Science.gov

Sample records for chemical flowsheet conditions

  1. Use of Flowsheet Monitoring to Perform Environmental Evaluation of Chemical Process Flowsheets

    EPA Science Inventory

    Flowsheet monitoring interfaces have been proposed to the Cape-Open Laboratories Network to enable development of applications that access to multiple parts of the flowsheet or its thermodynamic models, without interfering with the flowsheet itself. These flowsheet monitoring app...

  2. Use of Flowsheet Monitoring to Perform Environmental Evaluation of Chemical Process Flowsheets

    EPA Science Inventory

    Flowsheet monitoring interfaces have been proposed to the Cape-Open Laboratories Network to enable development of applications that access to multiple parts of the flowsheet or its thermodynamic models, without interfering with the flowsheet itself. These flowsheet monitoring app...

  3. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    SciTech Connect

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.; Newell, J. David; Luther, Michelle C.; Brandenburg, Clayton H.

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  4. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    SciTech Connect

    Zamecnik, J. R.; Edwards, T. B.

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  5. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  6. Collaborative flowsheet development studies using cobalt dicarbollide and phosphine oxide for the partitioning of radionuclides from Idaho Chemical Processing Plant high-activity liquid waste with centrifugal contactors

    SciTech Connect

    Law, J.D.; Herbst, R.S.; Todd, T.A.

    1996-12-31

    Two solvent extraction technologies under development in Russia for the partitioning of radionuclides from radioactive wastes were tested at the Idaho Chemical Processing Plant (ICPP) with simulated high-activity liquid waste (HAW) on a continuous basis using 24 stages of 2-cm diameter centrifugal contactors. Two flowsheet tests were conducted with chlorinated cobalt dicarbollide (ChCoDiC) to evaluate the separation of cesium and strontium from ICPP HAW. Also, a flowsheet test was performed with a derivative of phosphine oxide (POR) to evaluate the separation of actinides, rare earths, and technetium from ICPP HAW. All experiments utilized a non-radioactive HAW simulant prepared to emulate the macro (or matrix) constituents of actual ICPP HAW at their average tank composition. The behavior of the species of interest was monitored using the stable forms of Sr and Cs, europium as a surrogate for americium, and rhenium as a surrogate for technetium. Removal efficiencies and distribution coefficients were determined for each flowsheet at steady-state conditions. Results of this testing indicate the POR and ChCoDiC processes can be used to effectively treat ICPP HAW. This series of tests is a continuation of ongoing efforts to evaluate the applicability of these Russian developed technologies to U.S. nuclear wastes under the auspices of a joint program between the U.S. Department of Energy and the Russian Ministry of Atomic Energy.

  7. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  8. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    SciTech Connect

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  9. Nitric acid flowsheet with late wash PHA testing. Task Technical Plan, Integrated DWPF Melter System

    SciTech Connect

    Zamecnik, J.R.

    1993-10-28

    This Task Technical Plan outlines the activities to be conducted in the Integrated DWPF Melter System (IDMS) in ongoing support of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) utilizing the Nitric Acid Flowsheet in the Sludge Receipt and Adjustment Tank (SRAT) and Precipitate Hydrolysis Aqueous (PHA) produced by the Late Wash Flowsheet. The IDMS facility is to be operated over a series of runs (2 to 4) using the Nitric Acid Flowsheet. The PHA will be produced with the Late Wash Flowsheet in the Precipitate Hydrolysis Experimental Facility (PHEF). All operating conditions shall simulate the expected DWPF operating conditions as closely as possible. The task objectives are to perform at least two IDMS runs with as many operating conditions as possible at nominal DWPF conditions. The major purposes of these runs are twofold: verify that the combined Late Wash and Nitric Acid flowsheets produce glass of acceptable quality without additional changes to process equipment, and determine the reproducibility of data from run to run. These runs at nominal conditions will be compared to previous runs made with PHA produced from the Late Wash flowsheet and with the Nitric Acid flowsheet in the SRAT (Purex 4 and Purex 5).

  10. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  11. Clean Salt integrated flowsheet

    SciTech Connect

    Lunsford, T.R.

    1994-09-27

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford`s high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported.

  12. Classic Nuclear Fuel Reprocessing Flowsheet

    SciTech Connect

    Fallgren, Andrew James

    2015-02-13

    This is a flowsheet as well as a series of subsheets to be used for discussion on the standard design of a reprocessing plant. This flowsheet consists of four main sections: offgas handling, separations, solvent wash, and acid recycle. As well as having the main flowsheet, subsections have been broken off into their own sheets to provide for larger font and ease of printing.

  13. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    SciTech Connect

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    Flowsheet testing was performed to further develop the nitric/glycolic/formic acid flowsheet as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All other processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Eight runs were performed in total, including the baseline run. The baseline nitric/formic flowsheet run was extremely difficult to process under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. In the nitric/glycolic/formic flowsheet runs, mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. It is recommended that DWPF continue to support development of the nitric/glycolic/formic flowsheet. Although experience is limited at this time, this flowsheet meets or outperforms the current flowsheet in many regards, including off-gas generation, mercury removal, product rheology and general ease of processing. Additional flowsheet testing will allow for a more thorough understanding of the chemistry and effectiveness of the flowsheet over a range of sludge compositions and formic/glycolic ratios. This testing will also show whether the REDOX and metal solubility concerns with this change in the flowsheet can be addressed by just adjusting the volumes of

  14. TCAP Aluminium Dissolution Flowsheet Basis

    SciTech Connect

    PIERCE, ROBERTA.

    2004-03-01

    The Actinide Technology Section has proposed the use of an nitric acid HNO3 and potassium fluoride KF flowsheet for stripping palladium Pd from palladium-coated kieselguhr Pd/K and removing aluminum (Al) metal foam from the TCAP coils. The basis for the HNO3-KF flowsheet is drawn from many sources. A brief review of the sources will be presented. The basic flowsheet involves three process steps, each with its own chemistry.

  15. Hot Experimental Facility reference flowsheet

    SciTech Connect

    North, E.D.

    1982-01-01

    This paper is a useful set of background information of HEF flowsheets, although many changes have been made in the past three years. The HEF reference flowsheet is a modified high-acid PUREX flowsheet capable of operating in the coprocessing mode or with full partitioning of U and Pu. Adequate decontamination factors are provided to purify high-burnup, fast breeder-reactor fuels to levels required for recycle back to a fuel fabrication facility. Product streams are mixed U-Pu oxide and uranium oxide. No contaminated liquid wastes are intentionally discharged to the environment. All wastes are solidified and packaged for appropriate disposal. Acid and water are recovered for internal recycle. Excess water is treated and discharged from the plant stack. Several changes have been made in the reference flowsheet since that time, and these are noted briefly.

  16. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    SciTech Connect

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.; Luther, M. C.; Newell, J. D.; Woodham, W. H.

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  17. Ruthenium volatility from the vitrification of melter feeds prepared using the Nitric Acid Flowsheet

    SciTech Connect

    Hutson, N.D.

    1992-10-22

    The present DWPF flowsheet calls for the chemical treatment of waste sludge with 90 wt% formic acid prior to the addition of the Precipitate Hydrolysis Aqueous (PHA) product. An alternative processing methodology, denoted the ``Nitric Acid Flowsheet``, has been proposed. In the application of this flowsheet, nitric acid would be used to neutralize sludge base components (hydroxides and carbonates) prior to the addition of late wash PHA. The late wash PHA will contain sufficient quantities of formic acid to adequately complete necessary reduction-oxidation (REDOX) reactions.

  18. An evaluation of mercury removal in the IDMS using the nitric acid flowsheet

    SciTech Connect

    Hutson, N.D.

    1992-10-22

    The present DWPF flowsheet calls for the chemical treatment of waste sludge with 90 wt % formic acid prior to the addition of the Precipitate Hydrolysis Aqueous (PHA) product. An alternative processing methodology, denoted the ``Nitric Acid Flowsheet``, has been proposed. in the application of this flowsheet, nitric acid would be used to neutralize sludge base components (hydroxides and carbonates) prior to the addition of late wash PHA. The late wash PHA will contain sufficient quantities of formic acid to adequately complete necessary reduction-oxidation (REDOX) reactions.

  19. An evaluation of mercury removal in the IDMS using the nitric acid flowsheet

    SciTech Connect

    Hutson, N.D.

    1992-10-22

    The present DWPF flowsheet calls for the chemical treatment of waste sludge with 90 wt % formic acid prior to the addition of the Precipitate Hydrolysis Aqueous (PHA) product. An alternative processing methodology, denoted the Nitric Acid Flowsheet'', has been proposed. in the application of this flowsheet, nitric acid would be used to neutralize sludge base components (hydroxides and carbonates) prior to the addition of late wash PHA. The late wash PHA will contain sufficient quantities of formic acid to adequately complete necessary reduction-oxidation (REDOX) reactions.

  20. Ruthenium volatility from the vitrification of melter feeds prepared using the Nitric Acid Flowsheet

    SciTech Connect

    Hutson, N.D.

    1992-10-22

    The present DWPF flowsheet calls for the chemical treatment of waste sludge with 90 wt% formic acid prior to the addition of the Precipitate Hydrolysis Aqueous (PHA) product. An alternative processing methodology, denoted the Nitric Acid Flowsheet'', has been proposed. In the application of this flowsheet, nitric acid would be used to neutralize sludge base components (hydroxides and carbonates) prior to the addition of late wash PHA. The late wash PHA will contain sufficient quantities of formic acid to adequately complete necessary reduction-oxidation (REDOX) reactions.

  1. DEMONSTRATION OF THE GLYCOLIC-FORMIC FLOWSHEET IN THE SRNL SHIELDED CELLS USING ACTUAL WASTE

    SciTech Connect

    Lambert, D.; Pareizs, J.; Click, D.

    2011-11-07

    Glycolic acid was effective at dissolving many metals, including iron, during processing with simulants. Criticality constraints take credit for the insolubility of iron during processing to prevent criticality of fissile materials. Testing with actual waste was needed to determine the extent of iron and fissile isotope dissolution during Chemical Process Cell (CPC) processing. The Alternate Reductant Project was initiated by the Savannah River Remediation (SRR) Company to explore options for the replacement of the nitric-formic flowsheet used for the CPC at the Defense Waste Processing Facility (DWPF). The goals of the Alternate Reductant Project are to reduce CPC cycle time, increase mass throughput of the facility, and reduce operational hazards. In order to achieve these goals, several different reductants were considered during initial evaluations conducted by Savannah River National Laboratory (SRNL). After review of the reductants by SRR, SRNL, and Energy Solutions (ES) Vitreous State Laboratory (VSL), two flowsheets were further developed in parallel. The two flowsheet options included a nitric-formic-glycolic flowsheet, and a nitric-formic-sugar flowsheet. As of July 2011, SRNL and ES/VSL have completed the initial flowsheet development work for the nitric-formic-glycolic flowsheet and nitric-formic-sugar flowsheet, respectively. On July 12th and July 13th, SRR conducted a Systems Engineering Evaluation (SEE) to down select the alternate reductant flowsheet. The SEE team selected the Formic-Glycolic Flowsheet for further development. Two risks were identified in SEE for expedited research. The first risk is related to iron and plutonium solubility during the CPC process with respect to criticality. Currently, DWPF credits iron as a poison for the fissile components of the sludge. Due to the high iron solubility observed during the flowsheet demonstrations with simulants, it was necessary to determine if the plutonium in the radioactive sludge slurry

  2. ASPEN computer simulations of the mixed waste treatment project baseline flowsheet

    SciTech Connect

    Dietsche, L.J.; Upadhye, R.S.; Camp, D.W.; Pendergrass, J.A.; Borduin, L.C.; Thompson, T.K.

    1994-07-05

    The treatment and disposal of mixed waste (i.e., waste containing both hazardous and radioactive components) is a challenging waste- management problem of particular concern to Department of Energy (DOE) sites throughout the United States. Traditional technologies used for destroying hazardous wastes must be re- evaluated for their ability to handle mixed wastes, and, in some cases, new technologies must be developed. The Mixed Waste Treatment Project (MWTP), a collaborative effort between Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, and Pacific Northwest Laboratory (PNL), was established by the DOE`s Waste Operations Program (EM-30) to develop and analyze alternative mixed waste treatment approaches. One of the MWTP`s initiatives, and the objective of this study, was to develop flowsheets for prototype, integrated, mixed-waste treatment facilities that can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modeling. The objectives of the flowsheet simulations are to compare process effectiveness and costs of alternative flowsheets and to determine if commercial process-simulation software could be used on the large, complex process of an integrated mixed waste processing facility. Flowsheet modeling is needed to evaluate many aspects of proposed flowsheet designs. A major advantage of modeling the complete flowsheet is the ability to define the internal recycle streams, thereby making it possible to evaluate the impact of one operation on the whole plant. Many effects that can be seen only in this way. Modeling also can be used to evaluate sensitivity and range of operating conditions, radioactive criticality, and relative costs of different flowsheet designs. Further, the modeled flowsheets must be easily modified so that one can examine how alternative technologies and varying feed streams affect the overall integrated process.

  3. Uranium-Molybdenum Dissolution Flowsheet Studies

    SciTech Connect

    Pierce, R. A.

    2007-03-01

    concentrate within the charge bundles. Solubility behavior of the SK material during dissolution at 70 o C reflected data reported in the literature for 100 o C. When solutions containing solids at 70 o C were heated to 105 o C, the solids dissolved. After 21 days, the samples that had been heated closely resembled the non-heated ones with respect to solids content. Super-saturated solutions of U-Mo have been produced which can be stable for more than 10 days, but these conditions are outside of the bounds of the recommended flowsheet. It is not known how the different dissolution pathways affect solution stability, but the results agree with the fact that solubility should not be affected by the dissolution pathway. Therefore, the literature data should be used as the bounding condition for solubility. Dissolution of the SK material consumed 2.8-8.0 moles of acid per mole of metal dissolved, which agrees with behavior reported elsewhere for U and U-Mo metals. The acid consumption values confirmed that a starting acid concentration in the dissolver of 4.0-5.0 M HNO3 will allow H-Canyon Operations to avoid adjusting the feed from the dissolver prior to solvent extraction while providing maximum operating margin for avoiding precipitate formation.

  4. DWPF FLOWSHEET STUDIES WITH SIMULANT TO DETERMINE THE IMPACT OF NEXT GENERATION SOLVENT ON THE CPC PROCESS AND GLASS FORMULATION

    SciTech Connect

    Newell, J.; Peeler, D.; Edwards, T.; Hay, M.; Stone, M.

    2011-06-29

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The NGS is comprised of four components: 0.050 M MaxCalix (extractant), 0.50 M Cs-7SB (modifier), 0.003 M guanidine-LIX-79, with the balance ({approx}74 wt%) being Isopar{reg_sign} L. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST was required to determine the impact of these changes in 512-S and Defense Waste Processing Facility (DWPF) operations, as well as Chemical Process Cell (CPC), glass formulation activities, and melter operations. Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes. A Technical Task Request (TTR) was issued to support the assessments of the impact of the next generation solvent and mMST on the downstream DWPF flowsheet unit. The TTR identified five tasks to be investigated: (1) CPC Flowsheet Demonstration for NGS; (2) Solvent Stability for DWPF CPC Conditions; (3) Glass Formulation Studies; (4) Boron Volatility and Melt Rate; and (5) CPC Flowsheet Demonstration for mMST.

  5. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    SciTech Connect

    Jain, V.; Shah, H.; Bannochie, C. J.; Wilmarth, W. R.

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  6. Flowsheets and source terms for radioactive waste projections

    SciTech Connect

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  7. Key results from SB8 simulant flowsheet studies

    SciTech Connect

    Koopman, D. C.

    2013-04-26

    Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density.

  8. SLUDGE BATCH 6 PHASE II FLOWSHEET SIMULATIONS

    SciTech Connect

    Koopman, D.; Best, D.

    2010-03-30

    Two Sludge Receipt and Adjustment Tank (SRAT) runs were used to demonstrate that a fairly wide window of acid stoichiometry was available for processing SB6 Phase II flowsheet simulant (Tank 40 simulant) while still meeting the dual goals of acceptable nitrate destruction and controlled hydrogen generation. Phase II was an intermediate flowsheet study for the projected composition of Tank 40 after transfer of SB6/Tank 51 sludge to the heel of SB5. The composition was based on August 2009 projections. A window of about 50% in total acid was found between acceptable nitrite destruction and excessive hydrogen generation.

  9. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    SciTech Connect

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  10. Computer program developed for flowsheet calculations and process data reduction

    NASA Technical Reports Server (NTRS)

    Alfredson, P. G.; Anastasia, L. J.; Knudsen, I. E.; Koppel, L. B.; Vogel, G. J.

    1969-01-01

    Computer program PACER-65, is used for flowsheet calculations and easily adapted to process data reduction. Each unit, vessel, meter, and processing operation in the overall flowsheet is represented by a separate subroutine, which the program calls in the order required to complete an overall flowsheet calculation.

  11. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    SciTech Connect

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  12. Pavlovian conditioning and multiple chemical sensitivity.

    PubMed

    Siegel, S; Kreutzer, R

    1997-03-01

    Pavlovian conditioning processes may contribute to some symptoms of multiple chemical sensitivity (MCS). This review summarizes the potential relevance of the literature on conditional taste and olfactory aversions, conditional sensitization, and conditional immunomodulation to understanding MCS. A conditioning-based perspective on MCS suggests novel research and treatment strategies.

  13. Low temperature dissolution flowsheet for plutonium metal

    SciTech Connect

    Daniel, W. E.; Almond, P. M.; Rudisill, T. S.

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  14. GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY

    SciTech Connect

    Lambert, D.; Koopman, D.

    2011-06-30

    Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet

  15. Sludge Batch 4 Simulant Flowsheet Studies with ARP and MCU: Impact of MCU Organics

    SciTech Connect

    Baich, M. A.; Herman, C. C.; Eibling, R. E.; Williams, M. F.; Smith, F. G.

    2005-07-01

    Two facilities for treating the salt currently being stored in the High Level Waste (HLW) tanks are currently planned to begin operations during the processing of Sludge Batch 4 (SB4). The Immobilization Technology Section (ITS) of the Savannah River National Laboratory (SRNL) was requested by the Defense Waste Processing Facility (DWPF) via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 (Washburn, 2004) to evaluate the impacts on DWPF processing for streams from the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Side Extraction (CSSX) Unit (MCU). In particular, the TTR requests SRNL to validate the existing process flowsheet and establish a coupled operations flowsheet for use with SB4. The flowsheet runs are required so an evaluation of potential chemical processing issues, quantification of the potential hydrogen generation rates, and estimation of the required acid stoichiometry can be made. Previous testing (Baich et. al., 2003) was performed for incorporating ARP/MST in Sludge Batch 3 (SB3) and recommendations were made to DWPF on possible flowsheet options. However, since that time, some changes have occurred to the ARP facility processing strategy, and material balances have been revised (Subosits, 2004). Thus, testing with updated compositions was necessary. Since the MCU is a new design and project, no CPC flowsheet studies have been performed for this stream. This testing will validate the previously recommended ARP stream addition methods based on the new information and based on the need to also incorporate the MCU stream. The basic principle of solvent extraction is to use a sparingly soluble diluent material that carries an extractant that will complex with the cesium ions in the caustic HLW solution. The decontaminated aqueous stream (raffinate) is then sent to Saltstone for disposal. The cesium contained in the organic phase (solvent) can then be stripped into an aqueous phase ready for transfer to the DWPF. The solvent is

  16. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  17. Multiple chemical sensitivity as a conditional response.

    PubMed

    Siegel, S

    1999-01-01

    Pavlovian conditioning may contribute to some cases of multiple chemical sensitivity (MCS). On the basis of the conditioning analysis, environmental stimuli (especially olfactory cues) present at the time of a toxicant overdose become associated with the toxicant and elicit aversive conditional responses. Similar associations have been reported in patients receiving chemotherapy, and the literature on such 'pretreatment nausea' in cancer patients is relevant to understanding the role of conditioning in MCS. Evaluation of the contribution of conditioning to MCS has been complicated by confounding interpretations that emphasize conditional responses with interpretations which emphasize the psychiatric status of the patient. Appreciation of the contribution of Pavlovian conditioning to MCS will lead to a better understanding of this complex disorder.

  18. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  19. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  20. ORNL review of TRUEX flowsheet proposed for deployment at the Rockwell Hanford Plutonium Finishing Plant

    SciTech Connect

    Bond, W.D.; Bell, J.T.; Campbell, D.O.; Collins, E.D.

    1987-03-01

    The Transuranium Extraction (TRUEX) process will be installed at the Rockwell Hanford Operations (RHO) Plutonium Finishing Plant (PFP). The purposes are to process the PFP waste to recover the plutonium, to isolate the americium, and to have the remaining waste converted to a non-TRU waste. Rockwell requested that ORNL provide an outside review of the process and its implementation. This review addresses the generation of the TRUEX feed, the chemical flowsheet, and the products and raffinates. It suggests that present PFP operations be modified to reduce the amount of transuranium elements that will be in the TRUEX process feed. This review also includes an assessment of the TRUEX solvent extraction flowsheet on the bases of material balance, adequate extraction and stripping stages, and solvent cleanup. The final part of the review includes results of three-party discussions (RHO, ORNL, and Argonne National Laboratory (ANL)) of some major issues.

  1. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  2. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  3. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  4. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  5. Flowsheet report for baseline actinide blanket processing for accelerator transmutation of waste

    SciTech Connect

    Walker, R.B.

    1992-04-08

    We provide a flowsheet analysis of the chemical processing of actinide and fission product materials form the actinide blanket of an accelerator-based transmutation concept. An initial liquid ion exchange step is employed to recover unburned plutonium and neptunium, so that it can be returned quickly to the transmitter. The remaining materials, consisting of fission products and trivalent actinides (americium, curium), is processed after a cooling period. A reverse Talspeak process is employed to separate these trivalent actinides from lanthanides and other fission products.

  6. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  7. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  8. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  9. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  10. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    SciTech Connect

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE`s Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP`s charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program.

  11. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  12. Evaluating Process Sustainability Using Flowsheet Monitoring (Abstract)

    EPA Science Inventory

    Environmental metric software can be used to evaluate the sustainability of a chemical based upon data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not p...

  13. Evaluating Process Sustainability Using Flowsheet Monitoring (Abstract)

    EPA Science Inventory

    Environmental metric software can be used to evaluate the sustainability of a chemical based upon data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not p...

  14. Evaluating Process Sustainability Using Flowsheet Monitoring

    EPA Science Inventory

    Environmental metric software can be used to evaluate the sustainability of a chemical based on data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not rea...

  15. Evaluating Process Sustainability Using Flowsheet Monitoring

    EPA Science Inventory

    Environmental metric software can be used to evaluate the sustainability of a chemical based on data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not rea...

  16. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  17. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  18. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  19. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    SciTech Connect

    J. D. Newell; Pareizs, J. M.; Martino, C. J.; Reboul, S. H.; Coleman, C. J.; Edwards, T. B.; Johnson, F. C.

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  20. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  1. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    SciTech Connect

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  2. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  3. Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet

    SciTech Connect

    Laurinat, J. E.

    2006-04-01

    A flowsheet has been proposed to separate neptunium from solutions in H-Canyon Tanks 16.4, 12.5, and 11.7 in the First Cycle solvent extraction banks, in which cerium(IV) (Ce(IV)) serves as an agent to oxidize neptunium to neptunium(VI) (Np(VI)). A SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) spreadsheet model indicates that the proposed flowsheet is a feasible method for separating neptunium and uranium from sulfates, thorium, and other metal impurities. The proposed flowsheet calls for stripping the sulfates, thorium, and other metal impurities into the 1AW stream and extracting and then stripping the neptunium and uranium into the 1BP stream. SASSE predicts that separation of thorium from the other actinides can be accomplished with actinide losses of 0.01% or less. It is assumed that other metal impurities such as iron, aluminum, and fission products will follow the thorium into 1AW. Due to an organic/aqueous distribution coefficient that is close to one, SASSE predicts that plutonium(VI) (Pu(VI)) is split between the A Bank and B Bank aqueous output streams, with 27% going to 1AW and 73% going to 1BP. An extrapolated distribution coefficient based on unvalidated Ce(IV) distribution measurements at a single nitrate concentration and a comparison with thorium(IV) (Th(IV)) distributions indicates that Ce(IV) could reflux in 1B Bank. If the Ce(IV) distribution coefficient is lower than would be predicted by this single point extrapolation, but still higher than the distribution coefficient for Th(IV), then Ce(IV) would follow Np(VI) and uranium(VI) (U(VI)) into 1BP. The SASSE model was validated using data from a 1964 oxidizing flowsheet for the recovery of Np(VI) in Second Cycle. For the proposed flowsheet to be effective in recovering neptunium, the addition of approximately 0.025 M ceric ammonium nitrate (Ce(NH4)2(NO3)6) to both the 1AF and 1AS streams is required to stabilize the neptunium in the +6

  4. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  5. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  6. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  7. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  8. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to have...

  9. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to have...

  10. Front geometries of chemical waves under anisotropic conditions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomohiko; Müller, Stefan C.

    1991-04-01

    An experimental study of chemical waves in the Belousov-Zhabotinsky reaction under anisotropic conditions of substrate concentrations extending over the system was carried out by use of ferroin-immobilized silica gels as reacting matrices. Unidirectionally moving wave trains (similar to the so-called “chemical pinwheels”) followed by the spontaneous fragmentation of wave fronts were observed in rectangular two-dimensional gels. A helicoidal chemical wave (or twisted scroll wave), which was predicted by numerical calculation, was detected in a micro-cylindrical gel system. A space-time representation of the chemical helix was constructed and its structural features are discussed qualitatively.

  11. Possible interrelations among chemical freeze-out conditions

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; El-Bakry, M. Y.; Habashy, D. M.; Mohamed, M. T.; Abbas, E.

    2016-03-01

    At thermal equilibrium, different chemical freeze-out conditions have been proposed so far. They have an ultimate aim of proposing a universal description for the chemical freeze-out parameters (Tch and μb), which are to be extracted from the statistical fitting of different particle ratios measured at various collision energies with calculations from thermal models. A systematic comparison between these conditions is presented. The physical meaning of each of them and their sensitivity to the hadron mass cuts are discussed. Based on availability, some of them are compared with recent lattice calculations. We found that most of these conditions are thermodynamically equivalent, especially at small baryon chemical potential. We propose that further crucial consistency tests should be performed at low energies. The fireball thermodynamics is another way of guessing conditions describing the chemical freeze-out parameters extracted from high-energy experiments. We endorse the possibility that the various chemical freeze-out conditions should be interpreted as different aspects of one universal condition.

  12. Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform.

    PubMed

    Zhang, Jian; Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Bao, Jie

    2013-04-01

    Cassava cellulose accounts for one quarter of cassava residues and its utilization is important for improving the efficiency and profit in commercial scale cassava ethanol industry. In this study, three scenarios of cassava cellulose utilization for ethanol production were experimentally tested under same conditions and equipment. Based on the experimental results, a rigorous flowsheet simulation model was established on Aspen plus platform and the cost of cellulase enzyme and steam energy in the three cases was calculated. The results show that the simultaneous co-saccharification of cassava starch/cellulose and ethanol fermentation process (Co-SSF) provided a cost effective option of cassava cellulose utilization for ethanol production, while the utilization of cassava cellulose from cassava ethanol fermentation residues was not economically sound. Comparing to the current fuel ethanol selling price, the Co-SSF process may provide an important choice for enhancing cassava ethanol production efficiency and profit in commercial scale.

  13. Validity conditions for moment closure approximations in stochastic chemical kinetics

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-08-28

    Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.

  14. Thermodynamic derivations of conditions for chemical equilibrium and of Onsager reciprocal relations for chemical reactors.

    PubMed

    Beretta, Gian Paolo; Gyftopoulos, Elias P

    2004-08-08

    For an isolated chemical reactor, we derive the conditions for chemical equilibrium in terms of either energy, volume, and amounts of constituents or temperature, pressure, and composition, with special emphasis on what is meant by temperature and chemical potentials as the system proceeds through nonequilibrium states towards stable chemical equilibrium. For nonequilibrium states, we give both analytical expressions and pictorial representations of the assumptions and implications underlying chemical dynamics models. In the vicinity of the chemical equilibrium state, we express the affinities of the chemical reactions, the reaction rates, and the rate of entropy generation as functions of the reaction coordinates and derive Onsager reciprocal relations without recourse to statistical fluctuations, time reversal, and the principle of microscopic reversibility.

  15. Downstream process synthesis for biochemical production of butanol, ethanol, and acetone from grains: generation of optimal and near-optimal flowsheets with conventional operating units.

    PubMed

    Liu, Jiahong; Fan, L T; Seib, Paul; Friedler, Ferenc; Bertok, Botond

    2004-01-01

    Manufacturing butanol, ethanol, and acetone through grain fermentation has been attracting increasing research interest. In the production of these chemicals from fermentation, the cost of product recovery constitutes the major portion of the total production cost. Developing cost-effective flowsheets for the downstream processing is, therefore, crucial to enhancing the economic viability of this manufacturing method. The present work is concerned with the synthesis of such a process that minimizes the cost of the downstream processing. At the outset, a wide variety of processing equipment and unit operations, i.e., operating units, is selected for possible inclusion in the process. Subsequently, the exactly defined superstructure with minimal complexity, termed maximal structure, is constructed from these operating units with the rigorous and highly efficient graph-theoretic method for process synthesis based on process graphs (P-graphs). Finally, the optimal and near-optimal flowsheets in terms of cost are identified.

  16. Pollution assessment software as chemical industry process simulator enhancements

    SciTech Connect

    Shonnard, D.R.; Herlevich, J. Jr.; Parikh, P.

    1996-12-31

    Commercial process flowsheet simulators (PFS) have evolved to an advanced state and provide sophisticated unit process simulation and vital material and energy balance parameters. The PFS can estimate process stream conditions and equipment capacities and costs and it essentially defines the chemical process itself. A deficiency of PFS is their inability to incorporate environmental considerations into process optimization calculations. As a result, information as to environmental impacts and pollution control costs are not available to the design engineer, and often the optimum process design, from both economic and environmental standpoints, may not be obtained. Commercial process simulator enhancement software, whose goals are to provide environmental, safety, regulatory, and economic indices to the process design engineer as well as pollution prevention heuristic guidance, can overcome many of these obstacles to clean chemical process design. The purpose of this paper is to present an overview of a new set of pollution assessment software tools being developed to provide indices to the process design engineer during flowsheet synthesis. The capabilities of each of these tools will be highlighted by applying them in a coupled fashion with process flowsheet simulator information to a case study involving power and process heat co-generation design options. 19 refs., 1 fig., 3 tabs.

  17. Impact of scaling on the nitric-glycolic acid flowsheet

    SciTech Connect

    Lambert, D.

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  18. Report on the flowsheet model for the electrochemical treatment of liquid radioactive wastes

    SciTech Connect

    Hobbs, D.T.

    1995-04-11

    The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95% destruction. The present status of the flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

  19. Flowsheet model for the electrochemical treatment of liquid radioactive wastes. Final report

    SciTech Connect

    Hobbs, D.T.; Prasad, S.; Farell, A.E.; Weidner, J.W.; White, R.E.

    1995-12-31

    The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95 percent destruction. The flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

  20. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    SciTech Connect

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  1. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    SciTech Connect

    Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.; Karay, N. S

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  2. Fate of hydraulic fracturing chemicals under down-hole conditions

    NASA Astrophysics Data System (ADS)

    Blotevogel, J.; Kahrilas, G.; Corrin, E. R.; Borch, T.

    2013-12-01

    Hydraulic fracturing is a method to increase the yield of oil and natural gas extraction from unconventional rock formations. The process of hydrofracturing occurs via injecting water, sand, and chemicals into the production well and subjecting this mixture to high pressures to crack the rock shale, allowing increased amounts of gas and oil to seep out of the target formation. Typical constituents of the chemical mixtures are biocides, which are applied to inhibit growth of sulfate reducing bacteria in order to prevent pipe corrosion and production of hazardous gases. However, very little is known about the persistence, fate, and activity of biocides when subjected to the high temperatures and pressures of down-hole conditions. Thus, the objective of this talk is to present data from ongoing experiments focused on determining the fate of biocides commonly used for hydraulic fracturing under conditions simulating down-hole environments. Using stainless steel reactors, the high pressures and temperatures of down-hole conditions in the Marcellus shale are simulated, while concentration, speciation, and degradation of priority biocides are observed as a function of time, using primarily LC/MS techniques. The impact of water quality, shale, temperature, and pressure on the transformation kinetics and pathways of biocides will be discussed. Finally, field samples (both sediments and flowback brine) from the Marcellus shale are analyzed to verify that our lab simulations mirror real-life conditions and results.

  3. Chemical Defense as a Condition-Dependent Trait in Harvestmen.

    PubMed

    Nazareth, Taís M; Sudatti, Daniela B; Machado, Glauco

    2016-10-01

    The expression of costly traits often depends on the amount of food available to the individuals. Chemical defenses are costly, thus their production should be condition-dependent. Here, we tested the hypothesis that an increase in food availability and an acetate-supplemented diet will increase the production of chemical defenses by the harvestman Magnispina neptunus, which releases alkylated benzoquinones biosynthesized using acetate as a precursor. We manipulated the diet of the individuals and created four experimental groups: well-fed with acetate, well-fed without acetate, poorly-fed with acetate, and poorly-fed without acetate. Well-fed individuals produced secretions with higher mass and concentration of benzoquinones than poorly-fed individuals, but we detected no significant effect of the acetate supplement. Thus, the production of benzoquinones is condition-dependent, and even short periods of dietary restriction may make individuals more vulnerable to predators, imposing fitness consequences to chemically-protected arthropods that biosynthesize their own defensive compounds.

  4. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    SciTech Connect

    Penwell, D.L.

    1994-12-28

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs.

  5. Chemical reactions in viscous liquids under space conditions

    NASA Astrophysics Data System (ADS)

    Kondyurin, A.; Lauke, B.; Richter, E.

    A long-term human flight needs a large-size space ships with artificial self-regulating ecological life-support system. The best way for creation of large-size space ship is a synthesis of light construction on Earth orbit, that does not need a high energy transportation carriers from Earth surface. The construction can be created by the way of chemical polymerisation reaction under space environment. But the space conditions are very specific for chemical reactions. A high vacuum, high energy particles, X-rays, UV- and VUV-irradiations, atomic oxygen, microgravity have a significant influence on chemical reactions. Polymerisation reactions in liquid active mixture were studied in simulated space environment. The epoxy resins based on Bisphenol A and amine curing agents were investigated under vacuum, microwave plasma discharge and ion beam. An acceleration of polymerisation reaction with free radicals formation was observed. The polymerisation reaction can be carried out under space environment. The study was supported by Alexander von Humboldt Foundation (A. Kondyurin) and European Space Agency, ESTEC (contract 17083/03/NL/Sfe "Space Environmental Effects on the Polymerisation of Composite Structures").

  6. Solvent extraction studies of coprocessing flowsheets: Results from Campaign 6 of the Solvent Extraction Test Facility (SETF)

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Chattin, F.R.; Collins, E.D.; King, L.J.; Ross, R.G.; Savage, H.C.; Stacy, R.G.

    1986-11-01

    A series of five solvent extraction tests were made in the Solvent Extraction Test Facility (SETF) during Campaign 6. Each test used a coprocessing flowsheet that included coextraction-coscrubbing of the heavy metals followed by partial partitioning of the uranium and plutonium into separate uranium and uranium-plutonium products. The separation of the uranium and plutonium was aided by the addition of HNO{sub 2} to the organic backscrub stream. Two of these tests compared the performance of the traditional Purex solvent, tri-n-butyl phosphate (TBP), with a potential replacement, tri-2-ethylhexyl phosphate (TEHP). The remaining three tests were made with a chemically-degraded TBP solvent to compare the effectiveness of two solvent cleanup methods - treatment with silica gel or scrubbing with sodium carbonate and water.

  7. Flowsheet Evaluation for the Processing of U-MO Materials in H-Canyon

    SciTech Connect

    Pierce, R. A.

