flow rate, in this work we devised the concept of the nonequilibrium parameter. Additionally, the influences of convection, diffusion, and chemical reactions were examined separately to determine which one contributed most to the non-CE behavior. Finally, laser Thomson scattering (LTS) measurements at different gas flow rates were adopted to further demonstrate the validity of the non-CE model. The results of the macroscopic behaviors indicate that the deviations between the non-CE and LTE models during the arc burning phase are much fewer than those during the arc decay phase. By the nonequilibrium parameters, it clearly indicates that with an increase in the gas flow rate, the non-CE effect will be greatly enhanced. During the arc burning phase, this non-CE effect is mainly caused by radial diffusion of the particles. During the arc decay phase, for the charged particles, the chemical reactions had the greatest effect on the time variations of the particle number densities; however, for the neutral particles the time variations of the number densities were mutually influenced by convections, diffusions, and chemical reactions. Finally, the LTS results further demonstrate the validity of the non-CE model at different gas flow rates.
Modeling hyperelasticity in non-equilibrium multiphase flows
NASA Astrophysics Data System (ADS)
Hank, Sarah; Favrie, Nicolas; Massoni, Jacques
2017-02-01
The aim of this article is the construction of a multiphase hyperelastic model. The Eulerian formulation of the hyperelasticity represents a system of 14 conservative partial differential equations submitted to stationary differential constraints. This model is constructed with an elegant approach where the specific energy is given in separable form. The system admits 14 eigenvalues with 7 characteristic eigenfields. The associated Riemann problem is not easy to solve because of the presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this paper, we use a splitting approach to solve the whole system using 3 sub-systems. This method reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann solver. The multiphase model is obtained by adapting the discrete equations method. This approach involves an additional equation governing the evolution of a phase function relative to the presence of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase admits its own equations system composed of three sub-systems. One and three dimensional test cases are presented.
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Yu.
2012-08-01
Solids of nearly solar composition have interacted with aqueous fluids on carbonaceous asteroids, icy moons, and trans-neptunian objects. These processes altered mineralogy of accreted materials together with compositions of aqueous and gaseous phases. We evaluated chemistry of aqueous solutions coexisted with CI-type chondritic solids through calculations of chemical equilibria in closed water-rock-gas systems at different compositions of initial fluids, water/rock mass ratios (0.1-1000), temperatures (<350 °C), and pressures (<2 kbars). The calculations show that fluid compositions are mainly affected by solubilities of solids, the speciation of chlorine in initial water-rock mixtures, and the occurrence of Na-bearing secondary minerals such as saponite. The major species in modeled alkaline solutions are Na+, Cl-, CO32-,HCO3-, K+, OH-, H2, and CO2. Aqueous species of Mg, Fe, Ca, Mn, Al, Ni, Cr, S, and P are not abundant in these fluids owing to low solubility of corresponding solids. Typical NaCl type alkaline fluids coexist with saponite-bearing mineralogy that usually present in aqueously altered chondrites. A common occurrence of these fluids is consistent with the composition of grains emitted from Enceladus. Na-rich fluids with abundant CO32-,HCO3-, and OH- anions coexist with secondary mineralogy depleted in Na. The Na2CO3 and NaHCO3 type fluids could form via accretion of cometary ices. NaOH type fluids form in reduced environments and may locally occur on parent bodies of CR carbonaceous chondrites. Supposed melting of accreted HCl-bearing ices leads to early acidic fluids enriched in Mg, Fe and other metals, consistent with signs of low-pH alteration in chondrites. Neutralization of these solutions leads to alkaline Na-rich fluids. Sulfate species have negligible concentrations in closed systems, which remain reduced, especially at elevated pressures created by forming H2 gas. Hydrogen, CO2, and H2O dominate in the gaseous phase, though the abundance
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define "closure" relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates' Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer
NASA Technical Reports Server (NTRS)
Thompson, R. A.
1994-01-01
Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Lewis, C. H.
1971-01-01
Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.
Bulloch, J L; Hand, D W; Crittenden, J C
1998-01-01
A thermodynamic model is developed to predict adsorption equilibrium in the International Space Station water processor's multifiltration beds. The model predicts multicomponent adsorption equilibrium behavior using single-component isotherm parameters and fictitious components representing the background matrix. The fictitious components are determined by fitting total organic carbon and tracer isotherms with the ideal adsorbed solution theory. Multicomponent isotherms using a wastewater with high surfactant and organic compound concentrations are used to validate the equilibrium description on a coconut-shell-based granular activated carbon (GAC), coal-based GAC, and a polymeric adsorbent.
NASA Technical Reports Server (NTRS)
Tran, Donald H.; Snyder, Christopher A.
1992-01-01
A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.
NASA Astrophysics Data System (ADS)
Douglas, Jack F.; Dudowicz, Jacek; Freed, Karl F.
2008-06-01
Cooperativity is an emergent many-body phenomenon related to the degree to which elementary entities (particles, molecules, organisms) collectively interact to form larger scale structures. From the standpoint of a formal mean field description of chemical reactions, the cooperativity index m, describing the number of elements involved in this structural self-organization, is the order of the reaction. Thus, m for molecular self-assembly is the number of molecules in the final organized structure, e.g., spherical micelles. Although cooperativity is crucial for regulating the thermodynamics and dynamics of self-assembly, there is a limited understanding of this aspect of self-assembly. We analyze the cooperativity by calculating essential thermodynamic properties of the classical mth order reaction model of self-assembly (m model), including universal scaling functions describing the temperature and concentration dependence of the order parameter and average cluster size. The competition between self-assembly and phase separation is also described. We demonstrate that a sequential model of thermally activated equilibrium polymerization can quantitatively be related to the m model. Our analysis indicates that the essential requirement for ``cooperative'' self-assembly is the introduction of constraints (often nonlocal) acting on the individual assembly events to regulate the thermodynamic free energy landscape and, thus, the thermodynamic sharpness of the assembly transition. An effective value of m is defined for general self-assembly transitions, and we find a general tendency for self-assembly to become a true phase transition as m-->∞. Finally, various quantitative measures of self-assembly cooperativity are discussed in order to identify experimental signatures of cooperativity in self-assembling systems and to provide a reliable metric for the degree of transition cooperativity.
Douglas, Jack F; Dudowicz, Jacek; Freed, Karl F
2008-06-14
Cooperativity is an emergent many-body phenomenon related to the degree to which elementary entities (particles, molecules, organisms) collectively interact to form larger scale structures. From the standpoint of a formal mean field description of chemical reactions, the cooperativity index m, describing the number of elements involved in this structural self-organization, is the order of the reaction. Thus, m for molecular self-assembly is the number of molecules in the final organized structure, e.g., spherical micelles. Although cooperativity is crucial for regulating the thermodynamics and dynamics of self-assembly, there is a limited understanding of this aspect of self-assembly. We analyze the cooperativity by calculating essential thermodynamic properties of the classical mth order reaction model of self-assembly (FAm model), including universal scaling functions describing the temperature and concentration dependence of the order parameter and average cluster size. The competition between self-assembly and phase separation is also described. We demonstrate that a sequential model of thermally activated equilibrium polymerization can quantitatively be related to the FAm model. Our analysis indicates that the essential requirement for "cooperative" self-assembly is the introduction of constraints (often nonlocal) acting on the individual assembly events to regulate the thermodynamic free energy landscape and, thus, the thermodynamic sharpness of the assembly transition. An effective value of m is defined for general self-assembly transitions, and we find a general tendency for self-assembly to become a true phase transition as m-->infinity. Finally, various quantitative measures of self-assembly cooperativity are discussed in order to identify experimental signatures of cooperativity in self-assembling systems and to provide a reliable metric for the degree of transition cooperativity.
Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.
Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R
2009-04-30
The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.
Liu, X; Goodfellow, M R; Yu, Q; Zheng, C
2004-12-01
Equilibrium isotherms of heavy metal biosorption are commonly correlated with adsorption models such as the Freundlich model. On the other hand, the adsorption properties of heavy metal biosorption are strongly influenced by the solution pH of the biosorption system. Therefore, standard adsorption models are limited to the correlation of equilibrium isotherms under constant pH values. In this paper, a modified Freundlich model was developed for the correlation of pH dependent equilibrium isotherms of heavy metal biosorption. The model was based on the mechanism that the functional groups for heavy metal interactions are weakly acidic groups and the uptake capacities of the biomass are affected through the association and dissociation equilibrium between two apparent ionic forms. Both the standard and the modified Freundlich models were tested with isotherm data for Cd2+, Cu2+ and Ni2+ biosorption onto pre-treated biomass of marine alga Durvillaea potatorum under various solution pH values. Regression analyses indicated that the developed model correlated the experimental data well.
Chemical modeling of waste sludges
Weber, C.F.; Beahm, E.C.
1996-10-01
The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.
He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations
NASA Technical Reports Server (NTRS)
Heasley, J. N.; Timothy, J. G.; Wolff, S. C.
1982-01-01
Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.
NASA Astrophysics Data System (ADS)
Villaluenga, Juan P. G.; Kjelstrup, Signe
2012-12-01
The framework of non-equilibrium thermodynamics (NET) is used to derive heat and mass transport equations for pervaporation of a binary mixture in a membrane. In this study, the assumption of equilibrium of the sorbed phase in the membrane and the adjacent phases at the feed and permeate sides of the membrane is abandoned, defining the interface properties using local equilibrium. The transport equations have been used to model the pervaporation of a water-ethanol mixture, which is typically encountered in the dehydration of organics. The water and ethanol activities and temperature profiles are calculated taking mass and heat coupling effects and surfaces into account. The NET approach is deemed good because the temperature results provided by the model are comparable to experimental results available for water-alcohol systems.
Coupled chemical and diffusion model for compacted bentonite
Olin, M.; Lehikoinen, J.; Muurinen, A.
1995-12-31
A chemical equilibrium model has been developed for ion-exchange and to a limited extent for other reactions, such as precipitation or dissolution of calcite or gypsum, in compacted bentonite water systems. The model was successfully applied to some bentonite experiments, especially as far as monovalent ions were concerned. The fitted log-binding constants for the exchange of sodium for potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. In addition, a coupled chemical and diffusion model has been developed to take account of diffusion in pore water, surface diffusion and ion-exchange.d the model was applied to the same experiments as the chemical equilibrium model, and its validation was found partly successful. The above values for binding constants were used also in the coupled model. The apparent (both for anions and cations) and surface diffusion (only for cations) constants yielding the best agreement between calculated and experimental data were 3.0 {times} 10{sup {minus}11} m{sup 2}/s and 6.0 {times} 10{sup {minus}12} m{sup 2}/s, respectively. These values are questionable, however, as experimental results good enough for fitting are currently not available.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
Rezai, Raheleh Ebrahimi, Farshad
2014-04-15
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct
Chemical Equilibrium Mixture Computations for Energetic Material Combustion in Closed Vessels
2004-12-01
are used with well-known equations of state stemming from Redlich , Kwong and Soave (RKS); Benedict, Webb, Rubin, Starling and Han (BWRSH); Becker...chemical activ- ity, type of mixture (ideal or nonideal) and pressure- volume-temperature properties ( equation of state ) of the gaseous, liquid and...accurate equations of state and ad- ditional thermochemical data for imperfect gas be- haviour and for the compressibility of liquids and solids. This
A coupled implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho
1993-01-01
The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.
Mädler, Stefanie; Seitz, Markus; Robinson, John; Zenobi, Renato
2010-10-01
Chemical cross-linking in combination with mass spectrometry has emerged as a powerful tool to study noncovalent protein complexes. Nevertheless, there are still many questions to answer. Does the amount of detected cross-linked complex correlate with the amount of protein complex in solution? In which concentration and affinity range is specific cross-linking possible? To answer these questions, we performed systematic cross-linking studies with two complexes, using the N-hydroxysuccinimidyl ester disuccinimidyl suberate (DSS): (1) NCoA-1 and mutants of the interacting peptide STAT6Y, covering a K(D) range of 30 nM to >25 μM, and (2) α-thrombin and basic pancreatic trypsin inhibitor (BPTI), a system that shows a buffer-dependent K(D) value between 100 and 320 μM. Samples were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For NCoA-1•STAT6Y, a good correlation between the amount of cross-linked species and the calculated fraction of complex present in solution was observed. Thus, chemical cross-linking in combination with MALDI-MS can be used to rank binding affinities. For the mid-affinity range up to about K(D) ≈ 25 μM, experiments with a nonbinding peptide and studies of the concentration dependence showed that only specific complexes undergo cross-linking with DSS. To study in which affinity range specific cross-linking can be applied, the weak α-thrombin•BPTI complex was investigated. We found that the detected complex is a nonspecifically cross-linked species. Consequently, based on the experimental approach used in this study, chemical cross-linking is not suitable for studying low-affinity complexes with K(D) > 25 μM.
NASA Astrophysics Data System (ADS)
Ozhogin, P.; Song, P.; Tu, J.; Reinisch, B. W.
2014-06-01
The diffusive equilibrium models that are widely used by the space physics community to describe the plasma densities in the plasmasphere are evaluated with field-aligned electron density measurements from the radio plasma imager (RPI) instrument onboard the IMAGE satellite. The original mathematical form of the diffusive equilibrium model was based on the hydrostatic equilibrium along the magnetic field line with the centrifugal force and the field-aligned electrostatic force as well as a large number of simplifying approximations. Six free parameters in the mathematical form have been conventionally determined from observations. We evaluate four sets of the parameters that have been reported in the literature. The evaluation is made according to the equatorial radial distance dependence, latitudinal dependence at a given radial distance, and the combined radial and latitudinal dependences. We find that the mathematical form given in the diffusive equilibrium model is intrinsically incompatible with the measurements unless another large number of free parameters are artificially introduced, which essentially changes the nature of a theoretical model to an empirical model.
Puzzarini, Cristina; Barone, Vincenzo
2011-04-21
The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.
2016-10-01
We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a
NASA Astrophysics Data System (ADS)
Pathak, A. D.; Nedea, S. V.; Zondag, H. A.; Rindt, C. C. M.; Smeulders, D. M. J.
2016-09-01
Chloride based salt hydrates are promising materials for seasonal heat storage. However, hydrolysis, a side reaction, deteriorates, their cycle stability. To improve the kinetics and durability, we have investigated the optimum operating conditions of a chemical mixture of CaCl2 and MgCl2 hydrates. In this study, we apply a GGA-DFT to gain insight into the various hydrates of CaMg2Cl6. We have obtained the structural properties, atomic charges and vibrational frequencies of CaMg2Cl6 hydrates. The entropic contribution and the enthalpy change are quantified from ground state energy and harmonic frequencies. Subsequently, the change in the Gibbs free energy of thermolysis was obtained under a wide range of temperature and pressure. The equilibrium product concentration of thermolysis can be used to design the seasonal heat storage system under different operating conditions.
Combined physical and chemical nonequilibrium transport model for solution conduits.
Field, Malcolm S; Leij, Feike J
2014-02-01
Solute transport in karst aquifers is primarily constrained to relatively complex and inaccessible solution conduits where transport is often rapid, turbulent, and at times constrictive. Breakthrough curves generated from tracer tests in solution conduits are typically positively-skewed with long tails evident. Physical nonequilibrium models to fit breakthrough curves for tracer tests in solution conduits are now routinely employed. Chemical nonequilibrium processes are likely important interactions, however. In addition to partitioning between different flow domains, there may also be equilibrium and nonequilibrium partitioning between the aqueous and solid phases. A combined physical and chemical nonequilibrium (PCNE) model was developed for an instantaneous release similar to that developed by Leij and Bradford (2009) for a pulse release. The PCNE model allows for partitioning open space in solution conduits into mobile and immobile flow regions with first-order mass transfer between the two regions to represent physical nonequilibrium in the conduit. Partitioning between the aqueous and solid phases proceeds either as an equilibrium process or as a first-order process and represents chemical nonequilibrium for both the mobile and immobile regions. Application of the model to three example breakthrough curves demonstrates the applicability of the combined physical and chemical nonequilibrium model to tracer tests conducted in karst aquifers, with exceptionally good model fits to the data. The three models, each from a different state in the United States, exhibit very different velocities, dispersions, and other transport properties with most of the transport occurring via the fraction of mobile water. Fitting the model suggests the potentially important interaction of physical and chemical nonequilibrium processes.
Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium
NASA Astrophysics Data System (ADS)
Lin, Hsiao-Hsuan
The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented
Detection of interstellar DNC - Difficulties of chemical equilibrium hypothesis for enrichment
NASA Technical Reports Server (NTRS)
Godfrey, P. D.; Brown, R. D.; Gunn, H. I.; Blackman, G. L.; Storey, J. W. V.
1977-01-01
The J = 1-0 transition of DNC at 76.3058 GHz has been observed in emission in NGC 2264. Comparison with previous observations of HN(C-13) indicates that deuterium is enriched in DNC similarly to the enrichment reported for DCO(+) in this source. The DNC/HNC ratio is estimated to be about 1/24. The results cannot readily be interpreted in terms of chemical equilibria relating to the formation of DNC. It is suggested that the explanation must be sought in isotope effects on rates of formation of interstellar molecules.
Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun
1992-01-01
By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
NASA Astrophysics Data System (ADS)
Lee, Sang-Hun; Yoo, Byeoung-Hak; Lim, Seung Joo; Kim, Tak-Hyun; Kim, Sun-Kyoung; Kim, Jun Young
2013-06-01
This study developed an equilibrium model to predict the P recovery and struvite amounts by newly incorporating two separate equilibrium constants on the struvite formation with HPO42- and PO43-, as well as free ammonium (NH4+), phosphate (PO4), magnesium (Mg2+), and calcium (Ca2+) ion species. The equilibrium struvite reaction and its solubility constant with HPO42- species was verified by deriving a reasonable correlation between solution pH and the conditional solubility products that were obtained from the equilibrium reaction. Also, based on the Visual MINTEQ software program, the potentially precipitated Ca phosphates and struvite precipitates were selected, and these compounds were utilized as target precipitants for the modeling to simulate P recovery and struvite formation under the competitive inhibition of Ca ions. The resultant simulated P recovery data were validated by experimental data with synthetic wastewater. The model data showed good agreement with the experimental results (R2>95%). The model also confirmed that the purity of struvite in the precipitate and the pH that maximizes the struvite fraction are dependent on the initial concentrations of NH4+, Mg2+, and PO4. Because only PO43-, not HPO42-, was regarded in Ca precipitation, Ca phosphate precipitation was underestimated as compared with the experimental results.
Equilibrium microphase separation in the two-leaflet model of lipid membranes
NASA Astrophysics Data System (ADS)
Reigada, Ramon; Mikhailov, Alexander S.
2016-01-01
Because of the coupling between local lipid composition and the thickness of the membrane, microphase separation in two-component lipid membranes can take place; such effects may underlie the formation of equilibrium nanoscale rafts. Using a kinetic description, this phenomenon is analytically and numerically investigated. The phase diagram is constructed through the stability analysis for linearized kinetic equations, and conditions for microphase separation are discussed. Simulations of the full kinetic model reveal the development of equilibrium membrane nanostructures with various morphologies from the initial uniform state.
Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.
Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo
2016-02-01
This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity.
NASA Astrophysics Data System (ADS)
Shargatov, V. A.
2016-11-01
We examined the approximate method to calculate composition and thermodynamic parameters of hydrocarbons-air nonequilibrium explosion products based on the assumption of the existence of a partial chemical equilibrium. With excellent accuracy of calculating thermodynamic properties and species mass fraction the respective stiff system of detailed kinetics differential equations can be replaced by the one differential equation or the two differential equations and a system of algebraic equations. This method is always consistent with the detailed kinetic mechanism. The constituent equations of the method were derived and the respective computer code written. We examine the applicability of the method by solving the test problem. The proposed method simulation results are in excellent agreement with the detailed kinetics model results corresponding the stiff ordinary differential equation solver including NO time histories.
Thermal Behavior of Cd During Sludge Incineration: Experiments and Thermodynamic Equilibrium Model.
Liu, Jingyong; Zhuo, Zhongxu; Sun, Shuiyu; Xie, Wuming; Lu, Shaoyou; Sun, Jian; Kuo, Jiahong; Yujie, Wang
2016-12-01
Experiments and thermodynamic equilibrium calculations were performed to investigate the behavior of Cd during sewage sludge incineration. The chemical equilibrium calculations indicated that chlorine significantly increased the volatilization of Cd in the form of CdCl2. In addition, SiO2-containing materials can function as sorbents for stabilizing Cd. The effect of PVC added to the sludge on the migration of Cd in the sludge was greater than that of NaCl. As the temperature increased, both organic and inorganic chlorides reduced the Cd distribution in the bottom ash. The chloride concentration, and the incineration time exhibited insignificant changes in Cd emission. With the addition of either NaCl or PVC into the sludge, the phases of Cd present in the bottom slag were primarily present in the form of silica-alumina oxides or multi-metal oxide, which could inhabit the Cd volatilization.
Zana, R.; Yiv, S.; Kale, K.M.
1980-10-01
Micelle formation in aqueous solutions of docasane-1,22-bis(trimethylammonium bromide) (C22ME6) has been investigated by means of conductivity, EMF (concentration cell and bromide ion and detergent ion specific electrodes), density, light scattering, fluorescence, and chemical relaxation (p-jump, t-jump, shock tube, ultrasonic absorption). The CMC, micelle ionization degree, micelle ionization degree, micelle aggregation number, and volume change upon micellization were calculated. The slope of the plot log CMC vs. number m of carbon atoms in the alkyl chain of bolaforms of the CMME6 type as well as several other results reveal that these bolaforms behave like detergents with 2 charged groups on the first carbon of the alkyl chain. The conclusion is that the bolaform alkyl chain may be somewhat folded both in aqueous solution and in the micellized state. 25 references.
NASA Technical Reports Server (NTRS)
Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E
1951-01-01
A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.