    2006-12-01

    H-Canyon Engineering (HCE) is evaluating the feasibility of processing material containing 90% uranium (20% 235U enrichment) alloyed with 10% molybdenum (Mo). The objective is to dissolve the material in nitric acid (HNO3) in the H-Canyon dissolvers to a U concentration of 17-22 g/L (3-4 g/L 235U) without the formation of precipitates. Following dissolution, the dissolved material will be processed through 1st and 2nd Cycle solvent extraction and the U sent to the U blend down program. The flowsheet must also consider any aqueous waste processing and solvent recycle issues. HCE requested that the Savannah River National Lab (SRNL) define a flowsheet for safely and efficiently processing the U-10Mo material. The flowsheet definition will occur in two phases. The first phase involves the evaluation of all available data related to the dissolution and solvent extraction of U-Mo materials to determine if a viable flowsheet can be developed, and to assess if there are additional data that must be obtained. Adequate data are available to conclude with confidence that a flowsheet is viable with sufficient operating margins. Data on the flowsheet development and processing of UMo fuels at Savannah River during the 1970’s and 1980’s provide the best information. Based on the data, the U-10Mo material can be dissolved in boiling 4.5-5.0 M HNO3 to a U concentration of 17-22 g/L and a corresponding Mo concentration of 1.7-2.2 g/L. Any nickel (Ni) cladding associated with the material will dissolve readily. After dissolution is complete, traditional solvent extraction flowsheets can be used to recover and purify the U. Evaporation of the resulting 1AW waste stream may be limited by Mo solubility. Although the flowsheet is fairly well-characterized, it should be noted that the material to be processed during this campaign is different than those previously processed in that it does not have aluminum cladding. As a result, some additional work is recommended to verify

  8. AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION

    SciTech Connect

    Crapse, K.; Rudisill, T.; O'Rourke, P.; Kyser, E.

    2014-07-02

    In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95°C using a 6–10 M HNO{sub 3} solution containing 0.05–0.2 M KF and 0–2 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95°C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used for dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling

  9. Source reduction from chemical plants using on-line optimization

    SciTech Connect

    Zhang, Z.; Pike, R.W.; Hertwig, T.A.

    1995-12-01

    An effective approach for source reduction in chemical plants has been demonstrated using on-line optimization with flowsheeting (ASPEN PLUS) for process optimization and parameter estimation and the Tjao-Biegler algorithm implemented in a mathematical programming language (GAMS/MINOS) for data reconciliation and gross error detection. Results for a Monsanto sulfuric acid plant with a Bailey distributed control system showed a 25% reduction in the sulfur dioxide emissions and a 17% improvement in the profit over the current operating conditions. Details of the methods used are described.

  10. Physical conditions and chemical processes during single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.

    In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.

  11. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  12. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  13. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  14. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    SciTech Connect

    Arlin Olson

    2012-02-28

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

  15. Chemical imaging of Fischer-Tropsch catalysts under operating conditions

    PubMed Central

    Price, Stephen W. T.; Martin, David J.; Parsons, Aaron D.; Sławiński, Wojciech A.; Vamvakeros, Antonios; Keylock, Stephen J.; Beale, Andrew M.; Mosselmans, J. Frederick W.

    2017-01-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas (“syngas”: CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, “multimodal” tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized. PMID:28345057

  16. Chemical imaging of Fischer-Tropsch catalysts under operating conditions.

    PubMed

    Price, Stephen W T; Martin, David J; Parsons, Aaron D; Sławiński, Wojciech A; Vamvakeros, Antonios; Keylock, Stephen J; Beale, Andrew M; Mosselmans, J Frederick W

    2017-03-01

    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas ("syngas": CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, "multimodal" tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized.

  17. TRUEX flowsheet testing for the removal of the actinides from dissolved ICPP zirconium calcine using centrifugal contactors

    SciTech Connect

    Herbst, R.S.; Law, J.D.; Brewer, K.N.; Todd, T.A.

    1997-12-01

    Solid calcine is one of the wastes under evaluation for TRU removal by the TRUEX process. The calcine must first be dissolved in nitric acid prior to the removal of TRUs and fission products. Zirconium type calcine (generated from zirconium fuel reprocessing raffinates) comprises the majority of the calcine currently stored at the ICPP. The zirconium calcines average 18.3 wt% ZrO{sub 2} and are anticipated to be the most challenging to treat with regards to TRU removal because of the large zirconium content. This paper reports the results from a countercurrent flowsheet test performed with a dissolved calcine simulant in a 2-cm centrifugal contractor pilot plant. The simulant was spiked with radioactive {sup 241}Am and {sup 95}Zr to facilitate analysis and evaluate the behavior of the actinides. Flooding and precipitate formation were observed in the strip section during the flowsheet testing. It is postulated that the flooding occurred as a result of precipitate formation. The precipitate was determined to be ZrPO{sub 4} and was likely formed due the excessive amount of Zr carried into the strip section with the organic phase. Roughly 65% of the Zr in the feed was extracted. Of the extracted Zr, 15.6% reported to the strip product and 15.1% ended up in the organic effluent, indicating the strip section was ineffective at re-extracting Zr. The poor strip section performance was probably due to the precipitation and concomitant flooding problems encountered in the test, resulting in the strip section never achieving steady state operating conditions. Despite the obvious problems encountered during the test, > 99.18% of the americium was removed from the feed in the extraction section. This may be slightly lower than the anticipated 99.9% Am removal efficiency necessary to insure the < 10 nCi/g TRU content in the LLW raffinate.

  18. Prioritized List of Research Needs to support MRWFD Case Study Flowsheet Advancement

    SciTech Connect

    Law, Jack Douglas; Soelberg, Nicholas Ray

    2015-06-17

    In FY-13, a case study evaluation was performed of full recycle technologies for both the processing of light-water reactor (LWR) used nuclear fuels as well as fast reactor (FR) fuel in the full recycle option. This effort focused on the identification of the case study processes and the initial preparation of material balance flowsheets for the identified technologies. In identifying the case study flowsheets, it was decided that two cases would be developed: one which identifies the flowsheet as currently developed and another near-term target flowsheet which identifies the flowsheet as envisioned within two years, pending the results of ongoing research. The case study focus is on homogeneous aqueous recycle of the U/TRU resulting from the processing of LWR fuel as feed for metal fuel fabrication. The metal fuel is utilized in a sodium-cooled fast reactor, and the used fast reactor fuel is processed using electrochemical separations. The recovered U/TRU from electrochemical separations is recycled to fuel fabrication and the fast reactor. Waste streams from the aqueous and electrochemical processing are treated and prepared for disposition. Off-gas from the separations and waste processing are also treated. As part of the FY-13 effort, preliminary process unknowns and research needs to advance the near-term target flowsheets were identified. In FY-14, these research needs were updated, expanded and prioritized. This report again updates the prioritized list of research needs based upon results to date in FY-15. The research needs are listed for each of the main portions of the flowsheet: 1) Aqueous headend, 2) Headend tritium pretreatment off-gas, 3) Aqueous U/Pu/Np recovery, 4) Aqueous TRU product solidification, 5) Aqueous actinide/lanthanide separation, 6) Aqueous off-gas treatment, 7) Aqueous HLW management, 8) Treatment of aqueous process wastes, 9) E-chem actinide separations, 10) E-chem off-gas, 11) E-chem HLW management. The identified research needs

  19. Organic chemical degradation by remote study of the redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  20. Chemical enrichment and physical conditions in I Zw 18

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-05-01

    Context. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H i region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H i region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims: Our primary objective is to study the enrichment of the H i region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H i and H ii regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H i region. Methods: We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H i, C ii, C ii*, N i, O i, ...) and are compared to the abundances in the H ii region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H i region through physical diagnostics drawn from the fine-structure level of C+. Results: We find that H i region abundances are lower by a factor of ~2 as compared to the H ii region. There is no differential depletion on dust between the H i and H ii region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z⊙ (vs. 1/31 Z⊙ in the H ii region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H i envelope may contain pockets of pristine gas with a

  1. Chemical Enrichment and Physical Conditions in IZw18*

    NASA Technical Reports Server (NTRS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-01-01

    Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H I region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H I region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims. Our primary objective is to study the enrichment of the H I region and the interplay between star-formation history and metallicity evolution. Our secondary obje ctive is to constrain the spatial- and time-scales over which the HI and H II regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H I region. Methods. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H I, CIII, CIIi*, N I, OI,...) and are compared to the abundances in the H II region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the HIi region through physical diagnostics drawn from the fine-structure level of C+. Results. We find that H I region abundances are lower by a factor of approx 2 as compared to the H II region. There is no differential depletion on dust between the H I and H II region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z(solar) (vs. 1/31 Z(solar) in the H II region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H I envelope may contain pockets of pristine gas with a

  2. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  3. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  4. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  5. The decay of chemical weapons agents under environmental conditions

    SciTech Connect

    McGuire, R.R.; Haas, J.S.; Eagle, R.J.

    1993-04-09

    The rate and mechanism of decay of chemical agents in the environment was studied via live agent field trials at the chemical and Biological Defence Establishment, Porton Down, UK. The plan was to deposit the agents GD (Soman), VX, and H (sulfur mustard) on separate l-m{sup 2} plots on three successive days; i.e., Tuesday through Thursday. The depositions were to be made so as to give an areal concentration of 10 g/m{sup 2}. Four felt pads of approximately 25 cm{sup 2} each were placed at the corners of each of the test plots. These were subsequently extracted and analyzed by CBDE to determine the actual agent concentration. Samples for LLNL (two different types of soil, disks of silicone rubber gasket material, and short cylinders of concrete were to be contaminated and analyzed. Results are described.

  6. Resistance to chemical disinfection under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1998-01-01

    In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700®), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

  7. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.; Missimer, D. M.

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  8. Chemical Waste Management for the Conditionally Exempt Small Quantity Generator

    NASA Astrophysics Data System (ADS)

    Zimmer, Steven W.

    1999-06-01

    Management of hazardous chemical wastes generated as a part of the curriculum poses a significant task for the individual responsible for maintaining compliance with all rules and regulations from the Environmental Protection Agency and the Department of Transportation while maintaining the principles of OSHA's Lab Standard and the Hazard Communication Standard. For schools that generate relatively small quantities of waste, an individual can effectively manage the waste program without becoming overly burdened by the EPA regulations required for those generating large quantities of waste, if given the necessary support from the institution.

  9. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  10. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    SciTech Connect

    Peeler, D. K.; Edwards, T. B.

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  11. Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers

    SciTech Connect

    Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

    1997-12-01

    An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

  12. Development and Testing of an Americium/Lanthanide Separation Flowsheet Using Sodium Bismuthate

    SciTech Connect

    Jack Law; Bruce Mincher; Troy Garn; Mitchell Greenhalgh; Nicholas Schmitt; Veronica Rutledge

    2014-04-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term heat load of material interred in a future high-level waste repository. A separation process amenable to process scale-up remains elusive. Given only subtle chemistry differences within and between the ions of the trivalent actinide and lanthanide series this separation is challenging ; however, higher oxidation states of americium can be prepared using sodium bismuthate and separated via solvent extraction using diamylamylphosphonate (DAAP) extraction. Among the other trivalent metals only Ce is also oxidized and extracted. Due to the long-term instability of Am(VI) , the loaded organic phase is readily selectively stripped to partition the actinide to a new acidic aqueous phase. Batch extraction distribution ratio measurements were used to design a flowsheet to accomplish this separation. Additionally, crossflow filtration was investigated as a method to filter the bismuthate solids from the feed solution prior to extraction. Results of the filtration studies, flowsheet development work and flowsheet performance testing using a centrifugal contactor are detailed.

  13. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  14. Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System

    SciTech Connect

    Shunji Homma; Jun-ichi Ishii; Jiro Koga; Shiro Matsumoto; Toshiaki Kikuchi; Takahiro Chikazawa; Atsuhiro Shibata

    2006-07-01

    A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined by flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)

  15. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  16. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  17. Chemical conditions of gas in planet-forming disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2016-05-01

    Molecular gas observations of planet-forming disks are undergoing a radical improvement with the sensitivity and resolution of ALMA. Species that until now went undetected can now be imaged, like methanol and other (simple) organics, and rare species like N2D+. At the same time, more 'standard' molecules like CO and its isotopes can be studied at much higher signal-to-noise. Together, these observations are starting to tell us a story of the chemical processes in disks that affect the gas, and on the kinematics inside the disk. I will review recent results, making comparisons to what the dust-continuum observations are showing, and sketch where future observations may take us.

  18. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    SciTech Connect

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  19. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul B.

    2012-03-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10(-14) s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  20. The Chemical Impact of Physical Conditions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul Brandon

    2012-09-01

    We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10 -14 s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR

  1. Chemical water/rock interaction under reservoir condition

    SciTech Connect

    Watanabe, K.; Tanifuji, K.; Takahashi, H.; Wang, Y.; Yamasaki, N.; Nakatsuka, K.

    1995-01-26

    A simple model is proposed for water/rock interaction in rock fractures through which geothermal water flows. Water/rock interaction experiments were carried out at high temperature and pressure (200-350 C, 18 MPa) in order to obtain basic solubility and reaction rate data. Based on the experimental data, changes of idealized fracture apertures with time are calculated numerically. The results of the calculations show that the precipitation from water can lead to plugging of the fractures under certain conditions. Finally, the results are compared with the experimental data.

  2. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

    PubMed

    Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R

    2016-07-01

    Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Flowsheet simulation for better operation of waste treatment systems

    SciTech Connect

    Zullo, L.C.

    1995-12-31

    The oil and chemical processing industry has often perceived waste treatment facilities as unavoidable additional costs of its manufacturing cycle. Because of this the industry has been slow in applying to these units the same technological approaches now common for revenue generating plants. It is often felt, that once regulatory compliance is achieved, any further effort would add to the costs without substantial return. To the contrary, modern modeling tools and a systematic approach to plant design and operation can help in reducing the cost of running these units without compromising regulatory compliance. A particularly common operation involves the destruction by combustion of solvent and other unrecoverable organic products. Typically, a chemical firm may cope with several compounds that may be present in mixtures of varying composition. The ignition takes place using auxiliary fuel (methane) to maintain desired temperature levels in the combustor. Combustion oxygen is provided by blowing air with large fans into the combustor. The combustion temperature needs to be high enough as to minimize the amount of NO{sub x} released. Excess of methane is expensive and not effective because when all the available oxygen is consumed, the temperature does not any longer increase (overfiring) and residual methane is release in the atmosphere, thereby compromising regulatory compliance. In this work we show how commercial simulation tools allow the engineer to optimize the auxiliary fuel consumption and, given a varying diet of organic wastes, to organize combustion campaigns that achieve minimum operating costs and fully satisfy environmental regulations.

  4. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    SciTech Connect

    Smith, T.

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  5. Chemical durability of hollandite ceramic for conditioning cesium

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; McGlinn, Peter; Frugier, Pierre

    2008-10-01

    The aqueous corrosion behavior of Cs-doped hollandite ceramic (BaCs 0.28Fe 0.82Al 1.46Ti 5.72O 16) was studied using several different static experimental protocols, with leachants of varying pH, and at different surface area to volume ratios, for periods ranging from six months to three years. All leach tests were carried out at 90 °C. X-ray diffraction (XRD) and scanning electron microscopy (SEM), coupled with energy dispersive X-ray spectroscopy (EDS), were used to characterize the surfaces of the hollandite before and after leaching. The most pronounced elemental releases, and corresponding changes to surface composition and microstructure, was evident at low pH, in particular pH 1. Cs and Ba releases were highest at low pH, with surface alteration exhibited by the formation of secondary rutile (prevalent at pH 1) and Al- and Ba-depleted hollandite (prevalent at pH 2). After rapid initial Cs release, the alteration rate was extremely low over the pH range from 2 to 10, as well as in pure water experiments with a sample-surface-area-to-solution-volume ratio ranging from 0.1 cm -1 to 1200 cm -1. The rates were about 10 -5 g m -2 d -1, corresponding to alteration thicknesses of a few nanometers per year. Higher rates (5 × 10 -3 g m -2 d -1) were observed only under very acidic conditions (pH 1). Congruency in Cs and Ba releases occurred only at pH 1, with incongruency between the two elements increasing with increasing pH. There were no apparent solubility constraints on Cs releases regardless of the SA/ V ratio, whereas geochemical modeling suggested that Ba releases could have been affected by the formation of BaCO 3, particularly at high SA/ V ratios. Extended leaching (with the leachant renewed once after 261 days of leaching) confirmed the high durability of hollandite with altered thicknesses of less than one nanometer per year over the last two years. Whilst Cs depletion of the hollandite surface was evidenced when leachates were replenished with the

  6. A flowsheet concept for an Am/Ln separation based on Am{sup VI} solvent extraction

    SciTech Connect

    Mincher, B.J.; Law, J.D.

    2013-07-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term radiotoxicity of material interred in a future high-level waste repository. However, a separation amenable to process scale-up remains elusive. Higher oxidation states of americium have recently been used to demonstrate solvent extraction-based separations using conventional fuel cycle ligands. Here, the successful partitioning of Am{sup VI} from the bulk of lanthanides and curium using diamyl-amyl-phosphonate (DAAP) extraction is reported. Due to the instability of Am{sup VI} in the organic phase it was readily selectively stripped to a new acidic aqueous phase to provide separation from co-extracted Ce{sup IV}. The use of NaBiO{sub 3} as an oxidant to separate Am from the lanthanides and Cm by solvent extraction has been successfully demonstrated on the bench scale. Based on these results, flowsheet concepts can be designed that result in 96 % Am recovery in the presence of a few percent of the remaining Cm and the lanthanides in two extraction contacts. Preliminary results also indicate that the DAAP extractant is robust toward γ- irradiation under realistic conditions of acidity and dissolved oxygen concentration.

  7. Potential dispositioning flowsheets for ICPP SNF and wastes

    SciTech Connect

    Olson, A.L.; Anderson, P.A.; Bendixsen, C.L.

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  8. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    SciTech Connect

    Herman, C

    2006-04-21

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science & Engineering (PS&E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of testing

  9. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models.

    PubMed

    Liberman, M A; Kiverin, A D; Ivanov, M F

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  10. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models

    NASA Astrophysics Data System (ADS)

    Liberman, M. A.; Kiverin, A. D.; Ivanov, M. F.

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  11. Characterization of Neptunium Oxide Generated Using the HB-Line Phase II Flowsheet

    SciTech Connect

    Duffey, J

    2003-08-29

    Approximately 98 grams of neptunium(IV) oxide (NpO{sub 2}) were produced at the Savannah River Technology Center (SRTC) for use in gas generation tests to support the neptunium stabilization program at the Savannah River Site (SRS). The NpO{sub 2} was produced according to the anticipated HB-Line flowsheet consisting of anion exchange, oxalate precipitation, filtration, and calcination. Characterization of the NpO{sub 2} product to be used in gas generation tests included bulk and tap density measurements, X-ray diffraction, particle size distribution, specific surface area measurements, and moisture analysis.

  12. Plutonium purification cycle in centrifugal extractors: from flowsheet design to industrial operation

    SciTech Connect

    Baron, P.; Dinh, B.; Duhamet, J.; Drain, F.; Meze, F.; Lavenu, A.

    2008-07-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multistage centrifugal extractors to replace the previous cycle that used mixer/settler banks. This type of extractor is suitable for the treatment of fuel containing a high proportion of plutonium-238, as its short residence time limits solvent degradation. This paper deals with the research done to devise its flowsheet, the centrifugal extractors in which it is operated, as well as the feedback of six years of industrial operation.

  13. An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process.

    PubMed

    Zhai, Lin-Feng; Sun, Min; Song, Wei; Wang, Gan

    2012-10-01

    An integrated approach incorporating response surface methodology (RSM), grey relational analysis, and fuzzy logic analysis was developed to quantitatively evaluate the conditioning chemicals in sludge dewatering process. The polyacrylamide (PAM), ferric chloride (FeCl(3)) and calcium-based mineral powders were combined to be used as the sludge conditioners in a pilot-scale sludge dewatering process. The performance of conditioners at varied dosages was comprehensively evaluated by taking into consideration the sludge dewatering efficiency and chemical cost of conditioner. In the evaluation procedure, RSM was employed to design the experiment and to optimize the dosage of each conditioner. The grey-fuzzy logic was established to quantify the conditioning performance on the basis of grey relational coefficient generation, membership function construction, and fuzzy rule description. Based on the evaluation results, the optimal chemical composition for conditioning was determined as PAM at 4.62 g/kg DS, FeCl(3) at 55.4 g/kg DS, and mineral powders at 30.0 g/kg DS.

  14. Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis

    SciTech Connect

    Nauss, M.M.

    1986-06-01

    Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow range of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.

  15. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    PubMed

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  16. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  17. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect

    Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A.

    2002-01-16

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  18. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect

    Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

    2002-02-01

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  19. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

    SciTech Connect

    Choi, A.S.

    1995-04-19

    This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

  20. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    PubMed

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2017-09-26

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  1. Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools

    NASA Astrophysics Data System (ADS)

    Morris, S.; Taylor, A. C.

    1983-09-01

    A study of the diurnal and seasonal variation in the physico-chemical conditions within intertidal rock pools on the West coast of Scotland was undertaken to provide data on the environmental conditions experienced by animals inhabiting these pools. The temperature, pH, partial pressure of oxygen ( PO2) and salinity were measured every hour for 24 h and the total alkalinity, partial pressure of carbon dioxide ( PCO2) and carbon dioxide content ( CCO2) calculated. This sampling regime was carried out once a month for 12 months to determine the extent of seasonal variation in conditions within temperate pools. Large diurnal variations were recorded in nearly all the physico-chemical parameters measured. The greatest variation was recorded in the temperature and PO2 of the water but significant changes in pH and PCO2 were also recorded. Total alkalinity varied little during any 24 h period but carbonate alkalinity, which was always lower than total alkalinity, showed slightly greater variation. There was also considerable variation in the magnitude of these diurnal changes between pools at different heights on the shore. Diurnal variation in the physico-chemical conditions within the pools were observed throughout the year although the magnitude of these changes varied seasonally. Detailed studies on individual pools demonstrated that appreciable local variation existed in the physico-chemical conditions within each pool.

  2. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    PubMed

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  3. Differences in the chemical composition of Enterococcus faecalis biofilm under conditions of starvation and alkalinity.

    PubMed

    Chen, Weixu; Liang, Jingping; He, Zhiyan; Jiang, Wei

    2017-01-02

    ABSTACT This study aimed to investigate the dynamic changes that occur in the chemical composition of an Enterococcus faecalis (E. faecalis) biofilm under conditions of starvation and in an alkaline environment and to explore the function of chemical composition changes in the resistance of the E. faecalis biofilm to an extreme environment. This study established an in vitro E. faecalis biofilm model under starvation and in an alkaline environment. During the formation of the biofilm, the pH value and nutritional condition of the culture medium were changed, and the changes in chemical composition were observed using biochemical measures. The results showed that, when the pH value of the culture medium was 11, the percentage of water-insoluble polysaccharides in the biofilm was significantly lower than under other conditions. In addition, the percentage of water-soluble polysaccharides in culture medium with pH values of 9 and 11 gradually decreased. The level of the water-soluble polysaccharides in each milligram of dry weight of biofilm at pH 11 increased compared to that under other conditions. The results from this study indicate that the chemical composition of E. faecalis biofilm changed in extreme environments. These changes served as a defensive mechanism for E. faecalis against environmental pressures.

  4. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochar

    USDA-ARS?s Scientific Manuscript database

    Effects of biomass types (sugar beet pulp vs. bark mulch) and hydrothermal carbonization (HTC) processing conditions (temperature, residence time, and the phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, advanced solid-state nuclear magneti...

  5. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  6. Poliovirus retention in soil columns after application of chemical- and polyelectrolyte-conditioned dewatered sludges.

    PubMed Central

    Pancorbo, O C; Bitton, G; Farrah, S R; Gifford, G E; Overman, A R

    1988-01-01

    The transport of poliovirus type 1 (strain LSc) was studied in Red Bay sandy loam columns that were treated with chemical- or polyelectrolyte-conditioned dewatered sludges and then leached with natural rainwater under saturated flow conditions. Poliovirus was concentrated in the alum and ferric chloride sludges that were produced following the flocculation of virus-seeded raw sewage. Virtually complete inactivation of the virus was observed following the flocculation of raw sewage or the stabilization of alum and ferric chloride sludges with lime at pH 11.5. Poliovirus was also concentrated in polyelectrolyte-conditioned dewatered sludge that was produced from virus-seeded, anaerobically digested sludge. Despite the saturated flow conditions for a sustained period, no viruses were detected in the leachates of the soil columns that were treated with these chemical and chemically treated sludges. Since the viruses were mostly associated with the solids in these sludge samples, it is believed that they were immobilized along with the sludge solids in the top portion of the soil columns. PMID:2830848

  7. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    SciTech Connect

    Pareizs, J.; Newell, D.; Martino, C.; Crawford, C.; Johnson, F.

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  8. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    PubMed

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing.

  9. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions.

    PubMed

    Tebes-Stevens, Caroline; Patel, Jay M; Jones, W Jack; Weber, Eric J

    2017-05-02

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant conditions. The hydrolysis reaction schemes in the library encode the process science gathered from peer-reviewed literature and regulatory reports. Each scheme has been ranked on a scale of one to six based on the median half-life in a data set compiled from literature-reported hydrolysis rates. These ranks are used to predict the most likely transformation route when more than one structural fragment susceptible to hydrolysis is present in a molecule of interest. Separate rank assignments are established for pH 5, 7, and 9 to represent standard conditions in hydrolysis studies required for registration of pesticides in Organisation for Economic Co-operation and Development (OECD) member countries. The library is applied to predict the likely hydrolytic transformation products for two lists of chemicals, one representative of chemicals used in commerce and the other specific to pesticides, to evaluate which hydrolysis reaction pathways are most likely to be relevant for organic chemicals found in the natural environment.

  10. Evaluation of the Submerged Demineralizer System (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station

    SciTech Connect

    Campbell, D. O.; Collins, E. D.; King, L. J.; Knauer, J. B.

    1980-07-01

    This report discusses the Submerged Demineralizer System (SDS) flowsheet for decontamination of the high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station was evaluated at Oak Ridge National Laboratory in a study that included filtration tests, ion exchange column tests, and ion exchange distribution tests. The contaminated waters, the SDS flowsheet, and the experiments made are described. The experimental results were used to predict the SDS performance and to indicate potential improvements.

  11. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  12. Relative toxicity of pyrolysis gases from materials - Effects of chemical composition and test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1978-01-01

    Relative toxicity test data on 270 materials are presented, based on test procedures developed at the University of San Francisco. The effects of chemical composition, using data on 13 types of synthetic polymers and eight types of fabrics, are discussed. Selected materials were evaluated using nine test conditions with the USF method, and using methods developed at the FAA Civil Aeromedical Institute, Douglas Aircraft Company and San Jose State University.

  13. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels

    PubMed Central

    Sinkó, Katalin

    2010-01-01

    Silica or various silicate aerogels can be characterized by highly porous, open cell, low density structures. The synthesis parameters influence the three-dimensional porous structures by modifying the kinetics and mechanism of hydrolysis and condensation processes. Numerous investigations have shown that the structure of porous materials can be tailored by variations in synthesis conditions (e.g., the type of precursors, catalyst, and surfactants; the ratio of water/precursor; the concentrations; the medium pH; and the solvent). The objectives of this review are to summarize and elucidate the effects of chemical conditions on the nanoporous structure of sol-gel derived silicate aerogels.

  14. Kinematical Modeling of Pad Profile Variation during Conditioning in Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Lee, Sangjik; Jeong, Sukhoon; Park, Kihyun; Kim, Hyoungjae; Jeong, Haedo

    2009-12-01

    Conditioning is the process of removing the glazing area from a polishing pad surface and restoring the quality of the surface to maintain a stable polishing performance. However, the conditioning process can induce a non-uniform profile variation of the pad, which can result in nonuniform material removal rates across the wafer. In this paper, a kinematical model based on Preston's equation is proposed to examine the pad profile variation (PPV) induced by swing arm conditioning with a diamond disk. The proposed model was simulated with various swing arm velocity profiles (SAVPs), and the results were compared with experimental results. The results showed the relationship between kinematical parameters and the PPV. The PPV was proportional to sliding distance based on the kinematical model, and then the sliding distance distribution across the pad was dependent on the SAVP. This study has proven the effectiveness of the kinematical model on the PPV during conditioning in chemical mechanical polishing (CMP).

  15. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river.

    PubMed

    Zhong, Jun; Li, Si-Liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-02-21

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system.

  16. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    PubMed Central

    Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-01-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859

  17. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    NASA Astrophysics Data System (ADS)

    Zhong, Jun; Li, Si-Liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-02-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system.

  18. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

    PubMed

    Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng

    2012-08-16

    This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions.

  19. A stronger necessary condition for the multistationarity of chemical reaction networks.

    PubMed

    Soliman, Sylvain

    2013-11-01

    Biochemical reaction networks grow bigger and bigger, fed by the high-throughput data provided by biologists and bred in open repositories of models allowing merging and evolution. Nevertheless, since the available data is still very far from permitting the identification of the increasing number of kinetic parameters of such models, the necessity of structural analyses for describing the dynamics of chemical networks appears stronger every day. Using the structural information, notably from the stoichiometric matrix, of a biochemical reaction system, we state a more strict version of the famous Thomas' necessary condition for multistationarity. In particular, the obvious cases where Thomas' condition was trivially satisfied, mutual inhibition due to a multimolecular reaction and mutual activation due to a reversible reaction, can now easily be ruled out. This more strict condition shall not be seen as some version of Thomas' circuit functionality for the continuous case but rather as related and complementary to the whole domain of the structural analysis of (bio)chemical reaction systems, as pioneered by the chemical reaction network theory.

  20. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    SciTech Connect

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing based FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)

  1. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  2. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  3. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions.

    PubMed

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil

    2017-06-01

    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg(-1)) and γ-HCH (lindane, 25 mg kg(-1)) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/Fe(II), Na2S2O8 alone, Na2S2O8/Fe(II), and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe(II)-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/Fe(II) > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  4. EVALUATION OF FLOWSHEET CHANGES FOR THE HIGHLY ENRICHED URANIUM BLENDDOWN PROGRAM

    SciTech Connect

    Crowder, M.; Rudisill, T.; Laurinat, J.; Mickalonis, J.

    2007-10-22

    H Canyon is considering a flowsheet change for Plutonium (Pu) Contaminated Scrap (PuCS) material. The proposed change is to route dissolved PuCS material directly to a uranium (U) storage tank. As a result, the PuCS solution will bypass Head End and First U Cycle, and will be purified by solvent extraction in Second U Cycle. The PuCS solution contains appreciable amounts of boron (B) and fluoride (F{sup -}), which are currently at trace levels in the U storage tank. Though unlikely, if the B concentration in the U storage tank were to reach 1.8 g B/g U, the entire contents of the U storage tank would likely require a second pass through Second U Cycle to provide sufficient decontamination to meet the Tennessee Valley Authority (TVA) Blend Grade Highly Enriched Uranium (HEU) specification for B, which is 30 {micro}g/g U. In addition, Second U Cycle is expected to provide sufficient decontamination of F{sup -} and Pu regardless of the amount of PuCS solution sent to the storage tank. Though aluminum (Al) is not present in the PuCS solution, B can be credited as a complexant of F{sup -}. Both stability constants from the literature and Savannah River National Laboratory (SRNL) corrosion studies were documented to demonstrate that B complexation of F{sup -} in nitric acid solutions is sufficient to prevent excessive corrosion. Though B and Al complex F{sup -} to a similar degree, neither completely eliminates the presence of free F{sup -} in solution. Therefore, a limited amount of corrosion is expected even with complexed F{sup -} solutions. Tanks maintained at ambient temperature are not expected to experience significant corrosion. However, the Low Activity Waste (LAW) evaporators may be subjected to a corrosion rate of about 25 mils per year (mpy) as they reach their highest F{sup -} concentrations. The feed adjustment evaporator would only be subjected to the corrosion rate of about 25 mpy in the latter stages of the PuCS campaign. An issue that must be addressed

  5. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of 'Comice' pears.

    PubMed

    Makkumrai, Warangkana; Sivertsen, Hanne; Sugar, David; Ebeler, Susan E; Negre-Zakharov, Florence; Mitcham, Elizabeth J

    2014-06-04

    'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 °C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 °C for 25 or 15 days, or storage at 10 °C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 °C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 °C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 °C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 °C. Fruit held at 10 °C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning

  6. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    PubMed

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application

  7. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    2,4,6-trinitrotoluene (TNT) and its byproducts are common contaminants on US military installations. Many potential remediation processes are in part limited by the transfer of TNT from the contaminated soil into the aqueous phase. The purpose of this research is to assess the release of TNT from contaminated soil under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and addition of two surfactants is investigated. Uncontaminated soil was collected from a near-surface site at the Alabama Army Ammunition Plant and was artificially contaminated with TNT prior to the mobilization experiments. Results for the pH experiments show that more TNT is mobilized at neutral pH conditions than at low pH conditions. The presence of dissolved organic matter enhances the release of TNT from soil, but not by a large amount. Surfactant addition has the most significant effect on TNT mobilization.

  8. Optimization of growth conditions of ZnO nano thin films by chemical double dip technique

    PubMed Central

    Vijayan, Thirukonda Anandamoorthy; Chandramohan, Rathinam; Valanarasu, Santiyagu; Thirumalai, Jagannathan; Venkateswaran, Sivasuriyan; Mahalingam, Thaiyan; Srikumar, Subbiah Ramachandran

    2008-01-01

    Zinc oxide (ZnO) nano thin films have been deposited by the chemical double-dip technique using aqueous ZnSO4 and NaOH solutions. The ZnO films were characterized in terms of surface morphology by x-ray diffraction, energy-dispersive x-ray analysis (EDX), the use of a scanning electron microscope (SEM) and atomic force microscope (AFM) for surface morphology. The films exhibited a smooth morphology. The chemical states of oxygen and zinc in the ZnO nano thin films were also investigated by x-ray photoelectron spectroscopy (XPS). In the present investigations, highly textured ZnO thin films with a preferential (002)-orientation were prepared on glass substrates. The deposition conditions were optimized to obtain device-quality films for practical applications. PMID:27878004

  9. Chemical immobilization of crested porcupines with tiletamine HCl and zolazepam HCl (Zoletil) under field conditions.

    PubMed

    Massolo, Alessandro; Sforzi, Andrea; Lovari, Sandro

    2003-07-01

    The combination of tiletamine HCl and zolazepam HCl has been used on many species of wild mammals. Short induction time, low dosage, satisfactory safety margins, relatively constant immobilization time, and smooth recovery are benefits reported. This combination (Zoletil 100) was used during a study on behavioural ecology of the crested porcupine (Hystrix cristata) in a Mediterranean coastal area (Maremma Regional Park, Tuscany, Italy). We used this mixture 42 times on 31 individuals. Mean adult dose was (+/- SE) 7.24 +/- 0.37 mg/kg (74.0 +/- 3.0 mg/individual). Average adult induction time was 5.3 min (+/- 1.1) and average adult immobilization time was 22.6 min (+/- 6.0). One adult male porcupine died after chemical restraints. The use of tiletamine-zolazepam seems adequate for chemical immobilization of crested porcupines under field conditions, mainly because of its short induction time, small volume to be injected and wide safety margin.

  10. Optimization of growth conditions of ZnO nano thin films by chemical double dip technique

    NASA Astrophysics Data System (ADS)

    Anandamoorthy Vijayan, Thirukonda; Chandramohan, Rathinam; Valanarasu, Santiyagu; Thirumalai, Jagannathan; Venkateswaran, Sivasuriyan; Mahalingam, Thaiyan; Ramachandran Srikumar, Subbiah

    2008-07-01

    Zinc oxide (ZnO) nano thin films have been deposited by the chemical double-dip technique using aqueous ZnSO4 and NaOH solutions. The ZnO films were characterized in terms of surface morphology by x-ray diffraction, energy-dispersive x-ray analysis (EDX), the use of a scanning electron microscope (SEM) and atomic force microscope (AFM) for surface morphology. The films exhibited a smooth morphology. The chemical states of oxygen and zinc in the ZnO nano thin films were also investigated by x-ray photoelectron spectroscopy (XPS). In the present investigations, highly textured ZnO thin films with a preferential (002)-orientation were prepared on glass substrates. The deposition conditions were optimized to obtain device-quality films for practical applications.