Abdel-Wahab, Ahmed; Batchelor, Bill; Schwantes, Jon
2005-01-01
Removal of chloride from recycled cooling water is needed to reduce corrosion and prolong equipment life. Laboratory experiments have demonstrated that the ultra-high lime with aluminum (UHLA) process has the ability to achieve high chloride removal efficiency from recycled cooling water. In an effort to further understand the behavior of chloride in the UHLA process, a fundamental model of the chemical processes was developed. The purpose of this paper is to describe this equilibrium model and present values for solubility products of precipitated solids that have not been investigated previously. The model was based on PHREEQC and a new program called INVRS K was integrated with PHREEQC to calculate values of unknown or poorly defined equilibrium or kinetic constants using a Gauss-Newton nonlinear regression routine. Model predictions indicated that the results could be best described by assuming the formation of a solid solution of calcium chloroaluminate (Ca4Al2Cl2OH12), tricalcium hydroxyaluminate (Ca3Al2OH12), and tetracalcium hydroxyaluminate (Ca4Al2OH14).
A chemical model for the interstellar medium in galaxies
NASA Astrophysics Data System (ADS)
Bovino, S.; Grassi, T.; Capelo, Pedro R.; Schleicher, D. R. G.; Banerjee, R.
2016-05-01
Aims: We present and test chemical models for three-dimensional hydrodynamical simulations of galaxies. We explore the effect of changing key parameters such as metallicity, radiation, and non-equilibrium versus equilibrium metal cooling approximations on the transition between the gas phases in the interstellar medium. Methods: The microphysics was modelled by employing the public chemistry package KROME, and the chemical networks were tested to work in a wide range of densities and temperatures. We describe a simple H/He network following the formation of H2 and a more sophisticated network that includes metals. Photochemistry, thermal processes, and different prescriptions for the H2 catalysis on dust are presented and tested within a one-zone framework. The resulting network is made publicly available on the KROME webpage. Results: We find that employing an accurate treatment of the dust-related processes induces a faster HI-H2 transition. In addition, we show when the equilibrium assumption for metal cooling holds and how a non-equilibrium approach affects the thermal evolution of the gas and the HII-HI transition. Conclusions: These models can be employed in any hydrodynamical code via an interface to KROME and can be applied to different problems including isolated galaxies, cosmological simulations of galaxy formation and evolution, supernova explosions in molecular clouds, and the modelling of star-forming regions. The metal network can be used for a comparison with observational data of CII 158 μm emission both for high-redshift and for local galaxies.
Adaptive behaviour and multiple equilibrium states in a predator-prey model.
Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii
2015-05-01
There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point.
A process-based model for non-equilibrium clumped isotope effects in carbonates
NASA Astrophysics Data System (ADS)
Watkins, J. M.; Hunt, J. D.
2015-12-01
The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.
Econometrics and data of the 9 sector Dynamic General Equilibrium Model. Volume III. Final report
Berndt, E.R.; Fraumeni, B.M.; Hudson, E.A.; Jorgenson, D.W.; Stoker, T.M.
1981-03-01
This report presents the econometrics and data of the 9 sector Dynamic General Equilibrium Model. There are two key components of 9DGEM - the model of household behavior and the model of produconcrneer behavior. The household model is concerned with decisions on consumption, saving, labor supply and the composition of consumption. The producer model is concerned with output price formation and determination of input patterns and purchases for each of the nine producing sectors. These components form the behavioral basis of DGEM. The remaining components are concerned with constraints, balance conditions, accounting, and government revenues and expenditures (these elements are developed in the report on the model specification).
Yousefian, V.; Weinberg, M.H.; Haimes, R.
1980-02-01
The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)
Comparison of kinetic and equilibrium reaction models insimulating the behavior of porous media
Kowalsky, Michael B.; Moridis, George J.
2006-11-29
In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. Assuming validity of the mostaccurate kinetic reaction model that is currently available, the use ofthe equilibrium reaction model often appears to be justified andpreferred for simulating the behavior of gas hydrates, given that thecomputational demands for the kinetic reaction model far exceed those forthe equilibrium reaction model.
Existence and uniqueness of solutions from the LEAP equilibrium energy-economy model
Oblow, E.M.
1982-10-01
A study was made of the existence and uniqueness of solutions to the long-range, energy-economy model LEAP. The code is a large scale, long-range (50 year) equilibrium model of energy supply and demand in the US economy used for government and industrial forecasting. The study focused on the two features which distinguish LEAP from other equilibrium models - the treatment of product allocation and basic conversion of materials into an energy end product. Both allocation and conversion processes are modeled in a behavioral fashion which differs from classical economic paradigms. The results of the study indicate that while LEAP contains desirable behavioral features, these same features can give rise to non-uniqueness in the solution of allocation and conversion process equations. Conditions under which existence and uniqueness of solutions might not occur are developed in detail and their impact in practical applications are discussed.
Stibany, Felix; Ewald, Franziska; Miller, Ina; Hollert, Henner; Schäffer, Andreas
2017-01-28
The main objective of the present study was to improve the reliability and practicability of aquatic toxicity testing of hydrophobic chemicals based upon the model substance bromochlorophene (BCP). Therefore, we adapted a passive dosing format to test the toxicity of BCP at different concentrations and in multiple test systems with aquatic organisms of various trophic levels. At the same time, the method allowed for the accurate determination of exposure concentrations (i.e., in the presence of exposed organisms; Ctest) and freely dissolved concentrations (i.e., without organisms present; Cfree) of BCP in all tested media. We report on the joint adaptation of three ecotoxicity tests - algal growth inhibition, Daphnia magna immobilization, and fish-embryo toxicity - to a silicone O-ring based equilibrium passive dosing format. Effect concentrations derived by passive dosing methods were compared with corresponding effect concentrations derived by standard co-solvent setups. The passive dosing format led to EC50-values in the lower μgL(-1) range for algae, daphnids, and fish embryos, whereas increased effect concentrations were measured in the co-solvent setups for algae and daphnids. This effect once more shows that passive dosing might offer advantages over standard methods like co-solvent setups when it comes to a reliable risk assessment of hydrophobic substances. The presented passive dosing setup offers a facilitated, practical, and repeatable way to test hydrophobic chemicals on their toxicity to aquatic organisms, and is an ideal basis for the detailed investigation of this important group of chemicals.
NASA Technical Reports Server (NTRS)
Gordon, S.; Mcbride, B. J.
1976-01-01
A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.
Lapillonne, X.; Brunner, S.; Dannert, T.; Jolliet, S.; Marinoni, A.; Villard, L.; Goerler, T.; Jenko, F.; Merz, F.
2009-03-15
In the context of gyrokinetic flux-tube simulations of microturbulence in magnetized toroidal plasmas, different treatments of the magnetic equilibrium are examined. Considering the Cyclone DIII-D base case parameter set [Dimits et al., Phys. Plasmas 7, 969 (2000)], significant differences in the linear growth rates, the linear and nonlinear critical temperature gradients, and the nonlinear ion heat diffusivities are observed between results obtained using either an s-{alpha} or a magnetohydrodynamic (MHD) equilibrium. Similar disagreements have been reported previously [Redd et al., Phys. Plasmas 6, 1162 (1999)]. In this paper it is shown that these differences result primarily from the approximation made in the standard implementation of the s-{alpha} model, in which the straight field line angle is identified to the poloidal angle, leading to inconsistencies of order {epsilon} ({epsilon}=a/R is the inverse aspect ratio, a the minor radius and R the major radius). An equilibrium model with concentric, circular flux surfaces and a correct treatment of the straight field line angle gives results very close to those using a finite {epsilon}, low {beta} MHD equilibrium. Such detailed investigation of the equilibrium implementation is of particular interest when comparing flux tube and global codes. It is indeed shown here that previously reported agreements between local and global simulations in fact result from the order {epsilon} inconsistencies in the s-{alpha} model, coincidentally compensating finite {rho}{sup *} effects in the global calculations, where {rho}{sup *}={rho}{sub s}/a with {rho}{sub s} the ion sound Larmor radius. True convergence between local and global simulations is finally obtained by correct treatment of the geometry in both cases, and considering the appropriate {rho}{sup *}{yields}0 limit in the latter case.
NASA Astrophysics Data System (ADS)
Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank
2017-03-01
Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.
ASHEE: a compressible, Equilibrium-Eulerian model for volcanic ash plumes
NASA Astrophysics Data System (ADS)
Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.
2015-10-01
A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10-3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the
Monte Carlo computer simulations of Venus equilibrium and global resurfacing models
NASA Technical Reports Server (NTRS)
Dawson, D. D.; Strom, R. G.; Schaber, G. G.
1992-01-01
Two models have been proposed for the resurfacing history of Venus: (1) equilibrium resurfacing and (2) global resurfacing. The equilibrium model consists of two cases: in case 1, areas less than or equal to 0.03 percent of the planet are spatially randomly resurfaced at intervals of less than or greater than 150,000 yr to produce the observed spatially random distribution of impact craters and average surface age of about 500 m.y.; and in case 2, areas greater than or equal to 10 percent of the planet are resurfaced at intervals of greater than or equal to 50 m.y. The global resurfacing model proposes that the entire planet was resurfaced about 500 m.y. ago, destroying the preexisting crater population and followed by significantly reduced volcanism and tectonism. The present crater population has accumulated since then with only 4 percent of the observed craters having been embayed by more recent lavas. To test the equilibrium resurfacing model we have run several Monte Carlo computer simulations for the two proposed cases. It is shown that the equilibrium resurfacing model is not a valid model for an explanation of the observed crater population characteristics or Venus' resurfacing history. The global resurfacing model is the most likely explanation for the characteristics of Venus' cratering record. The amount of resurfacing since that event, some 500 m.y. ago, can be estimated by a different type of Monte Carolo simulation. To date, our initial simulation has only considered the easiest case to implement. In this case, the volcanic events are randomly distributed across the entire planet and, therefore, contrary to observation, the flooded craters are also randomly distributed across the planet.
Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Takayanagi, Toshio; Toki, Yuko; Egawa, Takahiro; Kamiya, Mako; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Yoshida, Kengo; Uchiyama, Masanobu; Nagano, Tetsuo; Urano, Yasuteru
2015-09-01
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
Maevskii, K. K. Kinelovskii, S. A.
2015-10-27
The numerical results of modeling of shock wave loading of mixtures with the SiO{sub 2} component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described.
An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Lau, K.-M.; Betts, Alan K.
1991-01-01
An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.
Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation
NASA Technical Reports Server (NTRS)
Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.
2004-01-01
In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.
Thermodynamic modeling of solute adsorption equilibrium from near-critical carbon dioxide.
Yang, Xiaoning
2004-05-15
Modeling of adsorption equilibrium for supercritical fluid mixtures, with as few parameters as possible, is important in applications of the technology of supercritical fluid adsorption. In this paper, a correlative model has been developed to represent the adsorption equilibria of solutes from the near-critical CO(2) fluid. A two-dimensional van der Waals equation of state and the three-dimensional P - R equation of state were used to describe the adsorbed and bulk phases, respectively. This model contains five parameters for adsorption equilibrium isotherms at finite concentrations and two parameters for adsorption equilibrium constants at infinite dilution. All the parameters are independent of temperature and pressure. By applying the model to the experimental data from the literature, it was shown that this model is capable of describing the adsorption behavior of solutes from supercritical carbon dioxide over relatively wide temperature and pressure ranges. In addition, the adsorption behavior of supercritical fluid mixtures was investigated at finite and infinite dilution conditions.
NASA Astrophysics Data System (ADS)
Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.
2012-02-01
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.
NASA Astrophysics Data System (ADS)
Pedesseau, Laurent; Jouanna, Paul
2004-12-01
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime
Pedesseau, Laurent; Jouanna, Paul
2004-12-22
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation C(k)<=>mu(k) between the concentrations C(k) and the chemical potentials mu(k) of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation C(k)<=>mu(k) implies in fact two problems: a direct problem C(k)=>mu(k) and an inverse problem mu(k)=>C(k). Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 A thick gypsum interface. The major unexpected observation is the repulsion of SO(4) (2-) ions towards the reference solution and the attraction of Ca(2+) ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions
Adsorption of direct dye on palm ash: kinetic and equilibrium modeling.
Ahmad, A A; Hameed, B H; Aziz, N
2007-03-06
Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics.
Faussurier, G; Blancard, C; Berthier, E
2001-02-01
A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly charged ion plasmas in off-equilibrium conditions. The time evolution of electron populations and the electron covariance matrix is obtained as approximate solutions of a master equation. Atomic structure is described either with a screened-hydrogenic model including l splitting, or by calculating one-electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rates, as well as autoionization and dielectronic recombination rates, are formulated within the average-configuration framework. Local thermodynamic equilibrium is obtained as a specific steady-state solution. The influence of atomic structure and the role of autoionization and dielectronic recombination processes are studied by calculating steady-state average ionization and ionization variance of hot plasmas with or without radiation field.
Static Drops on an Inclined Plane: Equilibrium Modeling and Numerical Analysis
Iliev
1997-10-15
The continuum description of the equilibrium of small liquid drops located on a sloping plane is still discussed. The effect of drop holdup on the contact surface is modeled by describing the counteraction of a possible rolling liquid flow. This paper studies numerically the effect of the contact angle hysteresis, the critical slope angle at which the drop flows out. Copyright 1997 Academic Press. Copyright 1997Academic Press
Getting Freshman in Equilibrium.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1983
1983-01-01
Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…
A non-equilibrium model for soil heating and moisture transport during extreme surface heating
NASA Astrophysics Data System (ADS)
Massman, W. J.
2015-03-01
With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank-Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m-2. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50-90 °C). Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure), which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different) models developed for somewhat different purposes and for different porous media. Overall, this non-equilibrium
Measurements and Models for Hazardous chemical and Mixed Wastes
Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers
2002-08-21
Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.
Equilibrium Model for Ion Exchange Between Multivalent Cations and Zeolite-A in a Molten Salt
Supathorn Phongikaroon; Michael Simpson
2005-10-01
A two-site equilibrium model that previously only accommodated monovalent cations has been extended to include divalent and trivalent cations for ion exchange between zeolite-A and molten chloride salts, a process being considered for concentrating nuclear fission products into high level waste forms. Equilibrium constants were determined by fitting the model to equilibrium data sets for ion exchange between zeolite-A and Cs ternary salt (CsCl-LiCl-KCl), Rb ternary salt (RbCl-LiCl-KCl), Na ternary salt (NaCl-LiCl-KCl), Sr ternary salt (SrCl2-LiCl-KCl), and U ternary salt (UCl3-LiCl-KCl). The results reveal a good fit between the experimental data sets and the model. The two ion exchange sites, framework sites and occluded sites, demonstrate different relative selectivities for the cations. It was found that Sr2_ is the preferred cation in the ion exchange site, and Cs_ is the preferred cation in the occlusion site. Meanwhile, Li_ has the highest combined selectivity when both ion exchange and occlusion sites are considered. Interestingly, divalent and trivalent species are more preferred in the ion exchange site than the monovalent species with the exception of Li_.
Gray S. Chang
2005-11-01
The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble / block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code - ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
A long-term macroeconomic equilibrium model for the European Community
NASA Astrophysics Data System (ADS)
Rogner, H. H.
1982-04-01
A version of MACRO, a highly aggregated, long-term, two-sector general equilibrium model, developed to examine energy-economy linkage, calibrated for the European community, is presented. Based on a range of energy supply scenarios, the impact of rising energy costs on economic activity, the feasibility of common assumptions about price-induced conservation, and the impact of continued high energy levels of energy imports on trade balance were examined, in order to assess model performance. Results suggest that the model meets the requirements for a consistency check of member country energy strategies.
Modeling of gamma/gamma-prime phase equilibrium in the nickel-aluminum system
NASA Technical Reports Server (NTRS)
Sanchez, J. M.; Barefoot, J. R.; Jarrett, R. N.; Tien, J. K.
1984-01-01
A theoretical model is proposed for the determination of phase equilibrium in alloys, taking into consideration dissimilar lattice parameters. Volume-dependent pair interactions are introduced by means of phenomenological Lennard-Jones potentials and the configurational entropy of the system is treated in the tetrahedron approximation of the cluster variation method. The model is applied to the superalloy-relevant, nickel-rich, gamma/gamma-prime phase region of the Ni-Al phase diagram. The model predicts reasonable values for the lattice parameters and the enthalpy of formation as a function of composition, and the calculated phase diagram closely approximates the experimental diagram.
NASA Astrophysics Data System (ADS)
Furió, C.; Calatayud, M. L.; Bárcenas, S. L.; Padilla, O. M.
2000-09-01
Many of the learning difficulties in the specific domain of chemistry are found not only in the ideas already possessed by students but in the strategic and procedural knowledge that is characteristic of everyday thinking. These defects in procedural knowledge have been described as functional fixedness and functional reduction. This article assesses the procedural difficulties of students (grade 12 and first and third year of university) based on common sense reasoning in two areas of chemistry: chemical equilibrium and geometry and polarity of molecules. In the first area, the theme of external factors affecting equilibria (temperature and concentration change) was selected because the explanations given by the students could be analyzed easily. The existence of a functional fixedness where Le Chatelier's principle was almost exclusively applied by rote could be observed, with this being the cause of the incorrect responses given to the proposed items. Functional fixedness of the Lewis structure also led to an incorrect prediction of molecular geometry. When molecular geometry was correctly determined by the students, it seemed that other methodological or procedural difficulties appeared when the task was to determine molecular polarity. The students showed a tendency, in many cases, to reduce the factors affecting molecular polarity in two possible ways: (a) assuming that polarity depends only on shape (geometric functional reduction) or (b) assuming that molecular polarity depends only on the polarity of bonds (bonding functional reduction).
Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei
2016-01-21
The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.
Cratering saturation and equilibrium: A new model looks at an old problem
NASA Astrophysics Data System (ADS)
Richardson, James E.
2009-12-01
Recent advances in computing technology and our understanding of the processes involved in crater production, ejecta production, and crater erasure have permitted me to develop a highly-detailed Cratered Terrain Evolution Model (CTEM), which can be used to investigate a variety of questions in the study of impact dominated landscapes. In this work, I focus on the manner in which crater densities on impacted surfaces attain equilibrium conditions (commonly called crater 'saturation') for a variety of impactor population size-frequency distributions: from simple, straight-line power-laws, to complex, multi-sloped distributions. This modeling shows that crater density equilibrium generally occurs near observed relative-density ( R) values of 0.1-0.3 (commonly called 'empirical saturation'), but that when the impactor population has a variable power-law slope, crater density equilibrium values will also be variable, and will continue to reflect, or follow the shape of the production population long after the surface has been 'saturated.' In particular, I demonstrate that the overall level of crater density curves for heavily-cratered regions of the lunar surface are indicative of crater density equilibrium having been reached, while the shape of these curves strongly point to a Main Asteroid Belt (MAB) source for impactors in the near-Earth environment, as originally stipulated in Strom et al. [Strom, R.G., Malhotra, R., Ito, T., Yoshida, F., Kring, D.A., 2005. Science 309 (September), 1847-1850]. This modeling also validates the conclusion by Bottke et al. [Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. Icarus 175 (May), 111-140] that the modern-day MAB continues to reflect its ancient size-frequency distribution, even though severely depleted in mass since that time.
Todd T. Nichols; Dean D. Taylor
2003-09-01
A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100° C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110° C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry.s law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry’s law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.
Nichols,T.T.; Taylor,D.D.
2003-09-26
A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.
NASA Astrophysics Data System (ADS)
Montazerolghaem, Maryam; Rahimi, Amir; Seyedeyn-Azad, Fakhry
2010-11-01
In this research, the adsorption of a model sulfur compound, thiophene, from a simulated gasoline onto Ce-Y zeolite in pellet and powder forms was investigated. For this purpose, zeolite Na-Y was synthesized, and Ce-Y zeolite was prepared via solid-state ion-exchanged (SSIE) method. Adsorptive desulfurization of model gasoline was conducted in a batch reactor at ambient conditions to evaluate the equilibrium and kinetics of thiophene adsorption onto Ce-Y zeolite. The equilibrium data were fitted to Langmuire and Toth models. Pseudo-n-order and modified n-order models, LDF-base model, and intra-particle diffusion model were evaluated to fit the kinetic of the adsorption process and to determine the mechanism of it. The corresponding parameters and/or correlation coefficients of each model were reported. The LDF-base model was used also to fit the mass transfer coefficient for both powder and pellet forms of the adsorbent. The best fit estimates for the mass transfer coefficient were obtained 4 × 10-11 m/s and k = 3.1 × 10-12[exp( - t/τ) + 1/(t + 10-4)], for powder and pellet form adsorbents, respectively.
Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.
2012-07-01
We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores and investigate the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compounded with uncertainties induced by other model parameters, make it difficult to discriminate among dynamical models. To address these difficulties, we identify abundance ratios between particular molecules, the measurement of which would have maximal potential for discrimination among the different models examined here. In particular, we find that the ratios between NH{sub 3} and CO, NH{sub 2} and CO, and NH{sub 3} and HCO{sup +} are sensitive to the evolutionary timescale, and that the ratio between HCN and OH is sensitive to the C/O ratio. Finally, we demonstrate that measurements of the central deviation (central depletion or enhancement) of abundances of certain molecules are good indicators of the dynamics of the core.
Non-equilibrium work distributions from fluctuating lattice-Boltzmann model
NASA Astrophysics Data System (ADS)
Nasarayya Chari, S. Siva; Murthy, K. P. N.
2012-06-01
We switch a system from an equilibrium to a non-equilibrium state, by changing the value of a macroscopic control variable as per a specified protocol. The distribution of work performed during the process is obtained for various switching times. The free energy difference (ΔF) is determined from the work fluctuation relation. Some of the work values in the ensemble shall be less than ΔF. We term these as the second law violating switching. We employ fluctuating lattice-Boltzmann model to simulate a switching experiment on an ideal gas system. Our results show that, the probability of violation of second law increases as the switching time increases and in the reversible limit goes to one-half. We explain this result by invoking Callen-Welton theorem.