  11. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to

  12. Solvent extraction studies of 10% TBP flowsheets in the solvent extraction test facility using irradiated fuel from the Fast Flux Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Campbell, D.O.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1988-03-01

    Two solvent extraction experiments were made in the Solvent Extraction Test Facility (SETF) during Campaign 10 to continue the evaluation of: (1) a computer control system for the coextraction-coscrub contractor; and (2) a partitioning technique that separates uranium and plutonium without the aid of chemical reductants. The Fast Flux Test Facility (FFTF) fuel used in this campaign had burnups of {approximately}55 and {approximately}60 (average) MWd/kg. During both experiments, the computer control system successfully maintained stable, efficient operation. The control system used an in-line photometer to monitor the plutonium concentration in the extraction section; and based on this data, it adjusted the addition rate of the extractant to maintain high loadings of heavy metal in the solvent and low raffinate losses. The uranium and plutonium partitioning relied entirely on the differences between the U(VI) and Pu(IV) distribution coefficients (since no reductant was used to adjust the plutonium valence). In order to enhance this difference, the TBP concentration and operating temperature were relatively low in comparison to traditional Purex flowsheets. Final product purities of 99{percent} were achieved for both the uranium and plutonium in one cycle of partitioning.

  13. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl2 impregnated carbon (CASD_ZnCl2) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd(2+) and 1.61mmoles/g for Ni(2+)) in comparison to CASD_ZnCl2 (0.23mmoles/g and 0.33mmoles/g for Cd(2+) and Ni(2+) respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment.

  14. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  15. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  16. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning.

    PubMed

    Lo IMC; Lai, K C; Chen, G H

    2001-12-01

    The salinity levels of wastewater and sludge are relatively high in some coastal cities as they may use saline water for toilet flushing, and as such,the sludge dewaterability can be affected by it. The salinity effect on sludge dewaterability was therefore investigated through experimental testing of specific resistance in filtration (SRF), time to filter (TTF), and final solid content of sludge. SRF and TTF were determined using Buchner funnel tests. The final solid content was estimated by centrifuging the sludge at four levels of rotational speed. Sludge with three salinity levels (5,000, 10,000 and 20,000 ppm) were considered in this study. Coagulants such as alum, iron(II) sulfate, and organic polyelectrolytes were added to the sludgetostudythe dewaterability of such sludge with chemical conditioning. Experimental results show that doubling the salinity level of the sludge from 10,000 to 20,000 ppm shows not much change in SRF and TTF. Compared with the sludge without chemical conditioning, the addition of the coagulants to the sludge at a salinity level of 5,000 ppm drastically reduces its SRF and TTF. However, sludge with and without chemical conditioning at a salinity of 20,000 ppm has similar SRF and TTF. The final solid content of sludge increases almost linearly with salinity. Among the coagulants used in this study, the cationic polyelectrolyte is found to be better in improving sludge dewaterability, while iron(II) sulfate performs slightly better in enhancing the final solid content of the sludge.

  17. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    PubMed

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  18. Induced Sporicidal Activity of Chlorhexidine against Clostridium difficile Spores under Altered Physical and Chemical Conditions

    PubMed Central

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2015-01-01

    Background Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores. Principal Findings C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions. Conclusions Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore. PMID:25861057

  19. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions.

    PubMed

    Wu, Zhen-Yu; Li, Chao; Liang, Hai-Wei; Zhang, Yu-Ning; Wang, Xin; Chen, Jia-Fu; Yu, Shu-Hong

    2014-02-12

    To address oil spillage and chemical leakage accidents, the development of efficient sorbent materials is of global importance for environment and water source protection. Here we report on a new type of carbon nanofiber (CNF) aerogels as efficient sorbents for oil uptake with high sorption capacity and excellent recyclability. Importantly, the oil uptake ability of the CNF aerogels can be maintained over a wide temperature range, from liquid nitrogen temperature up to ca. 400°C, making them suitable for oil cleanup under harsh conditions. The outstanding sorption performance of CNF aerogels is associated with their unique physical properties, such as low density, high porosity, excellent mechanical stability, high hydrophobicity and superoleophilicity.

  20. Impact of Pad Conditioning on Thickness Profile Control in Chemical Mechanical Planarization

    NASA Astrophysics Data System (ADS)

    Kincal, S.; Basim, G. B.

    2013-01-01

    Chemical mechanical planarization (CMP) has been proven to be the best method to achieve within-wafer and within-die uniformity for multilevel metallization. Decreasing device dimensions and increasing wafer sizes continuously demand better planarization, which necessitates better understanding of all the variables of the CMP process. A recently highlighted critical factor, pad conditioning, affects the pad surface profile and consequently the wafer profile; in addition, it reduces defects by refreshing the pad surface during polishing. This work demonstrates the changes in the postpolish wafer profile as a function of pad wear. It also introduces a wafer material removal rate profile model based on the locally relevant Preston equation by estimating the pad thickness profile as a function of polishing time. The result is a dynamic predictor of how the wafer removal rate profile shifts as the pad ages. The model helps fine-tune the pad conditioner operating characteristics without the requirement for costly and lengthy experiments. The accuracy of the model is demonstrated by experiments as well as data from a real production line. Both experimental data and simulations indicate that the smaller conditioning disk size and extended conditioning sweep range help improve the post-CMP wafer planarization. However, the defectivity tends to increase when the conditioning disk sweeps out of the pad radius; hence, the pad conditioning needs to be designed by considering the specific requirements of the CMP process conducted. The presented model predicts the process outcomes without requiring detailed experimentation.

  1. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally.

  2. Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.

    PubMed

    Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

    2013-07-01

    Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints.

  3. Combined physical and chemical methods to control lesser mealworm beetles under laboratory conditions.

    PubMed

    Wolf, Jônatas; Potrich, Michele; Lozano, Everton R; Gouvea, Alfredo; Pegorini, Carla S

    2015-06-01

    The lesser mealworm beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), is an important insect pest. The insect acts as a disease vector and reservoir, negatively affecting the health of birds and humans, and harming poultry husbandry. Controlling the lesser mealworm is generally based on using synthetic chemical insecticides, which are sometimes ineffective, and is limited due to market concerns regarding the toxicity of chemical residues in food products. In this context, the present study aimed to evaluate the potential for the combination of physical and chemical methods to control A. diaperinus. Bioassays were conducted using poultry bedding and known populations of beetle adults and larvae. The treatments consisted of the isolated application of 400 g/m2 hydrated lime; 20% added moisture (distilled water); temperature increase to 45°C; an insecticide composed of cypermethrin, chlorpyrifos, and citronellal; and a combination of these factors. Beetle mortality was measured at 7 and 10 d of treatment. The hydrated lime and moisture treatments alone did not control A. diaperinus. Raising the temperature of the poultry bedding to 45°C effectively controlled both larvae (90±6%) and adults (90±4%). The use of insecticide provided adequate control of A. diaperinus in the conditions of the bioassay (93±2% and 68±5% for adults and larvae, respectively). The combination of the studied factors led to the total control of larvae and adults after 7 d of treatment. © 2015 Poultry Science Association Inc.

  4. From laboratory to environmental conditions: a new approach for chemical's biodegradability assessment.

    PubMed

    François, Brillet; Armand, Maul; Marie-José, Durand; Thouand, Gérald

    2016-09-01

    With thousands of organic chemicals released every day into our environment, Europe and other continents are confronted with increased risk of health and environmental problems. Even if a strict regulation such as REgistration, Authorization and restriction of CHemicals (REACH) is imposed and followed by industry to ensure that they prove the harmlessness of their substances, not all testing procedures are designed to cope with the complexity of the environment. This is especially true for the evaluation of persistence through biodegradability assessment guidelines. Our new approach has been to adapt "in the lab" biodegradability assessment to the environmental conditions and model the probability for a biodegradation test to be positive in the form of a logistic function of both the temperature and the viable cell density. Here, a proof of this new concept is proposed with the establishment of tri-dimensional biodegradability profiles of six chemicals (sodium benzoate, 4-nitrophenol, diethylene glycol, 2,4,5-trichlorophenol, atrazine, and glyphosate) between 4 to 30 °C and 10(4) to 10(8) cells ml(-1) as can be found in environmental compartments in time and space. The results show a significant increase of the predictive power of existing screening lab-scale tests designed for soluble substances. This strategy can be complementary to those current testing strategies with the creation of new indicators to quantify environmental persistence using lab-scale tests.

  5. Chemical boundary conditions for the classification of aerosol particles using computer controlled electron probe microanalysis.

    PubMed

    Anaf, Willemien; Horemans, Benjamin; Van Grieken, René; De Wael, Karolien

    2012-11-15

    A method for the classification of individual aerosol particles using computer controlled electron probe microanalysis is presented. It is based on chemical boundary conditions (CBC) and enables quick and easy processing of a large set of elemental concentration data (mass%), derived from the X-ray spectra of individual particles. The particles are first classified into five major classes (sea salt related, secondary inorganic, minerals, iron-rich and carbonaceous), after which advanced data mining can be performed by examining the elemental composition of particles within each class into more detail (e.g., by ternary diagrams). The CBC method is validated and evaluated by comparing its results with the output obtained with hierarchical cluster analysis (HCA) for well-known standard particles as well as real aerosol particles collected with a cascade impactor. The CBC method gives reliable results and has a major advantage compared to HCA. CBC is based on boundary conditions that are derived from chemical logical thinking and does not require a translation of a mathematical algorithm output as does HCA. Therefore, the CBC method is more objective and enables comparison between samples without intermediate steps.

  6. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans.

    PubMed

    Moon, Joon-Kwan; Shibamoto, Takayuki

    2009-07-08

    The volatile chemicals in dichloromethane extracts from green coffee beans, roasted at 230 degrees C for 12 min (light), at 240 degrees C for 14 min (medium), at 250 degrees C for 17 min (city), or at 250 degrees C for 21 min (French), were analyzed by gas chromatography and gas chromatography-mass spectrometry. Among the 52 volatile compounds identified, the major compounds were 5-hydroxymethylfurfural, furfuryl alcohol, and 6-methyl-3,5-dihydroxy-4H-pyran-4-one in light-roasted beans; furfuryl alcohol, 5-hydroxymethylfurfural, and gamma-butyrolactone in medium-roasted beans; furfuryl alcohol, gamma-butyrolactone, and 2-acetylpyrrole in city-raosted beans; and gamma-butyrolactone, furfuryl alcohol, and catechol in French-roasted beans. Furfural derivatives and furanones were yielded in relatively high concentrations under mild roasting conditions and then reduced at higher roasting intensities. More pyridines and pyrroles were formed by high roasting intensities than by mild roasting intensities. Chlorogenic acid degradation products, phenols, and a lactone were produced more by high roasting intensities than by low roasting intensities. The results of the present study suggest that controlling the roasting conditions according to the formation of particular chemicals can prepare a roasted coffee with preferable flavor.

  7. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars.

    PubMed

    Cao, Xiaoyan; Ro, Kyoung S; Libra, Judy A; Kammann, Claudia I; Lima, Isabel; Berge, Nicole; Li, Liang; Li, Yuan; Chen, Na; Yang, John; Deng, Baolin; Mao, Jingdong

    2013-10-02

    Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars.

  8. Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances.

    PubMed

    Hellou, Jocelyne; Cheeseman, Kerri; Jouvenelle, Marie-Laure; Robertson, Sarah

    2005-12-01

    The preference/avoidance behavioral response of a widely used amphipod in toxicity tests, Corophium volutator, was investigated in relation to the presence of anthropogenic physical or chemical materials in sediments. Exposure conditions, including the density of amphipods, the depth of sediments, amount of overlying water, and exposure time, were examined for their influence on amphipods' preference for field sediments and avoidance of coarse sand. It was shown that these variables did not affect the response; thus, conditions similar to published standard toxicity tests were chosen. A gradient of sediments spiked with potential habitat disturbances that can be found on a beach or in contaminated sediments, such as those in harbors, were tested. These substances included sand, seaweed, burned wood, coal, crankcase oil, and diesel oil. To enhance the interpretation of results and decrease the variability observed when tests were conducted at different times over the summer, exposures were performed over a gradient of spike material in reference sediments. We conclude that physical obstacles added to reference sediments lead to less correlation with the behavioral response than observed with chemical interferences. Amphipods' behavior ranked harbor sediments similarly to previous studies concerning the health of intertidal mussels collected in proximity to the sediments sites. For five sites, preference of reference sediments was observed until the level of polycyclic aromatic hydrocarbons in diluted harbor sediments reached the Canadian Council of Ministers of the Environment sediment quality guidelines.

  9. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    SciTech Connect

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

  10. Natural Colloid Mobilization in Unsaturated Hanford Coarse Sand Under Transient Flow and Transient Chemical Conditions

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Saiers, J. E.

    2007-12-01

    Colloid-sized clay, carbonate, and metal oxide particles are ubiquitous in the vadose zone and strongly adsorb dissolved contaminants such as metals and radionuclides. Under certain conditions, colloid particles are readily mobilized (released) into pore water and travel in a nearly conservative fashion and thus can facilitate the transport of contaminants. Although much progress has been made toward identifying and modeling colloid mobilization and transport processes in ideal, homogeneous systems, our understanding of the phenomenon in non-ideal, heterogeneous systems is still limited. We investigated natural colloid mobilization and transport in laboratory columns packed with Hanford Coarse Sand, a heterogeneous natural sediment. Our major focus was the role of transient flow and transient chemical conditions on colloid release and transport in unsaturated media. We found that a moving air-water interface had the greatest effects on the mobilization of colloid, and up to ~1000 mg/L of colloid was mobilized during column drainage at an ionic strength of 2 mM. An increase in flow rate or decrease in ionic strength also mobilized colloids. A model that accounts for transient pore water flow, colloid transport, and mass transfer in unsaturated media was developed to describe colloid mobilization in our column experiments. Both our experimental and modeling results showed the important role of moving air-water interfaces, changes in moisture content, and changes in ionic strength in mobilizing natural colloids in heterogeneous natural sediments. This work has contributed to our knowledge of colloid and colloid-associated contaminant mobilization in real vadose-zone environments under transient flow and transient chemical conditions.

  11. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions

    PubMed Central

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693

  12. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions.

    PubMed

    Martín, José; Ortega, Jesús; López, Pilar

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.

  13. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions

    USGS Publications Warehouse

    Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

    2000-01-01

    A field investigation of multispecies reactive transport was conducted in a well-characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and BDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal-EDTA complexes was affected by aqueous complexation, adsorption, and dissolution-precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb-EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu-EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb-EDTA complex is greater than Cu-EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb-EDTA complex to disassociate to a greater degree than the Cu-EDTA complex. The mass of dissolved Zn-EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage-derived Zn. Dissolved Ni-EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible

  14. DETERMINATION OF PHTHALATES IN WATER AND SOIL BY TANDEM MASS SPECTROMETRY UNDER CHEMICAL IONIZATION CONDITIONS WITH ISOBUTANE AS REAGENT GAS

    EPA Science Inventory

    Phthalate determination is important because phthalates often are major impurities in samples and can have significant health effects. Tandem mass spectrometry under chemical ionization mass spectrometry conditions with isobutane as the reagent gas was used to determine 11 phthal...

  15. Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions

    EPA Science Inventory

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

  16. Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions

    EPA Science Inventory

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

  17. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  18. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  19. Barrier crossing with concentration boundary conditions in biological channels and chemical reactions

    NASA Astrophysics Data System (ADS)

    Barcilon, Victor; Chen, Duanpin; Eisenberg, Robert S.; Ratner, Mark A.

    1993-01-01

    Ions move into biological cells through pores in proteins called ionic channels, driven by gradients of potential and concentration imposed across the channel, impeded by potential barriers and friction within the pore. It is tempting to apply to channels the chemical theory of barrier crossing, but important issues must first be solved: Concentration boundary conditions must be used and flux must be predicted for applied potentials of all sizes and for barriers of all shapes, in particular, for low barriers. We use a macroscopic analysis to describe the flux as a convolution integral of a mathematically defined adjoint function, a Green's function. It so happens that the adjoint function also describes the first-passage time of a single particle moving between boundary conditions independent of concentration. The (experimentally observable) flux is computed from analytical formulas, from simulations of discrete random walks, and from simulations of the Langevin or reduced Langevin equations, with indistinguishable results. If the potential barrier has a single, large, parabolic peak, away from either boundary, an approximate expression reminiscent of Kramers' formula can be used to determine the flux. The fluxes predicted can be compared with measurements of current through single channels under a wide range of experimental conditions.

  20. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    SciTech Connect

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.

  1. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  2. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    DOE PAGES

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; ...

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore,more » the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less

  3. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids.

    PubMed

    Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V

    2011-01-01

    This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  4. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    PubMed Central

    Burguete, M Isabel; García-Verdugo, Eduardo

    2011-01-01

    Summary This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones. PMID:22043246

  5. A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions

    SciTech Connect

    Wu, C J; Manaa, M R; Fried, L E

    2006-05-30

    We have carried out density functional based tight binding (DFTB) molecular dynamics (MD) simulation to study energetic reactions of solid Pentaerythritol Tetranitrate (PETN) at conditions approximating the Chapman-Jouguet (CJ) detonation state. We found that the initial decomposition of PETN molecular solid is characterized by uni-molecular dissociation of the NO{sub 2}groups. Interestingly, energy release from this powerful high explosive was found to proceed in several stages. The large portion of early stage energy release was found to be associated with the formation of H{sub 2}O molecules within a few picoseconds of reaction. It took nearly four times as long for majority of CO{sub 2} products to form, accompanied by a slow oscillatory conversion between CO and CO{sub 2}. The production of N{sub 2} starts after NO{sub 2} loses its oxygen atoms to hydrogen or carbon atoms to form H{sub 2}O or CO. We identified many intermediate species that emerge and contribute to reaction kinetics, and compared our simulation with a thermo-chemical equilibrium calculation. In addition, a detailed chemical kinetics of formation of H{sub 2}O, CO, and CO{sub 2} were developed. Rate constants of formations of H{sub 2}O, CO{sub 2} and N{sub 2} were reported.

  6. Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Ahmad, Bashir; Waqas, Muhammad

    2016-12-01

    The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

  7. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  8. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  9. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions

    PubMed Central

    Wu, Zhen-Yu; Li, Chao; Liang, Hai-Wei; Zhang, Yu-Ning; Wang, Xin; Chen, Jia-Fu; Yu, Shu-Hong

    2014-01-01

    To address oil spillage and chemical leakage accidents, the development of efficient sorbent materials is of global importance for environment and water source protection. Here we report on a new type of carbon nanofiber (CNF) aerogels as efficient sorbents for oil uptake with high sorption capacity and excellent recyclability. Importantly, the oil uptake ability of the CNF aerogels can be maintained over a wide temperature range, from liquid nitrogen temperature up to ca. 400°C, making them suitable for oil cleanup under harsh conditions. The outstanding sorption performance of CNF aerogels is associated with their unique physical properties, such as low density, high porosity, excellent mechanical stability, high hydrophobicity and superoleophilicity. PMID:24518262

  10. Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions.

    PubMed

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  11. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    PubMed

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  12. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  13. Chemical Characterization of Extrasolar Super-Earths - Interiors, Atmospheres, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Lee, K.; Uts, I.; Mousis, O.

    2013-01-01

    Recent observations are allowing unprecedented measurements of masses and radii of low-mass transiting extrasolar planets, particularly super-Earths which are defined as planets with masses between 1 and 10 Earth masses. The observed masses, radii, and temperatures of super-Earths provide constraints on their interior structures, geophysical conditions, as well as their atmospheric compositions. Some of the most recently detected super-Earths span a wide gamut of possible compositions, from super-Mercuries and lava planets to water worlds with thick volatile envelopes. In this work, we report joint constraints on the interior and atmospheric compositions of several super-Earths and discuss their possible formation scenarios using new and comprehensive hybrid models of their interiors, non-gray atmospheres, and formation conditions. Our model constraints are based on the masses and visible radii, as well as the latest infrared measurements of transmission and emission spectrophotometry where available, in addition to revised estimates of the stellar parameters. We will present a comparative analysis of several transiting super-Earths currently known and will discuss in detail two super-Earths (GJ 1214b and 55 Cancri e) which have atmospheric data available and which represent two distinct end members in the thermo-chemical phase space of super-Earth conditions. We will also discuss the implications of our results for the diversity of geochemical and geophysical conditions on super-Earths. We will conclude with comments on new observational, theoretical, and experimental efforts that are critical to detailed characterization of super-Earths.

  14. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  15. Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys.

    PubMed

    Cooper, K R; Kelly, R G

    1999-07-30

    The environment-assisted cracking (EAC) susceptibility of some aluminum alloys used for airplane structural components currently limits their use in the peak strength condition. Understanding the mechanism of EAC will facilitate the development of crack-resistant alloys with optimum mechanical properties. One component towards understanding the fundamental processes responsible for EAC is a comprehensive knowledge of the chemical conditions within cracks. The present work uses capillary electrophoresis (CE) to quantify the crack chemistry in order to provide insight into the nature of the mechanism controlling cracking. The highly restricted geometry of cracks in metals means that a crack typically contains less than 10 microliters of solution. The high mass sensitivity combined with the inherently robust nature of CE makes it an ideal analytical technique for this application. Complicating factors in the accurate determination of the crack environment include high levels of sodium present from the test solution. Low sample volume and analyte matrix complexity necessitated the development of specific sampling, extraction and analysis methods. Analysis of the crack solutions in EAC-susceptible material revealed high levels of Al3+, Mg2+, Zn2+, and Cl- near the crack tip. Cations arise from the anodic dissolution of the alloy, whereas chloride ingress from the external environment occurs to maintain solution electroneutrality within the crack. In contrast, EAC-resistant material exhibited significantly lower concentrations of dissolution products.

  16. Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam

    SciTech Connect

    Reed, B.E.; Berg, M.T.; Hatfield, J.H.; Thompson, J.C.

    1995-11-01

    The in-situ remediation of a lead-contaminated soil (silt loam, K{sub H} = 5 {times} 10{sup {minus}8} cm/s, soil Pb = 1,000 mg/kg) by electrokinetic (EK) soil flushing [60 V (DC)] was studied. Research focused on the chemical conditioning of the electrode reservoirs with either 500 {micro}S/cm (as NaNO{sub 3}, baseline behavior), acetic acid (HAc), HCl, or EDTA. For baseline tests there were significant amounts of lead transported through the soil, but the Pb precipitated or was readsorbed on the soil adjacent to the cathode because of the high soil pH in that region. The addition of 1 M HAc to the cathode reservoir prevented the formation of the basic conditions in the soil, and about 65% of the Pb was transported into the cathode. When HCl was added to the anode and HAc was added to the cathode, more than 75% of the lead resided in the cathode. Pb removals in the EDTA experiments were greater than those observed in the baseline experiments and were similar to those observed in the HCl-HAc experiments. A low anode reservoir pH resulting from a high current was the most likely reason.

  17. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  18. Arsenic mobility in soils contaminated with metallurgical wastes as a function of variable chemical conditions

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Villalobos, M.; Ceniceros, A.; Lopez, J. L.; Gutierrez, M.

    2008-12-01

    Arsenic is a pervasive contaminant of natural aqueous systems, such as groundwater and soils, its sources being both natural and anthropogenic. The present investigation was performed on soils contaminated with residues from ore processing activities and revealed the presence of arsenate [As(V)] species with a very low mobility, through natural attenuation processes. The stability of this attenuation was investigated by varying two specific equilibrium chemical conditions: pH and presence of bicarbonate ions. One-unit changes in equilibrium pH generally caused small increases in As mobility, whereas the presence of bicarbonate ions considerably increased this mobility. The results were compared to thermodinamic simulations of equilibrium conditions using the total elemental composition of each individual soil, but excluding sorption reactions. Close matches between experimental data and simulations revealed the predominance of solubility-controlled As mobility via heavy-metal arsenate solid formation. Bicarbonate ions were found to be highly unsuitable for extraction of sorbed arsenate fractions due to indirect As release from solid arsenates, via heavy-metal carbonate precipitation processes.

  19. Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls ( Ambystoma mexicanum).

    PubMed

    Park, D; McGuire, J M; Majchrzak, A L; Ziobro, J M; Eisthen, H L

    2004-05-01

    Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.

  20. Confirmation Run of the DWPF SRAT Cycle Using the Sludge-Only Flowsheet with Tank 40 Radioactive Sludge and Frit 200 in the Shielded Cells Facility

    SciTech Connect

    Fellinger, T.L.

    2002-08-29

    Several basic data reports have been issued concerning the recent demonstration of the Defense Waste Processing Facility (DWPF) Sludge Receipt and Adjustment Tank (SRAT) Cycle and Slurry Mix Evaporator (SME) Cycle, conducted at the Savannah River Technology Center (SRTC). The SRTC demonstration was completed using the DWPF ''Sludge-Only'' flowsheet with washed Tank 40 sludge slurry (Sludge Batch 2 or Macrobatch 3) in the Shielded Cells facility. The DWPF ''Sludge-Only'' flowsheet calls for processing radioactive sludge slurry using nitric acid, concentrated formic acid, and frit 200.

  1. Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment

    SciTech Connect

    Xu, Tianfu; Pruess, K.; Brimhall, G.

    1999-04-01

    Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing

  2. Water and chemical budgets in an urbanized river system under various hydrological conditions

    NASA Astrophysics Data System (ADS)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  3. Turn in the road: chemicals from coal

    SciTech Connect

    Coover, H.W. Jr.; Hart, R.C.

    1982-04-01

    This paper describes a new process and equipment developed by Eastman Co. for the production of acetic anhydride and other chemicals from coal by using coal gasification route. First, a research program was begun to synthesize acetic anhydride on a bench-scale. The main emphasis was the development of suitable catalyst to produce acetic anhydride from the lowest-cost starting materials, with a minimum of by-products, and under conditions easily achievable in commercial production. Continuous pilot plants of modest size were built in 1977 to test various materials of construction and to demonstrate that the rather expensive catalyst system which had been developed could be reused indefinitely. The data from the pilot operations were used to formulate mathematical models for the conceptual flowsheet design. The process was scaled up to the full-sized commercial plant, and the math models aided in optimizing the final engineering design. The gasification complex, will include a Texaco coal gasification plant for syngas manufacture, raw gas clean-up and separation facilities, a sulfur recovery unit, a coal-fired steam plant with electric power cogeneration, and chemical plants to produce methanol, methyl acetate, and acetic anhydride. The plant will gasify approximately 900 ton/d of high-sulfur coal from nearby mines. Economic considerations are included.

  4. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    USDA-ARS?s Scientific Manuscript database

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The eff...

  5. Synthetic conditions and chemical structures of urea-formaldehyde resins. I. Properties of the resins synthesized by three different procedures

    Treesearch

    Gu Ji-you; Mitsuo Higuchi; Mitsuhiro Morita; Chung-Yun Hse

    1995-01-01

    The properties and chemical structures of urea-formaldehyde (UF) resins synthesized by three different procedures were investigated. The procedures employed were: 1) methylolation under the conditions of pH 8 and a formaldehyde/urea (F/U) molar ratio of 2, followed by condensation at pH 5 and by additional incorporation of urea, 2) condensation under the conditions of...

  6. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    PubMed Central

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  7. Chemical speciation of inorganic compounds under hydrothermal conditions. 1998 annual progress report

    SciTech Connect

    Stern, E.A.; Fulton, J.L.; Darab, J.G.; Steidler, G.T.

    1998-06-01

    'To obtain the chemistry of metallic solute ions under aqueous and hydrothermal conditions in order to obtain key insights pertinent to the removal of toxic wastes. Elements present in Hanford tank wastes will be investigated to get a better understanding of how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In the following summary of the x-ray absorption fine structure (XAFS) measurements under aqueous and hydrothermal conditions, most measurements below the critical temperature (375 C) were taken at about 200 bar pressure, while at supercritical temperatures the pressure was about 600 bar. Chemistry of Na{sub 2} WO{sub 4} Under Aqueous and Hydrothermal Conditions Tungsten, molybdenum, vanadium and, to a lesser agree, chromium, niobium and tantalum form isopolymetallates, polymeric species of rather complicated structure and complex chemical equilibria, in aqueous solution upon acidification. Except Tantalum, all of these elements are present in the Hanford tank wastes and it is not well understood how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In March 1998, the authors launched a series of XAFS experiments to resolve these questions. Measurements were obtained for 0.2 molal tungstate solutions as a function of temperature (to 200 C) and as a function of starting pH. The outcome of these measurements is providing key insights into this chemistry as follows: (1) A change from tetrahedral to octahedral coordination of the oxygen atoms around the tungsten center atom can be detected upon increasing extent of polymerization. (2) At least one new feature shows up in the Fourier Transform of the k-weighted Chi plot (closely related to a radial distribution function) which is unambiguously attributed to a tungsten-tungsten scattering path, only present in the polymeric species. (3) Perhaps most interestingly, the XAFS data indicate a higher extent of

  8. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  9. Optimization of a 200 kW SOFC cogeneration power plant. Part II: variation of the flowsheet

    NASA Astrophysics Data System (ADS)

    Riensche, Ernst; Meusinger, Josefin; Stimming, Ulrich; Unverzagt, Guido

    An energetic and economic analysis of a decentralized natural gas-fuelled solid oxide fuel cell (SOFC) power plant in the range of 200 kW capacity is carried out. All calculations start from a basic plant concept with a simple flowsheet and a basic parameter set of SOFC operation and economic data. Changes in costs of electricity and plant efficiencies are determined for variations of the plant concept. Flowsheets with gas recycling by blowers or jet boosters are described. Cathode gas recycling by jet boosters turns out to be more advantageous with respect to the costs of electricity than gas recycling by hot gas fans. The influence of pressure drop in the cathode gas circuit is analyzed. In case of anode gas recycling an internal steam circuit exists. This has the advantage that the external steam generator is eliminated and that the steam concentration in the exhaust gas is reduced. Therefore, a higher amount of excess heat can be used. Removal of useful heat at higher temperature levels diminishes the driving temperature differences and enlarges the heat exchange area of the recuperative heat exchangers located downstream.

  10. The Los Alamos National Laboratory (USA): Instituto Mexicano del Petroleo cooperative program for the ASPEN flowsheet simulator: Status report

    SciTech Connect

    Phillips, T.T.

    1987-01-01

    On June 20, 1983, the Los Alamos National Laboratory, the US Department of Energy, and the Instituto Mexicano del Petroleo (IMP) signed a Memorandum of Understanding (MOU) that established a program of cooperation between the Los Alamos National Laboratory and the IMP. This report describes the work done under Annex II of the MOU, which set up a program in the area of process simulation using the ASPEN flowsheet simulator. As a part of this program, two IMP engineers were trained at Los Alamos: one as an ASPEN system administrator and the other as an ASPEN applications engineer. After returning to Mexico, these engineers installed ASPEN on the IMP VAX computer and trained 30 other IMP engineers and scientists to use ASPEN. To date, IMP used ASPEN to simulate four major process plants. In addition, engineers from Los Alamos and IMP worked together during the summer of 1986 to develop an implementation of the UNIFAC method for predicting liquid-phase activity coefficients. The code was written and installed in ASPEN and has passed a series of initial test cases. The UNIFAC model will be released to the public domain when testing is complete. IMP has also developed and shared with Los Alamos some enhancements to a computer code that predicts physical property correlation constants for petroleum fractions. The success of the Los Alamos/IMP cooperative program for the ASPEN flowsheet simulator demonstrates that technology transfer can work in both directions. 18 refs.

  11. Phytoplankton communities of polar regions--Diversity depending on environmental conditions and chemical anthropopressure.

    PubMed

    Kosek, Klaudia; Polkowska, Żaneta; Żyszka, Beata; Lipok, Jacek

    2016-04-15

    The polar regions (Arctic and Antarctic) constitute up to 14% of the biosphere and offer some of the coldest and most arid Earth's environments. Nevertheless several oxygenic phototrophs including some higher plants, mosses, lichens, various algal groups and cyanobacteria, survive that harsh climate and create the base of the trophic relationships in fragile ecosystems of polar environments. Ecosystems in polar regions are characterized by low primary productivity and slow growth rates, therefore they are more vulnerable to disturbance, than those in temperate regions. From this reason, chemical contaminants influencing the growth of photoautotrophic producers might induce serious disorders in the integrity of polar ecosystems. However, for a long time these areas were believed to be free of chemical contamination, and relatively protected from widespread anthropogenic pressure, due their remoteness and extreme climate conditions. Nowadays, there is a growing amount of data that prove that xenobiotics are transported thousands of kilometers by the air and ocean currents and then they are deposed in colder regions and accumulate in many environments, including the habitats of marine and freshwater cyanobacteria. Cyanobacteria (blue green algae), as a natural part of phytoplankton assemblages, are globally distributed, but in high polar ecosystems they represent the dominant primary producers. These microorganisms are continuously exposed to various concentration levels of the compounds that are present in their habitats and act as nourishment or the factors influencing the growth and development of cyanobacteria in other way. The most common group of contaminants in Arctic and Antarctic are persistent organic pollutants (POPs), characterized by durability and resistance to degradation. It is important to determine their concentrations in all phytoplankton species cells and in their environment to get to know the possibility of contaminants to transfer to higher

  12. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.

  13. Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite-leucogabbro deformed at amphibolite facies conditions

    NASA Astrophysics Data System (ADS)

    Svahnberg, Henrik; Piazolo, Sandra

    2013-03-01

    We present microstructural and chemical analyses of chemically zoned and recrystallized plagioclase grains in variably strained samples of a naturally deformed anorthosite-leucogabbro, southern West Greenland. The recorded microstructures formed in the presence of fluids at mid-crustal conditions (620-640 °C, 7.4-8.6 kbar). Recrystallized plagioclase grains (average grain size 342 μm) with a random crystallographic orientation are volumetrically dominant in high-strain areas. They are characterized by asymmetric chemical zoning (An80 cores and An64 rims) that are directly associated with areas exhibiting high amphibole content and phase mixing. Analyses of zoning indicate anisotropic behaviour of bytownite plagioclase with a preferred replacement in the < {0 10} rangle direction and along the (001) plane. In areas of high finite strain, recrystallization of plagioclase dominantly occurred by bulging recrystallization and is intimately linked to the chemical zoning. The lack of CPO as well as the developed asymmetric zoning can be explained by the activity of grain boundary sliding accommodated by dissolution and precipitation creep (DPC). In low-strain domains, grain size is on average larger and the rim distribution is not related to the inferred stress axes indicating chemically induced grain replacement instead of stress-related DPC. We suggest that during deformation, in high-strain areas, pre-existing phase mixture and stress induced DPC-caused grain rotations that allowed a deformation-enhanced heterogeneous fluid influx. This resulted in local plagioclase replacement through interface-coupled dissolution and precipitation and chemically induced grain boundary migration, accompanied by bulging recrystallization, along with neocrystallization of other phases. This study illustrates a strong interaction and feedback between physical and chemical processes where the amount of stress and fluids dictates the dominant active process. The interaction is a cause of

  14. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    NASA Astrophysics Data System (ADS)

    de-Campos, A. B.; Mamedov, A. I.; Huang, C.; Wagner, L. E.

    2008-12-01

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The effects of short-term reducing conditions on chemical and physical properties of the soils, colloids, and associated chemical/nutrients transport are still not well understood and was the objective of our study. A biogeochemical reactor was built to achieve reducing conditions. Three cultivated and three uncultivated soils with different organic carbon contents were incubated in the reactor for 1 hour and 3 days under anaerobic conditions. Effects of the redox state on soil structure (pore size distribution) and drainable porosity, colloids mobility, and chemical transport were determined using high energy moisture characteristic and analytical methods. After each treatment, the soil solution was collected for redox potential (Eh), pH, and electrical conductivity (EC) measurements, and chemical analysis of metals (Ca, Mg, K), nutrients (N, P), and dissolved organic carbon. Strongly reducing conditions were achieved after 3 days of incubation and were followed by a decrease in soil porosity and an increase in pH, EC, clay dispersion, swelling, colloids mobility, and associated chemical transport. The trend for each soil depended on their initial structural stability and chemical properties. The structure of cultivated soils and the leaching of nutrients and carbon from uncultivated soils were more sensitive to the redox state. A strong correlation was found between changes in Eh and drainable porosity. The role of short-term reducing conditions on changes in redox sensitive elements, organic matter decomposition, pH, and EC and their influence on soil structure and soil particles or colloids/chemical transport for both soil groups are discussed in the paper. This study

  15. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  16. Influence of Aerosol Chemical Composition on Heterogeneous Ice Formation under Mid-Upper Troposphere Conditions

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Niemand, M.; Saathoff, H.; Möhler, O.; Chou, C.; Abbatt, J.; Stetzer, O.

    2011-12-01

    Aerosols are involved in cooling/warming the atmosphere directly via interaction with incoming solar radiation (aerosol direct effect), or via their ability to act as cloud condensation or ice nuclei (IN) and thus play a role in cloud formation (indirect effect). In particular, the physical properties of aerosols such as size and solubility and chemical composition can influence their behavior and fate in the atmosphere. Ice nucleation taking place via IN is termed as heterogeneous ice nucleation and can take place with via deposition (ice forming on IN directly from the vapor phase), condensation/immersion (freezing via formation of the liquid phase on IN) or condensation (IN colliding with supercooled liquid drops). This presentation shows how the chemical composition and surface area of various tropospherically relevant aerosols influence conditions of temperature (T) and relative humidity (RH) required for heterogeneous ice formation conditions in the mid-upper troposphere regime (253 - 220K)? Motivation for this comes first from, the importance of being able to predict ice formation accurately so as to understand the hydrological cycle since the ice is the primary initiator of precipitation forming clouds. Second, the tropospheric budget of water vapour, an especially active greenhouse gas is strongly influenced by ice nucleation and growth. Third, ice surfaces in the atmosphere act as heterogeneous surfaces for chemical reactions of trace gases (e.g., SO2, O3, NOx and therefore being able to accurately estimate ice formation rates and quantify ice surface concentrations will allow a more accurate calculation of trace gas budgets in the troposphere. Ice nucleation measurements were conducted using a self-developed continuous flow diffusion chamber and static chamber. A number of tropospherically relevant particulates with naturally-varying and laboratory-modified surface chemistry/structure were investigated for their ice formation efficiency based on highest

  17. Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions.

    PubMed

    Sippula, O; Stengel, B; Sklorz, M; Streibel, T; Rabe, R; Orasche, J; Lintelmann, J; Michalke, B; Abbaszade, G; Radischat, C; Gröger, T; Schnelle-Kreis, J; Harndorf, H; Zimmermann, R

    2014-10-07

    The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation.

  18. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    PubMed Central

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415

  19. Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions.

    PubMed

    Lissalde, Sophie; Mazzella, Nicolas; Mazellier, Patrick

    2014-08-01

    This study focuses on how Polar Organic Chemical Integrative Samplers (POCIS) work in real environmental conditions. A selection of 23 polar pesticides and 8 metabolites were investigated by exposure of triplicates of integrative samplers in two rivers in France for successive 14-day periods. The pesticides and metabolites were trapped not only in Oasis HLB sorbent but also in the polyethersulfone (PES) membrane of the POCIS. The distribution of pesticides depended on the molecular structure. The use of the Performance Reference Compound (PRC) is also discussed here. The impact of some environmental parameters and exposure setup on the transfer of pesticides in POCIS sorbent was studied: river flow rate, biofouling on membranes, sampler holding design and position in the stream. Results show a significant impact of river flow velocity on PRC desorption, especially for values higher than 4 cm·s(-1). Some fouling was observed on the PES membrane which could potentially have an impact on molecule accumulation in the POCIS. Finally, the positioning of the sampler in the river did not have significant effects on pesticide accumulation, when perpendicular exposures were used (sampler positioning in front of the water flow). The POCIS with PRC correction seems to be a suitable tool for estimating time-weighted average (TWA) concentrations, for all the molecules except for one of the nine pesticides analyzed in these two French rivers.

  20. The effect of different chemical treatments, pyrolysis conditions and feedstocks on the redox properties of biochar.

    NASA Astrophysics Data System (ADS)

    Chacón, Francisco Javier; Cayuela, María Luz; Roig, Asunción; Ángel Sánchez-Monedero, Miguel

    2017-04-01

    Pyrogenic carbonaceous materials can have a role in several biogeochemical redox reactions as electron transfer catalysts. Low N2O emissions in biochar amended soils can be related to its ability to act as an "electron shuttle", facilitating the transport of electrons to soil denitrifying microorganisms. Modifying biochar redox properties could be an interesting approach to regulate this effect. In this work we propose several methods for the development of biochars from slow pyrolysis with altered electrochemical properties. To improve its electron exchange capacity we aimed to: 1) Increase the number of redox active functional groups in biochar. Several pyrolysis conditions and chemical treatments (KOH, H3PO4 and H2O2) were tested. 2) Raise the fraction of redox active mineral in biochar. The presence of Fe and Mn-based minerals in biochar could also catalyze redox reactions in soil associated with the nitrogen cycle. Different additives (FeCl3, KMnO4 and clay) were combined with the feedstock before the pyrolysis process. Results of their ability to modify biochar redox properties, measured by mediated electrochemical analysis, are presented. Additionally, we characterized biochars produced from different feedstocks to assess how their lignin, holocellulose and ash composition affects these properties. Analytical issues arising from the difficulty of measuring the electron exchange capacity of biochar will also be discussed.

  1. Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

    NASA Astrophysics Data System (ADS)

    Xiao-Xu, Jiang; Guan-Yu, Chen; Yu-Tong, Li; Xin-Lu, Cheng; Cui-Ming, Tang

    2016-02-01

    Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ = 1.80 g/cm3 to 3.40 g/cm3 and temperatures from T = 500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS). Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).

  2. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    PubMed

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  3. Interaction of carbon nanotubes and diamonds under hot-filament chemical vapor deposition conditions

    NASA Astrophysics Data System (ADS)

    Shankar, Nagraj

    A composite of CNTs and diamond can be expected to have unique mechanical, electrical and thermal properties due to the synergetic combination of the excellent properties of these two allotropes of carbon. The composite may find applications in various fields that require a combination of good mechanical, thermal, electrical and optical properties such as, wear-resistant coatings, thermal management of integrated chips (ICs), and field emission devices. This research is devoted to the experimental studies of phase stability of diamond and CNTs under chemical vapor deposition conditions to investigate the possibility of combining these materials to produce a hybrid composite. Growth of the hybrid material is investigated by starting with a pre-existing film of CNTs and subsequently growing diamond on it. The diamond growth phase space is systematically scanned to determine optimal conditions where diamond nucleates on the CNT without destroying it. Various techniques including SEM, TEM, and Micro Raman spectroscopy are used to characterize the hybrid material. A selective window where the diamond directly nucleates on the CNT without destroying the underlying CNT network is identified. Based on the material characterization, a growth mechanism based on etching of CNT at the defective sites to produce sp3 dangling bonds onto which diamond nucleates is proposed. Though a hybrid material is synthesized, the nucleation density of diamond on the CNTs is low and highly non-homogenous. Improvements to the CNT dispersion in the hybrid material are investigated in order to produce a homogenous material with predictable CNT loading fractions and to probe the low nucleation density of diamond on the CNT. The effect of several dispersion techniques and solvents on CNT surface homogeneity is studied using SEM, and a novel, vacuum drying based approach using CNT/dichlorobenzene dispersions is suggested. SEM and Raman analysis of the early stage nucleation are used to develop a

  4. Chemical and microbiological parameters and sensory attributes of a typical Sicilian salami ripened in different conditions.

    PubMed

    Moretti, Vittorio Maria; Madonia, Giuseppe; Diaferia, Carlo; Mentasti, Tiziana; Paleari, Maria Antonietta; Panseri, Sara; Pirone, Giuseppe; Gandini, Gustavo

    2004-04-01

    A study was carried out on a typical Sicilian salami prepared from meat of the local Nero Siciliano pig in order to characterize this typical product. One formulation of salami was divided in two batches and ripened in two different environments, a traditional sicilian room (TR) and a controlled industrial ripening room (RR). Microbiological and physico-chemical analysis were performed on raw mixture and after 7 and 90 days of ripening. Sensory analysis was carried out on salami at the end of ripening, and flavour compounds were extracted by simultaneous distillation-extraction and analysed by gas chromatography/mass spectrometry. Commercial salami prepared from meat from white pig were purchased locally and used as comparative samples. The experimental salami at the end of ripening was characterized by a high level of fat and low level of moisture. Fatty acid analysis showed that experimental salami contained a higher percentage of oleic acid, vaccenic acid and palmitic acid and a lower percentage of stearic acid and linoleic acid, when compared to commercial salami (P<0.05). No significant differences were found in fatty acid composition of the experimental salami between the two types of ripening. Instrumental analysis of flavour volatile compounds in the experimental salami demonstrated that traditionally ripened salami contained the most volatiles, especially aldehydes (8217 vs. 3104 ng g(-1), P<0.05). Sensory analysis showed no significant differences as a consequence of different ripening conditions for firmness, saltiness, acidity, cohesiveness and elasticity. In contrast, there were significant differences for hardness and rancidity, which were higher in TR salami compared with RR and commercial salami. Lactic acid bacteria and Micrococcaceae counts were higher in controlled ripened salami although the hygienic quality of both products was satisfactory. The use of a controlled room for the ripening of this typical salami seems to be a potential

  5. Hospitality workers' attitudes and exposure to secondhand smoke, hazardous chemicals, and working conditions.

    PubMed

    Pearson, Dave; Angulo, Antoinette; Bourcier, Emily; Freeman, Elizabeth; Valdez, Roger

    2007-01-01

    Compelling reasons exist for labor and public health to collaborate. For example, compared to white-collar workers, blue-collar and service workers are much more likely to be targeted by the tobacco industry and become smokers. The purpose of this descriptive study was to assess if there were ways public health and labor could collaborate to document the health attitudes and needs of hospitality industry workers. Eligible union members were identified through an electronic enrollment file consisting of 3,659 names maintained by the union. The mail survey instrument covered exposure to secondhand smoke, exposure to hazardous chemicals and materials, time pressure and job demands, and work-related pain/disability. Additional questions related to age, gender, race/ethnicity, level of education, employment history, English proficiency, and self-reported health status. Study results demonstrated that important health information could be successfully collected on unionized workers. Survey data showed that union members were a very diverse group who were exposed to secondhand smoke and supported working in clean-air settings. Workers, especially housekeeping staff, characterized their work as being chaotic and demanding, while almost half of workers reported work-related pain. Key to the successful collaboration was establishing trust between the parties and emphasizing data collection that served the information needs of both organizations. Opportunities exist to improve the health and working conditions of this population. Health interventions need to be designed to take into consideration the very diverse, mostly female, and limited English proficiency of this group of workers.

  6. Dependence of Bacterial Magnetosome Morphology on Chemical Conditions in Deep-sea Sediments

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Suzuki, Y.; Kawamura, N.

    2016-12-01

    Magnetotactic bacteria (MTB) should play an important role for biogeochemical cycles of iron. MTB are considered to be microaerophilic and most commonly live near or below the oxic-anoxic transition zone (OATZ). However, common occurrence of magnetofossils in Pacific red clay (Yamazaki & Shimono, 2013), which contains abundant dissolved oxygen and does not have an OATZ, may conflict with the widespread interpretations of the ecology of MTB. For better understanding of the ecology in deep-sea sediments, we conducted rock-magnetic, biogeochemical, and microbiological analyses of Japan Sea surface sediments with an OATZ. Rock magnetic proxies and TEM images indicate that magnetofossils occur throughout the sediment columns regardless of the OATZ, even at the sediment-water interface. The proportion of magnetofossils with teardrop morphology increases near the OATZ. These suggest that some species producing teardrop magnetosomes prefer a chemical condition near the OATZ, whereas other species may live in microaerophilic microenvironments around organic particles near the sediment-water interface. The fact that morphology of magnetofossils in Pacific red clay is >90% octahedral suggests that even some species of MTB that yield octahedral magnetosomes might be aerotolerant and prefer oxic environments. To strengthen the notion above, pyrosequencing of 16S rRNA gene sequences was conducted for the corresponding sediments. Among diverse bacterial lineages known to produce magnetosomes, 16S rRNA gene sequences phylogenetically affiliated within the lineage of Nitrospirae known to produce teardrop magnetosomes were distributed only around the OATZ, whereas those affiliated within the family Rhodospirillaceae (α-Proteobacteria) and known to produce octahedral magnetosomes were distributed in all investigated Japan Sea sediments regardless of the OATZ. It is strongly suggested that the dependency on the OATZ is different among phylogenetically and morphologically diverse MTB.

  7. Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Kent, D.B.; Davis, J.A.

    1996-01-01

    The transport of adsorbing and complexing metal ions in porous media was investigated with a series of batch and column experiments and with reactive solute transport modeling. Pulses of solutions containing U(VI) were pumped through columns filled with quartz grains, and the breakthrough of U(VI) was studied as a function of variable solution composition (pH, total U(VI) concentration, total fluoride concentration, and pH-buffering capacity). Decreasing p H and the formation of nonadsorbing aqueous complexes with fluoride increased U(VI) mobility. A transport simulation with surface complexation model (SCM) parameters estimated from batch experiments was able to predict U(VI) retardation in the column experiments within 30%. SCM parameters were also estimated directly from transport data, using the results of three column experiments collected at different pH and U(VI) pulse concentrations. SCM formulations of varying complexity (multiple surface types and reaction stoichiometries) were tested to examine the trade-off between model simplicity and goodness of fit to breakthrough. A two-site model (weak- and strong-binding sites) with three surface complexation reactions fit these transport data well. With this reaction set the model was able to predict (1) the effects of fluoride complexation on U(VI) retardation at two different pH values and (2) the effects of temporal variability of pH on U(VI) transport caused by low p H buffering. The results illustrate the utility of the SCM approach in modeling the transport of adsorbing inorganic solutes under variable chemical conditions.

  8. Chemical treatments for improving compressive strength of linerboard at high moisture conditions

    Treesearch

    D. J. Fahey

    1964-01-01

    Various chemical treatments have been investigated at the Forest Products Laboratory for improving the compressive strength of linerboard exposed at high humidities and after water-soaking. Phenolic resins have been among the more promising chemicals studied, but they vary in performance. The low-condensed water-soluble phenolic resins have given some of the highest...

  9. Evaluating the impact of chemical boundary conditions on near surface ozone in regional climate-air quality simulations over Europe

    NASA Astrophysics Data System (ADS)

    Akritidis, D.; Zanis, P.; Katragkou, E.; Schultz, M. G.; Tegoulias, I.; Poupkou, A.; Markakis, K.; Pytharoulis, I.; Karacostas, Th.

    2013-12-01

    A modeling system based on the air quality model CAMx driven off-line by the regional climate model RegCM3 is used for assessing the impact of chemical lateral boundary conditions (LBCs) on near surface ozone over Europe for the period 1996-2000. The RegCM3 and CAMx simulations were performed on a 50 km × 50 km grid over Europe with RegCM3 driven by the NCEP meteorological reanalysis fields and CAMx with chemical LBCs from ECHAM5/MOZART global model. The recent past period (1996-2000) was simulated in three experiments. The first simulation was forced using time and space invariant LBCs, the second was based on ECHAM5/MOZART chemical LBCs fixed for the year 1996 and the third was based on ECHAM5/MOZART chemical LBCs with interannual variability. Anthropogenic and biogenic emissions were kept identical for the three sensitivity runs.

  10. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  11. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  12. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  13. Effects of different extrusion conditions on the chemical and toxicological fate of fumonisin B1 in maize: a review

    USDA-ARS?s Scientific Manuscript database

    A series of experiments to investigate the chemical and toxicological fate of fumonisin B1 (FB1) under different extrusion conditions using both single- and twin-screw extruders is described. Maize grits were contaminated with FB1 at different concentrations by fermentation with Fusarium verticilli...

  14. Transport and Fate of Bacteria in Porous Media: Coupled Effects of Chemical Conditions and Pore Space Geometry

    USDA-ARS?s Scientific Manuscript database

    Experimental and theoretical studies were undertaken to explore the coupling effects of chemical conditions and pore space geometry on bacteria transport in porous media. The retention of Escherichia coli D21g was investigated in a series of batch and column experiments with solutions of different i...

  15. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    EPA Science Inventory

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  16. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.

  17. Clinical vocabulary as a boundary object in multidisciplinary care management of multiple chemical sensitivity, a complex and chronic condition.

    PubMed

    Sampalli, Tara; Shepherd, Michael; Duffy, Jack

    2011-04-14

    Research has shown that accurate and timely communication between multidisciplinary clinicians involved in the care of complex and chronic health conditions is often challenging. The domain knowledge for these conditions is heterogeneous, with poorly categorized, unstructured, and inconsistent clinical vocabulary. The potential of boundary object as a technique to bridge communication gaps is explored in this study. A standardized and controlled clinical vocabulary was developed as a boundary object in the domain of a complex and chronic health condition, namely, multiple chemical sensitivity, to improve communication among multidisciplinary clinicians. A convenience sample of 100 patients with a diagnosis of multiple chemical sensitivity, nine multidisciplinary clinicians involved in the care of patients with multiple chemical sensitivity, and 36 clinicians in the community participated in the study. Eighty-two percent of the multidisciplinary and inconsistent vocabulary was standardized using the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED(®) CT as a reference terminology. Over 80% of the multidisciplinary clinicians agreed on the overall usefulness of having a controlled vocabulary as a boundary object. Over 65% of clinicians in the community agreed on the overall usefulness of the vocabulary. The results from this study are promising and will be further evaluated in the domain of another complex chronic condition, ie, chronic pain. The study was conducted as a preliminary analysis for developing a boundary object in a heterogeneous domain of knowledge.

  18. Clinical vocabulary as a boundary object in multidisciplinary care management of multiple chemical sensitivity, a complex and chronic condition

    PubMed Central

    Sampalli, Tara; Shepherd, Michael; Duffy, Jack

    2011-01-01

    Background: Research has shown that accurate and timely communication between multidisciplinary clinicians involved in the care of complex and chronic health conditions is often challenging. The domain knowledge for these conditions is heterogeneous, with poorly categorized, unstructured, and inconsistent clinical vocabulary. The potential of boundary object as a technique to bridge communication gaps is explored in this study. Methods: A standardized and controlled clinical vocabulary was developed as a boundary object in the domain of a complex and chronic health condition, namely, multiple chemical sensitivity, to improve communication among multidisciplinary clinicians. A convenience sample of 100 patients with a diagnosis of multiple chemical sensitivity, nine multidisciplinary clinicians involved in the care of patients with multiple chemical sensitivity, and 36 clinicians in the community participated in the study. Results: Eighty-two percent of the multidisciplinary and inconsistent vocabulary was standardized using the Systematized Nomenclature of Medicine – Clinical Terms (SNOMED® CT as a reference terminology. Over 80% of the multidisciplinary clinicians agreed on the overall usefulness of having a controlled vocabulary as a boundary object. Over 65% of clinicians in the community agreed on the overall usefulness of the vocabulary. Conclusion: The results from this study are promising and will be further evaluated in the domain of another complex chronic condition, ie, chronic pain. The study was conducted as a preliminary analysis for developing a boundary object in a heterogeneous domain of knowledge. PMID:21594060

  19. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  20. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions.

    PubMed

    Bellesia, Giovanni; Bales, Benjamin B

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  1. Chemical sludge conditioning in combination with different conventional and alternative dewatering devices: chamber filter press, decanter and Bucher press.

    PubMed

    Schaum, Christian; Cornel, Peter; Faria, Pedro; Recktenwald, Michael; Norrlöw, Olof

    2008-11-01

    The Kemicond process for sludge conditioning consists of chemical treatment with sulphuric acid and hydrogen peroxide at a pH-value of approximately 4 followed by a dewatering unit. It is shown that chemical treatment can improve the dewaterability of ferruginous digested sludge. It is concluded that the Fenton process as well as the oxidation of organics and the formation of iron hydroxo complexes are important reaction mechanisms. Furthermore, the organic matter changes through the acidic oxidative process. With the improvement in dewaterability, it is possible to achieve an increase in TS concentration, which affects a reduction of the sludge volume. Cost savings for sludge disposal can amortize the additional investment and operational costs for chemical treatment.

  2. THE INSTABILITY OF ESTROGENIC CHEMICALS DURING LABORATORY STATIC EXPOSURE CONDITIONS WITH MALE FATHEAD MINNOWS

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as Para-nonylphenol (NP), estradiol (E2), estrone (E1), estriol (E3) and ethynylestradiol (EE2) are shown to be ubiquitous in surface waters, sediments and sludge. These EDCs are known to induce vitellogenin gene (Vg) expression in male...

  3. THE INSTABILITY OF ESTROGENIC CHEMICALS DURING LABORATORY STATIC EXPOSURE CONDITIONS WITH MALE FATHEAD MINNOWS

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as Para-nonylphenol (NP), estradiol (E2), estrone (E1), estriol (E3) and ethynylestradiol (EE2) are shown to be ubiquitous in surface waters, sediments and sludge. These EDCs are known to induce vitellogenin gene (Vg) expression in male...

  4. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  5. Chemical Changes during Anaerobic Decomposition of Hardwood, Softwood, and Old Newsprint under Mesophilic and Thermophilic Conditions

    Treesearch

    Florentino B. De la Cruz; Daniel J. Yelle; Hanna S. Gracz; Morton A. Barlaz

    2014-01-01

    The anaerobic decomposition of plant biomass is an important aspect of global organic carbon cycling. While the anaerobic metabolism of cellulose and hemicelluloses to methane and carbon dioxide are well-understood, evidence for the initial stages of lignin decomposition is fragmentary. The objective of this study was to look for evidence of chemical transformations of...

  6. Soil moisture conditions after chemically killing manzanita brush in central Oregon.

    Treesearch

    Robert F. Tarrant

    1957-01-01

    Selective herbicides are being used on an increasing scale to kill undesirable plants in the Pacific Northwest. On forest lands, chemical control affords one of the most promising means for prey paring for reforestation, areas now occupied by brush or weeds.

  7. Caustic-Side Solvent Extraction Chemical and Physical Properties Progress in FY 2000 and FY 2001.

    SciTech Connect

    Moyer, BA

    2002-04-17

    The purpose of this work was to provide chemical- and physical-property data addressing the technical risks of the Caustic-Side Solvent Extraction (CSSX) process as applied specifically to the removal of cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site. As part of the overall Salt Processing Project, this effort supported decision-making in regards to selecting a preferred technology among three alternatives: (1) CSSX, (2) nonelutable ion-exchange with an inorganic silicotitanate material and (3) precipitation with tetraphenylborate. High risks, innate to CSSX, that needed specific attention included: (1) chemical stability of the solvent matrix, (2) radiolytic stability of the solvent matrix, (3) proof-of-concept performance of the proposed process flowsheet with simulated waste, and (4) performance of the CSSX flowsheet with actual SRS high-level waste. This body of work directly addressed the chemical-stability risk and additionally provided supporting information that served to plan, carry out, and evaluate experiments conducted by other CSSX investigators addressing the other high risks. Information on cesium distribution in extraction, scrubbing, and stripping served as input for flowsheet design, provided a baseline for evaluating solvent performance under numerous stresses, and contributed to a broad understanding of the effects of expected process variables. In parallel, other measurements were directed toward learning how other system components distribute in the flowsheet. Such components include the solvent components themselves, constituents of the waste, and solvent-degradation products. Upon understanding which components influence flowsheet performance, it was then possible to address in a rational fashion how to clean up the solvent and maintain its stable function.

  8. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions.

    PubMed

    Nitika; Punia, Darshan; Khetarpaul, N

    2008-05-01

    The aim of the investigation was to analyse physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. The seeds of five varieties of wheat (C-306, WH-283, WH-711, WH-896 and WH-912) grown under organic and inorganic farming conditions were ground in a Junior Mill to pass through 60-mesh sieves and were stored in air-tight containers until use. Standard methods were used to estimate the physico-chemical characteristics and nutrient composition. Consumer acceptability was studied by carrying out the organoleptic evaluation of wheat chapatis, a common item in diets of the Indian population. The results of study revealed that inorganically grown wheat varieties had significantly higher 1,000-grain weight and more grain hardness as compared with organically grown wheat varieties, and a non-significant difference was observed in their gluten content, water absorption capacity and hydration capacity. On average, wheat varieties grown under inorganic conditions contained significantly higher protein and crude fibre content as compared with varieties grown under organic conditions. WH-711 variety had maximum protein content. Protein fractions (i.e. albumin, globulin, prolamin and glutelin) were significantly higher in varieties grown under inorganic conditions than those of varieties grown under organic conditions. The variety WH-711 had the highest total soluble sugars and variety WH-912 had the highest starch content. Phytic acid and polyphenol contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The wheat varieties grown under organic conditions had significantly higher protein and starch digestibility than the wheat grown under inorganic conditions. The data revealed that there were significant differences in total calcium and phosphorus contents of wheat varieties grown under organic and inorganic

  9. Electronic structure of DNA polynucleotides under the chemical-doping condition investigated by PES and NEXAFS

    NASA Astrophysics Data System (ADS)

    Furukawa, Masashi; Kato, H. S.; Taniguchi, M.; Hatsui, T.; Kosugi, N.; Komeda, T.; Kawai, Maki; Kawai, T.

    2003-03-01

    During the last several years, the carrier transport through DNA between nm- spaced electrodes has been discussed without the understanding of their intrinsic electronic structures. As a result, its 'scattered' results in the controversial magnitude of conductivity, from a good conductor to an insulator, which is also assumed to be dependent on the chemical species surrounding DNA (H^+, counterion, etc.)@[ref.]. In this talk, we show electronic structures of the occupied- and unoccupied-states near the Fermi level. Systems exhibited here are well-defined sequence of DNA polynucleotides, Poly(dG)-poly(dC) and Poly(dA)-poly(dT), with- and without- chemical-doping (carrier-doping), in order to evaluate such an effect into DNA and also to propose the carrier conduction mechanism through DNA. [ref.] M. Taniguchi et al., submitted to JACS.

  10. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  11. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  12. DWPF SB6 INITIAL CPC FLOWSHEET TESTING SB6-1 TO SB6-4L TESTS OF SB6-A AND SB6-B SIMULANTS

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-09-09

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to {approx}1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  13. Dependence of electro-optical properties on the deposition conditions of chemical bath deposited CdS thin films

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1997-11-01

    Lately, there has been a sharp increase in the publication of papers on chemical bath deposition of CdS thin films and related materials due to successful results obtained using this method to fabricate CdS thin-film buffer layers for CuInSe{sub 2}- and CdTe-based polycrystalline thin-film solar cells. Generally, these papers focus on previously proposed methods of studying film characteristics without a systematic study of the influence of deposition conditions on film characteristics. In this paper the authors present an exhaustive study of the chemical bath-deposited CdS thin films electro-optical properties dependence on deposition variables. The authors propose not only a set of conditions for obtaining CdS thin films by this method but additionally, suitable deposition process conditions for certain application requirements, such as buffer layers for thin-film solar cells. The observed electro-optical characteristics dependence on the deposition variables corroborates the chemical mechanism that they proposed previously for this process.

  14. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2008-05-01

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.

  15. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    NASA Astrophysics Data System (ADS)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-06-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  16. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    NASA Astrophysics Data System (ADS)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-02-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  17. Effects of reservoir anaerobic, reducing conditions on surfactant retention in chemical flooding

    SciTech Connect

    Wang, F.H.L. )

    1993-05-01

    Surfactant retentions observed in four microemulsion-flooding pilot tests at the Loudon field were substantially lower than predicted from conventional laboratory coreflood experiments. This paper presents research results that explain this discrepancy. The oil reservoir was in an anaerobic, reducing conditions, whereas laboratory corefloods were normally conducted under aerobic, oxidizing conditions. The difference in redox condition was shown to have a serious effect on surfactant retention. Laboratory corefloods conducted under reservoir-like, anaerobic, reducing conditions gave surfactant retention results significantly closer to those observed in field tests. The effect of redox conditions on surfactant adsorption was substantiated further by results from static adsorption experiments with various clay types. Exposure of preserved cores from a reduced reservoir to aerobic conditions can cause high surfactant retention in corefloods. Methods were developed to restore such oxygen-contaminated core material to its original, anaerobic, reduced state. These coreflood procedures simulate actual reservoir conditions better and give meaningful surfactant-retention results for process design optimization.

  18. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    SciTech Connect

    Tanley, Simon W. M.; Helliwell, John R.

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  19. Chemical Degradation of TMR Multilure Dispensers for Fruit Fly Detection Weathered Under California Climatic Conditions.

    PubMed

    Vargas, Roger I; Souder, Steven K; Morse, Joseph G; Grafton-Cardwell, Elizabeth E; Haviland, David R; Kabashima, John N; Faber, Ben A; Mackey, Bruce; Nkomo, Eddie; Cook, Peter J; Stark, John D

    2017-08-01

    Degradation models for multilure fruit fly trap dispensers were analyzed to determine their potential for use in large California detection programs. Solid three-component male lure TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) dispensers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide placed inside Jackson traps were weathered during summer (8 wk) and winter (12 wk) in five citrus-growing areas. Additionally, TMR wafers without DDVP, but with an insecticidal strip, were compared to TMR dispensers with DDVP. Weathered dispensers were sampled weekly and chemically analyzed. Percent loss of TML, the male lure for Ceratitis capitata (Wiedemann) Mediterranean fruit fly; ME, the male lure for Bactrocera dorsalis (Hendel), oriental fruit fly; RK, the male lure for Bactrocera cucurbitae (Coquillett), melon fly; and DDVP was measured. Based on regression analyses for the male lures, TML degraded the fastest followed by ME. Degradation of the more chemically stable RK was discontinuous, did not fit a regression model, but followed similar seasonal patterns. There were few location differences for all three male lures and DDVP. Dispensers degraded faster during summer than winter. An asymptotic regression model provided a good fit for % loss (ME, TML, and DDVP) for summer data. Degradation of DDVP in TMR dispensers was similar to degradation of DDVP in insecticidal strips. Based on these chemical analyses and prior bioassay results with wild flies, TMR dispensers could potentially be used in place of three individual male lure traps, reducing costs of fruit fly survey programs. Use of an insecticidal tape would not require TMR dispensers without DDVP to be registered with US-EPA. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  20. Initial Chemical Events in CL-20 Under Extreme Conditions: An Ab Initio Molecular Dynamics Study

    DTIC Science & Technology

    2006-11-01

    1,3,4,7,8,10-hexanitro-5,2,6- (iminomethenimino)-1H-imidazo[4,5-b]- pyrazin , C6H6N12O12), is an emerging energetic chemical that may replace RDX, however...hexanitro-5,2,6- (iminomethenimino)-1H-imidazo[4,5-b]- pyrazin ) belongs to one of the most important classes of high energetic compounds – nitramines. It...1,5- and 1,7- dihydro- diimidazo[4,5-b:4’,5’-e] pyrazine has been carried out at using static and dynamic ab initio techniques of computational

  1. Chemical and Isotopic Study of Lab-formed Carbonates Under Cryogenic and Hydrothermal Conditions

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Golden, D. C.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Aqueous environments on early Mars were probably relatively short-lived and localized, as evidenced by the lack of abundant secondary minerals detected by the TES instrument. In order to better understand the aqueous history of early Mars we need to be able to interpret the evidence preserved in secondary minerals formed during these aqueous events. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments as illustrated by the carbonates preserved in ALH84001. Carbonates formed in short-lived, dynamic aqueous events often preserve kinetic rather than equilibrium chemical and isotopic processes, and predicting the behavior of such systems is facilitated by empirical data.

  2. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels

    SciTech Connect

    Mousavi Anijdan, S.H.; Rezaeian, Ahmad; Yue, Steve

    2012-01-15

    In this investigation, by using continuous cooling torsion (CCT) testing, the transformation behavior of four microalloyed steels under two circumstances of austenite conditioning and non-conditioning was studied. A full scale hot-rolling schedule containing a 13-pass deformation was employed for the conditioning of the austenite. The CCT tests were then employed till temperature of {approx} 540 Degree-Sign C and the flow curves obtained from this process were analyzed. The initial and final microstructures of the steels were studied by optical and electron microscopes. Results show that alloying elements would decrease the transformation temperature. This effect intensifies with the gradual increase of Mo, Nb and Cu as alloying elements added to the microalloyed steels. As well, austenite conditioning increased the transformation start temperature due mainly to the promotion of polygonal ferrite formation that resulted from a pancaked austenite. The final microstructures also show that CCT alone would decrease the amount of bainite by inducing ferrite transformation in the two phase region. In addition, after the transformation begins, the deformation might result in the occurrence of dynamic recrystallization in the ferrite region. This could lead to two different ferrite grain sizes at the end of the CCT. Moreover, the Nb bearing steels show no sign of decreasing the strength level after the transformation begins in the non-conditioned situation and their microstructure is a mix of polygonal ferrite and bainite indicating an absence of probable dynamic recrystallization in this condition. In the conditioned cases, however, these steels show a rapid decrease of the strength level and their final microstructures insinuate that ferrite could have undergone a dynamic recrystallization due to deformation. Consequently, no bainite was seen in the austenite conditioned Nb bearing steels. The pancaking of austenite in the latest cases produced fully polygonal ferrite

  3. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment

    PubMed Central

    2013-01-01

    Background In the spring of 2013, a novel avian-origin influenza A (H7N9) virus in Eastern China emerged causing human infections. Concerns that a new influenza pandemic could occur were raised. The potential effect of chemical agents and physical conditions on inactivation of the novel avian influenza H7N9 virus had not been assessed. Methods To determine the inactivation effectiveness of the novel avian influenza A (H7N9) virus under various physical conditions and chemical treatments, two H7N9 viruses A/Anhui/1/2013 and A/Shanghai/1/2013 were treated by varied temperatures, ultraviolet light, varied pHs and different disinfectants. The viruses with107.7 EID50 were exposed to physical conditions (temperature, ultraviolet light and pH) or treated with commercial chemical agents (Sodium Hypochlorite, Virkon®-S, and Ethanol) respectively. After these treatments, the viruses were inoculated in SPF embryonated chicken eggs, the allantoic fluid was collected after 72–96 hours culture at 35°C and tested by haemagglutination assay. Results Both of the tested viruses could tolerate conditions under 56°C for 15 minutes or 60°C for 5 minutes, but their infectivity was completely lost under 56°C for 30 minutes, 65°C for 10 minutes, 70°C, 75°C and 100°C for 1 minute. It was also observed that the H7N9 viruses lost their infectivity totally after exposure of ultraviolet light irradiation for 30 minutes or longer time. Additionally, the viruses were completely inactivated at pH less than 2 for 0.5 hour or pH 3 for 24 hours, however, viruses remained infectious under pH treatment of 4–12 for 24 hours. The viruses were totally disinfected when treated with Sodium Hypochlorite, Virkon®-S and Ethanol at recommended concentrations after only 5 minutes. Conclusions The novel avian influenza A (H7N9) virus can be inactivated under some physical conditions or with chemical treatments, but they present high tolerance to moderately acidic or higher alkali conditions. The

  4. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment.

    PubMed

    Zou, Shumei; Guo, Junfeng; Gao, Rongbao; Dong, Libo; Zhou, Jianfang; Zhang, Ye; Dong, Jie; Bo, Hong; Qin, Kun; Shu, Yuelong

    2013-09-15

    In the spring of 2013, a novel avian-origin influenza A (H7N9) virus in Eastern China emerged causing human infections. Concerns that a new influenza pandemic could occur were raised. The potential effect of chemical agents and physical conditions on inactivation of the novel avian influenza H7N9 virus had not been assessed. To determine the inactivation effectiveness of the novel avian influenza A (H7N9) virus under various physical conditions and chemical treatments, two H7N9 viruses A/Anhui/1/2013 and A/Shanghai/1/2013 were treated by varied temperatures, ultraviolet light, varied pHs and different disinfectants. The viruses with 107.7 EID50 were exposed to physical conditions (temperature, ultraviolet light and pH) or treated with commercial chemical agents (Sodium Hypochlorite, Virkon®-S, and Ethanol) respectively. After these treatments, the viruses were inoculated in SPF embryonated chicken eggs, the allantoic fluid was collected after 72-96 hours culture at 35°C and tested by haemagglutination assay. Both of the tested viruses could tolerate conditions under 56°C for 15 minutes or 60°C for 5 minutes, but their infectivity was completely lost under 56°C for 30 minutes, 65°C for 10 minutes, 70°C, 75°C and 100°C for 1 minute. It was also observed that the H7N9 viruses lost their infectivity totally after exposure of ultraviolet light irradiation for 30 minutes or longer time. Additionally, the viruses were completely inactivated at pH less than 2 for 0.5 hour or pH 3 for 24 hours, however, viruses remained infectious under pH treatment of 4-12 for 24 hours. The viruses were totally disinfected when treated with Sodium Hypochlorite, Virkon®-S and Ethanol at recommended concentrations after only 5 minutes. The novel avian influenza A (H7N9) virus can be inactivated under some physical conditions or with chemical treatments, but they present high tolerance to moderately acidic or higher alkali conditions. The results provided the essential information

  5. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties.