NASA Astrophysics Data System (ADS)
Zwingmann, W.; Airaj, M.; Appel, L.; Drozdov, V.; Eriksson, L.-G.; Guillerminet, B.; Huysmans, G. T. A.; Imbeaux, F.; McCarthy, P.; Moreau, Ph.; Romanelli, M.; Strand, P.
2008-03-01
The Integrated tokamak modelling taskforce was set up to provide the European scientific community with simulation tools for preparing and analysing discharges of fusion experiments. We will report on recent progress made on the taskforce project on equilibrium and linear stability. A generic data structure has been devised to describe the geometry of a machine and physical processes in the discharge. This data structure is used to interface all individual analysis program within the taskforce. One of the analysis tools, the equilibrium code EFIT__ITM, based on the EFIT code written by L. L. Lao, has been completely rewritten in order to make it suitable for the ITM. It has algorithm enhancements to increase execution speed, and the ability to treat anisotropic pressure and deviation from axisymmetry. The reconstruction code is now completely independent of the machine description. First results on veriflcation and validation of the new tool are presented.
Zwingmann, W.; Airaj, M.; Eriksson, L.-G.; Guillerminet, B.; Huysmans, G. T. A.; Imbeaux, F.; Moreau, Ph.; McCarthy, P.; Strand, P.
2008-03-19
The Integrated tokamak modelling taskforce was set up to provide the European scientific community with simulation tools for preparing and analysing discharges of fusion experiments. We will report on recent progress made on the taskforce project on equilibrium and linear stability. A generic data structure has been devised to describe the geometry of a machine and physical processes in the discharge. This data structure is used to interface all individual analysis program within the taskforce. One of the analysis tools, the equilibrium code EFIT-ITM, based on the EFIT code written by L. L. Lao, has been completely rewritten in order to make it suitable for the ITM. It has algorithm enhancements to increase execution speed, and the ability to treat anisotropic pressure and deviation from axisymmetry. The reconstruction code is now completely independent of the machine description. First results on veriflcation and validation of the new tool are presented.
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
Chemical Mass Balance (CMB) Model
The EPA-CMB Version 8.2 uses source profiles and speciated ambient data to quantify source contributions. Contributions are quantified from chemically distinct source-types rather than from individual emitters.
Thermal Effect in Lipkin Model. I --- Thermal Equilibrium State and Phase Transition ---
NASA Astrophysics Data System (ADS)
Kuriyama, A.; Provid234ncia, J. D.; Tsue, Y.; Yamamura, M.
1995-12-01
We study the thermal effect with the use of Lipkin model. We define the density and entropy operator associated with the mixed state representation of Lipkin model, which has been developed with the aid of auxiliary fermion field. We investigate the thermal equilibrium state and its phase transition. In super phase, the thermal effect breaks the particle-hole pairs with coupled angular momentum 0 and does not lift up nucleons from the lower level to upper one, contrary to the case of normal phase.
Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.
2015-01-01
In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.
An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics
NASA Astrophysics Data System (ADS)
Sui, C.-H.; Lau, K.-M.; Betts, Alan K.
A coupled model is used to study the equilibrium state of the ocean-atmosphere boundary layer in the tropics. The atmospheric model is a one-dimensional thermodynamic model for a partially mixed, partly cloudy convective boundary layer (CBL), including the effects of cloud-top subsidence, surface momentum and heat (latent and sensible) fluxes, and realistic radiative transfer for both shortwaves and longwaves (Betts and Ridgway, 1988; 1989). The oceanic model is a thermodynamic model for a well-mixed layer, with a closure constraint based on a one-dimensional turbulent kinetic energy (TKE) equation following Kraus and Turner (1967). Results of several sets of experiments are reported in this paper. In the first two sets of experiments, with sea surface temperature (SST) specified, we solve the equilibrium state of the coupled system as a function of SST for a given surface wind (case 1) and as a function of surface wind for a given SST (case 2). In both cases the depth of the CBL and the ocean mixed layer (OML) increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The deepening of the equilibrium CBL is primarily linked to the increase of CBL moisture with increasing SST and surface wind. The increase of OML depth and decrease of upwelling are due to a decrease of net downward heat flux with increasing SST and the generation of TKE by increasing wind. In another two sets of experiments, we solve for the coupled ocean-atmosphere model iteratively as a function of surface wind for a fixed upwelling (case 3) and a fixed OML depth (case 4). SST falls with increasing wind in both cases, but the fall is steeper in case 4, because the OML depth is fixed, whereas in case 3 the depth is allowed to deepen and the cooling is spread over a larger mass of water. The decrease of evaporation with increasing wind in case 4 leads to a very dry and shallow CBL. Results of further experiments with surface wind and SST
A numerical code for a three-dimensional magnetospheric MHD equilibrium model
NASA Technical Reports Server (NTRS)
Voigt, G.-H.
1992-01-01
Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.
Majda, Andrew J; Gershgorin, Boris
2011-08-02
Understanding and improving the predictive skill of imperfect models for complex systems in their response to external forcing is a crucial issue in diverse applications such as for example climate change science. Equilibrium statistical fidelity of the imperfect model on suitable coarse-grained variables is a necessary but not sufficient condition for this predictive skill, and elementary examples are given here demonstrating this. Here, with equilibrium statistical fidelity of the imperfect model, a direct link is developed between the predictive fidelity of specific test problems in the training phase where the perfect natural system is observed and the predictive skill for the forced response of the imperfect model by combining appropriate concepts from information theory with other concepts based on the fluctuation dissipation theorem. Here a suite of mathematically tractable models with nontrivial eddy diffusivity, variance, and intermittent non-Gaussian statistics mimicking crucial features of atmospheric tracers together with stochastically forced standard eddy diffusivity approximation with model error are utilized to illustrate this link.
A simple model for regolith formation by chemical weathering
NASA Astrophysics Data System (ADS)
Braun, Jean; Mercier, Jonathan; Guillocheau, Francois; Robin, Cécile
2016-11-01
We present here a new model for the formation of regolith on geological timescales by chemical weathering based on the assumption that the rate of chemical weathering is primarily controlled by the ability of groundwater to transport solute away from the reacting solid-fluid interface and keep the system from reaching equilibrium (saturation). This allows us to specify the rate of propagation of the weathering front as linearly proportional to the pore fluid velocity which we obtain by computing the water table geometry in the regolith layer. The surface of the regolith layer is affected by mass transport and erosion. The main prediction of the model is that the geometry of the regolith, i.e., whether it is thickest beneath topographic highs or topographic lows, is controlled by the value of a dimensionless number, which depends on the square of the surface slope, the hydraulic conductivity, and local precipitation rate, but is independent of the chemical weathering rate. In orogenic environments, where regolith formation by chemical weathering competes with surface erosion, the model predicts that the existence and thickness of the regolith layer are controlled by the value of another dimensionless number which is the ratio between the timescale for erosion and the timescale for weathering. The model also predicts that in anorogenic areas, regolith thickness increases as the square root of time, whereas in orogenic environments, a steady state regolith thickness can be achieved, when the propagation of the weathering front is equal to erosion rate.
Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium
NASA Astrophysics Data System (ADS)
Limpaitoon, Tanachai
This dissertation presents an equilibrium framework for analyzing the impact of cap-and-trade regulation on transmission-constrained electricity market. The cap-and-trade regulation of greenhouse gas emissions has gained momentum in the past decade. The impact of the regulation and its efficacy in the electric power industry depend on interactions of demand elasticity, transmission network, market structure, and strategic behavior of firms. I develop an equilibrium model of an oligopoly electricity market in conjunction with a market for tradable emissions permits to study the implications of such interactions. My goal is to identify inefficiencies that may arise from policy design elements and to avoid any unintended adverse consequences on the electric power sector. I demonstrate this modeling framework with three case studies examining the impact of carbon cap-and-trade regulation. In the first case study, I study equilibrium results under various scenarios of resource ownership and emission targets using a 24-bus IEEE electric transmission system. The second and third case studies apply the equilibrium model to a realistic electricity market, Western Electricity Coordinating Council (WECC) 225-bus system with a detailed representation of the California market. In the first and second case studies, I examine oligopoly in electricity with perfect competition in the permit market. I find that under a stringent emission cap and a high degree of concentration of non-polluting firms, the electricity market is subject to potential abuses of market power. Also, market power can occur in the procurement of non-polluting energy through the permit market when non-polluting resources are geographically concentrated in a transmission-constrained market. In the third case study, I relax the competitive market structure assumption of the permit market by allowing oligopolistic competition in the market through a conjectural variation approach. A short-term equilibrium
Frontiers of chemical bioaccumulation modeling with fish
Predictive models for chemical accumulation in fish have been provided by numerous authors. Historically, these models were developed to describe the accumulation of neutral hydrophobic compounds which undergo little or no biotransformation. In such cases, accumulation can be p...
Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators
Lepikhin, N. D.; Pustovitov, V. D.
2013-08-15
Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p{sub ‖} and p{sub ⊥} (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p{sub ‖} and p{sub ⊥} are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p{sub ‖}/p{sub ⊥} or p{sub ⊥}/p{sub ‖}. A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p{sub ⊥} with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p{sub ⊥} on a magnetic surface. This does not happen in the other more complex case.
NASA Astrophysics Data System (ADS)
Xu, Kun; He, Xin; Cai, Chunpei
2008-07-01
It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inaccuracies are partially attributed to the single temperature approximations in the Navier-Stokes equations. Here, we propose a continuum multiple temperature model based on the Bhatnagar-Gross-Krook (BGK) equation for the non-equilibrium flow computation. In the current model, the Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the energy exchange between the translational and rotational modes. Due to the multiple temperature approximation, the second viscosity coefficient in the Navier-Stokes equations is replaced by the temperature relaxation term. In order to solve the multiple temperature kinetic model, a multiscale gas-kinetic finite volume scheme is proposed, where the gas-kinetic equation is numerically solved for the fluxes to update the macroscopic flow variables inside each control volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface for the fluxes evaluation, the moments of a gas distribution function can be explicitly obtained for the multiple temperature model. Therefore, the kinetic scheme is much more efficient than the DSMC method, especially in the near continuum flow regime. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the computational results are validated in comparison with experimental measurements and DSMC solutions.
Kowalsky, Michael B.; Moridis, George J.
2006-11-29
In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.
Polzer, W.L.; Fuentes, H.R.; Essington, E.H.; Roensch, F.R.
1985-01-01
Sorption isotherms are derived from batch equilibrium data for cobalt, cesium and strontium on Bandelier Tuff. Experiments were conducted at an average temperature of 23/sup 0/C and equilibrium was defined at 48 hours. The solute concentrations ranged from 0 to 500 mg/L. The radioactive isotopes /sup 60/Co, /sup 137/Cs, and /sup 85/Sr were used to trace the sorption of the stable solutes. The Linear, Langmuir, Freundlich and a Modified Freundlich isotherm equations are evaluated. The Modified Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of the three solutes. The empirical constants derived from the Modified Freundlich isotherm equation indicate that under dynamic flow conditions strontium will move most rapidly and cobalt least rapidly. On the other hand, chemical dispersion will be greatest for cesium and least for strontium. Hill Plots of the sorption data suggest that in the region of low saturation sorption of all three solutes is impeded by interactions among sorption sites; cobalt exhibits the greatest effect of interactions and strontium shows only a minimal effect. In the saturation region of 50% or more, sorption of cobalt is enhanced slightly by interactions among sorption sites whereas sorption of cesium and strontium appears to be independent of site interactions. 9 references, 4 figures, 2 tables.
NASA Astrophysics Data System (ADS)
Chun, Paul W.
2005-01-01
Applying the Planck-Benzinger methodology to biological systems, we have established that the negative Gibbs free energy minimum at a well-defined stable temperature, langTSrang, where the bound unavailable energy TΔS° = 0, has its origin in the sequence-specific hydrophobic interactions. Each such system we have examined confirms the existence of a thermodynamic molecular switch wherein a change of sign in [ΔCp°]reaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence a maximum in the related equilibrium constant, Keq. At this temperature, langTSrang, where ΔH°(TS)(-) = ΔG°(TS)(-)min, the maximum work can be accomplished in transpiration, digestion, reproduction or locomotion. In the human body, this temperature is 37°C. The langTSrang values may vary from one living organism to another, but the fact that the value of TΔS°(T) = 0 will not. There is a lower cutoff point, langThrang, where enthalpy is unfavorable but entropy is favorable, i.e. ΔH°(Th)(+) = TΔS°(Th)(+), and an upper limit, langTmrang, above which enthalpy is favorable but entropy is unfavorable, i.e. ΔH°(Tm)(-) = TΔS°(Tm)(-). Only between these two temperature limits, where ΔG°(T) = 0, is the net chemical driving force favorable for such biological processes as protein folding, protein-protein, protein-nucleic acid or protein-membrane interactions, and protein self-assembly. All interacting biological systems examined using the Planck-Benzinger methodology have shown such a thermodynamic switch at the molecular level, suggesting that its existence may be universal.
PHASE-OTI: A pre-equilibrium model code for nuclear reactions calculations
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2009-09-01
The present work focuses on a pre-equilibrium nuclear reaction code (based on the one, two and infinity hypothesis of pre-equilibrium nuclear reactions). In the PHASE-OTI code, pre-equilibrium decays are assumed to be single nucleon emissions, and the statistical probabilities come from the independence of nuclei decay. The code has proved to be a good tool to provide predictions of energy-differential cross sections. The probability of emission was calculated statistically using bases of hybrid model and exciton model. However, more precise depletion factors were used in the calculations. The present calculations were restricted to nucleon-nucleon interactions and one nucleon emission. Program summaryProgram title: PHASE-OTI Catalogue identifier: AEDN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5858 No. of bytes in distributed program, including test data, etc.: 149 405 Distribution format: tar.gz Programming language: Fortran 77 Computer: Pentium 4 and Centrino Duo Operating system: MS Windows RAM: 128 MB Classification: 17.12 Nature of problem: Calculation of the differential cross section for nucleon induced nuclear reaction in the framework of pre-equilibrium emission model. Solution method: Single neutron emission was treated by assuming occurrence of the reaction in successive steps. Each step is called phase because of the phase transition nature of the theory. The probability of emission was calculated statistically using bases of hybrid model [1] and exciton model [2]. However, more precise depletion factor was used in the calculations. Exciton configuration used in the code is that described in earlier work [3]. Restrictions: The program is restricted to single nucleon emission and nucleon
Laser induced plasma on copper target, a non-equilibrium model
Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis
2014-02-15
The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.
Kinetic Monte Carlo models for the study of chemical reactions in the Earth's upper atmosphere
NASA Astrophysics Data System (ADS)
Turchak, L. I.; Shematovich, V. I.
2016-06-01
A stochastic approach to study the non-equilibrium chemistry in the Earth's upper atmosphere is presented, which has been developed over a number of years. Kinetic Monte Carlo models based on this approach are an effective tool for investigating the role of suprathermal particles both in local variations of the atmospheric chemical composition and in the formation of the hot planetary corona.
McCoskey, Jacob K.; Cooke, Gary A.; Herting, Daniel L.
2015-09-23
The purposes of the study described in this document follow; Determine or estimate the thermodynamic equilibrium of gibbsite in contact with two real tank waste supernatant liquids through both dissolution of gibbsite (bottom-up approach) and precipitation of aluminum-bearing solids (top-down approach); determine or estimate the thermodynamic equilibrium of a mixture of gibbsite and real tank waste saltcake in contact with real tank waste supernatant liquid through both dissolution of gibbsite and precipitation of aluminum-bearing solids; and characterize the solids present after equilibrium and precipitation of aluminum-bearing solids.
Testing a Dynamical Equilibrium Model of the Extraplanar Diffuse Ionized Gas in NGC 891
NASA Astrophysics Data System (ADS)
Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S., III; Benjamin, Robert A.
2016-12-01
The observed scale heights of extraplanar diffuse ionized gas (eDIG) layers exceed their thermal scale heights by a factor of a few in the Milky Way and other nearby edge-on disk galaxies. Here, we test a dynamical equilibrium model of the eDIG layer in NGC 891, where we ask whether the thermal, turbulent, magnetic field, and cosmic-ray pressure gradients are sufficient to support the layer. In optical emission-line spectroscopy from the SparsePak integral field unit on the WIYN 3.5 m telescope, the Hα emission in position-velocity space suggests that the eDIG is found in a ring between galactocentric radii of {R}\\min ≤slant R≤slant 8 {kpc}, where {R}\\min ≥slant 2 {kpc}. We find that the thermal ({σ }{th}=11 km s-1) and turbulent ({σ }{turb}=25 km s-1) velocity dispersions are insufficient to satisfy the hydrostatic equilibrium equation given an exponential electron scale height of {h}z=1.0 {kpc}. Using a literature analysis of radio continuum observations from the CHANG-ES survey, we demonstrate that the magnetic field and cosmic-ray pressure gradients are sufficient to stably support the gas at R≥slant 8 kpc if the cosmic rays are sufficiently coupled to the system ({γ }{cr}=1.45). Thus, a stable dynamical equilibrium model is viable only if the eDIG is found in a thin ring around R = 8 kpc, and nonequilibrium models such as a galactic fountain flow are of interest for further study.
NASA Astrophysics Data System (ADS)
Schu, Kathryn L.
Economy-energy-environment models are the mainstay of economic assessments of policies to reduce carbon dioxide (CO2) emissions, yet their empirical basis is often criticized as being weak. This thesis addresses these limitations by constructing econometrically calibrated models in two policy areas. The first is a 35-sector computable general equilibrium (CGE) model of the U.S. economy which analyzes the uncertain impacts of CO2 emission abatement. Econometric modeling of sectors' nested constant elasticity of substitution (CES) cost functions based on a 45-year price-quantity dataset yields estimates of capital-labor-energy-material input substitution elasticities and biases of technical change that are incorporated into the CGE model. I use the estimated standard errors and variance-covariance matrices to construct the joint distribution of the parameters of the economy's supply side, which I sample to perform Monte Carlo baseline and counterfactual runs of the model. The resulting probabilistic abatement cost estimates highlight the importance of the uncertainty in baseline emissions growth. The second model is an equilibrium simulation of the market for new vehicles which I use to assess the response of vehicle prices, sales and mileage to CO2 taxes and increased corporate average fuel economy (CAFE) standards. I specify an econometric model of a representative consumer's vehicle preferences using a nested CES expenditure function which incorporates mileage and other characteristics in addition to prices, and develop a novel calibration algorithm to link this structure to vehicle model supplies by manufacturers engaged in Bertrand competition. CO2 taxes' effects on gasoline prices reduce vehicle sales and manufacturers' profits if vehicles' mileage is fixed, but these losses shrink once mileage can be adjusted. Accelerated CAFE standards induce manufacturers to pay fines for noncompliance rather than incur the higher costs of radical mileage improvements
Coulombic Models in Chemical Bonding.
ERIC Educational Resources Information Center
Sacks, Lawrence J.
1986-01-01
Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)
The Quantum-Kinetic Chemical Reaction Model for Navier-Stokes Codes
NASA Astrophysics Data System (ADS)
Gallis, Michael A.; Wagnild, Ross M.; Torczynski, John R.
2013-11-01
The Quantum-Kinetic chemical reaction model of Bird is formulated as a non-equilibrium chemical reaction model for Navier-Stokes codes. The model is based solely on thermophysical, molecular-level information and is capable of reproducing measured equilibrium reaction rates without using any experimentally measured reaction-rate information. The model recognizes the principal role of vibrational energy in overcoming the reaction energy threshold. The effect of rotational non-equilibrium is introduced as a perturbation to the effect of vibrational non-equilibrium. Since the model uses only molecular-level properties, it is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. This ability is demonstrated in the context of both Navier-Stokes and DSMC codes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Regularized model of post-touchdown configurations in electrostatic MEMS: Equilibrium analysis
NASA Astrophysics Data System (ADS)
Lindsay, A. E.; Lega, J.; Glasner, K. B.
2014-07-01
In canonical models of Micro-Electro Mechanical Systems (MEMS), an event called touchdown whereby the electrical components of the device come into contact, is characterized by a blow up in the governing equations and a non-physical divergence of the electric field. In the present work, we propose novel regularized governing equations whose solutions remain finite at touchdown and exhibit additional dynamics beyond this initial event before eventually relaxing to new stable equilibria. We employ techniques from variational calculus, dynamical systems and singular perturbation theory to obtain a detailed understanding of the properties and equilibrium solutions of the regularized family of equations.
NASA Astrophysics Data System (ADS)
Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano
2014-05-01
Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the
Modeling the dynamic equilibrium of objects weakened by thin low-strength inclusions
Skopetskii, V.V.; Deineka, V.S.; Marchenko, O.A.
1995-11-01
Successful development of hydroelectric power as well as the use and protection of the resources of the Azov/Black Sea basin require formulation and solution of design and control problems for hydroengineering and coastal constructions. The authors have developed two-dimensional mathematical models of dynamic equilibrium of various hydroengineering and coastal constructions with weak thin sections of natural or artificial origin (low-strength inclusions, cracks, technological seams), where shearing strength conditions must be considered. These models are applicable to objects whose dynamic characteristics can be fully described by considering their profile cross-sections (dams, coastal slopes, wave breakers). The weak thin sections are modeled by cuts with appropriate contact conditions. Finite-element algorithms have been developed for solving the corresponding initial-boundary-value problems, and a model example has been solved.
Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models
NASA Astrophysics Data System (ADS)
Koks, E. E.; Carrera, L.; Jonkeren, O.; Aerts, J. C. J. H.; Husby, T. G.; Thissen, M.; Standardi, G.; Mysiak, J.