    PubMed

    Laurent, F; Cébron, A; Schwartz, C; Leyval, C

    2012-02-01

    A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H(2)O(2), 6 and 65 g kg(-1)) and FeSO(4) were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Characterisation of initial fouling in aerobic submerged membrane bioreactors in relation to physico-chemical characteristics under different flux conditions.

    PubMed

    Ng, Tze Chiang Albert; Ng, How Yong

    2010-04-01

    The initial fouling characteristics of aerobic submerged membrane bioreactors (MBRs) were analysed under different flux conditions. Physico-chemical analyses of the mixed liquor hinted that carbohydrates were more important to membrane fouling than proteins. However, this contrasted with the characterisation of foulants on the membrane surfaces. Micro-structural analyses of the foulants on the membrane surfaces showed that the dominant foulants were different under different flux conditions. Membrane fouling occurred through a biofilm-dominated process under lower flux conditions, but the mechanism shifted towards a non-biofilm, organic fouling process as the flux was increased. In spite of the differences in fouling mechanisms, it was found that the protein fraction on the membrane surfaces, in the initial stages of MBR operations, had the greatest impact in the rise of transmembrane pressure. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. Impact of oxygen cut off and starvation conditions on biological activity and physico-chemical properties of activated sludge.

    PubMed

    Villain, Maud; Clouzot, Ludiwine; Guibaud, Gilles; Marrot, Benoit

    2013-01-01

    Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.

  8. Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems

    Treesearch

    Douglas G Fox; J. Christopher Bernabo; Betsy Hood

    1987-01-01

    Guidelines include a large number of specific measures to characterize the existing condition of wilderness resources. Measures involve the atmospheric environment, water chemistry and biology, geology and soils, and flora. Where possible, measures are coordinated with existing long-term monitoring programs. Application of the measures will allow more effective...

  9. Solving Heat Conduction Problems in Movable Boundary Domains under Intensive Physical-Chemical Transformation Conditions

    NASA Astrophysics Data System (ADS)

    Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.

    2016-02-01

    Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.

  10. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  11. An evaluation of a river health using the index of biological integrity along with relations to chemical and habitat conditions.

    PubMed

    An, Kwang-Guk; Park, Seok Soon; Shin, Joung-Yi

    2002-11-01

    We evaluated the health condition of a temperate river during June-November 1999 through applications of the index of biological integrity (IBI) using fish assemblages and qualitative habitat evaluation index (QHEI) as well as chemical analyses. Overall IBI values ranged from 13 to 37 and averaged 23 (n = 25, standard error = 1.16), indicating a "poor" or "very poor" condition according to the criteria of modified Karr [Fisheries 6 (1981) 21]. The values of mean IBI declined at a rate of 0.22 km(-1) (R2 = 0.91, p < 0.05) along the longitudinal distance from the headwaters to the downstream sites. Reduced IBI values at downstream sites reflected low forest cover, high population density and high nutrient enrichments. Ecotoxicity tests using the river water also showed that toxic impacts were evident in the downriver sites. These factors resulted in decreases of riffle benthic species and insectivores and increases of tolerant species, anormalies and exotic species in the river. Spatial pattern in IBI agreed with QHEI values, which showed a linear relation (R2 = 0.998, p < 0.001) with species richness. Field measurements of conductivity and pH, an indicators for variation of conservative ions, showed that the river water was diluted by 40% fold by summer monsoon rain and surface run-off from the watershed, resulting in a physical and chemical instability during the monsoon. For these reasons, average IBI values during the monsoon and postmonsoon decreased >20% compared to the premonsoon, indicating that IBI values were also affected by flow regime. Based on the overall physico-chemical data and IBI values, the river health is rapidly degrading due to the combined effect of chemical contaminations and habitat modifications.

  12. Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio

    2017-04-01

    Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.

  13. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    PubMed Central

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-01-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment. PMID:27694968

  14. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  15. Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions.

    PubMed

    Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio

    2017-04-01

    Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.

  16. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions.

    PubMed

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-03

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca(2+) and Mg(2+)) were more than 31-fold of that for monovalent cation (Na(+) and K(+)). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X-100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  17. Pu Sorption, Desorption and Intrinsic Colloid Stability under Granitic Chemical Conditions

    SciTech Connect

    Zhao, Pihong; Zavarin, Mavrik; Dai, Zurong; Kersting, Annie B.

    2014-09-04

    This progress report (M4FT-14LL0807031) describes research conducted at LLNL as part of the Crystalline Repository effort within the UFD program. Part I describes the dissolution kinetics of intrinsic Pu colloids synthesized in an alkaline solution. Part II describes the morphology and dissolution characteristics of various forms of Pu oxides prepared over a range of solution and temperature conditions. Proposed FY15 activities are identified.

  18. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  19. Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions.

    PubMed

    Onghena, Matthias; Van Hoeck, Els; Negreira, Noelia; Quirynen, Laurent; Van Loco, Joris; Covaci, Adrian

    2016-05-01

    After the prohibition of bisphenol-A-containing polycarbonate baby bottles in the European Union (EU), alternative materials, such as polypropylene, polyethersulphone, Tritan™ copolyester, etc., have appeared on the market. Based on an initial screening and in vitro toxicity assessment, the most toxic migrating compounds were selected to be monitored and quantified using validated GC- and LC-QqQ-MS methods. The effect of several 'real-life-use conditions', such as microwave, sterilisation and dishwasher, on the migration of different contaminants was evaluated by means of duration tests. These results were compared with a reference treatment (filling five times with pre-heated simulant at 40°C) and with the legal EU 'repetitive-use conditions' (three migrations, 2 h at 70°C). Analysis of the third migration step of the EU repetitive-use conditions (which has to comply with the EU legislative migration limits) showed that several non-authorised compounds were observed in some baby bottles exceeding 10 µg kg(-1). However, all authorised compounds were detected well below their respective specific migration limits (SMLs). The reference experiment confirmed the migration of some of the compounds previously detected in the EU repetitive-use experiment, though at lower concentrations. Analysis of extracts from the microwave and dishwasher experiments showed a reduction in the migration during the duration tests. In general, the concentrations found were low and comparable with the reference experiment. Similar observations were made for the two sterilisation types: steam and cooking sterilisation. However, steam sterilisation seems to be more recommended for daily use of baby bottles, since it resulted in a lower release of substances afterwards. Repeated use of baby bottles under 'real-life' conditions showed no increase in the migration of investigated compounds and, after some time, the migration of these compounds even became negligible.

  20. Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.

    PubMed

    Bright, Nicholas J; Willson, Terry R; Driscoll, Daniel J; Reddy, Subrayal M; Webb, Roger P; Bleay, Stephen; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J

    2013-07-10

    The effect of vacuum exposure on latent fingerprint chemistry has been evaluated. Fingerprints were analysed using a quartz crystal microbalance to measure changes in mass, gas chromatography mass spectrometry to measure changes in lipid composition and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine changes in the content of water, fatty acids and their esters after exposure to vacuum. The results are compared with samples aged under ambient conditions. It was found that fingerprints lose around 26% of their mass when exposed to vacuum conditions, equivalent to around 5 weeks ageing under ambient conditions. Further exposure to vacuum causes a significant reduction in the lipid composition of a fingerprint, in particular with the loss of tetradecanoic and pentadecanoic acid, that was not observed in ambient aged samples. There are therefore implications for sequence in which fingerprint development procedures (for example vacuum metal deposition) are carried out, as well as the use of vacuum based methods such as secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption ionisation (MALDI) in the study of fingerprint chemistry.

  1. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  2. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    NASA Astrophysics Data System (ADS)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  3. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature.

    PubMed

    Tang, Buzhou; Feng, Yudong; Wang, Xiaolong; Wu, Yonghui; Zhang, Yaoyun; Jiang, Min; Wang, Jingqi; Xu, Hua

    2015-01-01

    Chemical compounds and drugs (together called chemical entities) embedded in scientific articles are crucial for many information extraction tasks in the biomedical domain. However, only a very limited number of chemical entity recognition systems are publically available, probably due to the lack of large manually annotated corpora. To accelerate the development of chemical entity recognition systems, the Spanish National Cancer Research Center (CNIO) and The University of Navarra organized a challenge on Chemical and Drug Named Entity Recognition (CHEMDNER). The CHEMDNER challenge contains two individual subtasks: 1) Chemical Entity Mention recognition (CEM); and 2) Chemical Document Indexing (CDI). Our study proposes machine learning-based systems for the CEM task. The 2013 CHEMDNER challenge organizers provided a manually annotated 10,000 UTF8-encoded PubMed abstracts according to a predefined annotation guideline: a training set of 3,500 abstracts, a development set of 3,500 abstracts and a test set of 3,000 abstracts. We developed machine learning-based systems, based on conditional random fields (CRF) and structured support vector machines (SSVM) respectively, for the CEM task for this data set. The effects of three types of word representation (WR) features, generated by Brown clustering, random indexing and skip-gram, on both two machine learning-based systems were also investigated. The performance of our system was evaluated on the test set using scripts provided by the CHEMDNER challenge organizers. Primary evaluation measures were micro Precision, Recall, and F-measure. Our best system was among the top ranked systems with an official micro F-measure of 85.05%. Fixing a bug caused by inconsistent features marginally improved the performance (micro F-measure of 85.20%) of the system. The SSVM-based CEM systems outperformed the CRF-based CEM systems when using the same features. Each type of the WR feature was beneficial to the CEM task. Both the CRF

  4. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature

    PubMed Central

    2015-01-01

    Background Chemical compounds and drugs (together called chemical entities) embedded in scientific articles are crucial for many information extraction tasks in the biomedical domain. However, only a very limited number of chemical entity recognition systems are publically available, probably due to the lack of large manually annotated corpora. To accelerate the development of chemical entity recognition systems, the Spanish National Cancer Research Center (CNIO) and The University of Navarra organized a challenge on Chemical and Drug Named Entity Recognition (CHEMDNER). The CHEMDNER challenge contains two individual subtasks: 1) Chemical Entity Mention recognition (CEM); and 2) Chemical Document Indexing (CDI). Our study proposes machine learning-based systems for the CEM task. Methods The 2013 CHEMDNER challenge organizers provided a manually annotated 10,000 UTF8-encoded PubMed abstracts according to a predefined annotation guideline: a training set of 3,500 abstracts, a development set of 3,500 abstracts and a test set of 3,000 abstracts. We developed machine learning-based systems, based on conditional random fields (CRF) and structured support vector machines (SSVM) respectively, for the CEM task for this data set. The effects of three types of word representation (WR) features, generated by Brown clustering, random indexing and skip-gram, on both two machine learning-based systems were also investigated. The performance of our system was evaluated on the test set using scripts provided by the CHEMDNER challenge organizers. Primary evaluation measures were micro Precision, Recall, and F-measure. Results Our best system was among the top ranked systems with an official micro F-measure of 85.05%. Fixing a bug caused by inconsistent features marginally improved the performance (micro F-measure of 85.20%) of the system. Conclusions The SSVM-based CEM systems outperformed the CRF-based CEM systems when using the same features. Each type of the WR feature was

  5. Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions.

    PubMed

    Park, Jun Hong; Vishwanath, Suresh; Wolf, Steven; Zhang, Kehao; Kwak, Iljo; Edmonds, Mary; Breeden, Michael; Liu, Xinyu; Dobrowolska, Margaret; Furdyna, Jacek; Robinson, Joshua A; Xing, Huili Grace; Kummel, Andrew C

    2017-08-30

    To fabricate practical devices based on semiconducting two-dimensional (2D) materials, the source, channel, and drain materials are exposed to ambient air. However, the response of layered 2D materials to air has not been fully elucidated at the molecular level. In the present report, the effects of air exposure on transition metal dichalcogenides (TMD) and metal dichalcogenides (MD) are studied using ultrahigh-vacuum scanning tunneling microscopy (STM). The effects of a 1-day ambient air exposure on MBE-grown WSe2, chemical vapor deposition (CVD)-grown MoS2, and MBE SnSe2 are compared. Both MBE-grown WSe2 and CVD-grown MoS2 display a selective air exposure response at the step edges, consistent with oxidation on WSe2 and adsorption of hydrocarbon on MoS2, while the terraces and domain/grain boundaries of both TMDs are nearly inert to ambient air. Conversely, MBE-grown SnSe2, an MD, is not stable in ambient air. After exposure in ambient air for 1 day, the entire surface of SnSe2 is decomposed to SnOx and SeOx, as seen with X-ray photoelectron spectroscopy. Since the oxidation enthalpy of all three materials is similar, the data is consistent with greater oxidation of SnSe2 being driven by the weak bonding of SnSe2.

  6. Effect of seepage conditions on chemical attenuation of arsenic by soils across an abandoned mine site.

    PubMed

    Hyun, Seunghun; Kim, Juhee; Kim, Dae-Young; Moon, Deok Hyun

    2012-05-01

    The effect of seepage velocity on the As leaching/adsorption by soils collected from abandoned mine sites was evaluated under batch equilibrium and different seepage settings. The breakthrough curves (BTCs) of As leaching from the mine soil column initially displayed the peak export and gradually leveled off over the leaching experiment. A similar As peak was observed after a flow interruption period. Adsorption by downgradient soils was clearly nonlinear, as Freundlich N was <1. In the BTCs of the layered columns, where downgradient soils were overloaded above the mine soil, the extended lag period of As appearance and lower steady-state As concentration observed for slow seepage velocity supported the idea of kinetically limited As attenuation driven by soil adsorption. The perturbation of As concentration was insignificant when the intra-column As concentration gradient was higher. The As concentration drop and time to recovery were greater for less adsorptive soil and fast seepage velocity. Desorption of As from soils retrieved from both batch adsorption and column experiment demonstrate hysteric behavior. The results of this work demonstrated that the risk of As leaching from an abandoned mine site can be greatly attenuated by intermediate downgradient soils via chemical adsorption, which tends to be kinetically limited and energetically hysteric (i.e., non-identical energy pathway). Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A summary of selected chemical-quality conditions in 66 California streams 1950-72

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1975-01-01

    Water from California streams has been analyzed for concentrations of selected chemical constituents since the early 1950's. This summary includes about 1,200 water years of data from 88 sampling sites on 66 streams. Results of this summary show that about 80 percent of the sites had a mean dissolved-solids concentration of 400 milligrams per litre or less. All the sites that had mean concentrations ranging from 601 to 800 milligrams per litre were in either the South Coastal or Central Coastal subregions. Results of regression analysis between specific conductance and calcium, magnesium, sodium, bicarbonate, dissolved solids, and hardness usually indicated a high percentage of explained variance. Other constituents, such as potassium, sulfate, chloride, and particularly nitrate, were not as frequently highly associated with specific conductance. At sites where the water discharge was highly regulated, the variation in specific conductance that was explained as a function of discharge ranged from 0 to more than 90 percent. Whereas at the unregulated sites, the explained variance ranged from 50 to more than 90 percent.

  8. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    NASA Astrophysics Data System (ADS)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  9. Monitoring and physical-chemical modeling of conditions of natural surface and underground waters forming in the Kola North.

    PubMed

    Mazukhina, Svetlana I; Masloboev, Vladimir A; Chudnenko, Konstantin V; Bychinsky, Valeriy A; Svetlov, Anton V; Muraviev, Sergey V

    2012-01-01

    Processes of surface and underground water forming in the Khibiny massif have been studied using a physical-chemical model of the "water-rock-atmosphere-organic substance" system. The obtained model solutions are indicative of the fact that formation of surface and underground water of the Khibiny massif takes place on the whole in the framework of the considered system without attracting a hypothetical outside source of pollutants. The results are of practical and methodological importance for assessment of prediction of the man-induced impact on water systems in conditions of Subarctic.

  10. Influence of synthesis conditions on the crystallinity of hydroxyapatite obtained by chemical deposition

    NASA Astrophysics Data System (ADS)

    Toropkov, N. E.; Vereshchagin, V. I.; Petrovskaya, T. S.; Antonkin, N. S.

    2016-11-01

    The hydroxyapatite synthesis on a variety of substrates under various conditions was studied. It was shown that the increase in the temperature of the reaction medium increases the amount of nanocrystalline phase with an average crystallite size of 25 nm. Studies revealed that in addition to the pure hydroxyapatite, β-Ca3(PO4)2 along with calcium carbonates and carbonate-substituted hydroxyapatites were formed. A significant increase in phase crystallinity during the heating of reactants up to the reaction temperature was shown.

  11. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3).

  12. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  13. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

    PubMed Central

    Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.

    2014-01-01

    Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254

  14. Computational Tools for Simulating Thermal-hydrological-chemical Conditions in the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Painter, S.; Boice, D.; Browning, L.; Dinwiddie, C.; Pickett, D.

    2002-09-01

    Methods for simulating non-isothermal, multiphase flow and geochemical transport in unsaturated porous media have matured in recent years, and are now used in a range of advanced terrestrial applications. Similar computational tools have a range of potential applications in Mars research. They may be used, for example, to support data analysis, to test hypotheses regarding the evolution and current state of subsurface hydrological systems, and to understand the potential for undesirable perturbations during future drilling or sample collection activities. We describe ongoing efforts to adapt computational hydrology tools to the conditions of the Martian subsurface in a new simulation code MARSFLO. Initial versions of MARSFLO will simulate heat transport, the dynamics of multiple fluid phases (ice, water, water vapor, and CO2), and the evolution of solute concentration in the absence of geochemical reactions. The general modeling strategy is to use equilibrium constraints to reduce the system to four highly non-linear coupled conservation equations, which are then solved using an integral-finite-difference method and fully implicit time stepping. The required constitutive relationships are developed from the theory of freezing terrestrial soils and modified for Martian conditions. Data needs, potential applications, and plans to include multi-component reactive transport are also discussed. This work was funded by the Southwest Research Initiative on Mars (SwIM).

  15. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions.

    PubMed

    Fox, Julie Richman; Cox, David P; Drury, Bertram E; Gould, Timothy R; Kavanagh, Terrance J; Paulsen, Michael H; Sheppard, Lianne; Simpson, Christopher D; Stewart, James A; Larson, Timothy V; Kaufman, Joel D

    2015-10-01

    Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.

  16. Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu-BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu-BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu-BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  17. Rock-fluid chemical interactions at reservoir conditions: The influence of brine chemistry and extent of reaction

    NASA Astrophysics Data System (ADS)

    Anabaraonye, B. U.; Crawshaw, J.; Trusler, J. P. M.

    2016-12-01

    Following carbon dioxide injection in deep saline aquifers, CO2 dissolves in the formation brines forming acidic solutions that can subsequently react with host reservoir minerals, altering both porosity and permeability. The direction and rates of these reactions are influenced by several factors including properties that are associated with the brine system. Consequently, understanding and quantifying the impacts of the chemical and physical properties of the reacting fluids on overall reaction kinetics is fundamental to predicting the fate of the injected CO2. In this work, we present a comprehensive experimental study of the kinetics of carbonate-mineral dissolution in different brine systems including sodium chloride, sodium sulphate and sodium bicarbonate of varying ionic strengths. The impacts of the brine chemistry on rock-fluid chemical reactions at different extent of reactions are also investigated. Using a rotating disk technique, we have investigated the chemical interactions between the CO2-saturated brines and carbonate minerals at conditions of pressure (up to 10 MPa) and temperature (up to 373 K) pertinent to carbon storage. The changes in surface textures due to dissolution reaction were studied by means of optical microscopy and vertical scanning interferometry. Experimental results are compared to previously derived models.

  18. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell.

  19. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    DOE PAGES

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto themore » GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  20. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    SciTech Connect

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.

  1. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    PubMed Central

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-01-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell. PMID:27108711

  2. Tuning the conditions for the deposition of nanocrystalline diamond by hot filament chemical vapour deposition.

    PubMed

    Santos, J A; Ranjbar, Samaneh; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    Although large focus has been placed into the deposition of nanocrystalline and ultra-nanocrystalline diamond films, most of this research uses microwave plasma assisted CVD systems. However, the growth conditions used in microwave systems cannot be directly used in hot-filament CVD systems. This paper, aims to enlarge the knowledge of the diamond film depositing process. H2/CH4/Ar gas mixtures have been used to deposit micro, nano and ultra-nanocrystalline diamond films by hot-filament CVD systems. Additionally, the distance between the filaments array and the substrate was varied, in order to observe its effect and consequently the effect of a lower substrate temperature in the nucleation density and deposition. All the samples were characterized for microstructure and quality, using scanning electron microscopy and Raman spectroscopy.

  3. Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals

    PubMed Central

    Hauri, Claudine; Fabricius, Katharina E.; Schaffelke, Britta; Humphrey, Craig

    2010-01-01

    Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation. PMID:20856882

  4. Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery

    PubMed Central

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

  5. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery.

    PubMed

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C-300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.

  6. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.

    PubMed

    Asghari, Feridoun Salak; Yoshida, Hiroyuki

    2010-01-11

    A comparative study on the decomposition of Japanese red pine wood under subcritical water conditions in the presence and absence of phosphate buffer was investigated in a batch-type reaction vessel. Since cellulose makes up more than 40-45% of the components found in most wood species, a series of experiments were also carried out using pure cellulose as a model for woody biomass. Several parameters such as temperature and residence time, as well as pH effects, were investigated in detail. The best temperature for decomposition and hydrolysis of pure cellulose was found around 270 degrees C. The effects of the initial pH of the solution which ranged from 1.5 to 6.5 were studied. It was found that the pH has a considerable effect on the hydrolysis and decomposition of the cellulose. Several products in the aqueous phase were identified and quantified. The conditions obtained from the subcritical water treatment of pure cellulose were applied for the Japanese red pine wood chips. As a result, even in the absence of acid catalyst, a large amount of wood sample was hydrolyzed in water; however, by using phosphate buffer at pH 2, there was an increase in the hydrolysis and dissolution of the wood chips. In addition to the water-soluble phase, acetone-soluble and water-acetone-insoluble phases were also isolated after subcritical water treatment (which can be attributed mainly to the degraded lignin, tar, and unreacted wood chips, respectively). The initial wood:acid ratio in the case of reactions catalyzed by phosphate buffer was also investigated. The results showed that this weight ratio can be as high as 3:1 without changing the catalytic activity. The size of the wood chips as one of the most important experimental parameters was also investigated.

  7. Prebiotic chemistry: chemical evolution of organics on the primitive Earth under simulated prebiotic conditions.

    PubMed

    Dondi, Daniele; Merli, Daniele; Pretali, Luca; Fagnoni, Maurizio; Albini, Angelo; Serpone, Nick

    2007-11-01

    A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.

  8. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  9. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  10. The Physical and Chemical Conditions in Luminous Galaxies: A Systematic IR Analysis

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alfonso, Eduardo

    Star formation, in both its normal and active burst phases, drives and is driven by the physical conditions in galaxies that are forming stars, from massive outflows to the heating of dust. It also governs the evolution of metallicity, enrichment of the IGM, and many other processes. To better understand the physical conditions that initiate - and quench - star formation, including its apparent symbiotic relationship with AGN activity in later-stage mergers, we propose the first large and coherent radiative transfer study of the extreme objects that are forming stars most rapidly: the luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). Our study will be based on radiative transfer modeling of all (U)LIRGs with reliable archival Herschel/SPIRE and PACS molecular spectra. Our goals are to (1) model the conditions in the dense circumnuclear gas clouds as a function of LFIR, M(H2), and merger stage, and to derive star formation rates (SFR), radiation pressure, dust and gas temperatures, optical depths, and gas depletion rates; (2) understand the nuclear molecular outflow/inflow phenomena and how and why they differ for LIRGS (log[LIR/Lsun] > 11) and ULIRGs (log[LIR/Lsun] > 12); and (3) test the reality of the two putative modes of star formation (main sequence and starburst) as a function of galaxy luminosity and merger stage, quantify the differences, and reveal the physical causes (merger properties, IMF differences, etc.) Our modeling will emphasize radiatively excited molecular species - key diagnostics of the ISM components in star forming galaxies - and will include atomic features and the UV-submmillimeter continua. We have successfully used our radiative transfer code to probe compact components as small as tens of parsecs in diameter, scales that cannot be distinguished by the far-IR beams of any past or near future observatories. We will include photoionization modeling of the mid-IR lines and template modeling of PAH features for those objects

  11. Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions.

    PubMed

    Rodríguez, María Susana; Albertengo, Liliana Elena

    2005-11-01

    Chitosan, the N acetylated derivative of chitin, has an effect on the absorption of dietary lipids, but there is not enough scientific knowledge about the mechanism. To study the interaction between chitosan and oil, the action of this biopolymer has been evaluated through an experimental model of the stomach and duodenum tract, although the enzimatic activity had not been evaluated. We microscopically confirmed that chitosan in a hychloridic acid medium (pH 1.0-2.0) emulsified lipids and the emulsion was a water in oil in water type (w/o/w). When the pH value and speed of agitation were increased to mirror the duodenum medium conditions under which lipids are absorbed, the emulsion capacity was better with an increased number of droplets and the emulsion continued as the w/o/w type. At pH 6.2, chitosan precipitated and lipids were entrapped in the formed flocculus. The binding oil was quantitatively determined, and we also demonstrate that a larger oil quantity induced less retention, while the chitosan characteristics had no influence. These observations allow us to postulate that the interaction between chitosan and oil inhibited duodenal absorption and enhanced lipid excretion.

  12. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  13. Relationship between foliar chemical parameters measured in Melia azedarach L. and environmental conditions in urban areas.

    PubMed

    Pignata, M L; Gudiño, G L; Cañas, M S; Orellana, L

    1999-12-15

    A diagnostic study was done on Melia azedarach L. in relation to atmospheric pollutants in Córdoba city, Argentina. The study area receives regional pollutants, and it was categorized taking into account traffic level, industrial level, location of the sample point in relation to the corner, treeless condition, building type, topographic level and distance to the river. Water content and Specific Leaf Area (SLA) were calculated; and concentrations of soluble proteins, sulphur, hydroperoxy conjugated dienes (HPCD), chlorophylls (Total Chl) and pheophytins (Total Paeoph) were determined in leaf samples. HPCD correlated positively with industry, topographic level and distance to the river, and with a combination of the environmental variables (ECI); pigments correlated negatively with traffic level and with ECI; Total Phaeoph/Total Chl ratio correlated positively with traffic, building and ECI. On the basis of our results, traffic level, industrial level, building type, topographic level and distance to the river are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring water content, soluble proteins, sulphur, HPCD and pigments as they are responsible for the major variability of data. This study revealed that M. azedarach was sensitive to air pollutants from traffic and industry. Thus, in those sampling sites with the maximum score for traffic level, industrial level and ECI, the highest values of the parameters that indicate foliar damage together with the least pigment concentration were observed.

  14. Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor.

    PubMed

    López Fernández, Raquel; Coleman, Heather M; Le-Clech, Pierre

    2014-08-01

    This study focuses on the performance of a submerged membrane photocatalytic reactor for the removal of 17beta-oestradiol (E2) in the presence of humic acid (HA). In addition to the impact of operating parameters, such as membrane pore size, ultraviolet (UV) intensity and hydraulic retention time (HRT), the influence of long-term operation was also assessed by advanced characterization of the fouling layer formed on the membrane. The tighter (0.04 microm) hollow fibre polyvinylydene fluoride (PVDF) membrane was found to exhibit not only higher HA removal than the (0.2 microm) module (85% and 75%, respectively), but also greater transmembrane pressure (TMP) values and higher irreversible fouling. Long-term operation conditions have been simulated by conducting an ageing catalyst process and demonstrated a decrease in performance obtained with time. The artificially aged TiO2 resulted in higher TMP values and lower HA removals (about 10-20% decrease) compared with the non-aged catalyst. For E2 removal in the presence of HA, the passive adsorption of the oestrogen onto the organic matter was found to be significant (40% of the E2 adsorbed after I h), demonstrating the importance of the nature of the water matrix for this type of treatment process. An increase in the UV light intensity was observed to favour the E2 elimination, leading to more than 90% removal when using 64 W combined with PVDF membrane and an HRT of 3 h.

  15. Chemical and structural modifications of laser treated WTi surfaces at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Peruško, D.; Milovanović, D.; Siketić, Z.; Jakšić, M.; Kovač, J.; Gaković, B.; Milosavljević, M.; Trtica, M.

    2011-11-01

    In this work we have studied the influence of laser modification on the composition and structure of tungsten titanium (WTi) thin films, deposited on n-type (100) silicon wafers. After deposition, the samples were multi-pulse laser irradiated in a nitrogen, oxygen, and helium ambient. The composition of the WTi/Si sample was determined by Elastic Recoil Detection Analysis (ERDA). Surface morphology was monitored by Atomic Force Microscopy (AFM). In the experiment, typical laser output parameters were: wavelength 1064 nm, pulse duration 150 ps, and laser pulse energy 30 mJ. Surface concentrations of W and Ti, as well as the concentration of gas components nitrogen and oxygen were determinated before and after the action of laser radiation in different ambient conditions. The contents of W and Ti decreased after irradiation due to adsorbed gases from the surrounding atmosphere. After surface irradiation in the inert ambient (He), the concentrations of the components were not significantly changed. In other cases, oxygen was the dominant component at the surface, probably due to the high affinity of thin film components. Also, the morphological changes occurred at the surface of WTi, as an increase in the surface roughness and formation of the granular structures are a result of laser-induced surface oxidation and recrystallization.

  16. Detection of chemical signatures from TNT buried in sand at various ambient conditions: phase II

    NASA Astrophysics Data System (ADS)

    Báez, Bibiana; Florián, Vivian; Hernández-Rivera, Samuel P.; Cabanzo, Andrea; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.

    2006-05-01

    New analytical methods have been developed and existing methods have been improved for the detection of explosives and their degradation products by increasing their sensitivity and selectivity. Some of the analytical methods available for detection of explosives and degradation products are gas chromatography, mass spectrometry, high performance liquid chromatography, and gas chromatography with mass spectrometry. This work presents the design and development of the experiments for the detection of the spectroscopic signature of TNT buried in sand and its degradation products. These experiments are conducted using a series of soil tanks with controlled environmental conditions such as: temperature, soil moisture content, relative humidity and radiation (UV and VIS). Gas chromatography and solid-liquid extraction with acetonitrile were used for the analysis of explosives. Sampling of tanks was performed in three points on the surface. The results show that TNT and 2,4-DNT are the main explosives that reach the surface of tanks. Temperature and water content play a most important role in the degradation and diffusion of TNT. Finally, the tanks were disassembled and sampling in deep with the objective to obtain a concentration profile. The results demonstrated that the highest concentration was located at 5 cm from surface.

  17. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  18. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    The chemical and microstructural behavior of steels (304, 310, 316, and 1018), nickel-based alloys (beta-NiAl, G30, and 625), gold, coatings (4YSZ, SilcoNert(TradeMark) 1040 (SilcoTek Co.), Dursan(TradeMark)? (SilcoTek Co.), and porcelain), and bulk ceramics (alpha-Al2O3, fused quartz, beta-SiC, and alpha-Si3N4) were probed after exposure to supercritical fluid with temperature, pressure, and composition mimicking the Venus lower atmosphere. Exposures were carried out in the Glenn Extreme Environments Rig (GEER) chamber with the Venusian gas mixture (96.5% CO2, 3.5% N2, 30 ppm H2O, 150 ppm SO2, 28 ppm CO, 15 ppm OCS, 3 ppm H2S, 0.5 ppm HCl, and 5 ppb HF) at 92 bar (1330 psi) and 467 C (873 F) for durations of 10 and 42 days. An additional 21-day exposure was done to stainless steel uncoated and coated with SilcoNert(TradeMark) and Dursan(TradeMark). Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction, X-ray photoelectron and Auger electron spectroscopies, and cross section electron microscopy analysis. All steels exposed for 10 and 42 days formed double-layered scales consisting mainly of metal (Cr, Fe, Ni) oxides and sulfides showing different chemistry, microstructure, and crystalline phases. The alloys G30 and 625 formed double-layered scales consisting mainly of nickel sulfides. After 10 days, the beta-NiAl exhibited no detectable scale, suggesting only a very thin film was formed. The 304 and 316 stainless steels coated with 4YSZ that were exposed for 10 and 42 days exhibited no significant oxidation. Steel 1018 coated with 4YSZ exhibited a corrosion scale of iron and/or chromium oxide formed at the base of the alloy. The 304 steel coated with porcelain did not exhibit corrosion, although the coating exhibited recession. SilcoNert(TradeMark) exposed for 10 and 42 days exhibited recession, although no oxidation was found to occur at the base of the alloy. Stainless steel 316 coated with Dursan

  19. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells.

    PubMed

    Yang, Dandan; Chen, Shubin; Gao, Changzhao; Liu, Xiaobo; Zhou, Yulai; Liu, Pengfei; Cai, Jinglei

    2016-11-01

    The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro, and test the effect of in vivo environments on the further maturation of hESCs derived cells. Embryoid bodies (EBs) formed from hESCs, with serum-free KSR-based medium and mesodermal specification related factors, CHIR, and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB, TGF β3, BMP4 in sequence for 24days. The morphology, FACS, histological staining as well as the expression of chondrogenic specific genes were detected in each stage, and further in vivo experiments, cell injections and tissue transplantations, further verified the formation of chondrocytes. We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule, their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes, and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus

  1. Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange.

    PubMed

    Clark, David L; Conradson, Steven D; Donohoe, Robert J; Gordon, Pamela L; Keogh, D Webster; Palmer, Phillip D; Scott, Brian L; Tait, C Drew

    2013-04-01

    Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, β = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

  2. Evaluation of Nursing Documentation Completion of Stroke Patients in the Emergency Department: A Pre-Post Analysis Using Flowsheet Templates and Clinical Decision Support.

    PubMed

    Richardson, Karen J; Sengstack, Patricia; Doucette, Jeffrey N; Hammond, William E; Schertz, Matthew; Thompson, Julie; Johnson, Constance

    2016-02-01

    The primary aim of this performance improvement project was to determine whether the electronic health record implementation of stroke-specific nursing documentation flowsheet templates and clinical decision support alerts improved the nursing documentation of eligible stroke patients in seven stroke-certified emergency departments. Two system enhancements were introduced into the electronic record in an effort to improve nursing documentation: disease-specific documentation flowsheets and clinical decision support alerts. Using a pre-post design, project measures included six stroke management goals as defined by the National Institute of Neurological Disorders and Stroke and three clinical decision support measures based on entry of orders used to trigger documentation reminders for nursing: (1) the National Institutes of Health's Stroke Scale, (2) neurological checks, and (3) dysphagia screening. Data were reviewed 6 months prior (n = 2293) and 6 months following the intervention (n = 2588). Fisher exact test was used for statistical analysis. Statistical significance was found for documentation of five of the six stroke management goals, although effect sizes were small. Customizing flowsheets to meet the needs of nursing workflow showed improvement in the completion of documentation. The effects of the decision support alerts on the completeness of nursing documentation were not statistically significant (likely due to lack of order entry). For example, an order for the National Institutes of Health Stroke Scale was entered only 10.7% of the time, which meant no alert would fire for nursing in the postintervention group. Future work should focus on decision support alerts that trigger reminders for clinicians to place relevant orders for this population.

  3. Chemical reaction conditions in a Danish 80 MW{sub th} CFB-boiler co-firing straw and coal

    SciTech Connect

    Hansen, P.F.B.

    1997-12-31

    Future boilers to be constructed in Denmark including boilers intended for energy conversion of biomass (straw and wood chips) will be designed for Ultra Super Critical steam data. The high steam temperatures and subsequently metal temperatures in the superheaters will increase the corrosion hazard significantly. Severe superheater corrosion observed in the convective path and on test tubes inserted into the loop seal of a Danish 80 MW{sub th} Ahlstroem Pyroflow CFB boiler co-firing coal and straw initiated this study on the conditions under which the chemical reactions occur and deposits form. Load changes--caused by variations in public demand for district heating shifts the reaction conditions in the loop seal between predominantly reducing and predominantly oxidizing conditions. Furthermore the external particle circulation rate and the local temperatures are strongly affected. Deposits collected in the loop seal on temperature controlled probes reveals Cl concentrations more than Twenty Thousand times higher than found in the surrounding bed material. The results are discussed and suggestions on how to reduce high temperature corrosion and superheater fouling are presented.

  4. Protective effect of conditioning agents on Afro-ethnic hair chemically treated with thioglycolate-based straightening emulsion.

    PubMed

    Dias, Tania Cristina de Sá; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2008-06-01

    Straightening is a chemical process by which excessively curly hair is straightened in an irreversible way. Generally, products are formulated as emulsions with high pH value (9.0-12.0), which, after applied on hair, cause considerable damage, making it dry and fragile. This research work evaluated the protective effect of lauryl PEG/PPG-18/18 methicone, cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer, jojoba oil, and aqua (and) cystine bis-PG propyl silanetriol, as conditioning agents, on Afro-ethnic hair locks treated with thioglycolate-based straightening emulsions by protein loss, combability, and traction to rupture. Standard Afro-ethnic hair locks were prepared following a protocol for straightening emulsion application. Considering the assays performed, the addition of conditioning agents to the straightening emulsion with ammonium thioglycolate benefited the hair fiber, thus diminishing protein loss, protecting the hair thread, and improving resistance to breakage. Jojoba oil and lauryl PEG/PPG-18/18 methicone were the conditioning agents that presented the best results. Straightening emulsions with ammonium thioglycolate containing aqua (and) cystine bis-PG propyl silanetriol and cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer were the ones that provided higher breakage resistance of the thread.

  5. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  6. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems.

    PubMed

    Robert, Fabien; Vuataz, Gilles; Pollien, Philippe; Saucy, Françoise; Alonso, Maria-Isabelle; Bauwens, Isabelle; Blank, Imre

    2004-11-03

    The formation of acrylamide in crystalline model systems based on asparagine and reducing sugars was investigated under low-moisture reaction conditions. The acrylamide amounts were correlated with physical changes occurring during the reaction. Molecular mobility of the precursors turned out to be a critical parameter in solid systems, which is linked to the melting behavior and the release of crystallization water of the reaction sample. Heating binary mixtures of asparagine monohydrate and anhydrous reducing sugars led to higher acrylamide amounts in the presence of fructose compared to glucose. Differential scanning calorimetry measurements performed in open systems indicated melting of fructose at 126 degrees C, whereas glucose and galactose fused at 157 and 172 degrees C, respectively. However, glucose was the most reactive and fructose the least efficient sugar in anhydrous liquid systems, indicating that at given molecular mobility the chemical reactivity of the sugar was the major driver in acrylamide formation. Furthermore, reaction time and temperature were found to be covariant parameters: acrylamide was preferably formed by reacting glucose and asparagine at 120 degrees C for 60 min, whereas 160 degrees C was required at shorter reaction time (5 min). These results suggest that, in addition to the chemical reactivity of ingredients, their physical state as well as reaction temperature and time would influence the formation of acrylamide during food processing.

  7. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes

    PubMed Central

    2014-01-01

    Background Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. Methods Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. Results Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. Conclusions Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation. PMID:24970701

  8. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  9. Mastery of cultural conditions and physico-chemical properties improves the production and the catalytic efficiency of bglG.

    PubMed

    Saibi, Walid; Gargouri, Ali

    2013-07-01

    Stachybotrys microspora is a filamentous fungus secreting multiple β-glucosidases. Two of them were characterized. The third one, named bglG, was also characterized and used for various investigations. The current work undertakes the plausible role played by some cultural conditions and physico-chemical properties to improve bglG time course synthesis and also its catalytic efficiency. Indeed, bglG time course synthesis is slightly affected by light, but it is clearly affected by aeration and presence of baffle. On the same case, optimization of substrate and enzyme concentration contributes to the improvement of the catalytic efficiency of bglG. This biocatalyst tolerates a high ionic strength during its activity assay; β-mercaptoethanol increases the enzymatic rate. BglG has the capacity to hydrolyse efficiently oleuropéin, with a recovery of 88%.

  10. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  11. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    PubMed

    Erguven, G O; Yildirim, N

    2016-05-30

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils.

  12. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect

    Nichols, T.T.; Taylor, D.D.; Lauerhass, L.; Barnes, C.M.

    2002-02-21

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.

  13. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    PubMed

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root.

  14. The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

    PubMed Central

    Ball, M. E. E.; Owens, B.; McCracken, K. J.

    2013-01-01

    The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed

  15. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.

    2014-11-01

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars' exploration. Understanding the chemical evolution of organic molecules under current martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? This paper presents the results of laboratory investigations dedicated to monitor the evolution of organic molecules when submitted to simulated Mars surface ultraviolet radiation (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) conditions. Experiments are done with the MOMIE simulation setup (for Mars Organic Molecules Irradiation and Evolution) allowing both a qualitative and quantitative characterization of the evolution the tested molecules undergo (Poch, O. et al. [2013]. Planet. Space Sci. 85, 188-197). The chemical structures of the solid products and the kinetic parameters of the photoreaction (photolysis rate, half-life and quantum efficiency of photodecomposition) are determined for glycine, urea, adenine and chrysene. Mellitic trianhydride is also studied in order to complete a previous study done with mellitic acid (Stalport, F., Coll, P., Szopa, C., Raulin, F. [2009]. Astrobiology 9, 543-549), by studying the evolution of mellitic trianhydride. The results show that solid layers of the studied molecules have half-lives of 10-103 h at the surface of Mars, when exposed directly to martian UV radiation. However, organic layers having aromatic moieties and reactive chemical groups, as adenine and mellitic acid, lead to the formation of photoresistant solid residues, probably of macromolecular nature, which could exhibit a longer photostability. Such solid organic layers are found in micrometeorites or could have been formed endogenously on Mars. Finally, the quantum efficiencies of photodecomposition at wavelengths from 200 to 250 nm

  16. Testing Insecticidal Activity of Novel Chemically Synthesized siRNA against Plutella xylostella under Laboratory and Field Conditions

    PubMed Central

    Gong, Liang; Chen, Yong; Hu, Zhen; Hu, Meiying

    2013-01-01

    Background Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. Methodology/Principal Findings Six small interfering RNAs (siRNAs) were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm−2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2) were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. Conclusions The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P. xylostella and to

  17. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  18. Applicability of DLVO Approach to Predict Trends in Iron Oxide Colloid Mobility Under Various Physical And Chemical Soil Conditions

    NASA Astrophysics Data System (ADS)

    Florian Carstens, Jannis; Bachmann, Jörg; Neuweiler, Insa

    2014-05-01

    In soil and groundwater, highly mobile iron oxide colloids can act as "shuttles" for transport of adsorbed contaminants such as heavy metals and radionuclides. Artificial iron oxide colloids are injected into polluted porous media to accelerate bacterial degradation of pollutants in the context of bioremediation purposes. The mobility of iron oxide colloids is strongly affected by the hydraulic, physical and chemical conditions of the pore space, the solid particle surface properties, the fluid phase, and the colloids themselves. Most pioneering studies focused on iron oxide colloid transport and retention in simplified model systems. The aim of this study is to investigate iron oxide colloid mobility under more complex, soil-typical conditions that have as yet only been applied for model microspheres, i.e. functionalized latex colloids. Among these conditions is the pivotal impact of organic matter, either dissolved or adsorbed onto solid particles, modifying wettability properties. Of particular importance was to determine if effective chemical surface parameters derived from contact angle and zeta potential measurements can be used as a tool to predict general tendencies for iron oxide colloid mobility in porous media. In column breakthrough experiments, goethite colloids (particle size: 200-900 nm) were percolated through quartz sand (grain size: 100-300 µm) at pH 5. The impact of a multitude of conditions on colloid mobility was determined: dissolved organic matter (DOM) concentration, ionic strength, flow velocity, flow interruption, partial saturation, and drying with subsequent re-wetting. The solid matrix consisted of either clean sand, organic matter-coated sand, goethite-coated sand, or sand hydrophobized with dichlorodimethylsilane. Additionally, contact angles and zeta potentials of the materials applied in the column experiments were measured. By means of these surface parameters, traditional DLVO interaction energies based on zeta potential as well

  19. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: a quantum chemical study on cephradine.

    PubMed

    Zhang, Haiqin; Xie, Hongbin; Chen, Jingwen; Zhang, Shushen

    2015-02-03

    Understanding hydrolysis pathways and kinetics of many antibiotics that have multiple hydrolyzable functional groups is important for their fate assessment. However, experimental determination of hydrolysis encounters difficulties due to time and cost restraint. We employed the density functional theory and transition state theory to predict the hydrolysis pathways and kinetics of cephradine, a model of cephalosporin with two hydrolyzable groups, two ionization states, two isomers and two nucleophilic attack directions. Results showed that the hydrolysis of cephradine at pH = 8.0 proceeds via opening of the β-lactam ring followed by intramolecular amidation. The predicted rate constants at different pH conditions are of the same order of magnitude as the experimental values, and the predicted products are confirmed by experiment. This study identified a catalytic role of the carboxyl group in the hydrolysis, and implies that the carboxyl group also plays a catalytic role in the hydrolysis of other cephalosporin and penicillin antibiotics. This is a first attempt to quantum chemically predict hydrolysis of an antibiotic with complex pathways, and indicates that to predict hydrolysis products under the environmental pH conditions, the variation of the rate constants for different pathways with pH should be evaluated.

  20. Synthetic Surface for Expansion of Human Mesenchymal Stem Cells in Xeno-Free, Chemically Defined Culture Conditions

    PubMed Central

    Dolley-Sonneville, Paula J.; Romeo, Lori E.; Melkoumian, Zara K.

    2013-01-01

    Human mesenchymal stem cells (hMSCs) possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM) coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT) plastic in fetal bovine serum (FBS) supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs. PMID:23940553

  1. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  2. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition.

    PubMed

    Qu, Su; Yan, Liang; Fang, Bo; Ye, Shoudong; Li, Ping; Ge, Shengyang; Wu, Jian; Qu, Di; Song, Houyan

    2017-04-15

    To enhance survival and generation of definitive endoderm cells from human embryonic stem cells in a simple and reproducible system. Definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs) was induced under a chemical-defined condition withdrawn insulin supplement and serum albumin. We dissected influence of "alternative growth factors", WNT3A, BMP4 and bFGF in activin A-driven differentiation by detection of DE-associated genes expression and cell viability. Expression of DE-associated SOX17 and FOXA2 genes was analyzed by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. Quantitative evaluation of DE efficiency was performed by flow cytometry analysis of CXCR4-expressed cell population. Cell viability during DE differentiation was analyzed by an Annexin V/PI double staining test. Supplementation with WNT3A, BMP4 or bFGF promoted DE generation in a dose- and time-dependent manner. Cell apoptosis elicited by activin A was significantly ameliorated by a cocktail with WNT3A, BMP4 and bFGF. This allowed for sustained cell viability without insulin-containing supplements, thereby indirectly improving the efficiency of DE generation. Therefore, the cocktail containing is optimal for efficient DE generation in the presence of activin A and an insulin/albumin-free condition. This optimal condition facilitates the balance between the productivity and the viability maintenance, and could be valuable for mass production of DE with minimal variation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  4. Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions.

    PubMed

    Lu, Cong; Wu, Yaoguo; Hu, Sihai; Raza, Muhammad Ali; Fu, Yilin

    2016-04-01

    Exposed mine tailing wastes with considerable heavy metals can release hazardous colloidal particles into soil under transient chemical and physical conditions. Two-layered packed columns with tailings above and soils below were established to investigate mobilization and transport of colloidal particles from metal-rich mine tailings into soil under transient infiltration ionic strength (IS: 100, 20, 2 mM) and flow rate (FR: 20.7, 41, and 62.3 mm h(-1)), with Cu and Pb as representatives of the heavy metals. Results show that the tailing particles within the colloidal size (below 2 μm) were released from the columns. A step-decrease in infiltration IS and FR enhanced, whereas a step-increase in the IS and FR restrained the release of tailing particles from the column. The effects of step-changing FR were unexpected due to the small size of the released tailing particles (220-342 nm, being not sensitive to hydrodynamic shear force), the diffusion-controlled particle release process and the relatively compact pore structure. The tailing particles present in the solution with tested IS were found negatively charged and more stable than soil particles, which provides favorable conditions for tailing particles to be transported over a long distance in the soil. The mobilization and transport of Cu and Pb from the tailings into soil were mediated by the tailing particles. Therefore, the inherent toxic tailing particles could be considerably introduced into soil under certain conditions (IS reduction or FR decrease), which may result in serious environmental pollution.

  5. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics.

    PubMed

    Straka, Michal; Lantto, Perttu; Vaara, Juha

    2008-03-27

    We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized

  6. Simulation of size-segregated aerosol chemical composition over northern Italy in clear sky and wind calm conditions

    NASA Astrophysics Data System (ADS)

    Landi, T. C.; Curci, G.; Carbone, C.; Menut, L.; Bessagnet, B.; Giulianelli, L.; Paglione, M.; Facchini, M. C.

    2013-05-01

    The present article compares the outputs of the 3-D regional chemistry-transport model (CTM) CHIMERE against observations of the size-resolved aerosol chemical composition over northern Italy in clear sky and wind calm conditions. Two 4-day intensive field campaigns were carried out in July 2007 and February 2008 at three sites (urban, rural and mountain backgrounds) in the framework of the AEROCLOUDS project. Predicted levels are in reasonable agreement with observations for the urban and rural sites. Bias ranges from - 30%, for the rural site in winter, to + 38%, for the urban site during summer. In addition, the model is able to capture both the daily evolution of the bulk aerosol mass as well as its spatial gradients. Aerosol size distribution and chemical composition remain difficult to predict. The largest discrepancies were found for secondary organic aerosol (SOA) during summer and nitrates during the cold season. Compared with observations, modelled size distribution is shifted towards fine mode in winter, and towards coarse mode in summer. More accurate predictions can be achieved for both seasons by tuning the gas to particle absorption process. By reducing the SOA absorption rate by 25% at the urban sampling site in summer, the correlation between observed and simulated SOA size distributions increases from - 0.30 to + 0.70, and the bias is reduced from 200% to 0%. In winter, increasing the intra-sectional flux of particles from smaller to larger ones by a factor of 5, the Pearson correlation coefficient calculated over the nitrate size distribution goes up to + 0.85, compared to + 0.50 from CTRL, also resulting in a better agreement with the size distribution of PM10. As expected, the nitrate bulk mass concentration does not vary with respect to the base-case, and therefore nitrate overestimation remains present in the model.

  7. Study of the influence of physical, chemical and biological conditions that influence the deterioration and protection of Underwater Cultural Heritage.

    PubMed

    Bethencourt, Manuel; Fernández-Montblanc, Tomás; Izquierdo, Alfredo; González-Duarte, Manuel María; Muñoz-Mas, Cristian

    2017-09-11

    Two wrecks related to the Battle of Trafalgar (1805) were studied. Following the guidelines of the UNESCO-2001 Convention for the Protection of the Underwater Cultural Heritage, a holistic and interdisciplinary approach based on the development of four of the thirty-six Rules of this international agreement was applied. A non-destructive survey technique was developed to obtain information from the scattered cannons and anchors without altering their condition (Rule 4). The work performed provided information about the origin of both wrecks, the Fougueux and the Bucentaure, two ships of the line of the French Navy, and allowed to characterize the state of conservation at each site without jeopardizing their future conservation in the marine environment. In addition, measurements of the main physical, chemical and biological variables allowed correlating the conservation status at each site with the marine environmental conditions (Rule 15). Thus, in Fougueux shipwreck large iron objects are corroding at a higher rate (between 0.180 and 0.246mmpy) due to high sediment remobilization and transport induced by waves at this site, causing damage by direct mechanical effect on metallic material and by removing the layer of corrosion products developed on the artefacts. Meanwhile artillery on Bucentaure site, covered with thick layers of biological concretion, is well preserved, with lower corrosion rates (0.073 to 0.126mmpy), and archaeological information is guaranteed. Finally, the effectiveness of the cathodic protection as a temporary measure for in situ conservation (Rule 1) was evaluated on a cannon. The use of a sacrificial anode after 9months reduced the average corrosion rate (from 0.103 to 0.064mmpy) and the percent of corrosion rate in 37.9%. These results are very useful for developing a decision making system of the Site Management Program, based on predictive models of artefacts permanence and risk factors in the marine environment (Rule 25). Copyright

  8. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe2O3/zeolite was prepared by dissolving Fe2O3 fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe2O3/Al2O3, Co/zeolite/Al2O3, Co/zeolite, and Co/Al2O3 were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C2H2/N2 = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al2O3. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al2O3. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  9. Influence of annealing conditions on the crystallographic structure, chemical composition and luminescence of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Khojier, K.; Savaloni, H.; Amani, E.

    2014-01-01

    ZnO thin films have many applications in semiconductor devices, such as semiconductor lasers, amplifiers, solar cells, chemical and ultraviolet sensors. We produced ZnO thin films on Si (4 0 0) substrates, using e-beam technique and subsequently annealed them under different conditions (i.e., temperature (200-800), time (60 min and 180 min) and environment (air and oxygen flow). The ZnO (0 0 2) preferred orientation which increases in intensity with annealing temperature and annealing time is deduced from X-ray diffraction (XRD) results. Dislocation density was higher for the films annealed in air which may be caused by the impurities (nitrogen and other species in the air) embedded in the film structure. No significant change in the nano-strain of each group of the samples (annealed under different conditions) was observed. The FESEM images showed a granular structure for annealed samples at 200 °C and 800 °C and a mixed structure of nanowires and nanosheets for samples annealed at 350 °C and 500 °C. Two peaks of UV emission and green emission were observed in the photoluminescence (PL) spectra of the produced samples. The UV emission increased with annealing temperature and annealing time showing higher crystal quality while the behavior of the green emission was opposite to that of the UV emission. The ZnO films resulted from annealing in the air showed stronger green emission than those annealed with flow of oxygen indicating higher impurity concentration and oxygen vacancies in the sample.

  10. Comparative study of deterioration procedure in chemical-leavened steamed bread dough under frozen storage and freeze/thaw condition.

    PubMed

    Wang, Pei; Yang, Runqiang; Gu, Zhenxin; Xu, Xueming; Jin, Zhengyu

    2017-08-15

    Successive freeze/thaw (FT) cycle was a widely used empirical approach to shorten the experimental period since it could accelerate frozen dough deterioration compared with frozen storage (FS). In order to compare the effect of FS and FT cycle on deterioration procedure of chemical-leavened steamed bread dough, kinetic studies of bread quality indices were performed and the relationships between bread quality and dough components were further established. Results showed that degradation of steamed bread loaf volume and firmness followed first-order kinetics during FS and zero-order kinetics during FT, respectively. Glutenin macropolymers (GMP) depolymerization and dough weight loss occurred steadily throughout FS and FT. Significant enhancement of damaged starch and crystallinity were observed at the later FS period and FT cycle. Multiple regression study led to the conclusion that dough weight loss contributed the most to the reduced bread loaf volume under FS whereas GMP depolymerization dominated under FT condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of metal organic chemical vapour deposition growth conditions on vibrational and luminescent properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Montenegro, D. N.; Hortelano, V.; Martínez, O.; Martínez-Tomas, M. C.; Sallet, V.; Muñoz-Sanjosé, V.; Jiménez, J.

    2013-04-01

    A detailed optical characterization by means of micro Raman and cathodoluminescence spectroscopy of catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition has been carried out. This characterization has allowed correlating the growth conditions, in particular the precursors partial-pressures and growth time, with the optical properties of nanorods. It has been shown that a high Zn supersaturation can favor the incorporation of nonradiative recombination centers, which can tentatively be associated with ZnI-related defects. Characterization of individual nanorods has evidenced that ZnI-related defects have a tendency to accumulate in the tip part of the nanorods, which present dark cathodoluminescence contrast with respect to the nanorods bottom. The effect of a ZnO buffer layer on the properties of the nanorods has been also investigated, showing that the buffer layer improves the luminescence efficiency of the ZnO nanorods, revealing a significant reduction of the concentration of nonradiative recombination centers.

  12. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions

    PubMed Central

    2017-01-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (Clip) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics Clip, Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: Clip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of Clip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies. PMID:28682597

  13. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions.

    PubMed

    Russo, Alessandra; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Delfine, Sebastiano; Cardile, Venera; Rosselli, Sergio; Bruno, Maurizio

    2013-05-01

    Salvia officinalis L. can be found worldwide and its leaves are commonly used as ingredient in food industry. Sage essential oil is applied in the treatment of a range of diseases and has been shown to possess different biological activities. The objectives of our research were to study the effects of environment on crop, chemical composition and anticancer activity on S. officinalis essential oil. Sage was cultivated at eighteen experimental sites in south-central Italy (Molise) in different growing environments. The essential oils (S1-S18), extracted by hydrodistillation, were analyzed by GC and CG/MS. Results show that the main components were α-thujone, camphor, borneol, γ-muurolene and sclareol for all the samples, but the percentages of these compounds varied depending on environmental factors such as altitude, water availability and pedo-climatic conditions. The growth-inhibitory and proapoptotic effects of the eighteen sage essential oils were evaluated in three human melanoma cell lines, A375, M14, and A2058.

  14. Utilizing platforms for the observation of chemical transformations to surface-bound noble metal nanoparticles in environmentally relevant conditions

    NASA Astrophysics Data System (ADS)

    Glover, Richard David

    Nanoparticles are increasingly incorporated into consumer products because of their unique, size-dependent properties. Although these properties are commercially appealing, data are lacking regarding the fate and reactivity of nanoparticles once incorporated into materials. This information gap prevents accurate assessment of hazards that these materials potentially present to consumers and the environment. To address this concern, new research is needed to investigate the reactivity and transformations of nanoparticles. This dissertation describes the use of an electron transparent characterization platform to observe nanoparticle transformations. Nanoparticles were tethered to the surface of an analysis platform, exposed to a variety of conditions, and evaluated for reactivity and response. The characterization of silver nanoparticles revealed the generation of new daughter nanoparticles on surfaces in ambient humid conditions. Our observations showed that the transport of material is highly dependent on relative humidity and that pH equilibria drives the deposition of new particles and degradation. We discovered, by applying these findings to macro-silver objects, that bulk silver generates new nanoparticles on surfaces. This illuminated the possibility of other, yet undiscovered, naturally occurring nanoparticles. In the second model system, 1.5 nm gold nanoparticles were tethered by a robust metal oxide bond from the terminal group of the stabilizing ligand. This strategy facilitated precise control over thiol ligand removal using a dilute ozone oxidation. Tracking particle oxidation over time allowed us to gain unprecedented control over core exposure, size maintenance, and surface tethering. This platform was also utilized as a proof-of-concept for direct observation of transformations in complex media. Ligand and core transformations were monitored in a variety of biologically relevant conditions using tethered nanoparticles. Morphological and chemical

  15. Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.

    2017-01-01

    Adsorption using activated alumina is a simple method for removing fluoride from drinking water, but to be cost effective the adsorption capacity must be high and effective long-term. The intent of this study was to assess changes in its adsorption capacity under varied conditions. This was determined by evaluating the physico-chemical properties, surface charge, and fluoride (F−) adsorption capacity and rate of activated alumina under conditions such as hydration period, particle size, and slow vs. fast titrations. X-ray diffraction and scanning electron microscopy analyses show that the mineralogy of activated alumina transformed to boehmite, then bayerite with hydration period and a corresponding reduction in adsorption capacity was expected; while surface area analyses show no notable changes with hydration period or particle size. The pH dependent surface charge was three times higher using slow potentiometric titrations as compared to fast titrations (due largely to diffusion into pore space), with the surface acidity generally unaffected by hydration period. Results from batch adsorption experiments similarly show no change in fluoride adsorption capacity with hydration period. There was also no notable difference in fluoride adsorption capacity between the particle size ranges of 0.5–1.0 mm and 0.125–0.250 mm, or with hydration period. However, adsorption rate increased dramatically with the finer particle sizes: at an initial F− concentration of 0.53 mmol L−1 (10 mg L−1), 90% was adsorbed in the 0.125–0.250 mm range after 1 h, while the 0.5–1.0 mm range required 24 h to achieve 90% adsorption. Also, the pseudo-second-order adsorption rate constants for the finer vs. larger particle sizes were 3.7 and 0.5 g per mmol F− per min respectively (24 h); and the initial intraparticle diffusion rate of the former was 2.6 times faster than the latter. The results show that adsorption capacity of activated alumina remains consistent and

  16. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45-80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65-81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range from

  17. Temporal changes in radiological and chemical composition of Cambrian-Vendian groundwater in conditions of intensive water consumption.

    PubMed

    Suursoo, Siiri; Hill, Liie; Raidla, Valle; Kiisk, Madis; Jantsikene, Alar; Nilb, Nele; Czuppon, György; Putk, Kaisa; Munter, Rein; Koch, Rein; Isakar, Kadri

    2017-12-01

    Intensive groundwater uptake is a process at the intersection of the anthroposphere, hydrosphere, and lithosphere. In this study, groundwater uptake on a peninsula where only one aquifer system - the Cambrian-Vendian (CmV) - is available for drinking water uptake is observed for a period of four years for relevant radionuclides and chemical parameters (Cl, Mn, Fe, δ(18)O). Intensive groundwater uptake from the CmV aquifer system may lead to water inflow either from the sea, through ancient buried valleys or from the under-laying crystalline basement rock which is rich in natural radionuclides. Changes in the geochemical conditions in the aquifer may in turn bring about desorption of Ra from sediment surface. Knowing the hydrogeological background of the wells helps to predict possible changes in water quality which in turn are important for sustainable groundwater management and optimization of water treatment processes. Changes in Cl and Ra concentrations are critical parameters to monitor for sustainable management of the CmV groundwater. Radionuclide activity concentrations in groundwater are often considered rather stable, minimum monitoring frequency of the total indicative dose from drinking water is set at once every ten years. The present study demonstrates that this is not sufficient for ensuring stable drinking water quality in case of aquifer systems as sensitive as the CmV aquifer system. Changes in Cl concentrations can be used as a tool to predict Ra activity concentrations and distribute the production between different wells opening to the same aquifer system. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    NASA Astrophysics Data System (ADS)

    Giordano, L.; Brunner, D.; Flemming, J.; Hogrefe, C.; Im, U.; Bianconi, R.; Badia, A.; Balzarini, A.; Baró, R.; Chemel, C.; Curci, G.; Forkel, R.; Jiménez-Guerrero, P.; Hirtl, M.; Hodzic, A.; Honzak, L.; Jorba, O.; Knote, C.; Kuenen, J. J. P.; Makar, P. A.; Manders-Groot, A.; Neal, L.; Pérez, J. L.; Pirovano, G.; Pouliot, G.; San José, R.; Savage, N.; Schröder, W.; Sokhi, R. S.; Syrakov, D.; Torian, A.; Tuccella, P.; Werhahn, J.; Wolke, R.; Yahya, K.; Žabkar, R.; Zhang, Y.; Galmarini, S.

    2015-08-01

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality models to simulate the year 2010 over one European and one North American domain. The MACC re-analysis has been used as chemical initial (IC) and boundary conditions (BC) by all participating regional models in AQMEII-2. The aim of the present work is to evaluate the MACC re-analysis along with the participating regional models against a set of ground-based measurements (O3, CO, NO, NO2, SO2, SO42-) and vertical profiles (O3 and CO). Results indicate different degrees of agreement between the measurements and the MACC re-analysis, with an overall better performance over the North American domain. The influence of BC on regional air quality simulations is analyzed in a qualitative way by contrasting model performance for the MACC re-analysis with that for the regional models. This approach complements more quantitative approaches documented in the literature that often have involved sensitivity simulations but typically were limited to only one or only a few regional scale models. Results suggest an important influence of the BC on ozone for which the underestimation in winter in the MACC re-analysis is mimicked by the regional models. For CO, it is found that background concentrations near the domain boundaries are rather close to observations while those over the interior of the two continents are underpredicted by both MACC and the regional models over Europe but only by MACC over North America. This indicates that emission differences between the MACC re-analysis and the regional models can have a profound impact on model performance and points to the need for harmonization of inputs in future linked global/regional modeling studies.

  19. PLD deposition of tungsten carbide contact for diamond photodiodes. Influence of process conditions on electronic and chemical aspects

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Bellucci, A.; Orlando, S.; Trucchi, D. M.; Mezzi, A.; Valentini, V.

    2013-08-01

    Tungsten carbide, WC, contacts behave as very reliable Schottky contacts for opto-electronic diamond devices. Diamond is characterized by superior properties in high-power, high frequency and high-temperature applications, provided that thermally stable electrode contacts will be realized. Ohmic contacts can be easily achieved by using carbide-forming metals, while is difficult to get stable Schottky contacts at elevated temperatures, due to the interface reaction and/or inter-diffusion between metals and diamond. Novel type of contacts, made of tungsten carbide, WC, seem to be the best solution, for their excellent thermal stability, high melting point, oxidation and radiation resistance and good electrical conductivity. Our research was aimed at using pulsed laser deposition for WC thin film deposition, optimizing experimental parameters, to obtain a final device characterized by excellent electronic properties, as a detector for radiation in deep UV or as X-ray dosimeter. We deposited our films by laser ablation from a target of pure WC, using different reaction conditions (i.e., substrate heating, vacuum or reactive atmosphere (CH4/Ar), RF plasma activated), to optimize both the stoichiometry of the film and its structure. Trying to obtain a material with the best electronic response, we used also two sources of laser radiation for target ablation, i.e., nano-second pulsed excimer laser ArF, and ultra-short fs Ti:Sapphire laser. The structure and chemical aspects have been evaluated by Raman and X-ray photoelectron spectroscopy (XPS), while the dosimeter photodiode response has been tested by the I-V measurements, under soft X-ray irradiation.

  20. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    SciTech Connect

    Suda, Yoshiyuki Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe{sub 2}O{sub 3}/zeolite was prepared by dissolving Fe{sub 2}O{sub 3} fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}, Co/zeolite/Al{sub 2}O{sub 3}, Co/zeolite, and Co/Al{sub 2}O{sub 3} were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C{sub 2}H{sub 2}/N{sub 2} = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al{sub 2}O{sub 3}. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al{sub 2}O{sub 3}. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  1. Fiscal year 1996 laboratory scale studies of the WVNS flowsheet for remediation of Tank 8D-1 and Tank 8D-2

    SciTech Connect

    Smith, H.D.; Smith, G.L.; Russell, R.L.; Patello, G.K.

    1996-11-01

    These tests simulated the West Valley (WV) tank heel removal flowsheet in which oxalic acid solution (OAS) is used to elute Cs from zeolite in tank 8D-1 for 28 h. The eluent is then transferred to tank 8D-2, to dissolve the waste sludge heel. Sequence for the tests were: elute 10 g of Cs-loaded zeolite for 28 h at 50 C at 40 L/kg- zeolite, using 8 wt% OAS; decant used OAS and add 240 g waste slurry simulant, which was washed to <2g/L dissolved solids and containing 120-140 g total oxides/L; let the 3 test combinations (various Fe{sub 2}O{sub 3}) and control age at 50 C for 50 h; and after adjusting pH from 2.5 to 5, sampling at 0.25 to 16 h. Results include visual and analyses; data tables include compositions of the OAS after the Cs- zeolite contact, Cs eluted, supernate OAS in contact with sludge, and neutralized tests. Data have also been graphed for each element vs contact time. Cs elution data was consistent with >90% eluted; the OA conc. after Cs elution was also consistent with essentially no acid consumption. During contact with OAS at pH 2.5, the solution appears to have come into equilibrium with the sludge solid almost immediately; presence of additional Fe oxide appears to have decreased the Cr/Ni/Mn relative solubility. After neutralization, elements that form more insoluble hydroxides such as Fe, Ni, Mn, Ca, and Sr show lower conc. in supernatant; Si may also have been removed. Flowsheet testing confirms that OA is efficient for eluting Cs from zeolite and promotes dissolution of sludge heels in the WV tanks.

  2. Electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces as dependent on MBE growth conditions and ex situ annealing

    NASA Astrophysics Data System (ADS)

    Komissarova, T. A.; Lebedev, M. V.; Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Gronin, S. V.; Komissarov, K. A.; Calvet, W.; Drozdov, M. N.; Ivanov, S. V.

    2017-04-01

    A study of electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces (HI) in dependence on molecular beam epitaxy (MBE) growth conditions and post-growth annealing was performed. Initial GaAs surface reconstructions ((2 × 4)As or c(4 × 4)As) and ZnSe growth mode (MBE or migration-enhanced epitaxy (MEE)) were varied for different undoped and n-doped heterovalent structures. Although all the structures have low extended defect density (less than 106 cm‑2) and rather small (less than 5 nm) atomic interdiffusion at the HI, the structural, chemical and electronic properties of the near-interface area (short-distance interdiffusion effects, dominant chemical bonds, and valence band offset values) as well as electrical properties of the n-GaAs/n-ZnSe heterovalent structures were found to be influenced strongly by the MBE growth conditions and post-growth annealing.

  3. Volatile chemical spoilage indexes of raw Atlantic salmon (salmo salar)stored under aerobic condition in relation to microbiological and sensory shelf lives

    USDA-ARS?s Scientific Manuscript database

    The purpose of this investigation was to identify and quantify the volatile chemical spoilage indexes (CSIs) for raw Atlantic salmon (Salmo salar) fillets stored under aerobic storage conditions at 4, 10 and 21 degrees C in relation to the determined microbial and sensory shelf lives. The volatile o...

  4. CHEMICAL TRANSFORMATIONS USING NON-TRADITIONAL APPROACHES: MICROWAVE-ASSISTED GREENER SYNTHESES IN AQUEOUS MEDIA OR UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a 'greener' chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N<...

  5. [Comparison analysis on remedy condition of acute chemical intoxication in emergency departments and occupational departments of general hospitals].

    PubMed

    Li, An; Wang, Xiao-hong; Hao, Feng-tong

    2013-03-01

    To investigate the current situation of treatment for acute chemical poisoning in the emergency departments and occupational disease departments of some general hospitals and to provide a basis for improving the ability of general hospital to deal with acute chemical poisoning. Four hospitals from Shandong Province, Beijing City, and Shanxi Province, China were selected in the study. They included two first-class hospitals located in the downtown, where the patients with acute chemical poisoning from urban and suburban areas were admitted to the occupational disease departments, and two second-class hospitals located in the suburban area or county, where the patients with acute chemical poisoning from the suburban area were admitted to the emergency departments. A questionnaire survey was conducted in 141 medical workers (51 persons in the emergence department group and 90 persons in the occupational disease department group) that were engaged in the treatment of acute chemical poisoning in the four hospitals; 1999 medical records were analyzed. Individual in-depth interviews, questionnaire investigation, and field observation were used to compare the emergency department group and occupational disease department group in terms of the ability to deal with acute chemical poisoning and the training on treatment for acute chemical poisoning. The emergency department group had significantly higher proportion of pesticide poisoning cases than the occupational disease department group (P<0.01). Thirty-seven of the patients in occupational disease department group died, with a fatality rate of 2.7%, and 14 of the patients in emergence department group died,with a fatality rate of 2.2%, so there was no significant difference between the two groups in this regard (P>0.05). There were significantly more cases treated without emergency plan in the emergency department group than in the occupational disease department group ( 37.3% vs. 10.0%, P <0.0 1). The occupational

  6. In vitro culture conditions using chemically defined media for in vitro matured and intracytoplasmically inseminated porcine oocytes.

    PubMed

    Kamiya, Chisato; Kobayashi, Mariko; Fukui, Yutaka

    2006-10-01

    The present study investigated in vitro culture methods [droplet and Well of the Well (WOW)] using semi-defined and defined media [modified porcine zygote medium (mPZM)] and the additional effects of insulin on in vitro matured and intracytoplasmically inseminated porcine oocytes. In Experiment 1, in vitro matured and intracytoplasmically inseminated porcine oocytes were cultured for 6 days in the following four groups: 1) mPZM-3 (containing bovine serum albumin) + droplet (30 mul), 2) mPZM-3 + WOW, 3) mPZM-4 (containing polyvinyl alcohol) + droplet, and 4) mPZM-4+ WOW. The culture media (mPZM-3 and mPZM-4) and methods (droplet and WOW) did not significantly affect the cleavage rate, but the blastocyst rate of the oocytes cultured in mPZM-3 was significantly (P<0.01) higher than that of mPZM-4 (20.1 and 9.4%, respectively). The blastocyst rates as percentages of the cleaved oocytes (51.8 and 16.9%) and the hatched blastocyst rate as percentages of the number of blastocysts (12.3 and 2.2%) were also significantly (P<0.01) higher in mPZM-3 compared with those in mPZM-4. There was significant interaction (P<0.05) between the two main factors; the effects of the culture media and methods on the rate of hatched blasyocysts as percentages of the blastocysts produced and, the hatched blastocyst rate (20.3%) as percentages of the number of blastocysts produced in mPZM-3 were significantly (P<0.05) higher than in the other groups. In Experiment 2, the additional effects of insulin (100 ng/ml) in mPZM-3 and mPZM-4 media was investigated in the WOW culture system. Insulin addition did not improve cleavage, blastocyst formation, or the number of cells in blastocysts. However, as in Experiment 1, mPZM-3 resulted in a significantly higher blastocyst rate as percentages of the cleaved oocytes than mPZM-4 (33.9 and 18.4%). These results indicate that a chemically defined medium (mPZM-4) needs to be improved to provide more suitable culture conditions for in vitro development of in

  7. Is an assessment factor of 10 appropriate to account for the variation in chemical toxicity to freshwater ectotherms under different thermal conditions?

    PubMed

    Lau, Edward Tak Chuen; Yung, Mana Man Na; Karraker, Nancy E; Leung, Kenneth Mei Yee

    2014-01-01

    Ecotoxicity tests are often conducted following standard methods, and thus carried out at a fixed water temperature under controlled laboratory conditions. Yet, toxicity of a chemical contaminant may vary in a temperature-dependent manner, depending on the physiology of the test organism and physicochemical properties of the chemical. Although an assessment factor of 10 (AF10) is commonly adopted to account for variability in toxicity data related to temperature in the development of water quality guidelines and/or ecological risk assessment, no one has ever rigorously assessed the appropriateness of AF10 to account for potential variation in temperature-dependent chemical toxicity to aquatic organisms. This study, therefore, aims to address this issue through a meta-analysis by comparing median lethal concentration data for nine chemicals (cadmium, copper, nickel, lead, silver, zinc, arsenic, selenium and DDT) on a range of freshwater ectothermic animal species at different temperatures, and to assess whether AF10 is under- or over-protective for tropical and temperate freshwater ecosystems. Our results reveal varying extents of interaction between temperature and different chemicals on organisms and the complexity of these interactions. Applying AF10 sufficiently protects 90% of the animal species tested over a range of temperatures for cadmium, copper, nickel, silver, zinc and DDT in the tropics, but it is insufficient to adequately encompass a larger temperature variation for most studied chemicals in temperate regions. It is therefore important to set specific AFs for different climatic zones in order to achieve the desired level of ecosystem protection.

  8. Experimental paradigm for in-lab proxy aquatic studies under conditions of static, non flow through chemical exposures

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as 17α ethynylestradiol (EE2), 17β estradiol (E2), estrone (E1) and para-nonylphenol (NP) have been measured in wastewater treatment plant effluents, surface waters, sediments and sludge, and have been shown to induce liver-sp...

  9. Experimental paradigm for in-lab proxy aquatic studies under conditions of static, non flow through chemical exposures

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as 17α ethynylestradiol (EE2), 17β estradiol (E2), estrone (E1) and para-nonylphenol (NP) have been measured in wastewater treatment plant effluents, surface waters, sediments and sludge, and have been shown to induce liver-sp...

  10. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  11. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions

    PubMed Central

    Nerandzic, Michelle M.; Sunkesula, Venkata C. K.; C., Thriveen Sankar; Setlow, Peter; Donskey, Curtis J.

    2015-01-01

    Background Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats. Principal Findings Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores. Conclusions These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions. PMID:26177038

  12. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    NASA Astrophysics Data System (ADS)

    Okada, N.; Nojima, K.; Ishibashi, N.; Nagatoshi, K.; Itagaki, N.; Inomoto, R.; Motoyama, S.; Kobayashi, T.; Tadatomo, K.

    2017-06-01

    We focused on inductively coupled plasma and reactive ion etching (ICP-RIE) for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  13. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    NASA Technical Reports Server (NTRS)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  14. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    PubMed

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed.

  15. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2010-09-01

    The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p<0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 degrees C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 degrees C), and under regular wave conditions at all temperatures (10-17 degrees C), with DDE<15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD < or = 200 microm), whereas ineffective dispersion produced large oil droplets (with VMD > or = 400 microm).

  16. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions.

    PubMed

    De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice

    2013-12-04

    This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  17. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2009-05-01

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.

  18. Organic Food: A Comparative Study of the Effect of Tomato Cultivars and Cultivation Conditions on the Physico-Chemical Properties

    PubMed Central

    Araujo, Jacqueline C.; Telhado, Samuel F. P.

    2015-01-01

    The objective of this review was to present an update of the currently managed studies on the characterization physical, chemical, and sensory analysis of several tomato cultivars. This review has indicated the importance of farming system and genotype on sensory and biochemical characteristics. It is necessary to use selected genotypes responding positively to organic farming in terms of sensory, biochemical characteristics and productivity aspects and to evaluate systems over more than one year of sampling. PMID:28231203

  19. Organic Food: A Comparative Study of the Effect of Tomato Cultivars and Cultivation Conditions on the Physico-Chemical Properties.

    PubMed

    Araujo, Jacqueline C; Telhado, Samuel F P

    2015-07-10

    The objective of this review was to present an update of the currently managed studies on the characterization physical, chemical, and sensory analysis of several tomato cultivars. This review has indicated the importance of farming system and genotype on sensory and biochemical characteristics. It is necessary to use selected genotypes responding positively to organic farming in terms of sensory, biochemical characteristics and productivity aspects and to evaluate systems over more than one year of sampling.

  20. Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors

    PubMed Central

    2014-01-01

    Background The detection of biological and chemical species is of key importance to numerous areas of medical and life sciences. Therefore, a great interest exists in developing new, rapid, miniature, biocompatible and highly sensitive sensors, capable to operate under physiological conditions and displaying long-term stabilities (e.g. in-body implantable sensors). Silicon nanostructures, nanowires and nanotubes, have been extensively explored as building blocks for the creation of improved electrical biosensing devices, by virtue of their remarkably high surface-to-volume ratios, and have shown exceptional sensitivity for the real time label-free detection of molecular species adsorbed on their surfaces, down to the sensitivity of single molecules. Yet, till this date, almost no rigorous studies have been performed on the temporal morphological stability of these nanostructures, and their resulting electrical devices, under physiological conditions (e.g. serum, blood), as well as on the chemical stability of the molecular recognition over-layers covering these structures. Results Here, we present systematic time-resolved results on the morphological stability of bare Si nanowire building blocks, as well on the chemical stability of siloxane-based molecular over-layers, under physiological conditions. Furthermore, in order to overcome the observed short-term morpho-chemical instabilities, we present on the chemical passivation of the Si nanostructures by thin metal oxide nanoshells, in the range of 3–10 nm. The thickness of the metal oxide layer influences on the resulting electrical sensitivity of the fabricated FETs (field effect transistors), with an optimum thickness of 3–4 nm. Conclusions The core-shell structures display remarkable long-term morphological stability, preventing both, the chemical hydrolytic dissolution of the silicon under-structure and the concomitant loss of the siloxane-based chemical over-layers, for periods of at least several

  1. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins.

    PubMed

    Jbara, Muhammad; Maity, Suman Kumar; Seenaiah, Mallikanti; Brik, Ashraf

    2016-04-20

    Facilitating the process of chemical protein synthesis is an important goal in order to enable the efficient preparation of large and novel protein analogues. Native chemical ligation, which is widely used in the synthesis and semisynthesis of proteins, has been going through several developments to expedite the synthetic process and to obtain the target protein in high yield. A key aspect of this approach is the utilization of protecting groups for the N-terminal Cys in the middle fragments, which bear simultaneously the two reactive groups, i.e., N-terminal Cys and C-terminal thioester. Despite important progress in this area, as has been demonstrated in the use of thiazolidine protecting group in the synthesis of over 100 proteins, finding optimal protecting group(s) remains a challenge. For example, the thiazolidine removal step is very slow (>8 h), and in some cases the applied conditions lead to undesired side reactions. Here we show that water-soluble palladium(II) complexes are excellent reagents for the effective unmasking of thiazolidine, enabling its complete removal within 15 min under native chemical ligation conditions. Moreover, palladium is also able to rapidly remove propargyloxycarbonyl-protecting group from the N-terminal Cys in a similar efficiency. The utility of the new removal conditions for both protecting groups is exemplified in the rapid and efficient synthesis of Lys34-ubiquitinated H2B and for the first time neddlyated peptides derived from cullin1. The current approach expands the use of palladium in protein chemistry and should significantly facilitate the chemical and semisynthesis of synthetically challenging proteins from multiple fragments.

  2. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    SciTech Connect

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  3. Physical vs. Chemical Weathering Controls of Soils' Capacity to Store Carbon: Hillslope Transects under Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Wackett, A.; Amundson, R.; Heimsath, A. M.

    2015-12-01

    Soil C storage is balanced by photosynthetic production and microbial decomposition of organic matter (OM). Recently, this view has been expanded to account for the effects of physical erosion of OM in determining soil C storage. In parallel, the focus on OM quality as a primary determinant of C turnover has shifted to OM-mineral interactions. These recent advances necessitates our ability to discern how physical erosion, which controls the production, breakdown, and removal of colluvial soils, and chemical weathering, which generates secondary phyllosilicate and iron oxides, independently and collaboratively affect soils' capacity to store C. Here we present soil organic C contents and storages as a function of soil properties that are controlled by physical vs. chemical weathering processes. The study site includes two hillslopes under different climates in SW Australia. The wetter site has continuous canopy of eucalyptus, while the drier site is covered by grasses with scattered eucalyptus overstorey. The two hillslope transects share similar granodiorite parent materials and denudation rates. Bioturbation-driven soil creep appears equally effective at both sites. In eroding areas, chemical weathering has created greater mineral surface area in the soils of wetter site, while physical soil production and erosion resulted in forming the eroding soils of similar thicknesses at both sites. In the drier site, however, vegetation density varies significantly with topography-dependent soil moisture, which appears to have resulted in a soil toposequence where impacts of localized overland-flow erosion is evident through soil mineral surface area, texture, and C contents. These soil properties, in contrast, are largely homogeneous across the wetter hillslope transect presumably because of the lack of localized overland-flow erosion. As a result, at the depositional areas, the drier site exhibits greater or similar soil C storages, which sharply contrasts with the

  4. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions.

    PubMed

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2014-03-03

    Crystal engineering of the nbo metal-organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu2(Cu-tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixation of CO2 into cyclic carbonates at room temperature under 1 atm pressure.

  5. Microscopic textures in rocks deformed by chemical explosion and experimental stick-slip as a guide to conditions of palaeoseismicity

    NASA Astrophysics Data System (ADS)

    Daquan, Yao; Yucheng, Chu; Xuezheng, Li; Jie, Li

    2000-02-01

    Both underground chemical explosions and stick-slip fractures are high-speed deformation events that can leave particular marks in the deformed materials. We distinguish the characteristics of high-speed deformation by direct microscopic comparison of the deformation products. Our results show that typical microscopic indicators of high-speed deformation include quartz-shock lamellae, thetomorphic glass, calcite recrystallization, mineral twists and kinks, gravel-cutting microfractures, collision wedges, radial cracks, random gravel arrangement and saw-tooth shaped cracks. These results provide a basis for the identification of palaeoseisms.

  6. Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: integrating chemical and biological data by chemometrics.

    PubMed

    da Souza, Iara; Bonomo, Marina Marques; Morozesk, Mariana; Rocha, Lívia Dorsch; Duarte, Ian Drumond; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-04-01

    Mangroves are dynamic environments under constant influence of anthropic contaminants. The correlation between environmental contamination levels and possible changes in the morphology of plants, evaluated by multivariate statistics helps to highlight matching between these variables. This study aimed to evaluate the uptake and translocation of metals and metalloids in roots and leaves as well as the changes induced in both anatomy and histochemistry of roots of Laguncularia racemosa inhabiting two estuaries of Espírito Santo (Brazil) with different pollution degrees. The analysis of 14 elements in interstitial water, sediments and plants followed by multivariate statistics, allowed the differentiation of studied sites, showing good match between levels of elements in the environment with the corresponding in plants. L. racemosa showed variations in their root anatomy in different collection areas, with highest values of cortex/vascular cylinder ratio, periderm thickness and air gap area in Vitória Bay, the most polluted sampling area. These three parameters were also important to differentiate the mangrove areas by linear discriminant analysis. The development stage of aerenchyma in roots reflected the oxygen availability in the water, being found a negative correlation between these variables. The combined use of chemical and biological analyses responded quite well to different pollution scenarios, matching morphological responses to physical and chemical parameters, measured at different partitions within the estuary. Thus, L. racemosa can be confirmed as a reliable sentinel plant for biomonitoring of estuaries impacted by anthropic pollution.

  7. Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation.

    PubMed

    Afoakwa, Emmanuel Ohene; Quao, Jennifer; Takrama, Jemmy; Budu, Agnes Simpson; Saalia, Firibu Kwesi

    2013-12-01

    Investigations were conducted to evaluate the effects of pod storage (as a means of pulp preconditioning) and fermentation on the chemical composition and physical characteristics of Ghanaian cocoa beans. A 4 × 2 full factorial design with factors as pod storage (0, 7, 14, 21 days) and cocoa treatment (fermented and unfermented) were conducted. Samples were analyzed for their chemical composition (moisture, crude fat, crude protein, ash and carbohydrate content) and mineral content using standard analytical methods. The physical qualities of the beans were analyzed for their proportions of cocoa nibs, shells and germ. Fermentation and increasing pod storage resulted in significant (P < 0.05) decreases in ash (3.48-2.92%), protein (21.63-17.62%) and fat (55.21-50.40%) content of the beans while carbohydrate content increased from 15.47% to 24.93% with both treatments. As well, increasing pod storage and fermentation significantly (P < 0.05) increased the copper content of the beans from while reductions in Mg and K occurred. Amongst the minerals studied, potassium was the most abundant mineral followed by magnesium, phosphorus and calcium in the fermented cocoa beans. Proportion of cocoa nibs also increased from with increasing pod storage and fermentation whiles reductions in shell content and no appreciable changes in germ proportions were noted.

  8. Phytoplankton and physical-chemical conditions in selected rivers and the coastal zone of Lake Michigan, 1972

    SciTech Connect

    Schelske, C.L.; Feldt, L.E.; Simmons, M.S.

    1980-01-01

    A very large data set was obtained on the nearshore environment of Lake Michigan during 1972. The data set is probably unique in that samples were collected and analyzed for a number of physical-chemical parameters and for phytoplankton standing crop and species composition. Phytoplankton identified during the study totaled 431 taxa of which 306 were diatoms, which serves to illustrate the magnitude of available data. Results are presented for eleven different transects sampled in April and for three of these transects which were sampled in September. In addition, transects for the St. Joseph, Kalamazoo, and Grand Rivers were sampled four or five times and each of these rivers were sampled from seven to eleven times in July. Data collected with depth presented in this report include water temperature. Secchi disc transparency, pH, specific conductance, dissolved reactive silica, nitrate nitrogen, and total phosphorus as physical-chemical variables. On transects samples with depth were obtained at stations 0, .2, .8, 1.6, 3.2, 6.4, 13, 26, and 52 km from shore, although the stations from 13 to 52 km were not sampled on every transect. Data related to phytoplankton include species composition and abundance, species diversity, chlorophyll a, and rates of carbon fixation. All these data were obtained only at 2 meters.

  9. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death

    NASA Astrophysics Data System (ADS)

    Leskinen, J.; Tissari, J.; Uski, O.; Virén, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; Jalava, P. I.; Sippula, O.; Hirvonen, M.-R.; Jokiniemi, J.

    2014-04-01

    A biomass combustion reactor with a moving grate was utilised as a model system to produce three different combustion conditions corresponding to efficient, intermediate, and smouldering combustion. The efficient conditions (based on a CO level of approximately 7 mg MJ-1) corresponded to a modern pellet boiler. The intermediate conditions (CO level of approximately 300 mg MJ-1) corresponded to non-optimal settings in a continuously fired biomass combustion appliance. The smouldering conditions (CO level of approximately 2200 mg MJ-1) approached a batch combustion situation. The gaseous and particle emissions were characterised under each condition. Moreover, the ability of fine particles to cause cell death was determined using the particle emissions samples. The physico-chemical properties of the emitted particles and their toxicity were considerably different between the studied combustion conditions. In the efficient combustion, the emitted particles were small in size and large in number. The PM1 emission was low, and it was composed of ash species. In the intermediate and smouldering combustion, the PM1 emission was higher, and the particles were larger in size and smaller in number. In both of these conditions, there were high-emission peaks that produced a significant fraction of the emissions. The PAH emissions were the lowest in the efficient combustion. The smouldering combustion conditions produced the largest PAH emissions. In efficient combustion conditions, the emitted fine particles had the highest potential to cause cell death. This finding was most likely observed because these fine particles were mainly composed of inorganic ash species, and their relative contents of Zn were high. Thus, even the PM1 from optimal biomass combustion might cause health effects, but in these conditions, the particle emissions per energy unit produced were considerably lower.

  10. Process costs and flowsheets, bed defluidization characteristics, stone reactivity changes and attrition losses for a regenerative fluidized-bed combustion process

    SciTech Connect

    Swift, W.M.; Montagna, J.C.; Smith, G.W.; Smyk, E.B.

    1980-05-01

    As a means of significantly reducing the amount of limestone required by the fluidized-bed combustion of coal, a limestone regeneration process has been developed which allows the sorbent to be recycled back to the combustor for reuse. To further the development of regeneration, experiments were performed to (1) evaluate the effects of repeated utilization on the sorbent reactivity for sulfation and regeneration and (2) characterize the minimum fluidizing-gas velocity required for the regeneration process to prevent agglomeration and defluidization of the bed. This report presents the results of those investigations plus (1) the development of process flowsheets and (2) an estimation of process costs and the economics of regeneration. The results of the experimental regeneration process studies confirm the potentially large reductions in the amount of sorbent required by FBC's which can be achieved by regeneration, possibly as high as 80%. The economic projections indicate that at current limestone prices, regeneration is not clearly justified on an economic basis; i.e., the cost of the regeneration process slightly exceeds the anticipated savings in limestone raw material cost which results from the regeneration process. However, the cost of limestone disposal has not been thoroughly addressed. Hence, if disposal costs due to environmental considerations, particularly the Resource Conservation and Recovery Act, become significant, the economic attractiveness of regeneration would be greatly enhanced.

  11. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  12. Inventory of chemicals used at Hanford Site production plants and support operations (1944-1980)

    SciTech Connect

    Klem, M. J.

    1990-04-01

    A complete list of chemicals used in the production facilities and support operations of the US Department of Energy Hanford Site is presented to aid development of plans for characterizing the radioactive liquid chemical wastes stored in the 149 single-shell tanks. The complete chemical list is compared to the list provided by the regulatory agencies to identify hazardous chemicals stored in the single-shell tanks. A reduced list has been developed by others and is used to identify the chemical constituents for analysis in the Waste Characterization Plan for the Hanford Site Single-Shell Tanks. The chemical list is based on chemical process flowsheets, essential material consumption records, letters, reports, and other historical data. 14 refs., 36 tabs.

  13. Effects of the growth conditions on the roughness of amorphous hydrogenated carbon films deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Capote, G.; Prioli, R.; Freire, F. L. Jr.

    2006-11-15

    The surface roughness and scaling behavior of a-C:H films deposited by plasma enhanced chemical vapor deposition from CH{sub 4}-Ar mixtures were studied using atomic force microscopy. Raman spectroscopy gives some insights about the film microstructure. The film surface roughness is shown to decrease with the increase of deposition negative self-bias, while the presence of Ar ions enhances this effect. An analysis of the film surface and scaling behavior suggests that there is a transition of the mechanism of the film growth from a random deposition with surface diffusion process to a thermal spike based process that occurs upon the increase of the negative self-bias voltage and the argon bombardment.

  14. CHEMICAL AND PHYSICAL CONDITIONS IN MOLECULAR CLOUD CORE DC 000.4-19.5 (SL42) IN CORONA AUSTRALIS

    SciTech Connect

    Hardegree-Ullman, E.; Whittet, D. C. B.; Harju, J.; Juvela, M.; Sipilae, O.; Hotzel, S.

    2013-01-20

    Chemical reactions in starless molecular clouds are heavily dependent on interactions between gas phase material and solid phase dust and ices. We have observed the abundance and distribution of molecular gases in the cold, starless core DC 000.4-19.5 (SL42) in Corona Australis using data from the Swedish ESO Submillimeter Telescope. We present column density maps determined from measurements of C{sup 18}O (J = 2-1, 1-0) and N{sub 2}H{sup +} (J = 1-0) emission features. Herschel data of the same region allow a direct comparison to the dust component of the cloud core and provide evidence for gas phase depletion of CO at the highest extinctions. The dust color temperature in the core calculated from Herschel maps ranges from roughly 10.7 to 14.0 K. This range agrees with the previous determinations from Infrared Space Observatory and Planck observations. The column density profile of the core can be fitted with a Plummer-like density distribution approaching n(r) {approx} r {sup -2} at large distances. The core structure deviates clearly from a critical Bonnor-Ebert sphere. Instead, the core appears to be gravitationally bound and to lack thermal and turbulent support against the pressure of the surrounding low-density material: it may therefore be in the process of slow contraction. We test two chemical models and find that a steady-state depletion model agrees with the observed C{sup 18}O column density profile and the observed N(C{sup 18}O) versus A{sub V} relationship.

  15. Identification of improvised explosives residues using physical-chemical analytical methods under real conditions after an explosion

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Mareš, Bohumil; Turková, Ivana; Beroun, Ivo

    2016-05-01

    Within the analysis of cases relating to the use of explosives for crimes, we have experienced a shift from using industrial explosives towards substances made in amateur and illegal way. Availability of industrial explosives is increasingly limited to a narrow sphere of subjects with a relevant permission. Thus, on the part of perpetrators, terrorists, ever greater attention is paid to illegal production of explosives that are easily made from readily available raw materials. Another alarming fact is the availability of information found on the internet. Procedures of preparation are often very simple and do not require even a deeper professional knowledge. Explosive characteristics are not actually accessible for many of these substances (detonation velocity, sensitivity, working capacity, brisance, physical and chemical stability, etc.). Therefore, a project is being implemented, which on grounds of assessment of individual information available in literature and on the internet, aiming at choosing individual areas of potentially abusable substances (e.g. mixtures of nitric acid (98%) with organic substances, mixtures nitromethane and tetranitromethane with organic substances, mixtures of chlorates and perchlorates of alkali metals with organic substances, chemically individual compounds of organic base type of perchloric acid, azides, fulminates, acetylides, picrates, styphnates of heavy metals, etc.). It is directed towards preparation of these explosives also in non-stoichiometric mixtures, conducting test explosives, determination of explosive characteristics (if they are unknown) and analysis of both primary phases and post-blast residues through available analytical techniques, such as gas and liquid chromatography with mass detection, FTIR, micro-Raman spectrometry, electron microscopy with microanalysis and Raman microspectrometry directly in SEM chamber for analysis at the level of individual microparticles. The received characteristics will be used to

  16. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental

  17. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO₂ into Cyclic Carbonates under Mild Conditions.

    PubMed

    García-Argüelles, Sara; Ferrer, Maria Luisa; Iglesias, Marta; Del Monte, Francisco; Gutiérrez, María Concepción

    2017-07-07

    Superbases have shown high performance as catalysts in the chemical fixation of CO₂ to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO₂ adduct as the intermediate, most likely because of the well-known affinity between superbases and CO₂, i.e., superbases have actually proven quite effective for CO₂ absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, ¹H NMR spectroscopy was used to get further insights about (1) whether a superbase, the CO₂ adduct, is formed as an intermediate and (2) the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO₂ to epichlorohydrin (EP) using a deep eutectic solvent (DES) composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD) or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU), as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA), ethylene glycol (EG), and methyldiethanolamine (MDEA), as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD) also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study.

  18. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions

    PubMed Central

    García-Argüelles, Sara; Iglesias, Marta; Del Monte, Francisco

    2017-01-01

    Superbases have shown high performance as catalysts in the chemical fixation of CO2 to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO2 adduct as the intermediate, most likely because of the well-known affinity between superbases and CO2, i.e., superbases have actually proven quite effective for CO2 absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, 1H NMR spectroscopy was used to get further insights about (1) whether a superbase, the CO2 adduct, is formed as an intermediate and (2) the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO2 to epichlorohydrin (EP) using a deep eutectic solvent (DES) composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD) or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU), as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA), ethylene glycol (EG), and methyldiethanolamine (MDEA), as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD) also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study. PMID:28773128

  19. Drying kinetics and physico-chemical characteristics of Osmo- dehydrated Mango, Guava and Aonla under different drying conditions.

    PubMed

    Kumar, P Suresh; Sagar, V R

    2014-08-01

    Mango (Mangiferra indica L), guava (Psiduim guajava L.) slices and aonla (Emblica officinalis L) segments were osmo-dried under four different dying conditions viz., cabinet drier (CD), vacuum oven drier (VOD), low temperature drier (LTD) and solar drier (SD) to evaluate the best drying condition for the fruits. It was found that vacuum oven drying was superior to other mode of drying as it holds maximum nutrients like acidity, ascorbic acid, sugar and water removal and moisture ratio of products. It was found through regression analysis that drying ratio and rehydration ratio was also superior in vacuum drying followed by cabinet drying. In addition, descriptive analysis on sensory score was also found best with vacuum drying while the Non-enzymatic browning (NEB), which is undesirable character on dried product, was more with solar drier.

  20. Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II) - Oxone conditioning.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Yang, Qin; Seow, Wan Yi; Zhu, Wenyu; Zhou, Yan

    2017-02-01

    The mechanism of Fe (II) - oxone conditioning to improve sludge dewaterability was investigated in this study. Five different types of sludge were tested, including raw sludge (Group 1: mixed primary and secondary sludge, waste activated sludge and anaerobic digested sludge) and pretreated sludge with prior solubilisation (Group 2: ultrasonic or thermal pretreated sludge). After Fe (II) - oxone conditioning, the concentrations of dissolved organic carbon, protein and polysaccharide of soluble extracellular polymeric substances (SB EPS) increased for Group 1, but decreased for Group 2. For all types of sludge investigated, the related organic compounds of loosely bound (LB) and tightly bound (TB) EPS decreased with Fe (II) - oxone conditioning, and increased sludge filterability showed strong and positive correlation with the removal of low molecular weight protein and neutrals in LB EPS. Fe (II) - oxone was very effective in disintegrating cell membrane and caused potential cell lysis, as indicated by increased percentage of damaged microbial cells. From this study, the mechanism of Fe (II) - oxone conditioning was proposed and can be divided into two steps: (1) Oxidation step - sulfate radicals degraded organic compounds in LB and TB EPS in sludge and transformed bound water to free water that was trapped in TB and LB EPS; It also damaged cells membrane and may help to release intracellular water content. Sludge flocs were broken into smaller particles; (2) Coagulation step - Fe (III), generated from the oxidation step can act as a coagulant to agglomerate smaller particles into larger ones and reduce the repulsive electrostatic interactions. Combined effects from above two steps can greatly improve sludge filterability.

  1. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long

    2004-07-01

    The effect of enhancement reagents on the efficiency of electrokinetic remediation of Cu contaminated red soil is evaluated. The enhancement agents were a mix of organic acids, including lactic acid+NaOH, HAc-NaAc and HAc-NaAc+EDTA. The soil was prepared to an initial Cu concentration of 438 mgkg(-1) by incubating the soil with CuSO4 solution in a flooded condition for 1 month. Sequential extraction showed that Cu was partitioned in the soil as follows: 195 mgkg(-1) as water soluble and exchangeable, 71 mgkg(-1) as carbonate bound and 105 mgkg(-1) as Fe and Mn oxides. The results indicate that neutralizing the catholyte pH maintains a lower soil pH compared to that without electrokinetic treatment. The electric currents varied depending upon the conditioning solutions and increased with an increasing applied voltage potential. The electroosmotic flow rate changed significantly when different conditioning enhancing reagents were used. It was observed that lactic acid+NaOH treatments resulted in higher soil electric conductivities than HAc-NaAc and HAc-NaAc+EDTA treatments. Ultimately, enhancement by lactic acid+NaOH resulted in highest removal efficiency (81% Cu removal) from the red soil. The presence of EDTA did not enhance Cu removal efficiencies from the red soil, because EDTA complexed with Cu to form negatively charge complexes, which slowly migrated toward the anode chamber retarding Cu2+ transport towards the cathode.

  2. Assessment of groundwater chemical evolution for a spent nuclear fuel repository under prolonged temperate conditions: an application of efficient coupled groundwater flow and reactive transport simulation

    NASA Astrophysics Data System (ADS)

    Gylling, B.; Hartley, L. J.; Joyce, S. J.; Woollard, H.; Marsic, N.; Sidborn, M.; Puigdomenech, I.; Selroos, J. O.

    2014-12-01

    SKB has submitted a license application for a spent nuclear fuel repository at Forsmark sited in crystalline rocks of the Fennoscandian shield. In support of this application various quantitative assessments were made to demonstrate the long-term safety of the proposed repository. One such assessment involved simulation of groundwater chemical evolution to quantify impacts on safety functions for the disposal system related to the geochemical conditions, particularly salinity, pH and redox conditions. In the reference case the current temperate period lasts until 12,000 AD. A case of prolonged meteoric infiltration to 60,000 AD is also considered resulting from e.g. global warming. This is to fulfil a regulatory request to assess whether extended dilute water infiltration might lead to a rise in redox potential and also to an increase in erosion of the bentonite barrier due to formation of colloids. In order to perform long transient simulations of groundwater flow and solute transport with water-solute-rock interactions, new tools have been developed to closely couple geochemical, groundwater flow and transport calculations, and perform these efficiently using parallel computing techniques. In assessing this case, sensitivities are tested to the geochemical reaction schemes appropriate to the site. The results of this work predict that the chemical environment at repository depth stabilises at around 20,000 AD and shows little change beyond that. The salinity of the groundwater is governed by the low permeability (c. 10-19 m2) of the bedrock and by rock matrix diffusion, resulting in relatively shallow and slow circulation of groundwater. The chemical reactions influence concentrations of reactive species, the calculated pH and redox potential. In particular, the redox reactions thought to be relevant for the Forsmark site maintain reducing conditions at repository depth, even with infiltration at the ground surface of meteoric water with relatively high redox

  3. Chemical composition and selected mechanical properties of Al-Zn alloy modified in plasma conditions by RF CVD

    NASA Astrophysics Data System (ADS)

    Kyzioł, Karol; Kluska, Stanisława; Januś, Marta; Środa, Marcin; Jastrzębski, Witold; Kaczmarek, Łukasz

    2014-08-01

    The paper reports results of the study of surface composition and selected functional properties of 7075 (Al-Zn) alloys modified in Ar, N2, SiH4 and CH4 atmosphere at reduced pressure. RF CVD (Radio Frequency Chemical Vapour Deposition) technique was used in the study. The type or weight percentage of carbon in each modification varied in the resultant SiN:H and SiCN:H coatings. Alloy samples were treated with Ar+ plasma etching and N+ ion implantation at reduced pressure. The tests proved the values of selected mechanical properties (hardness ca. 10.5 GPa, Young modulus ca. 95 GPa) and adhesion (delamination force ca. 11.5 mN) to be higher in the case of SiCN:H anti-wear coating (deposited in SiH4:CH4:N2 = 1:1:2 gas mixture) than the values of the respective parameters obtained in the remaining modifications. Further, carbon doped coatings (SiCN:H) exhibited significantly improved hardness (by about 50 to 70%) and nearly threefold increase in delamination force in comparison with SiCN:H coatings.

  4. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions

    PubMed Central

    Beers, Jeanette; Gulbranson, Daniel R.; George, Nicole; Siniscalchi, Lauren I.; Jones, Jeffrey; Thomson, James A.; Chen, Guokai

    2013-01-01

    This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (iPSCs). In this protocol, passaging one six-well or 10 cm plate of cells takes about 6–7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization, centrifugation, or drug treatment. It also allows for higher throughput, requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation, colony expansion, cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion, and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages, this procedure provides a consistent and universal approach to passaging human pluripotent stem cells in E8 medium. PMID:23099485

  5. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  6. Effects of chlorine on freshwater fish under various time and chemical conditions: toxicity of chlorine to freshwater fish. Final report

    SciTech Connect

    Brooks, A.S.; Bartos, J.M.; Danos, P.T.

    1982-07-01

    Laboratory bioassays to determine the acute toxicity of monochloramine, dichloramine, hypochlorous acid, and hypochlorite ion to emerald shiners, channel catfish, and rainbow trout were conducted. Four exposure regimes typical of chlorination schedules at operating steam electric power plants were used. Fish were exposed to single 15-minute, 30-minute, 120-minute, and quadruple 30-minute periods. No mortality or LC50 values were determined for each species of fish and chemical species of chlorine. Hypochlorous acid was the most toxic form of chlorine studied, followed closely by dichloramine. Monochloramine and hypochlorite ion were three to four times less toxic than hypochlorous acid and dichloramine. On the average, emerald shiners were 1.8 times more sensitive to chlorine than channel catfish and 3.3 times more sensitive than rainbow trout to the four forms of chlorine. The fish were more tolerant of chlorine during short duration exposures and most sensitive during the continuous 120-minute exposures. The significant differences in toxicity noted among the various chlorine species suggest that careful attention should be paid not only to total residual chlorine but to both the chlorine and fish species present and the duration of exposure expected in establishing chlorination regimes.

  7. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, F.; Laws, K. J.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Quadir, M. Z.; Ferry, M.; Escobedo, J. P.

    2015-06-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic glasses (BMG) with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400 ~ 600m/s range and tested at room temperature and 250 °C. The specimens impacted a steel extrusion die which subjected them to high strains at high strain-rates. The extruded samples were subsequently soft recovered by using low density foams. The deformed specimens were examined by optical and electron microscopy, x-ray diffraction and hardness measurements. The characterization results aided to assess the effect of chemical composition on the microstructural evolution, i.e. phase changes or crystallization, which might influence the ductility on the nominally brittle amorphous BMGs. The most significant results from this study will be presented. School of Engineering and Information Technology, UNSW Canberra.

  8. Tribological efficacy and stability of phospholipid-based membrane lubricants in varying pH chemical conditions.

    PubMed

    Pawlak, Zenon; Urbaniak, Wieslaw; Afara, Isaac O; Yusuf, Kehinde Q; Banaszak-Piechowska, Agnieszka; Oloyede, Adekunle

    2016-03-04

    In this study, the authors examine the influence of joint chemical environment by measuring changes in the tribological properties (friction coefficient and charge density) of contacting surfaces of normal and degenerated cartilage samples in bath solutions of varying pH (2.0-9.0). Bovine articular cartilage samples (n = 54) were subjected to several surface measurements, including interfacial energy, contact angle, and friction coefficient, at varying pH. The samples were delipidized and then subjected to the same measurement protocols. Our results reveal that the interfacial energy and charge density, which have been shown to be related to friction coefficient, decrease with pH in the acidic range and approach constant values at physiological (or synovial fluid) pH of 7.4 and beyond it, i.e., toward basic pH domain. The authors conclude that this rather complex response explains the long-term efficacy with respect to ageing and associated pH changes, of the phospholipid layers that facilitate the almost frictionless, hydration-lubrication involving contact in the mammalian musculoskeletal system.

  9. Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions

    PubMed Central

    Regnell, Olof; Tunlid, Anders

    1991-01-01

    Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury. PMID:16348444

  10. Effects of Time and Storage Conditions on the Chemical and Microbiologic Stability of Diluted Buprenorphine for Injection.

    PubMed

    DenHerder, Johnathan M; Reed, Ralph L; Sargent, Jennifer L; Bobe, Gerd; Stevens, Jan F; Diggs, Helen E

    2017-07-01

    Buprenorphine is a partial μ-opioid agonist used for analgesia. Due to the small size of laboratory rodents, buprenorphine HCl is typically diluted 10- or 20-fold with a sterile diluent, such as saline, for accurate dosing. Protocols for preparing and storing diluted buprenorphine vary by institution, and little published information is available regarding stability and beyond-use dating of specific buprenorphine preparations. The purpose of this study was to determine the chemical and microbiologic stability of diluted buprenorphine stored for a maximum of 180 d. Buprenorphine HCl was diluted 1:10 into sterile bacteriostatic saline by using aseptic technique. Diluted samples were stored in glass vials or plastic syringes, protected from light, and maintained at refrigerated or room temperature for as long as 180 d. Aerobic and anaerobic cultures on all stored samples were negative for bacterial and fungal growth. According to HPLC analysis, diluted buprenorphine stored in glass vials experienced less than 10% loss when stored for 180 d at either refrigerated or room temperature. However, the concentration of buprenorphine stored in syringes declined rapidly to more than 80% loss at room temperature and 28% loss in the refrigerator after 180 d. According to the results of this study, diluted buprenorphine stored in glass vials retains more than 90% of the initial concentration and is microbiologically stable for 180 d. However, our data suggest that, regardless of the duration, storing diluted buprenorphine in plastic syringes is inadvisable.

  11. Structural and Chemical Analysis of Hydroxyapatite (HA)-Boron Nitride (BN) Nanocomposites Sintered Under Different Atmospheric Conditions.

    PubMed

    Bakan, Feray; Sezen, Meltem; Gecgin, Merve; Goncu, Yapincak; Ay, Nuran

    2017-08-24

    Calcium phosphate derivatives have been widely employed in medical and dental applications for hard tissue repair, as they are the main inorganic constitution of hard tissue; such as bones and teeth. Owing to their excellent osteoconductive and bioactive properties, hydroxyapatite- (HA) based ceramics are the best candidates of this group for medical, bioscience, and dental applications. However, when replacing a bone or tooth, HA is not able to sustain similar mechanical properties. In this study, to improve the mechanical properties, nanoscale hexagonal boron nitride with different compositional percentages was added to the nano HA to form composites. The effect of compositional changes and sintering parameters on microstructural and morphological properties of the ceramic composites was comparatively investigated. Detailed chemical characterization of the composite materials was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and energy-dispersive X-ray spectroscopy, whereas scanning electron microscopy and atomic force microscopy investigations were employed to monitor morphological and surface features. Additional transmission electron microscopy investigations were carried out to reveal the nanostructure and crystal structure of the composites.

  12. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions.

    PubMed

    Beers, Jeanette; Gulbranson, Daniel R; George, Nicole; Siniscalchi, Lauren I; Jones, Jeffrey; Thomson, James A; Chen, Guokai

    2012-11-01

    This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol, passaging one six-well or 10-cm plate of cells takes about 6-7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization, centrifugation or drug treatment. It also allows for higher throughput, requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation, colony expansion, cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion, and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages, this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.

  13. In situ measurement method for film thickness using transparency resin sheet with low refractive index under wet condition on chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Oniki, Takahiro; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    We suggest that a transparency resin sheet with low refractive index can be applied to the measurement of a silicon dioxide (SiO2) film on a silicon wafer under wet condition for a film thickness measurement system on chemical mechanical polishing (CMP). By adjusting the refractive indices of the resin sheet and water, stable measurements of the SiO2 film can be expected, irrespective of slurry film thickness fluctuation because it has robustness against the slurry film. This result indicates that the transparency resin sheet with low refractive index is a useful for monitoring system of CMP.

  14. MECHANICAL AND CHEMICAL PROPERTIES OF CEMENTITIOUS MATERIALS USING γ-2CaO.SiO2 UNDER THE SEVERAL CONDITIONS IN ACCELERATED CARBONATION CURING

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenzo; Yokozeki, Kosuke; Torichigai, Takeshi; Sakai, Etsuo

    The experiments have been conducted in order to investigate the mechanical and chemical properties of mortar with three different binders under the several conditions in accelerated carbonation curing. As the results, the depth of carbonation varied among each mix proportion. It is proven that by increasing CO2 density in the mortar having γ-2CaO.SiO2, the CaCO3 production will increase, which leads to the increase of filling ability in the pore of mortar. Furthermore, as a result from the calculation of Tritium permeation, it shows that the permeation decreases with an increase of CO2 density.

  15. A wind tunnel for measuring the gaseous losses of environmental chemicals from the soil/plant system under field-like conditions.

    PubMed

    Stork, A; Witte, R; Führ, F

    1994-12-01

    Volatilization from treated areas is a major source of pesticide residues in air, fog, and rain. This may lead to long-range transport of pesticide residues to remote areas. Up to now most information on pesticide volatilization has come from laboratory experiments under controlled conditions. A new system has been designed and developed to measure the volatile losses of(14)C-labelled chemicals after application; the method compares with agricultural practice of treating soils or plants grown in lysimeters. Sensitive analytical methods guarantee a distinction between residues of unchanged pesticide, its metabolites or(14)CO2 as a mineralization product released into the air.

  16. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition].

    PubMed

    Mamikhin, S V; Manakhov, D V; Shcheglov, A I

    2014-01-01

    The additional study of the distribution of radioactive isotopes of caesium and strontium and their chemical analogues in the above-ground components of pine in the remote from the accident period was carried out. The results of the research confirmed the existence of analogy in the distribution of these elements on the components of this type of wood vegetation in the quasi-equilibrium (relatively radionuclides) condition. Also shown is the selective possibility of using the data on the ash content of the components of forest stands of pine and oak as an information analogue.

  17. SEMICONDUCTOR MATERIALS: Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu

    2009-08-01

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.

  18. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions.

    PubMed

    Villari, Caterina; Faccoli, Massimo; Battisti, Andrea; Bonello, Pierluigi; Marini, Lorenzo

    2014-09-01

    Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Exploring chemical variables in Ligustrum lucidum Ait. F. tricolor (rehd.) Rehd. in relation to air pollutants and environmental conditions

    SciTech Connect

    Pignata, M.L.; Canas, M.S.; Carreras, H.A.; Orellana, L.

    1997-09-01

    A diagnostic study was done on Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. in relation to atmospheric pollutants in Cordoba city, Argentina. The study area receives regional Pollutants and was categorized taking into account traffic level, industrial density, type of industry, location of the sample point in relation to the street corner, treeless condition, and topographic level. Dried weight/fresh weight ratio (DW/FW) and specific leaf area (SLA) were calculated, and concentrations of chlorophylls, carotenoids, total sulfur, soluble proteins, malondialdehyde (MDA), and hydroperoxy conjugated dienes (HPCD) were determined in leaf samples. Sulfur content correlates positively with traffic density and SLA correlates negatively with some combinations of the categorical variables; MDA correlates positively with topographic level and total protein concentration correlates negatively with treeless condition. On the basis of our results, traffic, location of trees, type of industry, situation of a tree with respect to others, and topographic level are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring DW/FW ratio, proteins, pigments, HPCD, and MDA as they are responsible for the major variability of data.

  20. Roller milling fractionation of green gram (Vigna radiata): optimization of milling conditions and chemical characterization of millstreams.

    PubMed

    Sakhare, Suresh D; Inamdar, Aashitosh A; Gaikwad, Shwetha B; D, Indrani; G, Vekateswara Rao

    2014-12-01

    In the view of recent growing interest in utilization of grain fractions as food ingredient, present investigation was carried out to evaluate the roller milling potential of green gram. The effect of conditioning moistures on green gram roller milling were studied. The results showed decrease in flour yield from 85.56 to 58.74 % with increase in conditioning moisture from 10 to 16 %. Higher yield of flour was observed from the first (C1), second (C2) and third (C3) reduction passages; whereas, the first (B1), second (B2) and third (B3) break passages produced less flour. The distribution of protein, dietary fiber, ash and fat in different flour streams and by-products from roller milled fractions of green gram showed wide variation. The protein content increased with increasing numbers of breaks and reductions in the flour streams. The highest protein content of 30.16 % was found in bran duster flour and lowest (11.32 %) in fine seed coat. The protein content of break streams was found lower than reduction streams. The dietary fiber content of coarse seed coat was highest (71.17 %) followed by the fine seed coat (57.22 %). The microstructure studies of milled fractions of green gram showed more deformed and damaged starch granules in reduction flour streams than break flour streams.

  1. An Investigation on Soil Chemical Composition and Shallow Groundwater Condition in a Saline Area in Nakhon Panom Province, Thailand

    NASA Astrophysics Data System (ADS)

    Seeboonruang, U.

    2010-12-01

    The Mekong River Basin region is a potential salt-accumulated neighborhood. Several subbasin areas have been reported to have the saline soil problem and these include Lower Songkram River, Nam Oon Brook, Nam Thew Brook, and Namkam Brook. The study area is located on the lower of the Namkam River Basin mainly in 3 districts of the Nakhon Panom Province and these districts are Amphoe That Panom, Amphoe Nakae, and Amphoe Renu Nakhon. Soil salinity is found risen sparsely in some villages of these three districts. Generally, shallow groundwater is known to facilitate the distribution of dissolved salts away from the salinity sources and to pick up the salts to the top soils. Thus, groundwater plays a major role in salinity distribution everywhere. The objective of this research is to investigate the soil chemical composition and shallow groundwater evolution in the study area. Soil samples are analyzed using X-Ray Fluorescence Spectrometer (XRF). The depth to groundwater, groundwater pH, total dissolved solids (TDS), electrical resistivity (EC), and salinity are the parameters and the measurement takes place from October 2007 to present. There are 19 sampling locations distributed in the study area. The depth of the observation wells varies from 4 m to 40 m. Groundwater table is found to be up to 7 m below the groundwater surface and the depth is increasing from December to April. Groundwater pH is constantly less than 7 and greater than 4. Groundwater pH varies significantly between 10 mg/l to 45,000 mg/l and EC also differs between 10 µS/cm to 90,000 µS/cm. Most of groundwater sampled in the study area is slight blackish with salinity measured below 1.00 ppt and these are Ban Don Dang, Ban Wang Yang, Ban Na Khu, Ban Piman Ta, Pan Sala, and Ban Lao Tung. On the other hand, Ban Bo Dong Sorn and Ban Pra Song Noi have very saline shallow groundwater with salinity greater 1ppt. The results from the XRF show that SiO2 and Al2O3 are the main composition and the soil is

  2. Bowen Lecture: Physical and Chemical Properties of Melts Under Deep Earth Conditions and Their Importance in Geodynamics

    NASA Astrophysics Data System (ADS)

    Ohtani, E.

    2007-12-01

    Physical and chemical properties of melts at high pressure are the essential factors controlling geodynamics. One of the major subjects on the melt properties is the partitioning behavior, i.e., element partitioning among silicate melts, metallic melts, and minerals, which played crucial roles in fractionation in the magma ocean and core formation stages, and determined the chemical compositions of the mantle and core. Our recent studies on element partitioning between metallic liquid and lower mantle minerals revealed that the terrestrial magma ocean was extended to the deep lower mantle [1, 2]. The density crossover between magma and crystals in the deep mantle is also an interesting phenomenon which played an essential role in solidification of the primordial magma ocean and the deep seated magma generation processes [3,4] since magmas are extremely compressible associated with their structural change compared to crystals. The density crossover between peridotite magmas and equilibrium olivine was observed at around 9.5 GPa in Martian mantle [5] and at 13 GPa [6] in the Earth's mantle. Thus, neutral buoyancy of olivine occurs in the primordial magma ocean in the early planets and effective separation of olivine could not occur in the magma oceans producing an olivine enriched upper mantle in the magma ocean stage. The deep mantle melt is also important in the present Earth both at the bottoms of the upper and lower mantles. Seismological studies revealed that there is a low velocity and low Q zone at the base of the upper mantle suggesting existence of a partial molten region at this depth [7,8]. Existence of the ultra-low velocity zone at the base of the lower mantle has also been established seismologically [9]. We determined the density of hydrous magma and carbonated magma by the sink-float method using diamond as a density marker, and determined the partial molar volumes of H2O and CO2 in magmas up to 20 GPa [10,11]. The result implies that a density

  3. Optimisation of chemical purification conditions for direct application of solid metal salt coagulants: treatment of peatland-derived diffuse runoff.

    PubMed

    Heiderscheidt, Elisangela; Saukkoriipi, Jaakko; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    The drainage of peatland areas for peat extraction, agriculture or bioenergy requires affordable, simple and reliable treatment methods that can purify waters rich in particulates and dissolved organic carbon. This work focused on the optimisation of chemical purification process for the direct dosage of solid metal salt coagulants. It investigated process requirements of solid coagulants and the influence of water quality, temperature and process parameters on their performance. This is the first attempt to provide information on specific process requirements of solid coagulants. Three solid inorganic coagulants were evaluated: aluminium sulphate, ferric sulphate and ferric aluminium sulphate. Pre-dissolved aluminium and ferric sulphate were also tested with the objective of identifying the effects of in-line coagulant dissolution on purification performance. It was determined that the pre-dissolution of the coagulants had a significant effect on coagulant performance and process requirements. Highest purification levels achieved by solid coagulants, even at 30% higher dosages, were generally lower (5%-30%) than those achieved by pre-dissolved coagulants. Furthermore, the mixing requirements of coagulants pre-dissolved prior to addition differed substantially from those of solid coagulants. The pH of the water samples being purified had a major influence on coagulant dosage and purification efficiency. Ferric sulphate (70 mg/L) was found to be the best performing solid coagulant achieving the following load removals: suspended solids (59%-88%), total organic carbon (56%-62%), total phosphorus (87%-90%), phosphate phosphorus (85%-92%) and total nitrogen (33%-44%). The results show that the use of solid coagulants is a viable option for the treatment of peatland-derived runoff water if solid coagulant-specific process requirements, such as mixing and settling time, are considered.

  4. Chemical behavior of iodine in aqueous solutions up to 150/sup 0/C. I. An experimental study of nonredox conditions

    SciTech Connect

    Toth, L.M.; Pannell, K.D.; Kirkland, O.L.

    1984-04-01

    The chemical behavior of iodine, I/sub 2/, in (pH = 6 to 10) aqueous solutions containing 2500 ppM boron as H/sub 3/BO/sub 3/ (0.231 M) was studied at temperatures up to 150/sup 0/C. Absorption spectrophotometry was used to identify and monitor the iodine species present. The I/sub 2/ hydrolysis chemistry was found to be consistent with the two-stage mechanism: I/sub 2/ + H/sub 2/O reversible HOI + H/sup +/ + I/sup -/, 3 HOI reversible IO/sub 3//sup -/ + 2I/sup -/ + 3H/sup +/, where the intermediate species is designated as HOI to emphasize that its exact structure and composition are not defined. Three objectives were considered: (1) species identification, with special attention given to HOI; (2) the kinetics of reaction between iodine and water to produce iodide and iodate ions; and (3) partition coefficients between liquid and vapor phases for individual iodine species. Kinetic rate constants for the disproportionation of the HOI intermediate were measured. A typical activation energy for this reaction was found to be 28.4 kJ/mol (6.8 kcal/mol). Although some initial results had suggested an ionic strength dependency, a more detailed examination of the ionic strength effect on this disproportionation reaction suggests that the intermediate in solution throughout the pH 7 to 10 range is primarily an uncharged species such as the triatomic HOI. No absorption bands can be assigned to the HOI intermediate even though it has been shown, in some cases, to be present at concentrations of greater than or equal to 1 x 10/sup -3/ M. A very low molar absorptivity (< 10 M/sup -1/ cm/sup -1/) is probably responsible for its undetectability. A partition coefficient of > 1 x 10/sup 4/ has been estimated for HOI.

  5. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    PubMed

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-04

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  6. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  7. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.

    PubMed

    Lazar, Petr; Zhang, Shuai; Safářová, Klára; Li, Qiang; Froning, Jens Peter; Granatier, Jaroslav; Hobza, Pavel; Zbořil, Radek; Besenbacher, Flemming; Dong, Mingdong; Otyepka, Michal

    2013-02-26

    The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.

  8. Evaluation of chemical, biological, and physical conditions in the Winter Haven chain of lakes, Florida, March-June 1976

    USGS Publications Warehouse

    Reichenbaugh, R.C.; Hughes, G.H.

    1977-01-01

    Reconnaissance of water-quality conditions of 14 interconnected navigable lakes, in and around Winter Haven, Fla., revealed that in March and May, 1976 most were eutrophic, on the basis of high nutrient (nitrogen and phosphorus) concentrations. Lakes Lulu and Shipp were the most enriched as a result of surface runoff from residential, agricultural, and highly urbanized areas, and many years of municipal and industrial waste effluent input. Phytoplankton counts were greater than a million cells per milliliter in some lakes sampled; algal blooms have ocurred, and water clarity was low. The level of Lake Howard fell to the lowest stage recorded in 31 years during May 1976. The record low was likely due to rainfall deficiency. Leakage of water through the lake beds to the ground-water system is also possible, but determination of the escaping water volume would require additional study. (Woodard-USGS)

  9. Experimental study of physical and chemical melting conditions of rare-metal granites at the Voznesenka ore cluster, Primorye region

    NASA Astrophysics Data System (ADS)

    Aksyuk, A. M.; Konyshev, A. A.; Korzhinskaya, V. S.; Shapovalov, Yu. B.

    2016-09-01

    The melting of two basic granite varieties in the Voznesenka Complex such as Yaroslavka biotite granite and Voznesenka Li-F granite was subject to experimental studies to analyze and to compare the conditions of their physicochemical formation. The experiments were conducted at 550-700°C and 50-500 MPa in pure water and in 0.1 and 1 m HF aqueous fluorine-bearing solutions. The melting temperature of Voznesenka Li-F granites was 60-70°C lower than that of Yaroslavka biotite granites. The temperature decreased by almost 100°C from the completion of biotite granite crystallization to the completion of Li-F granite crystallization.

  10. Development of a process flowsheet for the elution of radiocesium from the TMI-2 makeup and purification demineralizers. Volume 2

    SciTech Connect

    Bond, W D; Knauer, J B; King, L J

    1986-09-01

    A process was developed for removing radiocesium from the two makeup and purification demineralizers at TMI-2 which had been highly contaminated as a result of the accident in 1979. Process conditions were established in hot-cell experiments using relatively small samples of the contaminated and degraded resins from the TMI-2 demineralizers.

  11. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    SciTech Connect

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to

  12. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  13. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  14. Method of conditional moments (MCM) for the Chemical Master Equation: a unified framework for the method of moments and hybrid stochastic-deterministic models.

    PubMed

    Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J

    2014-09-01

    The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.

  15. Chemical and biological assessment of Angelicae Sinensis Radix after processing with wine: an orthogonal array design to reveal the optimized conditions.

    PubMed

    Zhan, Janis Y X; Zheng, Ken Y Z; Zhu, Kevin Y; Bi, Cathy W C; Zhang, Wendy L; Du, Crystal Y Q; Fu, Qiang; Dong, Tina T X; Choi, Roy C Y; Tsim, Karl W K; Lau, David T W

    2011-06-08

    The roots of Angelica sinensis [Angelica Sinensis Radix (ASR)] have been used as a common health food supplement for women's care for thousands of years in China. According to Asian tradition, ASR could be processed with the treatment of wine, which subsequently promoted the biological functions of ASR. By chemical and biological assessments, an orthogonal array design was employed here to determine the roles of three variable parameters in the processing of ASR, including oven temperature, baking time, and flipping frequency. The results suggested that oven temperature and baking time were two significant factors, while flipping frequency was a subordinate factor. The optimized condition of processing with wine therefore was considered to be heating in an oven at 80 °C for 90 min with flipping twice per hour. Under the optimized processing conditions, the solubilities of ferulic acid and Z-ligustilide from ASR were markedly increased and decreased, respectively. In parallel, the biological functions of processed ASR were enhanced in both anti-platelet aggregation and estrogenic activation; these increased functions could be a result of the altered levels of ferulic acid and Z-ligustilide in wine-processed ASR. Thus, the chemical and biological assessment of the processed ASR was in full accordance with the Chinese old tradition.

  16. Adaptation of Human Pluripotent Stem Cells to Feeder-Free Conditions in Chemically Defined Medium with Enzymatic Single-Cell Passaging

    PubMed Central

    Stover, Alexander E.; Schwartz, Philip H.

    2013-01-01

    This protocol describes the culture of human pluripotent stem cells (PSCs) under feeder-free conditions in a commercially available, chemically defined, growth medium, using Matrigel as a substrate and the enzyme solution Accutase for single-cell passaging. This system is strikingly different from traditional PSC culture, where the cells are co-cultured with feeder cells and in medium containing serum replacement. PSCs cultured in this new system have a different morphology than those cultured on feeder cells but retain their characteristic pluripotency. This feeder-free PSC culture system is conceptually similar to feeder-free systems that use mouse embryonic fibroblast (MEF)-conditioned medium (MEF-CM) and Matrigel substratum. Instead of MEF-CM, a very complex and undefined medium, this new system uses StemPro SFM, a chemically defined medium that permits enzymatic passaging with Accutase to disaggregate the colonies into single cells. Accutase passaging has been used in conjunction with Stempro in our hands for 20+ passages without detectable karyotypic abnormalities. We will also review techniques for adapting cultures previously grown on MEFs, routine passaging of the cells, and cryopreservation. PMID:21822872

  17. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging.

    PubMed

    Stover, Alexander E; Schwartz, Philip H

    2011-01-01

    This protocol describes the culture of human pluripotent stem cells (PSCs) under feeder-free conditions in a commercially available, chemically defined, growth medium, using Matrigel as a substrate and the enzyme solution Accutase for single-cell passaging. This system is strikingly different from traditional PSC culture, where the cells are co-cultured with feeder cells and in medium containing serum replacement. PSCs cultured in this new system have a different morphology than those cultured on feeder cells but retain their characteristic pluripotency. This feeder-free PSC culture system is conceptually similar to feeder-free systems that use mouse embryonic fibroblast (MEF)-conditioned medium (MEF-CM) and Matrigel substratum. Instead of MEF-CM, a very complex and undefined medium, this new system uses StemPro SFM, a chemically defined medium that permits enzymatic passaging with Accutase to disaggregate the colonies into single cells. Accutase passaging has been used in conjunction with Stempro in our hands for 20+ passages without detectable karyotypic abnormalities. We will also review techniques for adapting cultures previously grown on MEFs, routine passaging of the cells, and cryopreservation.

  18. Ion mobility spectrometry versus classical physico-chemical analysis for assessing the shelf life of extra virgin olive oil according to container type and storage conditions.

    PubMed

    Garrido-Delgado, Rocío; Dobao-Prieto, M Mar; Arce, Lourdes; Aguilar, Joaquín; Cumplido, José L; Valcárcel, Miguel

    2015-03-04

    An experimental study was conducted to assess the stability of a single-variety (Arbequina) extra virgin olive oil (EVOO) as a function of container type and storage conditions over a period of 11 months. EVOO quality was assessed by using ion mobility spectrometry (IMS), which provides increased simplicity, expeditiousness, and relative economy. The results were compared with the ones obtained by using the official method based on classical physico-chemical analysis. Bag-in-box, metal, dark glass, clear glass, and polyethylene terephthalate containers holding EVOO were opened on a periodic basis for sampling to simulate domestic use; in parallel, other containers were kept closed until analysis to simulate the storage conditions on market shelves. The results of the physico-chemical and instrumental analyses led to similar conclusions. Thus, samples packaged in bag-in-box containers preserved oil quality for 11 months, better than other container types. The HS-GC-IMS results confirm that 2-heptenal and 1-penten-3-one are two accurate markers of EVOO quality.

  19. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    PubMed

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  20. An effective freezing/thawing method for human pluripotent stem cells cultured in chemically-defined and feeder-free conditions

    PubMed Central

    Nishishita, Naoki; Muramatsu, Marie; Kawamata, Shin

    2015-01-01

    Culturing human Pluripotent Stem Cells (hPSC)s in chemically defined medium and feeder-free condition can facilitate metabolome and proteome analysis of culturing cells and medium, and reduce regulatory concerns for clinical application of cells. And in addition, if hPSC are passaged and cryopreserved in single cells it also facilitates quality control of cells at single cell level. Here we report a robust single cell freezing and thawing method of hPSCs cultured in chemically-defined medium TeSRTM-E8TM and on cost-effective recombinant human Vitronectin-N (rhVTN-N)-coated dish. Cells are dissociated into single cells with recombinant TrypLETM Select and 0.5 mM EDTA/PBS (3:1 solution) in the presence of Rock inhibitor and cryopreserved with chemically defined CryoStemTM. Approximately 60% of cells were viable after dissociation. AggrewellTM 400 was used to form cell clumps of 500 cells after thaw in the presence of Rock inhibitor and cells were cultured for two days with TeSR-E8. Cells clumps were then seeded on rhVTN-N-coated dish and cultured with TeSR-E8 for two days prior to the first passage after thawing. Number of viable cells at the first passage increased around 10 times of that just before freezing. This robust single cell freezing method for hPSCs cultured in chemically defined medium will facilitate quality control of cultured cells at single cell level before cryopreservation and consequently assure the quality of cells in frozen vials for further manipulation after thawing. PMID:25973330

  1. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  2. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium.

    PubMed

    Vlad, Marcel O; Popa, Vlad T; Ross, John

    2011-02-03

    We examine the problem of consistency between the kinetic and thermodynamic descriptions of reaction networks. We focus on reaction networks with linearly dependent (but generally kinetically independent) reactions for which only some of the stoichiometric vectors attached to the different reactions are linearly independent. We show that for elementary reactions without constraints preventing the system from approaching equilibrium there are general scaling relations for nonequilibrium rates, one for each linearly dependent reaction. These scaling relations express the ratios of the forward and backward rates of the linearly dependent reactions in terms of products of the ratios of the forward and backward rates of the linearly independent reactions raised to different scaling powers; the scaling powers are elements of the transformation matrix, which relates the linearly dependent stoichiometric vectors to the linearly independent stoichiometric vectors. These relations are valid for any network of elementary reactions without constraints, linear or nonlinear kinetics, far from equilibrium or close to equilibrium. We show that similar scaling relations for the reaction routes exist for networks of nonelementary reactions described by the Horiuti-Temkin theory of reaction routes where the linear dependence of the mechanistic (elementary) reactions is transferred to the overall (route) reactions. However, in this case, the scaling conditions are valid only at the steady state. General relationships between reaction rates of the two levels of description are presented. These relationships are illustrated for a specific complex reaction: radical chlorination of ethylene.

  3. Preparation of chemically modified canola protein isolate with gum Arabic by means of Maillard reaction under wet-heating conditions.

    PubMed

    Pirestani, Safoura; Nasirpour, Ali; Keramat, Javad; Desobry, Stéphane

    2017-01-02

    The aim of this study was to produce covalently attached conjugate between canola protein isolate (CPI) and gum Arabic (GA) in aqueous solutions via the Maillard reaction at 90°C in a model system consisting of 2% CPI and 1, 2 or 4% GA. Upon decreasing of free amino group content in the glycosylated CPI to 72%, a new band near the loading end of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a shift of CPI peak in high performance size exclusion chromatography confirmed that the covalent attachment of CPI to GA was successful. The results of secondary structure analysis suggested that grafted CPI had decreased α-helix and β-sheet levels and increased random coils level. The solubility of CPI at isoelectric point was improved remarkably after grafting with GA. The optimal conjugation conditions chosen from the further experiments were 1% of GA, 90°C and reaction time 15min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The breakup of methane under ITER divertor hydrogen plasma conditions for carbon chemical erosion analysis with CH spectroscopy

    NASA Astrophysics Data System (ADS)

    Westerhout, J.; Borodin, D.; Brezinsek, S.; Lopes Cardozo, N. J.; Rapp, J.; Schram, D. C.; van Rooij, G. J.

    2010-09-01

    Methane (CH4) was injected into the high density (ne ~ 1020 m-3), low temperature (Te ~ 1 eV) hydrogen plasma in Pilot-PSI to determine the CH A-X photon efficiency in this unexplored plasma regime. The effects of particle transport and particle reflection on the emission of directly excited CH under these plasma conditions were assessed with the 3D Monte Carlo code ERO. The simulations of the inverse photon efficiency showed a difference of ~20% between full hydrocarbon sticking or no sticking (reflection). In addition it predicts that particle transport may lead to more than a factor of 10 increase. The measured inverse photon efficiency is however constant at 100 ± 30 for 0.1 < Te < 1.0 eV. The constancy is consistent with dissociative recombination of CH_4^+ , CH_3^+ and CH_2^+ to produce excited CH instead of direct excitation. These results form a framework for in situ carbon erosion measurements in future fusion reactors such as ITER.

  5. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    PubMed

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  6. Grain size and chemical controls on the ductile properties of mostly frictional faults at low-temperature hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    1994-03-01

    A conceptually simple process which establishes a steady grain size distribution is envisioned to control the ductile creep properties of fault zones that mainly slip by frictional processes. Fracture during earthquakes and aseismic frictional creep tend to reduce grain size. However, sufficiently small grains tend to dissolve so that larger grains grow at their expense, a process called Ostwald ripening. A dynamic stedy state is reached where grain size reduction by fracture is balanced by grain growth from Ostwald ripening. The ductile creep mechanism within fault zones in hard rock is probably pressure solution where the rate is limited by diffusion along load-bearing grain-grain contacts. The diffusion paths that limit Ostwald repening are to a considerable extent the same as those for pressure solution. Active Ostwald ripening thus implies conditions suitable for ductile creep. An analytic theory allows estimation of the steady-state mean grain size and the viscosity for creep implied by this dynamic steady state from material properties and from the width, shear traction, and long-term slip velocity of the fault zone. Numerical models were formulated to compute the steady state grain size distribution. The results indicate that ductile creep, as suggested in the companion paper, is a plausible mechanism for transiently increasing fluid pressure within mostly sealed fault zones so that frictional failure occurs at relatively low shear tractions, ˜10 MPa. The relevant material properties are too poorly known, however, for the steady state theory (or its extension to a fault that slips in infrequent large earthquakes) to have much predictive value without additional laboratory experiments and studies of exhumed faults.

  7. Assessment of silicone as support to investigate the transformation routes of organic chemicals under environmental conditions and UV exposure. Application to selected fungicides.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Cela, R

    2013-05-01

    The suitability of bulk silicone as support to follow the degradation of chemical compounds under environmental conditions and UV radiation is illustrated selecting three fungicides (fenhexamid, FEN; triadimenol, TRI and difenoconazole, DIF) as model compounds. These precursor species were first absorbed in silicone supports (10 mm length × 2 mm i.d. and 0.5 mm thickness) and then kept outdoors for several days (up to 2 months) or exposed to UV radiation (254 nm), from a low pressure mercury lamp, in the laboratory. Degradation of precursor fungicides and by-products formation was followed by liquid chromatography (LC) quadrupole time-of-flight (QTOF) mass spectrometry (MS), after desorption of silicone supports using 0.5 mL of acetonitrile. Half-lives (t(1/2)) measured under UV exposure varied from 5 to 100 min. As regards environmental conditions, the most stable fungicide was DIF, degraded by just 15 % after 2 months; whereas, t(1/2) values of 30 and 83 h were calculated for FEN during summer and autumn, respectively. Supports contained by-products arising from precursor species through de-chlorination, cleavage, hydroxylation, intra-molecular cyclation and oligomerization reactions. Most of them have been previously identified in soil surface, vegetable leaves and water after application of fungicides in agriculture fields. The low cost of silicone tubes (ca. 0.4 Euros), added to their excellent chemical stability and capability to retain precursor species and their by-products, make them ideal supports to follow the transformation routes of organic compounds under environmental and simulated conditions, even for relatively stable species with t(1/2) in the range of weeks or months.

  8. Changes in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: The recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Ditta, M.; Italiano, F.; Longo, M.; Nuccio, P. M.; Paonita, A.; Rizzo, A.

    2005-06-01

    Hydrothermal systems and related vents can exhibit dramatic changes in their physico-chemical conditions over time as a response to varying activity in the feeding magmatic systems. Massive steam condensation and gas scrubbing processes of thermal fluids during their ascent and cooling cause further compositional changes that mask information regarding the conditions evolving at depth in the hydrothermal system. Here we propose a new stability diagram based on the CO 2-CH 4-CO-H 2 concentrations in vapor, which aims at calculating the temperatures and pressures in hydrothermal reservoirs. To filter gas scrubbing effects, we have also developed a model for selective dissolution of CO 2-H 2S-N 2-CH 4-He-Ne mixtures in fresh and/or air-saturated seawater. This methodology has been applied to the recent (November 2002) crisis that affected the geothermal field off the island of Panarea (Italy), where the fluid composition and fluxes have been monitored for the past two decades. The chemical and isotopic compositions of the gases suggest that the volatile elements originate from an active magma, which feeds a boiling saline solution having temperatures of up to 350°C and containing ≈12 mol% CO 2 in vapor. The thermal fluids undergo cooling and re-equilibration processes on account of gas-water-rock interactions during their ascent along fracture networks. Furthermore, steam condensation and removal of acidic species, partial dissolution in cold air-saturated seawater and stripping of atmospheric components, affect the composition of the geothermal gases at shallow levels. The observed geochemical variations are consistent with a new input of magmatic fluids that perturbed the geothermal system and caused the unrest event. The present-state evolution shows that this dramatic input of fluids is probably over, and that the system is now tending towards steady-state conditions on a time scale of months.

  9. Chemical Constraints Governing the Origin of Metabolism: The Thermodynamic Landscape of Carbon Group Transformations under Mild Aqueous Conditions

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2002-08-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3

  10. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (delta

  11. Changes in the physico-chemical properties of Amazonian aerosols from background conditions due to urban impacts in Central Amazonia.

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Barbosa, H. M.; Brito, J.; Carbone, S.; Fiorese, C.; Andre, B.; Rizzo, L. V.; Ditas, F.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Holanda, B. A.; Wang, J.; Souza, R. A. F. D.; Machado, L.; Andreae, M. O.; Martin, S. T.

    2016-12-01

    The GoAmazon 2014/15 experiment (Observations and Modeling of the Green Ocean Amazon) was a great opportunity to study how urbanization can change aerosol properties under pristine conditions in a tropical rain forest. The experiment took place from January 2014 to December 2015 in the vicinity of Manaus, Brazil, where several sampling stations were operated. Natural biogenic aerosol properties were studied in 3 sampling stations upwind of Manaus (ATTO (T0a), ZF2 (T0z) and EMBRAPA (T0e)). Urban impacted aerosols were analysed in two downwind sampling stations at Tiwa (T2) and Manacapuru (T3). Properties analysed were size distribution, scattering and absorption, composition, vertical profiles and others. Remote sensing measurements were done using AERONET and MODIS, while extensive ground based measurements were done in all sampling stations. Remote sensing measurements shows important changes in aerosol optical depth (AOD), especially in the aerosol absorption component. It was also observed a reduction in cloud droplet size downwind of Manaus for liquid phase clouds. Changes in particle number and size were also very significant, that reflected in changes in the aerosol radiative forcing (RF) before and after Manaus plume. In the dry season, an average RF of -24 w/m² was observed upwind, while -17 w/m² was observed downwind, due to large scale biomass burning aerosols. Single scattering albedo (SSA) at 550 nm changed from a high value of 0.96 upwind to 0.84 downwind due to the increase in absorbing aerosols in the wet season. In the dry season, SSA at 550nm changed from 0.95 to 0.87. Aerosol composition showed a large dominance of organic aerosols for all sites, accounting for 65-75% of PM1 non refractory aerosol. Most of these were secondary organic aerosol (SOA), with very low sulfate and nitrate concentrations. The influence of the Manaus plume on aerosol properties was more intense during the wet season, because in the dry season a significant amount of

  12. WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

    2008-04-28

    The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus

  13. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    SciTech Connect

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  14. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling.

    PubMed

    Willenborg, Jörg; Huber, Claudia; Koczula, Anna; Lange, Birgit; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2015-02-27

    Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, w