2015-11-01
A large variety of models has been developed to assess the economic losses of disasters, of which the most common ones are Input-Output (IO) and Computable General Equilibrium (CGE) models. In addition, an increasing numbers of scholars has developed hybrid approaches; one that combines both or either of them in combination with non-economic methods. While both IO and CGE models are widely used, they are mainly compared on theoretical grounds. Few studies have compared disaster impacts of different model types in a systematic way and for the same geographical area, using similar input data. Such a comparison is valuable from both a scientific and policy perspective as the magnitude and the spatial distribution of the estimated losses are likely to vary with the chosen modelling approach (IO, CGE, or hybrid). Hence, regional disaster impact loss estimates resulting from a range of models facilitates better decisions and policy making. Therefore, in this study we analyze one specific case study, using three regional models: two hybrid IO models and a regionally calibrated version of a global CGE model. The case study concerns two flood scenarios in the Po-river basin in Italy. Modelling results indicate that the difference in estimated total (national) economic losses and the regional distribution of those losses may vary by up to a factor of seven between the three models, depending on the type of recovery path. Total economic impact, comprising all Italian regions, is negative in all models though.
Regional disaster impact analysis: comparing input-output and computable general equilibrium models
NASA Astrophysics Data System (ADS)
Koks, Elco E.; Carrera, Lorenzo; Jonkeren, Olaf; Aerts, Jeroen C. J. H.; Husby, Trond G.; Thissen, Mark; Standardi, Gabriele; Mysiak, Jaroslav
2016-08-01
A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of them in combination with noneconomic methods. While both IO and CGE models are widely used, they are mainly compared on theoretical grounds. Few studies have compared disaster impacts of different model types in a systematic way and for the same geographical area, using similar input data. Such a comparison is valuable from both a scientific and policy perspective as the magnitude and the spatial distribution of the estimated losses are born likely to vary with the chosen modelling approach (IO, CGE, or hybrid). Hence, regional disaster impact loss estimates resulting from a range of models facilitate better decisions and policy making. Therefore, this study analyses the economic consequences for a specific case study, using three regional disaster impact models: two hybrid IO models and a CGE model. The case study concerns two flood scenarios in the Po River basin in Italy. Modelling results indicate that the difference in estimated total (national) economic losses and the regional distribution of those losses may vary by up to a factor of 7 between the three models, depending on the type of recovery path. Total economic impact, comprising all Italian regions, is negative in all models though.
A stochastic equilibrium model for the North American natural gas market
NASA Astrophysics Data System (ADS)
Zhuang, Jifang
This dissertation is an endeavor in the field of energy modeling for the North American natural gas market using a mixed complementarity formulation combined with the stochastic programming. The genesis of the stochastic equilibrium model presented in this dissertation is the deterministic market equilibrium model developed in [Gabriel, Kiet and Zhuang, 2005]. Based on some improvements that we made to this model, including proving new existence and uniqueness results, we present a multistage stochastic equilibrium model with uncertain demand for the deregulated North American natural gas market using the recourse method of the stochastic programming. The market participants considered by the model are pipeline operators, producers, storage operators, peak gas operators, marketers and consumers. Pipeline operators are described with regulated tariffs but also involve "congestion pricing" as a mechanism to allocate scarce pipeline capacity. Marketers are modeled as Nash-Cournot players in sales to the residential and commercial sectors but price-takers in all other aspects. Consumers are represented by demand functions in the marketers' problem. Producers, storage operators and peak gas operators are price-takers consistent with perfect competition. Also, two types of the natural gas markets are included: the long-term and spot markets. Market participants make both high-level planning decisions (first-stage decisions) in the long-term market and daily operational decisions (recourse decisions) in the spot market subject to their engineering, resource and political constraints, resource constraints as well as market constraints on both the demand and the supply side, so as to simultaneously maximize their expected profits given others' decisions. The model is shown to be an instance of a mixed complementarity problem (MiCP) under minor conditions. The MiCP formulation is derived from applying the Karush-Kuhn-Tucker optimality conditions of the optimization problems
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Gupta, Roop N.; Shinn, Judy L.
1989-01-01
The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.
NASA Technical Reports Server (NTRS)
Miner, E. W.; Anderson, E. C.; Lewis, C. H.
1971-01-01
A computer program is described in detail for laminar, transitional, and/or turbulent boundary-layer flows of non-reacting (perfect gas) and reacting gas mixtures in chemical equilibrium. An implicit finite difference scheme was developed for both two dimensional and axisymmetric flows over bodies, and in rocket nozzles and hypervelocity wind tunnel nozzles. The program, program subroutines, variables, and input and output data are described. Also included is the output from a sample calculation of fully developed turbulent, perfect gas flow over a flat plate. Input data coding forms and a FORTRAN source listing of the program are included. A method is discussed for obtaining thermodynamic and transport property data which are required to perform boundary-layer calculations for reacting gases in chemical equilibrium.
2008-09-19
chemical study of the Fe(III)-desferrioxamine B siderophore complex—Electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation...Fitzwater, 1988). Siderophores , an important class of organic acids with large complexation constants for Fe, are produced by sev- eral organisms in order...to overcome iron deficiencies (Wie- derhold et al., 2006). Due to their exceptionally high affinity for Fe, siderophores complex Fe(III) by extracting
Prediction of Chemical Function: Model Development and ...
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi
"Assessing the RAFT equilibrium constant via model systems: an EPR study"--response to a comment.
Meiser, Wibke; Buback, Michael
2012-08-14
We have presented an EPR-based approach for deducing the RAFT equilibrium constant, K(eq), of a dithiobenzoate-mediated system [Meiser, W. and Buback M. Macromol. Rapid Commun. 2011, 32, 1490]. Our value is by four orders of magnitude below K(eq) from ab initio calculations for the identical monomer-free system. Junkers et al. [Macromol. Rapid Commun. 2011, 32, 1891] claim that our EPR approach would be model dependent and our data could be equally well fitted by assuming slow addition of radicals to the RAFT agent and slow fragmentation of the so-obtained intermediate radical as well as high cross-termination rate. By identification of all side products, our EPR-based method is shown to be model independent and to provide reliable K(eq) values, which demonstrate the validity of the intermediate radical termination model.
Regime switches induced by supply-demand equilibrium: a model for power-price dynamics
NASA Astrophysics Data System (ADS)
Mari, Carlo; Tondini, Daniela
2010-11-01
Regime-switching models can be used to describe stochastic movements of electricity prices in deregulated markets. This paper shows that regime-switching dynamics arise quite naturally in an equilibrium context in which the functional form of the supply curve is described by a two-state Markov process. This mechanism is responsible for random switches between regimes and it allows one to describe the main features of the price-formation process. With the interplay between demand and supply, the proposed methodology can be used to capture shortages in electricity generation, forced outages, and peaks in electricity demand. As an example of application, a two-regime model specification is proposed, and it will be shown that the empirical analysis, performed by estimating using the model on the California power market, offers an interesting agreement with observed data.
Initial fluxon models of CME onset: loss-of-equilibrium, breakout, tether-cutting
NASA Astrophysics Data System (ADS)
Deforest, C.
2005-12-01
I will present results from initial models of CME onset using a new force-free magnetic evolution code, FLUX, that uses the novel fluxon approach to MHD modeling. FLUX is a quasi-Lagrangian solver that is free of numerical reconnection and that I am making available as free software. It is currently suitable for studying evolving force-free equilibria in the presence of only controlled reconnection; development work is ongoing to add plasma static and dynamic forces. I plan to consider three simple configurations typical of three current genres of CME onset model: loss of equilibrium under smooth motion by the photosphere; "tether-cutting" (reconnection of a containment field underneath a twisted prominence field); and "breakout" (reconnection of a containment field above a twisted prominence field). In each case I will estimate the magnetic energy available to accelerate mass, and discuss the resulting shape of the remnant open field regions ("dimming regions") after liftoff.
Hewitson, Peter; Sutherland, Ian; Kostanyan, Artak E; Voshkin, Andrei A; Ignatova, Svetlana
2013-08-16
This paper describes an equilibrium cell model for intermittent counter-current extraction that is analytically solved for the first time for continuous sample injection between a pair of columns. The model is compared with practice for injections of a model mixture of compounds on a standard high-performance counter-current chromatography instrument giving good agreement for compound elution order and the times to maximum concentration for the eluted components. An improved design of end fittings for the counter-current chromatography bobbins is described which permits on-column switching of the mobile and stationary phases. This on-column switching successfully eliminates the displaced stationary phase seen in fractions when operating ICcE with standard flying leads and gives a 6% reduction in the retention time of compounds and improved resolution due to the elimination of the time delay required to pump the previous mobile phase from standard flying leads.
Systematic validation of non-equilibrium thermochemical models using Bayesian inference
NASA Astrophysics Data System (ADS)
Miki, Kenji; Panesi, Marco; Prudhomme, Serge
2015-10-01
The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.
Pillai, Saumya S; Mullassery, Manohar D; Fernandez, Noeline B; Girija, N; Geetha, P; Koshy, Mathew
2013-06-01
The biosorption capacity of chemically modified potato starch (CPS) for Cr(VI) from aqueous solution was investigated. The materials derived from carbohydrates are biodegradable and are generally regarded as safe and environmentally acceptable. The hydroxyl, carboxyl and carbonyl groups are responsible for the biosorption process. In the present study, the influence of various important parameters such as pH, time, biosorbent dose and initial Cr(VI) concentration on the biosorption capacity were investigated. The isotherms such as Langmuir, Freundlich and Tempkin were studied. The Freundlich and the Redlich-Peterson isotherms had been well fitted the biosorption of Cr(VI) with chemically modified potato starch. The kinetics of Cr(VI) removal using chemically modified potato starch was well explained by second-order kinetic model. The thermodynamic parameters were also evaluated from the biosorption measurements. Among the various desorbing agents tested, 98.2 percent chromium recovery was achieved with 0.1molL(-1) NaOH.
Phase-equilibrium modelling of blueschists from the Vestgötabreen Complex (SW Svalbard)
NASA Astrophysics Data System (ADS)
Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Lorenz, Henning; Kozub, Gabriela
2014-05-01
In Svalbard Archipelago, blueschists are known from Motalafjella area (Oscar II Land). They belong to the Vestgötabreen Complex, which is divided into a Lower (LU) and Upper Unit (UU). The former is composed of high pressure-low temperature (HP-LT) metasediments. The latter consists mainly of blueschists and eclogites. Various radiometric dating yielded an age of c. 470 Ma for the HP-LT metamorphism in the Motalafjella area. The pressure-temperature (P-T) conditions for carpholite-bearing schists from LU have been estimated to c. 16 kbar and 330-450°C (Agard et al., 2005), whereas eclogites from UU indicate peak conditions of 18-24 kbar and 580-640°C (Hirajima et al., 1988). During the fieldwork in 2011, blueschists were also discovered at the western coast of Nordenskiöld Land. They form isolated bodies enclosed within metasedimentary units, but their tectonic position is still under debate. Preliminary P-T estimates indicate peak pressure conditions of c. 17 kbar and 480°C (Kośmińska et al., in revision). The age of metamorphism is unknown, however P-T conditions as well as metamorphic assemblage suggest that the blueschists from Nordenskiöld Land may be an equivalent of these in the Vestgötabreen Complex. Samples of blueschists from UU have been collected on Skipperryggen. They consist mainly of glaucophane, garnet, white micas (phengite and paragonite), rutile, lawsonite and chlorite. The garnet typically forms euhedral to subhedral porphyroblasts which contain voluminous inclusions. Its composition varies from Alm63Prp13Grs22Sps2 in the cores to Alm60Prp19Grs20Sps1 in the rims. The change in chemical zoning is rather gradual. The garnet shows bowl-shaped pyrope profiles and opposite almandine trends. The P-T conditions were estimated using phase equilibrium modeling. Preliminary modeling in the NCKFMMnASHTO system yields peak pressure conditions at c. 20 kbar and 520°C. The estimated P-T conditions for the blueschists from Skipperryggen are in
Castro Ospina, J.M.
1984-01-01
A review is presented of some bioeconomic mathematical models that incorporate constant harvesting. This is followed by a complete qualitative and quantitative analysis of competition and predator-prey Lotka-Volterra bioeconomic models. The trivial and non-trivial equilibrium points of these systems are analyzed and the Routh-Hurwitz criteria are used to determine the necessary and sufficient conditions for stability in relation to the effort parameter eta. Some numerical examples that illustrate the corresponding qualitative stability analysis for the open access and bioeconomic equilibria for the competition and predator-prey systems are given. In the numerical examples analyzed, three different open access and bioeconomic equilibria were found. The non-trivial equilibrium points are unstable and infeasible. A critical level of effort was also derived for the predator-prey numerical example and corresponding management policies were formulated. When only the predator is harvested, it can be shown that the system under analysis undergoes a critical bifurcation at the point E/sub c/.
Raut, L K
1991-01-01
A study is conducted in attempts to increase the understanding of the links between macroeconomic effects and causes of population growth in formulating policy. An overlapping generations general equilibrium model is employed aggregating household decisions about fertility, savings, and investment in the human capital of children with the objective of studying intertemporal relationships among population growth, income distribution, inter-generation social mobility, skill composition of the labor force, and household income. As a result of endogenous fertility, the equilibrium path attains steady state from the second generation. Income tax transfer, child taxation, and social security taxation policies are also examined in the paper. A structural explanation is given for the inverse household income-child quantity and negative child quality-quantity relationships seen in developing countries. In a Cobb-Douglas economy, these relationships hold in the short-run, potentially working over the long-run in other economies. Overall, the model shows that group interests may hinder emergence of perfect capital markets with private initiatives. Where developing countries are concerned, these results have strong implications for population policy. A policy mix of building good quality schools, or subsidizing rural education, introducing a formal social security program, and providing high-yield, risk-free investments, banking, and insurance services to the poor is recommended.
Stender, Michael E; Regueiro, Richard A; Klisch, Stephen M; Ferguson, Virginia L
2015-08-01
Traumatic injuries and gradual wear-and-tear of articular cartilage (AC) that can lead to osteoarthritis (OA) have been hypothesized to result from tissue damage to AC. In this study, a previous equilibrium constitutive model of AC was extended to a constitutive damage articular cartilage (CDAC) model. In particular, anisotropic collagen (COL) fibril damage and isotropic glycosaminoglycan (GAG) damage were considered in a 3D formulation. In the CDAC model, time-dependent effects, such as viscoelasticity and poroelasticity, were neglected, and thus all results represent the equilibrium response after all time-dependent effects have dissipated. The resulting CDAC model was implemented in two different finite-element models. The first simulated uniaxial tensile loading to failure, while the second simulated spherical indentation with a rigid indenter displaced into a bilayer AC sample. Uniaxial tension to failure simulations were performed for three COL fibril Lagrangian failure strain (i.e., the maximum elastic COL fibril strain) values of 15%, 30%, and 45%, while spherical indentation simulations were performed with a COL fibril Lagrangian failure strain of 15%. GAG damage parameters were held constant for all simulations. Our results indicated that the equilibrium postyield tensile response of AC and the macroscopic tissue failure strain are highly dependent on COL fibril Lagrangian failure strain. The uniaxial tensile response consisted of an initial nonlinear ramp region due to the recruitment of intact fibrils followed by a rapid decrease in tissue stress at initial COL fibril failure, as a result of COL fibril damage which continued until ultimate tissue failure. In the spherical indentation simulation, damage to both the COL fibril and GAG constituents was located only in the superficial zone (SZ) and near the articular surface with tissue thickening following unloading. Spherical indentation simulation results are in agreement with published experimental
Ian Sue Wing
2006-04-18
The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal
Williams, David; Gorski, Jack
1972-01-01
Kinetic and equilibrium binding studies indicate that the process by which the complex of estradiol-binding protein is transferred to the cell nuclei is very rapid and is readily reversible in intact cells; that is, the cytosol and nuclear binding sites are in a rapidly reversible equilibrium. Binding of the hormone appears to shift this equilibrium such that a large percent of the filled binding sites become associated with the nuclear fraction. A model is presented to show that the quantity of filled nuclear binding sites present at any estradiol concentration can be determined strictly by the initial binding between the hormone and the cytosol binding sites. PMID:4508334
Non-local thermodynamic equilibrium 1.5D modeling of red giant stars
Young, Mitchell E.; Short, C. Ian
2014-05-20
Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Five different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.
Chemical Kinetic Modeling of Advanced Transportation Fuels
PItz, W J; Westbrook, C K; Herbinet, O
2009-01-20
Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
El-Zawahry, Manal M; Abdelghaffar, Fatma; Abdelghaffar, Rehab A; Hassabo, Ahmed G
2016-01-20
New natural biopolymer composite was prepared using extracted cellulose from an environmentally problematic water hyacinth Eichhornia crassipes (EC). The extracted cellulose was functionalized by chitosan and TiO2 nanoparticles to form EC/Chitosan (EC/Cs) composite network. Surface characterization of EC/Cs natural biopolymer composite was examined by spectrum analysis FT-IR, specific surface area, micropore volume, pore width and SEM. Furthermore, the sorption experiments were carried out as a function of pH, various initial dye concentration and contact time. Experiment results showed that the EC/Cs composite have high ability to remove C.I. Reactive Black 5 from its dye-bath effluent. The equilibrium sorption evaluation of RB5 conformed and fitted well to Langmuir adsorption isotherm models and the maximum sorption capacity was 0.606 mg/g. The kinetic adsorption models followed pseudo-second order model and the dye intra-particle diffusion may suggesting a chemical reaction mechanism. Further, it was obvious from the investigation that this composite could be applied as a promising low cost adsorbent for anionic dye removal from aqueous solutions.
NASA Astrophysics Data System (ADS)
Van Ende, Marie-Aline; Jung, In-Ho
2017-02-01
The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.
Equilibrium distributions and relaxation times in gaslike economic models: an analytical derivation.
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.
NASA Technical Reports Server (NTRS)
Harrison, D. E.; Holland, W. R.
1981-01-01
A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.
Assessing the RAFT equilibrium constant via model systems: an EPR study.
Meiser, Wibke; Buback, Michael
2011-09-15
Reversible addition-fragmentation chain transfer (RAFT) equilibrium constants, K(eq), for the model system cyano-iso-propyl dithiobenzoate (CPDB) - cyano-iso-propyl radical (CIP) have been deduced via electron paramagnetic resonance (EPR) spectroscopy. The CIP species is produced by thermal decomposition of azobis-iso-butyronitrile (AIBN). In solution of toluene at 70 °C, K(eq) has been determined to be (9 ± 1) L · mol(-1). Measurement of K(eq) = k(ad)/k(β) between 60 and 100 °C yields ΔE(a) = (-28 ± 4) kJ · mol(-1) as the difference in the activation energies of k(ad) and k(β). The data measured on the model system are indicative of fast fragmentation of the intermediate radical produced by addition of CIP to CPDB.
NASA Astrophysics Data System (ADS)
Golinelli, Olivier; Mallick, Kirone
2006-10-01
The asymmetric simple exclusion process (ASEP) plays the role of a paradigm in non-equilibrium statistical mechanics. We review exact results for the ASEP obtained by the Bethe ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov matrix of the ASEP are derived from the algebraic Bethe ansatz. Using these equations we explain how to calculate the spectral gap of the model and how global spectral properties such as the existence of multiplets can be predicted. An extension of the Bethe ansatz leads to an analytic expression for the large deviation function of the current in the ASEP that satisfies the Gallavotti-Cohen relation. Finally, we describe some variants of the ASEP that are also solvable by the Bethe ansatz.
Slicing the three-dimensional Ising model: Critical equilibrium and coarsening dynamics.
Arenzon, Jeferson J; Cugliandolo, Leticia F; Picco, Marco
2015-03-01
We study the evolution of spin clusters on two-dimensional slices of the three-dimensional Ising model in contact with a heat bath after a sudden quench to a subcritical temperature. We analyze the evolution of some simple initial configurations, such as a sphere and a torus, of one phase embedded into the other, to confirm that their area disappears linearly with time and to establish the temperature dependence of the prefactor in each case. Two generic kinds of initial states are later used: equilibrium configurations either at infinite temperature or at the paramagnetic-ferromagnetic phase transition. We investigate the morphological domain structure of the coarsening configurations on two-dimensional slices of the three-dimensional system, compared with the behavior of the bidimensional model.
NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.
Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco
2013-12-31
An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.
Entropy analysis on non-equilibrium two-phase flow models
Karwat, H.; Ruan, Y.Q.
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Li, Hua; Lai, Fukun; Luo, Rongmo
2009-11-17
A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.
Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes
NASA Astrophysics Data System (ADS)
Bravo, C.; Rojas, M.; Anderson, B. M.; Mackintosh, A. N.; Sagredo, E.; Moreno, P. I.
2015-03-01
Glacier behaviour during the mid-Holocene (MH, 6000 year BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeo-climatic signals. We examine the climatic forcing of glacier expansion in the MH by evaluating modelled glacier equilibrium line altitude (ELA) and climate conditions during the MH compared with pre-industrial time (PI, year 1750) in the mid latitudes of the Southern Hemisphere, specifically in Patagonia and the South Island of New Zealand. Climate conditions for the MH are obtained from PMIP2 models simulations, which in turn force a simple glacier mass balance model to simulate changes in equilibrium-line altitude during this period. Climate conditions during the MH show significantly (p ≤ 0.05) colder temperatures in summer, autumn and winter, and significantly (p ≤ 0.05) warmer temperatures in spring. These changes are a consequence of insolation differences between the two periods. Precipitation does not show significant changes, but exhibits a temporal pattern with less precipitation from August to September and more precipitation from October to April during the MH. In response to these climatic changes, glaciers in both analysed regions have an ELA that is 15-33 m lower than PI during the MH. The main causes of this difference are the colder temperature during the MH, reinforcing previous results that mid-latitude glaciers are more sensitive to temperature change compared to precipitation changes. Differences in temperature have a dual effect on mass balance. First, during summer and early autumn less energy is available for melting. Second in late autumn and winter, lower temperatures cause more precipitation to fall as snow rather than rain, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed in the mid Holocene in both South America
The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate
NASA Technical Reports Server (NTRS)
Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.
1994-01-01
A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated