Science.gov

Sample records for chemical kinetic modeling

  1. LLNL Chemical Kinetics Modeling Group

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  2. Chemical kinetics modeling

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  3. Chemical kinetics and combustion modeling

    SciTech Connect

    Miller, J.A.

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  4. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  5. Using chemical kinetics to model biochemical pathways.

    PubMed

    Le Novère, Nicolas; Endler, Lukas

    2013-01-01

    Chemical kinetics is the study of the rate of reactions transforming some chemical entities into other chemical entities. Over the twentieth century it has become one of the cornerstones of biochemistry. When in the second half of the century basic knowledge of cellular processes became sufficient to understand quantitatively metabolic networks, chemical kinetics associated with systems theory led to the development of what would become an important branch of systems biology. In this chapter we introduce basic concepts of chemical and enzyme kinetics, and show how the temporal evolution of a reaction system can be described by ordinary differential equations. Finally we present a method to apply this type of approach to model any regulatory network.

  6. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2008-04-02

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  7. Detailed chemical kinetic model for ethanol oxidation

    SciTech Connect

    Marinov, N.

    1997-04-01

    A detailed chemical kinetic model for ethanol oxidation has been developed and validated against a variety of experimental data sets. Laminar flame speed data obtained from a constant volume bomb, ignition delay data behind reflected shock waves, and ethanol oxidation product profiles from a turbulent flow reactor were used in this study. Very good agreement was found in modeling the data sets obtained from the three different experimental systems. The computational modeling results show that high temperature ethanol oxidation exhibits strong sensitivity to the fall-off kinetics of ethanol decomposition, branching ratio selection for c2h5oh+oh=products, and reactions involving the hydroperoxyl (HO2) radical.

  8. Chemical kinetics and modeling of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  9. A kinetic model for chemical neurotransmission

    NASA Astrophysics Data System (ADS)

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  10. Chemical Kinetic Modeling of Biofuel Combustion

    NASA Astrophysics Data System (ADS)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  11. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    SciTech Connect

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  12. Elimination kinetic model for organic chemicals in earthworms.

    PubMed

    Dimitrova, N; Dimitrov, S; Georgieva, D; Van Gestel, C A M; Hankard, P; Spurgeon, D; Li, H; Mekenyan, O

    2010-08-15

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of chemicals are among the important factors that may significantly affect the bioaccumulation process in soil organisms. This study attempts to model elimination kinetics of organic chemicals in earthworms by accounting for the effects of both chemical and biological properties, including metabolism. The modeling approach that has been developed is based on the concept for simulating metabolism used in the BCF base-line model developed for predicting bioaccumulation in fish. Metabolism was explicitly accounted for by making use of the TIMES engine for simulation of metabolism and a set of principal transformations. Kinetic characteristics of transformations were estimated on the basis of observed kinetics data for the elimination of organic chemicals from earthworms. PMID:20185163

  13. A Detailed Chemical Kinetic Model for TNT

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2005-01-13

    A detailed chemical kinetic mechanism for 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and soot formation during the destruction of munitions. The TNT mechanism treats only gas-phase reactions. Reactions for the decomposition of TNT and for the consumption of intermediate products formed from TNT are assembled based on information from the literature and on current understanding of aromatic chemistry. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reaction paths are developed based on similar paths for aromatic hydrocarbons. Reaction-rate constant expressions are estimated from the literature and from analogous reactions where the rate constants are available. The detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons. Computed results show the effect of oxygen concentration on the amount of soot precursors that are formed in the combustion of RDX and TNT mixtures in N{sub 2}/O{sub 2} mixtures.

  14. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  15. An efficient chemical kinetics solver using high dimensional model representation

    SciTech Connect

    Shorter, J.A.; Ip, P.C.; Rabitz, H.A.

    1999-09-09

    A high dimensional model representation (HDMR) technique is introduced to capture the input-output behavior of chemical kinetic models. The HDMR expresses the output chemical species concentrations as a rapidly convergent hierarchical correlated function expansion in the input variables. In this paper, the input variables are taken as the species concentrations at time t{sub i} and the output is the concentrations at time t{sub i} + {delta}, where {delta} can be much larger than conventional integration time steps. A specially designed set of model runs is performed to determine the correlated functions making up the HDMR. The resultant HDMR can be used to (1) identify the key input variables acting independently or cooperatively on the output, and (2) create a high speed fully equivalent operational model (FEOM) serving to replace the original kinetic model and its differential equation solver. A demonstration of the HDMR technique is presented for stratospheric chemical kinetics. The FEOM proved to give accurate and stable chemical concentrations out to long times of many years. In addition, the FEOM was found to be orders of magnitude faster than a conventional stiff equation solver. This computational acceleration should have significance in many chemical kinetic applications.

  16. Chemical kinetic modeling of H{sub 2} applications

    SciTech Connect

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  17. Computer-Aided Construction of Chemical Kinetic Models

    SciTech Connect

    Green, William H.

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  18. Chemical Kinetic Modeling of Combustion of Automotive Fuels

    SciTech Connect

    Pitz, W J; Westbrook, C K; Silke, E J

    2006-11-10

    The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

  19. Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model

    NASA Astrophysics Data System (ADS)

    Blejchař, T.; Dolníčková, D.

    2013-04-01

    The paper deals with numerical simulation of SNCR method. For numerical modelling was used CFD code Ansys/CFX. SNCR method was described by dominant chemical reaction, which were look up NIST Chemical database. The reactions including reduction of NOx and concentration change of pollutants, like N2O and CO in flue gas too. Proposed chemical kinetics and CFD model was applied to two boilers. Both simulations were compared with experimental measurements. First simulation was used to validation of chemical mechanism. Second simulation was based on first simulation and it was used to verification of compiled SNCR chemical mechanism. Next the new variant of the reagent penetration lance was proposed and compared with the original variants.

  20. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    SciTech Connect

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  1. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

    PubMed Central

    Battin-Leclerc, Frédérique; Blurock, Edward; Bounaceur, Roda; Fournet, René; Glaude, Pierre-Alexandre; Herbinet, Olivier; Sirjean, Baptiste; Warth, V.

    2013-01-01

    In the context of limiting the environmental impact of transportation, this paper reviews new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions. PMID:21597604

  2. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  3. Gompertz kinetics model of fast chemical neurotransmission currents.

    PubMed

    Easton, Dexter M

    2005-10-01

    At a chemical synapse, transmitter molecules ejected from presynaptic terminal(s) bind reversibly with postsynaptic receptors and trigger an increase in channel conductance to specific ions. This paper describes a simple but accurate predictive model for the time course of the synaptic conductance transient, based on Gompertz kinetics. In the model, two simple exponential decay terms set the rates of development and decline of transmitter action. The first, r, triggering conductance activation, is surrogate for the decelerated rate of growth of conductance, G. The second, r', responsible for Y, deactivation of the conductance, is surrogate for the decelerated rate of decline of transmitter action. Therefore, the differential equation for the net conductance change, g, triggered by the transmitter is dg/dt=g(r-r'). The solution of that equation yields the product of G(t), representing activation, and Y(t), which defines the proportional decline (deactivation) of the current. The model fits, over their full-time course, published records of macroscopic ionic current associated with fast chemical transmission. The Gompertz model is a convenient and accurate method for routine analysis and comparison of records of synaptic current and putative transmitter time course. A Gompertz fit requiring only three independent rate constants plus initial current appears indistinguishable from a Markov fit using seven rate constants.

  4. Upper D region chemical kinetic modeling of LORE relaxation times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.

    2016-04-01

    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  5. Integration Strategies for Efficient Multizone Chemical Kinetics Models

    SciTech Connect

    McNenly, M J; Havstad, M A; Aceves, S M; Pitz, W J

    2009-10-15

    Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE) integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are found to provide more than an order of magnitude of improvement over the original, basic level of usage for the stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model. The faster strategies achieve their cost savings with no significant loss of accuracy. The pressure, temperature and major species mass fractions agree with the solution from the original integration approach to within six significant digits; and the radical mass fractions agree with the original solution to within four significant digits. The faster strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with respect to the number of zones. As a consequence of the improved scaling, the 40 zone model offers more than a 250-fold cost savings over the basic calculation.

  6. Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests

    SciTech Connect

    Tarver, C M

    2004-03-02

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts. Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.

  7. Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels

    SciTech Connect

    Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

    1999-10-28

    The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

  8. PLASMAKIN: A chemical kinetics library for plasma physics modeling

    NASA Astrophysics Data System (ADS)

    Pinhao, Nuno

    2007-10-01

    PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute kinetics data from the reactions taking place in the gas or at the surfaces: particle production and loss rates, photon spectra and energy exchange rates. It has no limits on the number of species and reactions that can be handled, is independent of problem dimensions and can be used in both steady-state and time-dependent problems. A broad range of species properties and reaction types are supported: gas or electron temperature dependent rate coefficients, vibrational and cascade levels, branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Non-standard rate coefficient functions can be handled by a user-supplied shared library. Reaction data is supplied in text files and is independent of the user's program. Recent additions include the simulation of emission spectra taking line broadening into account; reactions with excited ionic species; 3-body reactions with species with different efficiencies as 3rd body; a species properties database and a Python interface for rapid scripting and debugging.

  9. Chemical kinetic modeling of H{sub 2} applications

    SciTech Connect

    Westbrook, C.K.; Marinov, N.; Pitz, W.J.; Curran, H.

    1996-10-01

    This project is intended to develop detailed and simplified kinetic reaction mechanisms for the combustion of practical systems fueled by hydrogen, and then to use those mechanisms to examine the performance, efficiency, pollutant emissions, and other characteristics of those systems. During the last year, a H2/NOx mechanism has been developed that gives much improved predictions of NOx emissions compared to experimental data. Preliminary chemical kinetic and equilibrium calculations have been performed in support of Br2-H2O experiments to be conducted at NREL. Hydrogen, hydrogen/methane and hydrogen/natural gas mixtures have been investigated in a knock-rating engine to assess their automotive knock characteristics. The authors are currently developing the simplified analog reaction mechanisms that are computationally simple, yet still reproduce many of the macroscopic features of flame propagation.

  10. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  11. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and

  12. Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases

    SciTech Connect

    Eichwald, O.; Yousfi, M.; Hennad, A.; Benabdessadok, M.D.

    1997-11-01

    A chemical kinetics model is developed to analyze the time evolution of the different main species involved in a flue gas initially stressed by a pulsed corona discharge at the atmospheric pressure and including N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2} with a few ppm of NO. The present chemical kinetics model is coupled to a gas dynamics model used to analyze the radial expansion of the gas in the ionized channel created during the discharge phase. It is also meant to analyze the gas heating due to the Joule effect. This chemical kinetics model is also coupled to charged particle kinetics models based on a Boltzmann equation model to calculate the electron-molecule reaction coefficients in the flue gas and on a Monte Carlo code to estimate the energy and momentum transfer terms relative to ion-molecule collisions which are the input data for the gas dynamics model. It is shown, in particular, that the evolution of the radicals and the oxides is substantially affected by the gas temperature rise (from the initial value of 300 K up to 750 K near the anode) thus emphasizing the present coupling between gas dynamics, charged particle, and chemical kinetics models. {copyright} {ital 1997 American Institute of Physics.}

  13. Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Yousfi, M.; Hennad, A.; Benabdessadok, M. D.

    1997-11-01

    A chemical kinetics model is developed to analyze the time evolution of the different main species involved in a flue gas initially stressed by a pulsed corona discharge at the atmospheric pressure and including N2, O2, H2O, and CO2 with a few ppm of NO. The present chemical kinetics model is coupled to a gas dynamics model used to analyze the radial expansion of the gas in the ionized channel created during the discharge phase. It is also meant to analyze the gas heating due to the Joule effect. This chemical kinetics model is also coupled to charged particle kinetics models based on a Boltzmann equation model to calculate the electron-molecule reaction coefficients in the flue gas and on a Monte Carlo code to estimate the energy and momentum transfer terms relative to ion-molecule collisions which are the input data for the gas dynamics model. It is shown, in particular, that the evolution of the radicals and the oxides is substantially affected by the gas temperature rise (from the initial value of 300 K up to 750 K near the anode) thus emphasizing the present coupling between gas dynamics, charged particle, and chemical kinetics models.

  14. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  15. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  16. The subtle business of model reduction for stochastic chemical kinetics.

    PubMed

    Gillespie, Dan T; Cao, Yang; Sanft, Kevin R; Petzold, Linda R

    2009-02-14

    This paper addresses the problem of simplifying chemical reaction networks by adroitly reducing the number of reaction channels and chemical species. The analysis adopts a discrete-stochastic point of view and focuses on the model reaction set S(1)<=>S(2)-->S(3), whose simplicity allows all the mathematics to be done exactly. The advantages and disadvantages of replacing this reaction set with a single S(3)-producing reaction are analyzed quantitatively using novel criteria for measuring simulation accuracy and simulation efficiency. It is shown that in all cases in which such a model reduction can be accomplished accurately and with a significant gain in simulation efficiency, a procedure called the slow-scale stochastic simulation algorithm provides a robust and theoretically transparent way of implementing the reduction.

  17. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  18. Chemical and Biological Kinetics

    NASA Astrophysics Data System (ADS)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  19. Computer Simulation in Chemical Kinetics

    ERIC Educational Resources Information Center

    Anderson, Jay Martin

    1976-01-01

    Discusses the use of the System Dynamics technique in simulating a chemical reaction for kinetic analysis. Also discusses the use of simulation modelling in biology, ecology, and the social sciences, where experimentation may be impractical or impossible. (MLH)

  20. Chemical Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  1. Chemical kinetic modeling of a methane opposed flow diffusion flame and comparison to experiments

    SciTech Connect

    Marinov, N.M., Pitz, W.J.; Westbrook, C.K.; Vincitore, A.M.; Senka, S.M.; Lutz, A.E.

    1998-01-01

    The chemical structure of an opposed flow, methane diffusion flame is studied using a chemical kinetic model and the results are compared to experimental measurements. The chemical kinetic paths leading to aromatics and polycyclic aromatics hydrocarbons (PAHs) in the diffusion flame are identified. These paths all involve resonantly stabilized radicals which include propargyl, allyl, cyclopentadienyl, and benzyl radicals. The modeling results show reasonable agreement with the experimental measurements for the large hydrocarbon aliphatic compounds, aromatics, and PAHs. the benzene was predicted to be formed primarily by the reaction sequence of Allyl plus Propargyl equals Fulvene plus H plus H followed by fulvene isomerization to benzene. Naphthalene was modeled using the reaction of benzyl with propargyl, while the combination of cyclopentadienyl radicals were shown to be a minor contributor in the diffusion flame. The agreement between the model and experiment for the four-ring PAHs was poor.

  2. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Margitan, J. J.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1985-01-01

    Rate constants and photochemical cross sections are presented. The primary application of the data is for modeling of the stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  3. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1992-01-01

    As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

  4. Chemical kinetic and photochemical data for use in stratospheric modelling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Stief, L. J.; Kaufman, F.; Golden, D. M.; Hampton, R. F.; Kurylo, M. J.; Margitan, J. J.; Molina, M. J.; Watson, R. T.

    1979-01-01

    An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979.

  5. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    PubMed Central

    Martínez, Haydee; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states. PMID:25105169

  6. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  7. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  8. Chemical Kinetics Laboratory Discussion Worksheet.

    PubMed

    Demoin, Dustin Wayne; Jurisson, Silvia S

    2013-09-10

    A laboratory discussion worksheet and its answer key provide instructors and students a discussion model to further the students' understanding of chemical kinetics. This discussion worksheet includes a section for students to augment their previous knowledge about chemical kinetics measurements, an initial check on students' understanding of basic concepts, a group participation model where students work on solving complex-conceptual problems, and a conclusion to help students connect this discussion to their laboratory or lecture class. Additionally, the worksheet has a detailed solution to a more advanced problem to help students understand how the concepts they have put together relate to problems they will encounter during later formal assessments.

  9. Calibration of Chemical Kinetic Models Using Simulations of Small-Scale Cookoff Experiments

    SciTech Connect

    Wemhoff, A P; Becker, R C; Burnham, A K

    2008-02-26

    Establishing safe handling limits for explosives in elevated temperature environments is a difficult problem that often requires extensive simulation. The largest influence on predicting thermal cookoff safety lies in the chemical kinetic model used in these simulations, and these kinetic model reaction sequences often contain multiple steps. Several small-scale cookoff experiments, notably Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), One-Dimensional Time-to-Explosion (ODTX), and the Scaled Thermal Explosion (STEX) have been performed on various explosives to aid in cookoff behavior determination. Past work has used a single test from this group to create a cookoff model, which does not guarantee agreement with the other experiments. In this study, we update the kinetic parameters of an existing model for the common explosive 2,4,6-Trinitrotoluene (TNT) using DSC and ODTX experimental data at the same time by minimizing a global Figure of Merit based on hydrodynamic simulated data. We then show that the new kinetic model maintains STEX agreement, reduces DSC agreement, and improves ODTX and TGA agreement when compared to the original model. In addition, we describe a means to use implicit hydrodynamic simulations of DSC experiments to develop a reaction model for TNT melting.

  10. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Eaton, R.; Zhang, B.; Bergthorson, J. M.; Ng, H. D.

    2012-03-01

    In this study, detonation cell sizes of methanol-oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol-oxygen mixtures, the results are compared with those of hydrogen-oxygen and methane-oxygen mixtures. Based on the cell size comparison, it is shown that methanol-oxygen is more detonation sensitive than methane-oxygen but less sensitive than hydrogen-oxygen.

  11. A detailed chemical kinetic model of high-temperature ethylene glycol gasification

    NASA Astrophysics Data System (ADS)

    Hafner, Simon; Rashidi, Arash; Baldea, Georgiana; Riedel, Uwe

    2011-08-01

    In recent experimental investigations, ethylene glycol is used as a model substance for biomass-based pyrolysis oil in an entrained flow gasifier. In order to gain a deeper insight into process sequences and to conduct parametric analysis, this study describes the development and validation of a detailed chemical kinetic model of high-temperature ethylene glycol gasification. A detailed reaction mechanism based on elementary reactions has been developed considering 80 species and 1243 reactions for application in CFD software. In addition to mechanism validation based on ignition delay times, laminar flame speeds and concentration profiles, simulation results are compared to experimental data of ethylene glycol gasification under complex turbulent reactive flow conditions.

  12. Controls on chemical weathering kinetics: Implications from modelling of stable isotope fractionations

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Tipper, E.; De La Rocha, C. L.; Galy, A.; Li, S.

    2013-12-01

    The kinetic controls on silicate chemical weathering rates are thought central to the feedback process that regulates global climate on geological time scales. However the nature and magnitude of these kinetic controls are controversial. In particular the importance of physical erosion rates is uncertain with some arguing that there is an upper limit on chemical weathering fluxes irrespective of physical erosion rates (e.g. Dixon and von Blackenburg, 2012). Others argue that it is the hydrology of catchments which determines flow path lengths and fluid residence times which are critical to chemical weathering fluxes (e.g. Maher, 2011). Understanding these physical controls is essential to predicting how chemical weathering fluxes will respond the key climatic controls. Chemical weathering fluxes are best estimated by the integrated riverine outputs from catchments as soil profiles may not integrate all the flow paths. However the interpretation of chemical weathering processes based solely on flux data is difficult, because of both the multiple processes acting and multiple phases dissolving that contribute to these fluxes. Fractionations of stable isotopes of the soluble elements including Li, Mg, Si and Ca should place additional constraints on chemical weathering processes. Here we use a simple reactive-transport model to interpret stable isotope fractionations. Although still a simplification of the natural system, this offers a much closer representation than simple batch and Rayleigh models. The isotopic fractionations are shown to be a function of the ratio of the amount of the element supplied by mineral dissolution to that lost to secondary mineral formation and the extent of reaction down the flow path. The modelling is used to interpret the evolution of dissolved Li, Mg and Si-isotope ratios in Ganges river system. The evolution of Si isotopic ratios in the rapidly eroding Himalayan catchments is distinct from that in the flood planes. Critically the

  13. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.

    2002-01-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  14. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics.

    PubMed

    Dateo, Christopher E; Gökçen, Tahir; Meyyappan, M

    2002-10-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article. PMID:12908291

  15. A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran

    PubMed Central

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A.

    2013-01-01

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300 – 1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [J. Phys. Chem. A 102 (52) (1998) 10655-10670] Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model experiment deviations of at most a factor of two, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species. PMID:23327724

  16. A comparative study of chemical kinetics models for HMX in mesoscale simulations of shock initiation due to void collapse

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal; Schweigert, Igor; Udaykumar, H. S.

    2015-06-01

    The development of chemical kinetics schemes for use in modeling the reactive mechanics of energetic materials such as HMX has been an active area of research. Decomposition, deflagration and detonation models need to predict time to ignition and locations of onset of chemical reaction in energetic materials when used in meso- and macro-scale simulations. Modeling the chemical processes and development of appropriate kinetic law is challenging work because of lack of experimental data. However, significant work has been done in this area. Multistep kinetic models by Tarver and Tran, Henson and Smilowitz have provided plausible chemical kinetic rate laws for HMX. These models vary in the way they model the details of the decomposition process. Hence, a comparative study of different models will provide an understanding of the uncertainties involved in predicting ignition in HMX. In the current work, hot-spot ignition due to void collapse in shock compressed HMX has been analyzed using several reaction rate models, including the Tarver-Tran 4-equation model, the Henson-Smilowitz 7-equation model, and a new rate model that combines the condensed-phase decomposition rates measured by Brill et al and the detailed mechanism of nitramine flame chemistry due to Yetter et al. The chemical models have been incorporated in a massively parallel Eulerian code SCIMITAR3D. The variations in the predicted thresholds due to differences in the rate models will be discussed.

  17. A kinetic model for the metallorganic chemical vapor deposition of CdTe

    SciTech Connect

    Cavallotti, C.; Bertani, V.; Masi, M.; Carra, S.

    1999-09-01

    The industrial application of cadmium telluride (CdTe) semiconducting layers is still limited by the large amount of defects contained in the films and by the problem of the reproducible control of the level and type of conductivity. Overcoming these difficulties requires a better understanding of the physical and chemical phenomena underlying the deposition process. In particular, in order to improve the quality of the films and to optimize the deposition processes, it is of great importance to understand the elementary kinetic mechanism governing the growth of CdTe. Epitaxial deposition of cadmium telluride through metallorganic chemical vapor deposition was investigated. A detailed elementary kinetic scheme of surface and gas-phase reactions occurring during the deposition process was developed and embedded in a one-dimensional fluid-dynamic model based on the boundary-layer theory. Kinetic constants of gas-phase reactions were either found in the literature or determined through quantum chemistry methods. The most important surface processes were identified and studied through quantum chemistry. Quantum chemistry calculations were performed through the three-parameter Becke-Lee-Yang-Parr hybrid (B3LYP) density functional theory using the 3-21G** basis set. Bond dissociation energies of adsorbed methyl groups were calculated, and according to these data, it was proposed that the growth process proceeds through the adsorption of dimethylcadmium, which successively loses a methyl group to give the adsorbed methylcadmium species. Adsorbed methylcadmium successively reacts with a dimethyltellurium gas-phase molecule to give ethane and methylcadmium telluride, which after the loss of the methyl group becomes part of the film. The effect of the carrier gas on the deposition chemistry was also investigated and a possible reason for the decrease in growth rate observed when the carrier gas is changed from hydrogen to helium was proposed. The productivity of the model

  18. Chemical kinetic model of hydrocarbon generation, expulsion, and destruction applied to the Maracaibo basin, Venezuela

    SciTech Connect

    Sweeney, J.J.; Braun, R.L.; Burnham, A.K.

    1995-10-01

    This paper describes the development and application of a compositional chemical model of hydrocarbon generation, expulsion,a nd destruction for the Cretaceous La Luna Formation source rock of the Maraciabo basin, Venezuela. Applications include both laboratory and geological settings. Laboratory pyrolysis experiments were used to study bulk oil generation, expulsion, and associated changes in composition of the kerogen, extractable organic matter, and expelled and unexpelled hydrocarbons. The laboratory experiments were also used to determine kinetic parameters to quantitatively describe organic reactions, via a computer model that also includes simulation of pressure-driven primary expulsion, over widely varying conditions. We show that the chemical model accuratley simulates the experimental results. Thermal history models for wells in the Maraciabo basin were used to simulate hydrocarbon generation and pore pressure development in the La Luna Formation and expulsion into nearby Cretaceous reservoirs. Results of the modeling indicate that both compaction disequilibrium and organic maturation play important roles in the development of excess pore pressure in the La Luna Formation. The model simulation of the variation of indicators such as Rock-Eval parameters and extract and oil compositions shows generally good agreement with measurements from remaining kerogen, oils, and extracts recovered from the La Luna Formation and from nearby Cretaceous reservoirs.

  19. Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air corona discharge

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Guntoro, N. A.; Yousfi, M.; Benhenni, M.

    2002-03-01

    A non-stationary reactive gas dynamics model in a mono-dimensional geometry, including radial mass diffusion, gas temperature variation and chemical kinetics, is developed in this paper. The aim is to analyse the spatio-temporal evolution of the main neutral species involved in a corona discharge used for NO pollution control in polluted air at atmospheric pressure and ambient temperature. The present reactive gas dynamics model takes into account 16 neutral chemical species (including certain metastable species) reacting following 110 selected chemical reactions. The initial concentration of each neutral species is obtained from a 1.5D electrical discharge model. The gas temperature variations are due to direct Joule heating during the discharge phase, and also result from the delayed heating due to the relaxation of the vibrational energy into a random thermal energy during the post-discharge phase. The simulation conditions are those of an existing experimental setup (anode voltage of 10 kV in the case of a point to plane geometry with an interelectrode distance of 10 mm). The obtained results show that the diffusion phenomena and the gas temperature rise affect quite well the gas reactivity and the neutral species evolution. This allows us to better understand the different reaction processes and transport phenomena affecting the NO concentration magnitude inside the discharge channel.

  20. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models.

    PubMed

    Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J

    2007-03-01

    Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed. PMID:17373505

  1. Insitu Measurements and Modeling of Carbon Nanotube Array Growth Kinetics during Chemical Vapor Deposition

    SciTech Connect

    Puretzky, Alexander A; Geohegan, David B; Jesse, Stephen; Ivanov, Ilia N; Eres, Gyula

    2005-01-01

    Direct measurements of carbon nanotube growth kinetics are described based upon time-resolved reflectivity (TRR) of a HeNe laser beam from vertically aligned nanotube arrays (VANTAs) as they grow during chemical vapor deposition (CVD). Growth rates and terminal lengths were measured in situ for VANTAs growing during CVD between 535 C and 900 C on Si substrates with evaporated Al/Fe/Mo multi-layered catalysts and acetylene feedstock at different feedstock partial pressures. Methods of analysis of the TRR signals are presented to interpret catalyst particle formation and oxidation, as well as the porosity of the VANTAs. A rate-equation model is developed to describe the measured kinetics in terms of activation energies and rate constants for surface carbon formation and diffusion on the catalyst nanoparticle, nanotube growth, and catalyst over-coating. Taken together with the TRR data, this model enables basic understanding and optimization of growth conditions for any catalyst/feedstock combination. The model lends insight into the main processes responsible for the growth of VANTAs, the measured number of walls in the nanotubes at different temperatures, conditions for growth of single-wall carbon nanotube arrays, and likely catalyst poisoning mechanisms responsible for the sharp decline in growth rates observed at high temperatures.

  2. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.

    PubMed

    Somers, Kieran P; Simmie, John M; Metcalfe, Wayne K; Curran, Henry J

    2014-03-21

    Due to the rapidly growing interest in the use of biomass derived furanic compounds as potential platform chemicals and fossil fuel replacements, there is a simultaneous need to understand the pyrolysis and combustion properties of such molecules. To this end, the potential energy surfaces for the pyrolysis relevant reactions of the biofuel candidate 2-methylfuran have been characterized using quantum chemical methods (CBS-QB3, CBS-APNO and G3). Canonical transition state theory is employed to determine the high-pressure limiting kinetics, k(T), of elementary reactions. Rice-Ramsperger-Kassel-Marcus theory with an energy grained master equation is used to compute pressure-dependent rate constants, k(T,p), and product branching fractions for the multiple-well, multiple-channel reaction pathways which typify the pyrolysis reactions of the title species. The unimolecular decomposition of 2-methylfuran is shown to proceed via hydrogen atom transfer reactions through singlet carbene intermediates which readily undergo ring opening to form collisionally stabilised acyclic C5H6O isomers before further decomposition to C1-C4 species. Rate constants for abstraction by the hydrogen atom and methyl radical are reported, with abstraction from the alkyl side chain calculated to dominate. The fate of the primary abstraction product, 2-furanylmethyl radical, is shown to be thermal decomposition to the n-butadienyl radical and carbon monoxide through a series of ring opening and hydrogen atom transfer reactions. The dominant bimolecular products of hydrogen atom addition reactions are found to be furan and methyl radical, 1-butene-1-yl radical and carbon monoxide and vinyl ketene and methyl radical. A kinetic mechanism is assembled with computer simulations in good agreement with shock tube speciation profiles taken from the literature. The kinetic mechanism developed herein can be used in future chemical kinetic modelling studies on the pyrolysis and oxidation of 2-methylfuran

  3. Modeling Multiphase Chemical Kinetics of OH Radical Reacting with Biomass Burning Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Arangio, Andrea; Slade, Jonathan H.; Berkemeier, Thomas; Knopf, Daniel A.; Shiraiwa, Manabu

    2014-05-01

    Levoglucosan, abietic acid and nitroguaiacol are commonly used as molecular tracers of biomass burning in source apportionment. Recent studies have demonstrated the decay of levoglucosan when the particles were exposed to atmospherically relevant concentration of OH radicals [1-3]. However, multiphase chemical kinetics of OH radical reacting with such compounds has not fully understood. Here we apply the kinetic multi-layer model for gas-particle interactions (KM-GAP) [4] to experimental data of OH exposure to levoglucosan, abietic acid and nitroguaiacol [1]. KM-GAP resolves the following mass transport and chemical reactions explicitly: gas-phase diffusion, reversible surface adsorption, surface reaction, surface-bulk transport, bulk diffusion and reaction. The particle shrink due to the evaporation of volatile reaction products is also considered. The time- and concentration-dependence of reactive uptake coefficient of OH radicals were simulated by KM-GAP. The measured OH uptake coefficients were fitted by a Monte Carlo (MC) filtering coupled with a genetic algorithm (GA) to derive physicochemical parameters such as bulk diffusion coefficient, Henry's law coefficient and desorption lifetime of OH radicals. We assessed the relative contribution of surface and bulk reactions to the overall uptake of OH radicals. Chemical half-life and the evaporation time scale of these compounds are estimated in different scenarios (dry, humid and cloud processing conditions) and at different OH concentrations. REFERENCES [1] J. H. Slade, D. A. Knopf, Phys. Chem. Chem. Phys., 2013, 15, 5898. [2] S. H. Kessler, J. D. Smith, D.L. Che, D.R. Worsnop, K. R. Wilson, J. H. Kroll, Environ. Sci. Technol., 2010, 44, 7005. [3] C. J. Hennigan, A. P. Sullivan, J. L. Collett Jr, A. L. Robinson, Geophys. Res. Lett., 2010, 37, L09806. [4] M. Shiraiwa, C. Pfrang, T. Koop, U. Pöschl, Atmos. Chem. Phys, 2012, 12, 2777.

  4. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics

    SciTech Connect

    Andrae, J.C.G.; Bjoernbom, P.; Cracknell, R.F.; Kalghatgi, G.T.

    2007-04-15

    A detailed chemical kinetic model for the autoignition of toluene reference fuels (TRF) is presented. The toluene submechanism added to the Lawrence Livermore Primary Reference Fuel (PRF) mechanism was developed using recent shock tube autoignition delay time data under conditions relevant to HCCI combustion. For two-component fuels the model was validated against recent high-pressure shock tube autoignition delay time data for a mixture consisting of 35% n-heptane and 65% toluene by liquid volume. Important features of the autoignition of the mixture proved to be cross-acceleration effects, where hydroperoxy radicals produced during n-heptane oxidation dramatically increased the oxidation rate of toluene compared to the case when toluene alone was oxidized. Rate constants for the reaction of benzyl and hydroperoxyl radicals previously used in the modeling of the oxidation of toluene alone were untenably high for modeling of the mixture. To model both systems it was found necessary to use a lower rate and introduce an additional branching route in the reaction between benzyl radicals and O{sub 2}. Good agreement between experiments and predictions was found when the model was validated against shock tube autoignition delay data for gasoline surrogate fuels consisting of mixtures of 63-69% isooctane, 14-20% toluene, and 17% n-heptane by liquid volume. Cross reactions such as hydrogen abstractions between toluene and alkyl and alkylperoxy radicals and between the PRF were introduced for completion of chemical description. They were only of small importance for modeling autoignition delays from shock tube experiments, even at low temperatures. A single-zone engine model was used to evaluate how well the validated mechanism could capture autoignition behavior of toluene reference fuels in a homogeneous charge compression ignition (HCCI) engine. The model could qualitatively predict the experiments, except in the case with boosted intake pressure, where the initial

  5. Time-resolved simplified chemical kinetics modelling using computational singular perturbation

    NASA Technical Reports Server (NTRS)

    Lam, S. H.; Goussis, D. A.; Konopka, D.

    1989-01-01

    A CO-CH4-air reaction system is used to demonstrate the computational singular perturbation (CSP) method for deriving time-resolved simplified chemical kinetics models. CSP provides a programmable algorithm to group the given collection of elementary reactions into reaction groups which are ordered according to their speed. The concept of Importance Index k(m)exp s is introduced: k(m)exp s is defined to be a number between 0 and 1 which measures the importance of the m-th reaction group to the s-th reactant and can readily be computed from data generated by CSP. It is suggested that the robustness of the solutions of the reaction system can be qualitatively assessed by inspecting the Importance Index data.

  6. Chemical kinetics parameters and model validation for the gasification of PCEA nuclear graphite

    SciTech Connect

    El-Genk, Mohamed S; Tournier, Jean-Michel; Contescu, Cristian I

    2014-01-01

    A series of gasification experiments, using two right cylinder specimens (~ 12.7 x 25.4 mm and 25.4 x 25.4 mm) of PCEA nuclear graphite in ambient airflow, measured the total gasification flux at weight losses up to 41.5% and temperatures (893-1015 K) characteristics of those for in-pores gasification Mode (a) and in-pores diffusion-limited Mode (b). The chemical kinetics parameters for the gasification of PCEA graphite are determined using a multi-parameters optimization algorithm from the measurements of the total gasification rate and transient weight loss in experiments. These parameters are: (i) the pre-exponential rate coefficients and the Gaussian distributions and values of specific activation energies for adsorption of oxygen and desorption of CO gas; (ii) the specific activation energy and pre-exponential rate coefficient for the breakup of stable un-dissociated C(O2) oxygen radicals to form stable (CO) complexes; (iii) the specific activation energy and pre-exponential coefficient for desorption of CO2 gas and; (iv) the initial surface area of reactive free sites per unit mass. This area is consistently 13.5% higher than that for nuclear graphite grades of NBG-25 and IG-110 and decreases inversely proportional with the square root of the initial mass of the graphite specimens in the experiments. Experimental measurements successfully validate the chemical-reactions kinetics model that calculates continuous Arrhenius curves of the total gasification flux and the production rates of CO and CO2 gases. The model results at different total weight losses agree well with measurements and expand beyond the temperatures in the experiments to the diffusion-limited mode of gasification. Also calculated are the production rates of CO and CO2 gases and their relative contributions to the total gasification rate in the experiments as functions of temperature, for total weight losses of 5% and 10%.

  7. Chemical kinetics parameters and model validation for the gasification of PCEA nuclear graphite

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.; Contescu, Cristian I.

    2014-01-01

    A series of gasification experiments, using two right cylinder specimens (∼12.7 × 25.4 mm and 25.4 × 25.4 mm) of PCEA nuclear graphite in ambient airflow, measured the total gasification flux at weight losses up to 41.5% and temperatures (893-1015 K) characteristics of those for in-pores gasification Mode (a) and in-pores diffusion-limited Mode (b). The chemical kinetics parameters for the gasification of PCEA graphite are determined using a multi-parameters optimization algorithm from the measurements of the total gasification rate and transient weight loss in experiments. These parameters are: (i) the pre-exponential rate coefficients and the Gaussian distributions and values of specific activation energies for adsorption of oxygen and desorption of CO gas; (ii) the specific activation energy and pre-exponential rate coefficient for the breakup of stable un-dissociated C(O2) oxygen radicals to form stable (CO) complexes; (iii) the specific activation energy and pre-exponential coefficient for desorption of CO2 gas and; (iv) the initial surface area of reactive free sites per unit mass. This area is consistently 13.5% higher than that for nuclear graphite grades of NBG-25 and IG-110 and decreases inversely proportional with the square root of the initial mass of the graphite specimens in the experiments. Experimental measurements successfully validate the chemical-reactions kinetics model that calculates continuous Arrhenius curves of the total gasification flux and the production rates of CO and CO2 gases. The model results at different total weight losses agree well with measurements and expand beyond the temperatures in the experiments to the diffusion-limited mode of gasification. Also calculated are the production rates of CO and CO2 gases and their relative contributions to the total gasification rate in the experiments as functions of temperature, for total weight losses of 5% and 10%.

  8. Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Gao, Qingqing; Fu, Yuwei; Yang, Aijun; Rong, Mingzhe; Wu, Yi; Niu, Chunping; Murphy, Anthony B.

    2016-03-01

    This paper is devoted to the computation of the non-equilibrium composition of an SF6 plasma, and determination of the dominant particles and reactions, at conditions relevant to high-voltage circuit breakers after current zero (temperatures from 12 000 K to 1000 K and a pressure of 4 atm). The non-equilibrium composition is characterized by departures from both thermal and chemical equilibrium. In thermal non-equilibrium process, the electron temperature (T e) is not equal to the heavy-particle temperature (T h), while for chemical non-equilibrium, a chemical kinetic model is adopted. In order to evaluate the reasonableness and reliability of the non-equilibrium composition, calculation methods for equilibrium composition based on Gibbs free energy minimization and kinetic composition in a one-temperature kinetic model are first considered. Based on the one-temperature kinetic model, a two-temperature kinetic model with the ratio T e/T h varying as a function of the logarithm of electron density ratio (n e/n\\text{e}\\max ) was established. In this model, T* is introduced to allow a smooth transition between T h and T e and to determine the temperatures for the rate constants. The initial composition in the kinetic models is obtained from the asymptotic composition as infinite time is approached at 12 000 K. The molar fractions of neutral particles and ions in the two-temperature kinetic model are consistent with the equilibrium composition and the composition obtained from the one-temperature kinetic model above 10 000 K, while significant differences appear below 10 000 K. Based on the dependence of the particle distributions on temperature in the two-temperature kinetic model, three temperature ranges, and the dominant particles and reactions in the respective ranges, are determined. The full model is then simplified into three models and the accuracy of the simplified models is assessed. The simplified models reduce the number of species and

  9. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    NASA Technical Reports Server (NTRS)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  10. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets. PMID:24664912

  11. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

  12. A new methodology to determine kinetic parameters for one- and two-step chemical models

    NASA Technical Reports Server (NTRS)

    Mantel, T.; Egolfopoulos, F. N.; Bowman, C. T.

    1996-01-01

    In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used.

  13. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2.

  14. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. PMID:25005043

  15. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2008-12-15

    A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

  16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  17. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  18. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling.

    PubMed

    Sutton, Jonathan E; Guo, Wei; Katsoulakis, Markos A; Vlachos, Dionisios G

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells. PMID:27001728

  19. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  20. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis.

    PubMed

    Oliveira, R C de M; Bauerfeldt, G F

    2012-10-01

    In this work, a chemical model for the camphene ozonolysis, leading to carbonyl final products, is proposed and discussed on the basis of the thermochemical properties and kinetic data obtained at density functional theory levels of calculation. The mechanism is initiated by the electrophilic attack of ozone to the double bond in camphene leading to a 1,2,3-trioxolane intermediate, which decomposes to peroxy radicals and carbonyl compounds in a total of 10 elementary reactions. The thermodynamic properties (enthalpy and entropies differences) are calculated at 298 K. For the thermochemical evaluation, theoretical calculations are performed with the B3LYP, MPW1PW91, and mPW1K density functionals and the basis sets 6-31G(d), 6-31G(2d,2p), 6-31+G(d,p), and 6-31+G(2d,2p). Eventually, single point calculations adopting the 6-311++G(2d,2p) basis set are performed in order to improve the electronic energies. The enthalpy profiles suggest highly exothermic reactions for the individual steps, with a global enthalpy difference of -179.18 kcal mol(-1), determined at the B3LYP∕6-31+G(2d,2p) level. The Gibbs free energy differences for each step, at 298 K, calculated at the B3LYP∕6-311++G(2d,2p)∕∕B3LYP∕6-31+G(2d,2p) level, are used to estimate the composition of a final product mixture under equilibrium conditions as 58% of camphenilone and 42% of 6,6-dimethyl-ɛ-caprolactone-2,5-methylene. For the reaction kinetics, the bimolecular O(3) + camphene step is assumed to be rate determining in the global mechanism. A saddle point for the ozone addition to the double bond is located and rate constants are determined on the basis of the transition state theory. This saddle point is well represented by a loosely bound structure and corrections for the basis set superposition error (BSSE) are calculated, either by considering the effect over the geometry optimization procedure (here referred as CP1 procedure), or the effect of the BSSE over the electronic energy of a

  1. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  2. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions.

    PubMed

    Wehrer, Markus; Jaesche, Philipp; Totsche, Kai Uwe

    2012-09-01

    A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by joint analysis of lab experiments with numerical simulation models. In the present study, published experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns were simulated inversely to receive the parameters of degradation. We evaluated different scenarios of an advection-dispersion model including different terms for degradation, such as zero order, first order and inclusion of a growing and decaying biomass for their ability to explain the data. The general break-through behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. PMID:22609860

  3. Modelling transport and degradation of de-icing chemicals in soil, assuming Monod kinetics with multiple electron-acceptors

    NASA Astrophysics Data System (ADS)

    Schotanus, D.; Meeussen, J. C. L.; van der Ploeg, M. J.; van der Zee, S. E. A. T. M.

    2012-04-01

    De-icing chemicals that contain propylene glycol are used at Oslo airport during winter time. A fraction of these chemicals is spilled on the runway and can be transported rapidly in the sandy soil in spring during snowmelt. Better insight into the chemical and physical processes that govern the fate of these chemicals in soil will help to estimate potential effects on the large unconfined aquifer in this area, and makes it possible to evaluate potential remedial actions. Micro-organisms in the soil can degrade propylene glycol, for which they need electron-acceptors. Under aerobic conditions, oxygen will be used as an electron-acceptor. From experiments, it is known that also anaerobic degradation occurs in this soil. During snowmelt, high infiltration rates can lead to locally saturated soil. In these parts, oxygen diffusion is limited and thus anaerobic conditions will occur. In these anaerobic regions, other electron-acceptors, such as manganese-oxides that are present in this soil, are used. However, frequent propylene glycol application may lead to a depletion of manganese-oxides and so to increased persistence and migration of propylene glycol in soil. To prevent this depletion and to enhance biodegradation, other electron-acceptors can be applied at the soil surface. Examples are the application of nitrate to the soil surface, and air injection. Model calculations could help to estimate required concentrations. The objectives of this study are 1) to create the reactive model, 2) to use this model to evaluate which parameters are determining leaching fluxes of propylene glycol from the soil, and 3) to evaluate the effectiveness of the different remediation strategies. Therefore, transient water flow, kinetic degradation, and redox chemistry were combined in one model. Degradation is modelled with Monod kinetics using multiple electron-acceptors. Oxygen diffusion in the gas phase, biomass growth, and oxidation and reduction of the important electron

  4. Chemical Kinetic Modeling of Dimethyl Carbonate in an Opposed-Flow Diffusion Flame

    SciTech Connect

    Glaude, P A; Pitz, W J; Thomson, M J

    2003-12-08

    Dimethyl carbonate (DMC) has been of interest as an oxygenate additive to diesel fuel because of its high oxygen content. In this study, a chemical kinetic mechanism for DMC was developed for the first time and used to understand its combustion under conditions in an opposed flow diffusion flame. Computed results were compared to experimental results from an opposed flow diffusion flame. It was found that the decomposition rate DMC {yields} H{sub 3}COC(=O)O. + CH{sub 3} in the flame was much slower than originally thought because resonance stabilization in the H{sub 3}COC(=O)O. radical was less than expected. Also, a new molecular elimination path for DMC is proposed and its rate calculated by quantum chemical methods. In the simulations of DMC in the flame, it was determined that much of the oxygen in dimethyl carbonate goes directly to CO{sub 2}. This characteristic indicates that DMC would not be an effective oxygenate additive for reducing soot emissions from diesel engines. In an ideal oxygenate additive for diesel fuel, each oxygen atom stays bonded to one carbon atom in the products thereby preventing the formation of carbon-carbon bonds that can lead to soot. When CO2 is formed directly, two oxygen atoms are bonded to one carbon atom thereby wasting one oxygen atom in the oxygenate additive. To determine how much CO{sub 2} is formed directly, the branching ratio of the key reaction, CH{sub 3}OC.=O going to the products CH{sub 3} + CO{sub 2} or CH{sub 3}O + CO was determined by ab initio methods. The A-factors of the rate constant of this reaction were found to be about 20 times higher than previous factors estimates. The new reaction rate constants obtained can be used as reaction rate rules for all oxygenates that contain the ester moiety including biodiesel.

  5. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    PubMed

    Kozuch, Sebastian; Shaik, Sason

    2008-07-01

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  6. Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  7. Mathematical description of complex chemical kinetics and application to CFD modeling codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  8. Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage

    SciTech Connect

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  9. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  10. Chemical Kinetic Study of Toluene Oxidation

    SciTech Connect

    Pitz, W J; Seiser, R; Bozzelli, J W; Seshadri, K; Chen, C-J; Da Costa, I; Fournet, R; Billaud, F; Battin-Leclerc, F; Westbrook, C K

    2001-12-17

    A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. A detailed chemical-kinetic mechanism for toluene was improved by adding a more accurate description of the phenyl + O{sub 2} reaction channels, toluene decomposition reactions and the benzyl + 0 reaction. Results of the chemical kinetic mechanism are compared with experimental data obtained from premixed and nonpremixed systems. Under premixed conditions, predicted ignition delay times are compared with new experimental data obtained in shock tube. Also, calculated species concentration histories are compared to experimental flow reactor data from the literature. Under nonpremixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations are performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in nonpremixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. For both premixed and nonpremixed systems, sensitivity analysis was used to identify the reaction rate constants that control the overall rate of oxidation in each of the systems considered. Under shock tube conditions, the reactions that influence ignition delay time are H + O{sub 2} chain branching, the toluene decomposition reaction to give an H atom, and the toluene + H abstraction reaction. The reactions that influence autoignition in nonpremixed systems involve the benzyl + HO{sub 2} reaction and the phenyl + O{sub 2} reaction.

  11. Fast Prediction of HCCI and PCCI Combustion with an Artificial Neural Network-Based Chemical Kinetic Model

    SciTech Connect

    Piggott, W T; Aceves, S M; Flowers, D L; Chen, J Y

    2007-09-26

    We have added the capability to look at in-cylinder fuel distributions using a previously developed ignition model within a fluid mechanics code (KIVA3V) that uses an artificial neural network (ANN) to predict ignition (The combined code: KIVA3V-ANN). KIVA3V-ANN was originally developed and validated for analysis of Homogeneous Charge Compression Ignition (HCCI) combustion, but it is also applicable to the more difficult problem of Premixed Charge Compression Ignition (PCCI) combustion. PCCI combustion refers to cases where combustion occurs as a nonmixing controlled, chemical kinetics dominated, autoignition process, where the fuel, air, and residual gas mixtures are not necessarily as homogeneous as in HCCI combustion. This paper analyzes the effects of introducing charge non-uniformity into a KIVA3V-ANN simulation. The results are compared to experimental results, as well as simulation results using a more physically representative and computationally intensive code (KIVA3V-MPI-MZ), which links a fluid mechanics code to a multi-zone detailed chemical kinetics solver. The results indicate that KIVA3V-ANN produces reasonable approximations to the more accurate KIVA3V-MPI-MZ at a much reduced computational cost.

  12. TACK—a program coupling chemical kinetics with a two-dimensional transport model in geochemical systems

    NASA Astrophysics Data System (ADS)

    Källvenius, Göran; Ekberg, Christian

    2003-05-01

    The Transport And Chemical Kinetics (TACK) program has been designed to make predictions of the chemistry in the vicinity of a planned repository for nuclear waste, i.e. SFL 3-5, where SFL is the Swedish abbreviation for "Swedish repository for long-lived waste". This implies modelling transport and chemistry in fractured rock. The system concerned in the modelling of SFL is leaching water from decommissioning waste in concrete. The concrete will raise the pH in the water to between 12 and 13.5. So far, only a few calculations have been made on such systems. Coupled transport and chemical reaction programs should be used, since the system is important for safety assessments of the repository. At least two of programs can be used for this kind of problem, for example OS3D/GIMRT and PHAST. As it is also important to consider the uncertainty of the model, the TACK program fills an important purpose here. A slightly different approach to the problem may give significantly different results. Because validation is generally not possible, using several programs is the only key to identifying conceptual uncertainties. To illustrate this point, comparative calculations have been made between TACK and the PHAST program. The calculations gave qualitatively similar result but quantitatively somewhat differing results. The TACK program couples the well known PHREEQC geochemical program with a two-dimensional transport model. The PHREEQC calculations include speciation of solutions and mineral reactions involving kinetics. The reasons for choosing this program are that it is quite a general one and is relatively stable at the high pH values present in the systems used. The transport phenomena taken into account in the model are advection, diffusion and dispersion in two dimensions.

  13. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    SciTech Connect

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus; Wu, Hao; Collings, Nick

    2011-01-15

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  14. Inflation Rates, Car Devaluation, and Chemical Kinetics.

    ERIC Educational Resources Information Center

    Pogliani, Lionello; Berberan-Santos, Mario N.

    1996-01-01

    Describes the inflation rate problem and offers an interesting analogy with chemical kinetics. Presents and solves the car devaluation problem as a normal chemical kinetic problem where the order of the rate law and the value of the rate constant are derived. (JRH)

  15. Enhancing Thai Students' Learning of Chemical Kinetics

    ERIC Educational Resources Information Center

    Chairam, Sanoe; Somsook, Ekasith; Coll, Richard K.

    2009-01-01

    Chemical kinetics is an extremely important concept for introductory chemistry courses. The literature suggests that instruction in chemical kinetics is often teacher-dominated at both the secondary school and tertiary levels, and this is the case in Thailand--the educational context for this inquiry. The work reported here seeks to shift students…

  16. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  17. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate

    SciTech Connect

    Gail, S.; Sarathy, S.M.; Thomson, M.J.; Dievart, P.; Dagaut, P.

    2008-12-15

    This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C{sub 4} FAME) and methyl butanoate (MB, saturated C{sub 4} FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios ({phi}=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for {phi}=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel. (author)

  18. Quantum chemical modeling of the kinetic isotope effect of the carboxylation step in RuBisCO.

    PubMed

    Götze, Jan Philipp; Saalfrank, Peter

    2012-05-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most important enzyme for the assimilation of carbon into biomass, features a well-known isotope effect with regards to the CO(2) carbon atom. This kinetic isotope effect α = k(12)/k(13) for the carboxylation step of the RuBisCO reaction sequence, and its microscopic origin, was investigated with the help of cluster models and quantum chemical methods [B3LYP/6-31G(d,p)]. We use a recently proposed model for the RuBisCO active site, in which a water molecule remains close to the reaction center during carboxylation of ribulose-1,5-bisphosphate [B. Kannappan, J.E. Gready, J. Am. Chem. Soc. 130 (2008), 15063]. Alternative active-site models and/or computational approaches were also tested. An isotope effect alpha for carboxylation is found, which is reasonably close to the one measured for the overall reaction, and which originates from a simple frequency shift of the bending vibration of (12)CO(2) compared to (13)CO(2). The latter is the dominant mode for the product formation at the transition state.

  19. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

    2011-03-16

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  20. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation

    PubMed Central

    Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Conroy, Christine; Black, Gráinne; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Dagaut, Philippe; Togbé, Casimir; Yasunaga, Kenji; Fernandes, Ravi X.; Lee, Changyoul; Tripathi, Rupali; Curran, Henry J.

    2013-01-01

    The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200–1350 K, pressures from 2–2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350–1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820–1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770–1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6–1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously

  1. Kinetic-fluid dynamics modeling of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Waichman, K.; Barmashenko, B. D.; Rosenwaks, S.

    2009-09-15

    The mechanism of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers (COILs) is studied applying kinetic-fluid dynamics modeling, where pathways involving the excited species I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},10<=v<25), I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},25<=v<=47), I{sub 2}(A{sup '} {sup 3}PI{sub 2u}), I{sub 2}(A {sup 3}PI{sub 1u}), O{sub 2}(X {sup 3}SIGMA{sub g}{sup -},v), O{sub 2}(a {sup 1}DELTA{sub g},v), O{sub 2}(b {sup 1}SIGMA{sub g}{sup +},v), and I({sup 2}P{sub 1/2}) as intermediate reactants are included. The gist of the model is adding the first reactant and reducing the contribution of the second as compared to previous models. These changes, recently suggested by Azyazov, et al. [J. Chem. Phys. 130, 104306 (2009)], significantly improve the agreement with the measurements of the gain in a low pressure supersonic COIL for all I{sub 2} flow rates that have been tested in the experiments. In particular, the lack of agreement for high I{sub 2} flow rates, which was encountered in previous models, has been eliminated in the present model. It is suggested that future modeling of the COIL operation should take into account the proposed contribution of the above mentioned reactants.

  2. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    PubMed Central

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  3. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 6

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1983-01-01

    Evaluated sets of rate constants and photochemical cross sections are presented. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  4. Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 5

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1982-01-01

    Sets of rate constants and photochemical cross sections compiled which were evaluated. The primary application of the data is in the modeling of stratospheric processes on the ozone layer and its possible perturbation by anthropogenic and natural phenomena are emphasized.

  5. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  6. Isothermal and non-isothermal kinetic models of chemical processes in foods governed by competing mechanisms.

    PubMed

    Peleg, Micha; Corradini, Maria G; Normand, Mark D

    2009-08-26

    A process or reaction that peaks at high temperatures but not at low ones indicates competition between synthesis and degradation. A proposed phenomenological model composed of a decay factor superimposed on a growth term can describe both. Temperature elevation shortens the two subprocesses' characteristic times and increases their rates. The degradation's characteristic time relative to the experiment's determines whether a peak is observed. All of the parameters determine the peak's height and shape as can be seen in two interactive Wolfram demonstrations on the Web. Detailed knowledge of the underlying mechanisms is unnecessary for the model's construction, and uniqueness is not a prerequisite either. However, different expressions might be needed for ongoing processes and ones initially undetectable. The model's applicability is demonstrated with published results on very different reactions in foods. In principle, it can be converted into a dynamic rate equation for simulating a process's evolution under non-isothermal conditions.

  7. S3 and S4 abundances and improved chemical kinetic model for Venus lower atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2013-09-01

    Mixing ratios of S3 and S4 are retrieved from the Venera 11 observations. The previous model for 0-47 km [4] is improved by (1) a test and inclusion of the S4 cycle [9], (2) reduction of the H2SO4 and CO fluxes from the middle atmosphere by a factor of 4, (3) removal of sulfur flux from the middle atmosphere, (4) a closed boundary for OCS at the surface instead of a free parameter for the OCS density, and (5) some minor updates. The model results are briefly discussed.

  8. Chemical kinetics of geminal recombination

    SciTech Connect

    Levin, P.P.; Khudyakov, I.V.; Brin, E.F.; Kuz'min, V.A.

    1988-09-01

    The kinetics of geminal recombination of triplet radical pairs formed in photoreduction of benzophenone by p-cresol in glycerin solution was studied by pulsed laser photolysis. The experiments were conducted at several temperatures and in a constant magnetic field of H = 0.34 T. The parameters in six kinetic equations describing geminal recombination were determined with a computer. The values of the sums of the squares of the residual deviations of the approximation were obtained. It was found that the kinetics are best described by the functions proposed by Noyes and Shushin. It was shown that it is necessary to use the mutual diffusion coefficient of the radicals, which is significantly smaller than the sum of the estimations of the experimental values of the radical diffusion coefficients, for describing the kinetics due to the correlations of the molecular motions of the radicals in the cage.

  9. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  10. Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

    SciTech Connect

    Havstad, Mark A; Aceves, Salvador M; McNenly, Matthew J; Piggott, William T; Edwards, Kevin Dean; Wagner, Robert M; Daw, C Stuart; FINNEY, Charles E A

    2010-01-01

    We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (-0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (-0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  11. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    SciTech Connect

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  12. Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 11

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1994-01-01

    This is the eleventh in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  13. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation No. 12

    NASA Technical Reports Server (NTRS)

    DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1997-01-01

    This is the twelfth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  14. Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Molina, M. J.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1987-01-01

    This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109.

  15. Chemical kinetics and oil shale process design

    SciTech Connect

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  16. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine

    NASA Astrophysics Data System (ADS)

    Stites, Edward C.

    2013-04-01

    Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients.

  17. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  18. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    SciTech Connect

    Kim, H. Y.; Kang, S. K.; Lee, H. Wk.; Lee, H. W.; Kim, G. C.; Lee, J. K.

    2012-07-15

    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He{sup +} and He(2{sup 1}S) radicals. Second, O{sub 3} density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O{sub 3} that causes chest pain and damages lung tissue when the density is very high. H{sub 2}O{sub 2}, HO{sub 2}, and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  19. Nonlinear response theory in chemical kinetics.

    PubMed

    Kryvohuz, Maksym; Mukamel, Shaul

    2014-01-21

    A theory of nonlinear response of chemical kinetics, in which multiple perturbations are used to probe the time evolution of nonlinear chemical systems, is developed. Expressions for nonlinear chemical response functions and susceptibilities, which can serve as multidimensional measures of the kinetic pathways and rates, are derived. A new class of multidimensional measures that combine multiple perturbations and measurements is also introduced. Nonlinear fluctuation-dissipation relations for steady-state chemical systems, which replace operations of concentration measurement and perturbations, are proposed. Several applications to the analysis of complex reaction mechanisms are provided.

  20. Mass Conservation and Chemical Kinetics.

    ERIC Educational Resources Information Center

    Barbara, Thomas M.; Corio, P. L.

    1980-01-01

    Presents a method for obtaining all mass conservation conditions implied by a given mechanism in which the conditions are used to simplify integration of the rate equations and to derive stoichiometric relations. Discusses possibilities of faulty inference of kinetic information from a given stoichiometry. (CS)

  1. Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Kinetic Models for Combustion Simulation of HCCI Engines

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyu; Ito, Kazuma; Yoshihara, Daisuke; Wakisaka, Tomoyuki

    For numerically predicting the combustion processes in homogeneous charge compression ignition (HCCI) engines, practical chemical kinetic models have been explored. A genetic algorithm (GA) has been applied to the optimization of the rate constants in detailed chemical kinetic models, and a detailed kinetic model (592 reactions) for gasoline reference fuels with arbitrary octane number between 60 and 100 has been obtained from the detailed reaction schemes for iso-octane and n-heptane proposed by Golovitchev. The ignition timing in a gasoline HCCI engine has been predicted reasonably well by zero-dimensional simulation using the CHEMKIN code with this detailed kinetic model. An original reduced reaction scheme (45 reactions) for dimethyl ether (DME) has been derived from Curran’s detailed scheme, and the combustion process in a DME HCCI engine has been predicted reasonably well in a practical computation time by three-dimensional simulation using the authors’ GTT code, which has been linked to the CHEMKIN subroutines with the proposed reaction scheme and also has adopted a modified eddy dissipation combustion model.

  2. S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2013-07-01

    Mixing ratios of S3 and S4 are obtained from reanalysis of the spectra of true absorption in the visible range retrieved by Maiorov et al. (Maiorov, B.S. et al. [2005]. Solar Syst. Res. 39, 267-282) from the Venera 11 observations. These mixing ratios are fS3 = 11 ± 3 ppt at 3-10 km and 18 ± 3 ppt at 10-19 km, fS4 = 4 ± 4 ppt at 3-10 km and 6 ± 2 ppt at 10-19 km, and show a steep decrease in both S3 and S4 above 19 km. Photolysis rates of S3 and S4 at various altitudes are calculated using the Venera 11 spectra and constant photolysis yields as free parameters. The chemical kinetic model for the Venus lower atmosphere (Krasnopolsky, V.A. [2007]. Icarus 191, 25-37) has been improved by inclusion of the S4 cycle from Yung et al. (Yung, Y.L. et al. [2009]. J. Geophys. Res. 114, E00B34), reduction of the H2SO4 and CO fluxes at the upper boundary of 47 km by a factor of 4 in accord with the recent photochemical models for the middle atmosphere, by using a closed lower boundary for OCS instead of a free parameter for this species at the surface, and some minor updates. Our model with the S4 cycle but without the SO3 + 2 OCS reaction suggested by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) disagrees with the observations of OCS, CO, S3, and S4. However, inclusion of the S4 cycle improves the model fit to all observational constraints. The best-fit activation energy of 7800 K for thermolysis of S4 supports the S4 enthalpy from Mills (Mills, K.C. [1974]. Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides. Butterworths, London). Chemistry of the Venus lower atmosphere is initiated by disequilibrium products H2SO4 and CO from the middle atmosphere, photolysis of S3 and S4, and thermochemistry in the lowest scale height. The chemistry is mostly driven by sulfur that is formed in a slow reaction SO + SO, produces OCS, and results in dramatic changes in abundances of OCS, CO, and free sulfur allotropes. The SX + OCS

  3. Chemical, physical, and theoretical kinetics of an ultrafast folding protein.

    PubMed

    Kubelka, Jan; Henry, Eric R; Cellmer, Troy; Hofrichter, James; Eaton, William A

    2008-12-01

    An extensive set of equilibrium and kinetic data is presented and analyzed for an ultrafast folding protein--the villin subdomain. The equilibrium data consist of the excess heat capacity, tryptophan fluorescence quantum yield, and natural circular-dichroism spectrum as a function of temperature, and the kinetic data consist of time courses of the quantum yield from nanosecond-laser temperature-jump experiments. The data are well fit with three kinds of models--a three-state chemical-kinetics model, a physical-kinetics model, and an Ising-like theoretical model that considers 10(5) possible conformations (microstates). In both the physical-kinetics and theoretical models, folding is described as diffusion on a one-dimensional free-energy surface. In the physical-kinetics model the reaction coordinate is unspecified, whereas in the theoretical model, order parameters, either the fraction of native contacts or the number of native residues, are used as reaction coordinates. The validity of these two reaction coordinates is demonstrated from calculation of the splitting probability from the rate matrix of the master equation for all 10(5) microstates. The analysis of the data on site-directed mutants using the chemical-kinetics model provides information on the structure of the transition-state ensemble; the physical-kinetics model allows an estimate of the height of the free-energy barrier separating the folded and unfolded states; and the theoretical model provides a detailed picture of the free-energy surface and a residue-by-residue description of the evolution of the folded structure, yet contains many fewer adjustable parameters than either the chemical- or physical-kinetics models.

  4. Chemical, physical, and theoretical kinetics of an ultrafast folding protein

    PubMed Central

    Kubelka, Jan; Henry, Eric R.; Cellmer, Troy; Hofrichter, James; Eaton, William A.

    2008-01-01

    An extensive set of equilibrium and kinetic data is presented and analyzed for an ultrafast folding protein—the villin subdomain. The equilibrium data consist of the excess heat capacity, tryptophan fluorescence quantum yield, and natural circular-dichroism spectrum as a function of temperature, and the kinetic data consist of time courses of the quantum yield from nanosecond-laser temperature-jump experiments. The data are well fit with three kinds of models—a three-state chemical-kinetics model, a physical-kinetics model, and an Ising-like theoretical model that considers 105 possible conformations (microstates). In both the physical-kinetics and theoretical models, folding is described as diffusion on a one-dimensional free-energy surface. In the physical-kinetics model the reaction coordinate is unspecified, whereas in the theoretical model, order parameters, either the fraction of native contacts or the number of native residues, are used as reaction coordinates. The validity of these two reaction coordinates is demonstrated from calculation of the splitting probability from the rate matrix of the master equation for all 105 microstates. The analysis of the data on site-directed mutants using the chemical-kinetics model provides information on the structure of the transition-state ensemble; the physical-kinetics model allows an estimate of the height of the free-energy barrier separating the folded and unfolded states; and the theoretical model provides a detailed picture of the free-energy surface and a residue-by-residue description of the evolution of the folded structure, yet contains many fewer adjustable parameters than either the chemical- or physical-kinetics models. PMID:19033473

  5. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  6. Trajectory Calculations in Chemical Kinetics

    ERIC Educational Resources Information Center

    Hemphill, Gregory L.; White, John M.

    1972-01-01

    This exercise, suitable for an advanced undergraduate physical chemistry lab, examines the detailed theoretical description of a chemical reaction. Mathematical techniques of moderate complexity serve to introduce some aspects of theoretical chemistry. (Author/TS)

  7. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel. PMID:18541367

  8. Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling.

    PubMed

    Wu, Zeng-Qiang; Du, Wen-Bin; Li, Jin-Yi; Xia, Xing-Hua; Fang, Qun

    2015-08-01

    Numerical simulation can provide valuable insights for complex microfluidic phenomena coupling mixing and diffusion processes. Herein, a novel finite element model (FEM) has been established to extract chemical reaction kinetics in a microfluidic flow injection analysis (micro-FIA) system using high throughput sample introduction. To reduce the computation burden, the finite element mesh generation is performed with different scales based on the different geometric sizes of micro-FIA. In order to study the contribution of chemical reaction kinetics under non-equilibrium condition, a pseudo-first-order chemical kinetics equation is adopted in the numerical simulations. The effect of reactants diffusion on reaction products is evaluated, and the results demonstrate that the Taylor dispersion plays a determining role in the micro-FIA system. In addition, the effects of flow velocity and injection volume on the reaction product are also simulated. The simulated results agree well with the ones from experiments. Although gravity driven flow is used to the numerical model in the present study, the FEM model also can be applied into the systems with other driving forces such as pressure. Therefore, the established FEM model will facilitate the understanding of reaction mechanism in micro-FIA systems and help us to optimize the manifold of micro-FIA systems.

  9. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  10. Inflation Rates, Car Devaluation, and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Pogliani, Lionello; Berberan-Santos, Màrio N.

    1996-10-01

    The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions. In fact, capital devaluation during periods of rather low inflation rates or inflation measured over short periods shows a dynamics formally similar to that followed by first-order chemical reactions and they can thus be treated by the aid of the same mathematical formalism. Deviations from this similarity occurs for higher inflation rates. The dynamics of price devaluation for two different types of car, a compact car and a luxury car, has been followed for seven years long and it has been established that car devaluation is a process that is formally similar to a zeroth-order chemical kinetic process disregarding the type of car, if car devaluation is much faster than money devaluation. In fact, expensive cars devaluate with a faster rate than inexpensive cars.

  11. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  12. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  13. Perspective: Stochastic algorithms for chemical kinetics

    NASA Astrophysics Data System (ADS)

    Gillespie, Daniel T.; Hellander, Andreas; Petzold, Linda R.

    2013-05-01

    We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.

  14. Perspective: Stochastic algorithms for chemical kinetics.

    PubMed

    Gillespie, Daniel T; Hellander, Andreas; Petzold, Linda R

    2013-05-01

    We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.

  15. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  16. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation

    PubMed Central

    Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Burke, Ultan; Connolly, Jessica; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Curran, Henry J.

    2013-01-01

    An experimental ignition delay time study for the promising biofuel 2-methyl furan (2MF) was performed at equivalence ratios of 0.5, 1.0 and 2.0 for mixtures of 1% fuel in argon in the temperature range 1200–1800 K at atmospheric pressure. Laminar burning velocities were determined using the heat-flux method for mixtures of 2MF in air at equivalence ratios of 0.55–1.65, initial temperatures of 298–398 K and atmospheric pressure. A detailed chemical kinetic mechanism consisting of 2059 reactions and 391 species has been constructed to describe the oxidation of 2MF and is used to simulate experiment. Accurate reproduction of the experimental data has been obtained over all conditions with the developed mechanism. Rate of production and sensitivity analyses have been carried out to identify important consumption pathways of the fuel and key kinetic parameters under these conditions. The reactions of hydrogen atom with the fuel are highlighted as important under all experimental conditions studied, with abstraction by the hydrogen atom promoting reactivity and hydrogen atom addition to the furan ring inhibiting reactivity. This work, to the authors knowledge, is the first to combine theoretical and experimental work to describe the oxidation of any of the alkylated furans. The mechanism developed herein to describe 2MF combustion should also function as a sub-mechanism to describe the oxidation of 2,5-dimethyl furan whilst also providing key insights into the oxidation of this similar biofuel candidate. PMID:23814505

  17. A kinetic model for predicting biodegradation.

    PubMed

    Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O

    2007-01-01

    Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.

  18. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures.

    PubMed

    Haddad, S; Charest-Tardif, G; Krishnan, K

    2000-10-13

    The objective of this study was to predict and validate the theoretically possible, maximal impact of metabolic interactions on the blood concentration profile of each component in mixtures of volatile organic chemicals (VOCs) [dichloromethane (DCM), benzene (BEN), trichloroethylene (TCE), toluene (TOL), tetrachloroethylene (PER), ethylbenzene (EBZ), styrene (STY), as well as para, ortho-, and meta-xylene (p-XYL, o-XYL, m-XYL)] in the rat. The methodology consisted of: (1) obtaining the validated, physiologically based toxicokinetic (PBTK) model for each of the mixture components from the literature, (2) substituting the Michaelis-Menten description of metabolism with an equation based on the hepatic extraction ratio (E) for simulating the maximal impact of metabolic interactions (i.e., by setting E to 0 or 1 for simulating maximal inhibition or induction, respectively), and (3) validating the PBTK model simulations by comparing the predicted boundaries of venous blood concentrations with the experimental data obtained following exposure to various mixtures of VOCs. All experimental venous blood concentration data for 9 of the 10 chemicals investigated in the present study (PER excepted) fell within the boundaries of the maximal impact of metabolic inhibition and induction predicted by the PBTK model. The modeling approach validated in this study represents a potentially useful tool for screening/identifying the chemicals for which metabolic interactions are likely to be important in the context of mixed exposures and mixture risk assessment.

  19. Sum over Histories Representation for Chemical Kinetics.

    PubMed

    Bai, Shirong; Zhou, Dingyu; Davis, Michael J; Skodje, Rex T

    2015-01-01

    A new representation for chemical kinetics is introduced that is based on a sum over histories formulation that employs chemical pathways defined at a molecular level. The time evolution of a chemically reactive system is described by enumerating the most important pathways followed by a chemical moiety. An explicit formula for the pathway probabilities is derived and takes the form of an integral over a time-ordered product. When evaluating long pathways, the time-ordered product has a simple Monte Carlo representation that is computationally efficient. A small numerical stochastic simulation was used to identify the most important paths to include in the representation. The method was applied to a realistic H2/O2 combustion problem and is shown to yield accurate results. PMID:26263110

  20. Modeling the Human Kinetic Adjustment Factor for Inhaled Volatile Organic Chemicals: Whole Population Approach versus Distinct Subpopulation Approach

    PubMed Central

    Valcke, M.; Nong, A.; Krishnan, K.

    2012-01-01

    The objective of this study was to evaluate the impact of whole- and sub-population-related variabilities on the determination of the human kinetic adjustment factor (HKAF) used in risk assessment of inhaled volatile organic chemicals (VOCs). Monte Carlo simulations were applied to a steady-state algorithm to generate population distributions for blood concentrations (CAss) and rates of metabolism (RAMs) for inhalation exposures to benzene (BZ) and 1,4-dioxane (1,4-D). The simulated population consisted of various proportions of adults, elderly, children, neonates and pregnant women as per the Canadian demography. Subgroup-specific input parameters were obtained from the literature and P3M software. Under the “whole population” approach, the HKAF was computed as the ratio of the entire population's upper percentile value (99th, 95th) of dose metrics to the median value in either the entire population or the adult population. Under the “distinct subpopulation” approach, the upper percentile values in each subpopulation were considered, and the greatest resulting HKAF was retained. CAss-based HKAFs that considered the Canadian demography varied between 1.2 (BZ) and 2.8 (1,4-D). The “distinct subpopulation” CAss-based HKAF varied between 1.6 (BZ) and 8.5 (1,4-D). RAM-based HKAFs always remained below 1.6. Overall, this study evaluated for the first time the impact of underlying assumptions with respect to the interindividual variability considered (whole population or each subpopulation taken separately) when determining the HKAF. PMID:22523487

  1. Physiologically based models of metal kinetics.

    PubMed

    O'Flaherty, E J

    1998-05-01

    The issues confronting the modeler of metals kinetics are somewhat different from those with which the modeler of organic chemical behavior is faced. Particularly important features of metals kinetics include metal-protein binding and metal-metal interactions. Reduction, and for some metals oxidation, is frequently an intrinsic part of metal metabolism. Alkylation/dealkylation reactions may or may not render the metal less active, and the behavior of alkylated or dealkylated metabolites must often be included in a complete kinetic model. Despite these complexities, the kinetics of metals are as amenable to the techniques of physiologically based modeling as are the kinetics of organic chemicals. Like all models, those for metals kinetics have the potential to organize a variety of observations, sometimes including apparently inconsistent observations, into a coherent framework of behavior, to identify needs for more complete experimental information, and to assist the risk assessor in making judgments concerning dose-response relationships. Development of physiologically based models of the kinetic behavior of metals is in its very early stages. The kinetics of only four metals, arsenic, chromium, mercury, and lead, have been modeled with any degree of completeness. Of these, the lead model is the most fully realized at the present time. The chromium and mercury models are still in the process of development, and experimental data are being gathered to support further development and refinement of the arsenic model. We may expect to see continued progress made on these models and their practical applications, as well as the development of new models for other toxicologically significant metals such as cadmium, manganese, nickel, and aluminum. PMID:9631283

  2. Modelling heart rate kinetics.

    PubMed

    Zakynthinaki, Maria S

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women).

  3. Modelling Heart Rate Kinetics

    PubMed Central

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  4. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    SciTech Connect

    Som, S; Longman, D. E.; Luo, Z; Plomer, M; Lu, T; Senecal, P.K.; Pomraning, E

    2012-01-01

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.

  5. Perspective: Stochastic algorithms for chemical kinetics

    PubMed Central

    Gillespie, Daniel T.; Hellander, Andreas; Petzold, Linda R.

    2013-01-01

    We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes. PMID:23656106

  6. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 1: Physical model based on chemical kinetics in a two-compartment system

    SciTech Connect

    Krylov, S.N.; Huang, X.D.; Zeiler, L.F.; Dixon, D.G.; Greenberg, B.M.

    1997-11-01

    A quantitative structure-activity relationship model for the photoinduced toxicity of 16 polycyclic aromatic hydrocarbons (PAHs) to duckweed (Lemna gibba) in simulated solar radiation (SSR) was developed. Lemna gibba was chosen for this study because toxicity could be considered in two compartments: water column and leaf tissue. Modeling of photoinduced toxicity was described by photochemical reactions between PAHs and a hypothetical group of endogenous biomolecules (G) required for normal growth, with damage to G by PAHs and/or photomodified PAHs in SSR resulting in impaired growth. The reaction scheme includes photomodification of PAHs, uptake of PAHs into leaves, triplet-state formation of intact PAHs, photosensitization reactions that damage G, and reactions between photomodified PAHs and G. The assumptions used were: the PAH photomodification rate is slower than uptake of chemicals into leaves, the PAH concentration in aqueous solution is nearly constant during a toxicity test, the fluence rate of actinic radiation is lower within leaves than in the aqueous phase, and the toxicity of intact PAHs in the dark is negligible. A series of differential equations describing the reaction kinetics of intact and photomodifed PAHs with G was derived. The resulting equation for PAH toxicity was a function of treatment period, initial PAH concentration, relative absorbance of SSR by each PAH, quantum yield for formation of triplet-state PAH, and rate of PAH photomodification. Data for growth in the presence of intact and photomodified PAHs were used to empirically solve for a photosensitization constant (PSC) and a photomodification constant (PMC) for each of the 16 PAHs tested. For 9 PAHs the PMC dominates and for 7 PAHs the PSC dominates.

  7. High Fidelity Modeling of Turbulent Mixing and Chemical Kinetics Interactions in a Post-Detonation Flow Field

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael

    2015-06-01

    Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.

  8. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon

    2008-12-15

    The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

  9. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant

  10. Optimization of KINETICS Chemical Computation Code

    NASA Technical Reports Server (NTRS)

    Donastorg, Cristina

    2012-01-01

    NASA JPL has been creating a code in FORTRAN called KINETICS to model the chemistry of planetary atmospheres. Recently there has been an effort to introduce Message Passing Interface (MPI) into the code so as to cut down the run time of the program. There has been some implementation of MPI into KINETICS; however, the code could still be more efficient than it currently is. One way to increase efficiency is to send only certain variables to all the processes when an MPI subroutine is called and to gather only certain variables when the subroutine is finished. Therefore, all the variables that are used in three of the main subroutines needed to be investigated. Because of the sheer amount of code that there is to comb through this task was given as a ten-week project. I have been able to create flowcharts outlining the subroutines, common blocks, and functions used within the three main subroutines. From these flowcharts I created tables outlining the variables used in each block and important information about each. All this information will be used to determine how to run MPI in KINETICS in the most efficient way possible.

  11. Chemical Weathering Kinetics of Basalt on Venus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the kinetics for chemical weathering reactions involving basalt on Venus. The thermochemical reactions being studied are important for the CO2 atmosphere-lithosphere cycle on Venus and for the atmosphere-surface reactions controlling the oxidation state of the surface of Venus. These reactions include the formation of carbonate and scapolite minerals, and the oxidation of Fe-bearing minerals. These experiments and calculations are important for interpreting results from the Pioneer Venus, Magellan, Galileo flyby, Venera, and Vega missions to Venus, for interpreting results from Earth-based telescopic observations, and for the design of new Discovery class (e.g., VESAT) and New Millennium missions to Venus such as geochemical landers making in situ elemental and mineralogical analyses, and orbiters, probes and balloons making spectroscopic observations of the sub-cloud atmosphere of Venus.

  12. Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

    PubMed Central

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-01-01

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin. PMID:25867482

  13. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase.

    PubMed

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-01-01

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of k add/k total and k abs/k total at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin. PMID:25867482

  14. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase.

    PubMed

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-04-10

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of k add/k total and k abs/k total at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.

  15. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  17. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling.

    PubMed

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (Xmax), biodegradation constant of DEHP (k), half-life (t1/2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L). The greatest μ and the largest Xmax occurred in media supplemented with 1000mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000mg/L) within 60h of growth. The k and t1/2 were 0.024h(-1) and 28h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC-MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP.

  18. Role of substrate inhibition kinetics in enzymatic chemical oscillations.

    PubMed Central

    Shen, P; Larter, R

    1994-01-01

    Two chemical kinetic models are investigated using standard nonlinear dynamics techniques to determine the conditions under which substrate inhibition kinetics can lead to oscillations. The first model is a classical substrate inhibition scheme based on Michaelis-Menten kinetics and involves a single substrate. Only when this reaction takes place in a flow reactor (i.e., both substrate and product are taken to follow reversible flow terms) are oscillations observed; however, the range of parameter values over which such oscillations occur is so narrow it is experimentally unobservable. A second model based on a general mechanism applied to the kinetics of many pH-dependent enzymes is also studied. This second model includes both substrate inhibition kinetics as well as autocatalysis through the activation of the enzyme by hydrogen ion. We find that it is the autocatalysis that is always responsible for oscillatory behavior in this scheme. The substrate inhibition terms affect the steady-state behavior but do not lead to oscillations unless product inhibition or multiple substrates are present; this is a general conclusion we can draw from our studies of both the classical substrate inhibition scheme and the pH-dependent enzyme mechanism. Finally, an analysis of the nullclines for these two models allows us to prove that the nullcline slopes must have a negative value for oscillatory behavior to exist; this proof can explain our results. From our analysis, we conclude with a brief discussion of other enzymes that might be expected to produce oscillatory behavior based on a pH-dependent substrate inhibition mechanism. Images FIGURE 8 FIGURE 10 PMID:7819481

  19. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  20. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  1. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    SciTech Connect

    Stalder, K.R.; Vidmar, R.J.; Nersisyan, G.; Graham, W.G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts ({approx}850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  2. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  3. Stochastic kinetic mean field model

    NASA Astrophysics Data System (ADS)

    Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.

    2016-07-01

    This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on http://skmf.eu website). We will show that the result of one SKMF run may correspond to the average of several KMC runs. The number of KMC runs is inversely proportional to the amplitude square of the noise in SKMF. This makes SKMF an ideal tool also for statistical purposes.

  4. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGESBeta

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still

  5. Investigating the chemical mechanisms of the functionalization and fragmentation of hydrocarbons in the heterogeneous oxidation by OH using a stochastic kinetics model

    NASA Astrophysics Data System (ADS)

    Wiegel, A. A.; Wilson, K. R.; Hinsberg, B.; Houle, F. A.

    2014-12-01

    While the heterogeneous oxidation of atmospheric organic aerosols influences their effects on climate, air quality, and visibility, a more detailed understanding of the chemical mechanisms in heterogeneous oxidation is crucial for improving models of their chemical evolution in the atmosphere. Previous experimental work in our lab has shown two general reaction pathways for organic aerosol upon oxidation: functionalization, which adds additional oxygen functional groups to the carbon skeleton, and fragmentation, which leads to C-C bond scission and lower molecular weight oxidized products. Furthermore, these pathways were also found to be dependent on molecular structure, with more branched or oxidized hydrocarbons undergoing more fragmentation than less branched or oxidized hydrocarbons. However, while the mechanisms of hydrocarbon oxidation have been studied extensively in the gas phase, to what extent the gas phase mechanisms of hydrocarbon oxidation can be reliably applied to heterogeneous or bulk oxidation in aerosol remains unclear. To investigate the role of the condensed phase and molecular structure in the mechanism of heterogeneous organic aerosol oxidation, stochastic kinetics models are developed and compared to measurements of the products in the oxidation of hydrocarbons. Within the aerosol bulk, condensed phase rate coefficients and product branching ratios for peroxy reactions lead to different product distributions than those expected from gas phase peroxy reactions due to the presence of the liquid radical cage at the reaction site. As a result, tertiary alcohols and ketones were found to be the predominate products in the oxidation of squalane as observed in experiments. As the aerosol becomes further oxidized, β-scission of alkoxy radicals with neighboring functional groups is the primary fragmentation pathway leading to lower volatility products. In conjunction with this fragmentation mechanism, elimination of CO2 from acyloxy radicals was

  6. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1994-01-01

    which provides the relationships between the predictions of a kinetics model and the input parameters of the problem. LSENS provides for efficient and accurate chemical kinetics computations and includes sensitivity analysis for a variety of problems, including nonisothermal conditions. LSENS replaces the previous NASA general chemical kinetics codes GCKP and GCKP84. LSENS is designed for flexibility, convenience and computational efficiency. A variety of chemical reaction models can be considered. The models include static system, steady one-dimensional inviscid flow, reaction behind an incident shock wave including boundary layer correction, and the perfectly stirred (highly backmixed) reactor. In addition, computations of equilibrium properties can be performed for the following assigned states, enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static problems LSENS computes sensitivity coefficients with respect to the initial values of the dependent variables and/or the three rates coefficient parameters of each chemical reaction. To integrate the ODEs describing chemical kinetics problems, LSENS uses the packaged code LSODE, the Livermore Solver for Ordinary Differential Equations, because it has been shown to be the most efficient and accurate code for solving such problems. The sensitivity analysis computations use the decoupled direct method, as implemented by Dunker and modified by Radhakrishnan. This method has shown greater efficiency and stability with equal or better accuracy than other methods of sensitivity analysis. LSENS is written in FORTRAN 77 with the exception of the NAMELIST extensions used for input. While this makes the code fairly machine independent, execution times on IBM PC compatibles would be unacceptable to most users. LSENS has been successfully implemented on a Sun4 running SunOS and a DEC VAX running VMS. With minor modifications, it should also be easily implemented on other

  7. Chemical kinetic and photochemical data for use in stratospheric modeling evaluation number 4: NASA panel for data evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Evaluated sets of rate constants and photochemical cross sections compiled by the Panel are presented. The primary application of the data is in the modelling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  8. A Kinetic-fluid Model

    SciTech Connect

    First Author = C.Z. Cheng; Jay R. Johnson

    1998-07-10

    A nonlinear kinetic-fluid model for high-beta plasmas with multiple ion species which can be applied to multiscale phenomena is presented. The model embeds important kinetic effects due to finite ion Larmor radius (FLR), wave-particle resonances, magnetic particle trapping, etc. in the framework of simple fluid descriptions. When further restricting to low frequency phenomena with frequencies less than the ion cyclotron frequency the kinetic-fluid model takes a simpler form in which the fluid equations of multiple ion species collapse into single-fluid density and momentum equations and a low frequency generalized Ohm's law. The kinetic effects are introduced via plasma pressure tensors for ions and electrons which are computed from particle distribution functions that are governed by the Vlasov equation or simplified plasma dynamics equations such as the gyrokinetic equation. The ion FLR effects provide a finite parallel electric field, a perpendicular velocity that modifies the ExB drift, and a gyroviscosity tensor, all of which are neglected in the usual one-fluid MHD description. Eigenmode equations are derived which include magnetosphere-ionosphere coupling effects for low frequency waves (e.g., kinetic/inertial Alfven waves and ballooning-mirror instabilities).

  9. Investigation of the kinetic model equations

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Zhong, Chengwen

    2014-03-01

    Currently the Boltzmann equation and its model equations are widely used in numerical predictions for dilute gas flows. The nonlinear integro-differential Boltzmann equation is the fundamental equation in the kinetic theory of dilute monatomic gases. By replacing the nonlinear fivefold collision integral term by a nonlinear relaxation term, its model equations such as the famous Bhatnagar-Gross-Krook (BGK) equation are mathematically simple. Since the computational cost of solving model equations is much less than that of solving the full Boltzmann equation, the model equations are widely used in predicting rarefied flows, multiphase flows, chemical flows, and turbulent flows although their predictions are only qualitatively right for highly nonequilibrium flows in transitional regime. In this paper the differences between the Boltzmann equation and its model equations are investigated aiming at giving guidelines for the further development of kinetic models. By comparing the Boltzmann equation and its model equations using test cases with different nonequilibrium types, two factors (the information held by nonequilibrium moments and the different relaxation rates of high- and low-speed molecules) are found useful for adjusting the behaviors of modeled collision terms in kinetic regime. The usefulness of these two factors are confirmed by a generalized model collision term derived from a mathematical relation between the Boltzmann equation and BGK equation that is also derived in this paper. After the analysis of the difference between the Boltzmann equation and the BGK equation, an attempt at approximating the collision term is proposed.

  10. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  11. Kinetic Modeling of Microbiological Processes

    SciTech Connect

    Liu, Chongxuan; Fang, Yilin

    2012-08-26

    Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

  12. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    SciTech Connect

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.

    2008-08-28

    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  13. Kinetic model of HIV infection

    SciTech Connect

    Zhdanov, V. P.

    2007-10-15

    Recent experiments clarifying the details of exhaustion of CD8 T cells specific to various strains of human immunodeficiency virus (HIV) are indicative of slow irreversible (on a one-year time scale) deterioration of the immune system. The conventional models of HIV kinetics do not take this effect into account. Removing this shortcoming, we show the likely influence of such changes on the escape of HIV from control of the immune system.

  14. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-01

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  15. Hungarian University Students' Misunderstandings in Thermodynamics and Chemical Kinetics

    ERIC Educational Resources Information Center

    Turanyi, Tamas; Toth, Zoltan

    2013-01-01

    The misunderstandings related to thermodynamics (including chemical equilibrium) and chemical kinetics of first and second year Hungarian students of chemistry, environmental science, biology and pharmacy were investigated. We demonstrated that Hungarian university students have similar misunderstandings in physical chemistry to those reported in…

  16. Chemical kinetics computer program for static and flow reactions

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.

  17. Detailed Chemical Kinetic Reaction Mechanisms for Incineration of Organophosphorus and Fluoro-Organophosphorus Compounds

    SciTech Connect

    Glaude, P A; Melius, C; Pitz, W J; Westbrook, C K

    2001-12-13

    A detailed chemical kinetic reaction mechanism is developed to describe incineration of the chemical warfare nerve agent sarin (GB), based on commonly used principles of bond additivity and hierarchical reaction mechanisms. The mechanism is based on previous kinetic models of organophosphorus compounds such as TMP, DMMP and DIMP that are often used as surrogates to predict incineration of GB. Kinetic models of the three surrogates and GB are then used to predict their consumption in a perfectly stirred reactor fueled by natural gas to simulate incineration of these chemicals. Computed results indicate that DIMP is the only one of these surrogates that adequately describes combustion of GB under comparable conditions. The kinetic pathways responsible for these differences in reactivity are identified and discussed. The most important reaction in GB and DIMP that makes them more reactive than TMP or DMMP is found to be a six-center molecular elimination reaction producing propene.

  18. Kinetic models of conjugated metabolic cycles

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.

    2016-01-01

    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  19. A kinetic-theory approach to turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Chung, P. M.

    1976-01-01

    The paper examines the mathematical and physical foundations for the kinetic theory of reactive turbulent flows, discussing the differences and relation between the kinetic and averaged equations, and comparing some solutions of the kinetic equations obtained by the Green's function method with those obtained by the approximate bimodal method. The kinetic method described consists essentially in constructing the probability density functions of the chemical species on the basis of solutions of the Langevin stochastic equation for the influence of eddies on the behavior of fluid elements. When the kinetic equations are solved for the structure of the diffusion flame established in a shear layer by the bimodal method, discontinuities in gradients of the mean concentrations at the two flame edges appear. This is a consequence of the bimodal approximation of all distribution functions by two dissimilar half-Maxwellian functions, which is a very crude approximation. These discontinuities do not appear when the solutions are constructed by the Green's function method described here.

  20. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  1. The integration of data on physico-chemical properties, in vitro-derived toxicity data and physiologically based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary.

    PubMed

    Blaauboer, B J

    2003-02-18

    Toxicity of a compound for an organism is dependent on the route of exposure, the amount (or concentration), the way in which the compound is taken up, distributes and is eliminated from the organism (ADME, kinetics) and the intrinsic properties (reactivity; mode of action, dynamics) of the compound towards the organism. These three elements: exposure, kinetics and dynamics form the basis of hazard and risk evaluations. Developments in our knowledge of the way in which physico-chemical properties of chemicals (on the one side) and physiological processes in the organism (on the other side) determine a compound's toxicity have greatly increased our understanding of toxicological processes and our ability to interpret experimental results. This has now resulted in the development of model systems in which the above-mentioned processes can be described mathematically. Biokinetic modelling is currently of great interest, but the further development of toxicodynamic modelling is equally important. The combination of both allows the estimation of a compound's critical amount/concentration on the critical site of action, which ideally would be the basis for hazard and risk assessments. In vitro systems have been extremely useful in studying the molecular basis of a chemical's biological activity, including its mechanism(s) of toxic action. Other achievements include the prediction of biological reactivity on the basis of a compound's physico-chemical properties and the construction of quantitative structure-activity relationships (QSARs). However, for the incorporation of in vitro-derived data as well as the results of QSARs, kinetic modelling is indispensable. Thus, biokinetic and toxicodynamic modelling are important (if not crucial) tools in toxicological research and there are increasing opportunities to incorporate the results of this work in hazard and risk assessments. Their implementation will allow a much more scientifically-based and a better structured risk

  2. Ernest Rutherford, Avogadro's Number, and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Leenson, I. A.

    1998-08-01

    The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century. A brief discussion of earlier and modern methods for the determination of this fundamental constant is followed by vast quotations from the works of Rutherford, Boltwood and Geiger. Then there are given a dozen of problems and questions for students about these classical experiments; they vary in complexity from rather simple to quite challenging. Additional information and hints are provided to help the students in solving the problems. The last part contains detailed answers and solutions to all problems. The article will be useful for students of general chemistry, radiochemistry and physical chemistry (kinetics).

  3. Kinetic models of immediate exchange

    NASA Astrophysics Data System (ADS)

    Heinsalu, Els; Patriarca, Marco

    2014-08-01

    We propose a novel kinetic exchange model differing from previous ones in two main aspects. First, the basic dynamics is modified in order to represent economies where immediate wealth exchanges are carried out, instead of reshufflings or uni-directional movements of wealth. Such dynamics produces wealth distributions that describe more faithfully real data at small values of wealth. Secondly, a general probabilistic trading criterion is introduced, so that two economic units can decide independently whether to trade or not depending on their profit. It is found that the type of the equilibrium wealth distribution is the same for a large class of trading criteria formulated in a symmetrical way with respect to the two interacting units. This establishes unexpected links between and provides a microscopic foundations of various kinetic exchange models in which the existence of a saving propensity is postulated. We also study the generalized heterogeneous version of the model in which units use different trading criteria and show that suitable sets of diversified parameter values with a moderate level of heterogeneity can reproduce realistic wealth distributions with a Pareto power law.

  4. Parameter Optimization of Nitriding Process Using Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils

    2016-09-01

    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  5. Chemical zonation in garnet: kinetics or chemical equilibrium?

    NASA Astrophysics Data System (ADS)

    Ague, Jay; Chu, Xu; Axler, Jennifer

    2015-04-01

    Chemical zonation in garnet is widely used to reconstruct the pressure (P), temperature (T), time (t), and fluid (f) histories of mountain belts. Zonation is thought to result largely from changing P - T - t - f conditions during growth as well as post-growth intracrystalline diffusion. Chemical zonation is conventionally interpreted to mean that at least some of the garnet interior was out of chemical equilibrium with the matrix during metamorphism. In this case, thermally-activated diffusion in garnet is too slow to equalize chemical potentials. However, in their groundbreaking paper, Tajčmanová et al. (2014) postulate that in high-grade rocks, chemical zonation may actually reflect attainment of equilibrium. In this scenario, diffusion is fast but viscous relaxation is slow such that the zonation patterns directly mirror internal pressure gradients within garnet. Such zoning would likely be very different than typical concentric growth zonation. Furthermore, Baumgartner et al. (2010) hypothesize that given significant variations in the molar volumes of garnet endmembers, diffusional relaxation may produce internal pressure gradients if the garnet behaves as a near constant-volume system. Consequently, growth zoning could be preserved by pressure variations within the garnet that equalize chemical potentials and slow or stop diffusion (i.e., the garnet is chemically heterogeneous but maintains internal chemical equilibrium due to the pressure variations). This mechanism predicts that areas of garnet with small compositional contrasts would undergo more diffusional relaxation than areas with large contrasts. Moreover, generation of large internal pressure gradients approaching 1 GPa would be expected to induce deformation (e.g., fracturing) in regions of large compositional gradients. Strongly growth-zoned amphibolite facies garnet from the Barrovian zones, Scotland (Ague and Baxter, 2007) shows neither of these features. The sharp compositional gradients are

  6. Spectral method for a kinetic swarming model

    DOE PAGESBeta

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-04-28

    Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.

  7. Chemical Kinetics at the Single-Molecule Level

    ERIC Educational Resources Information Center

    Levitus, Marcia

    2011-01-01

    For over a century, chemists have investigated the rates of chemical reactions using experimental conditions involving huge numbers of molecules. As a consequence, the description of the kinetics of the reaction in terms of average values was good enough for all practical purposes. From the pedagogical point of view, such a description misses the…

  8. Prospective Chemistry Teachers' Conceptions of Chemical Thermodynamics and Kinetics

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Pinarbasi, Tacettin; Canpolat, Nurtac

    2010-01-01

    This study aimed at identifying specifically prospective chemistry teachers' difficulties in determining the differences between the concepts of chemical thermodynamics and kinetics. Data were collected from 67 prospective chemistry teachers at Kazim Karabekir Education Faculty of Ataturk University in Turkey during 2005-2006 academic year. Data…

  9. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  10. Kinetic models in industrial biotechnology - Improving cell factory performance.

    PubMed

    Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats

    2014-07-01

    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.

  11. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  12. Kinetic modeling of non-ideal explosives

    SciTech Connect

    Fried, L E; Howard, W M; Souers, P C

    1999-03-01

    We have implemented a Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions, while other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. In addition, we develop an exp-6 equation of state for the product fluids that reproduces a wide range experimental shock Hugoniot and static compression data. For unreacted solids, including solid and liquid Al and Al{sub 2}O{sub 3}, we use a Murnaghan form for the equation of state. We find that we can replicate experimental detonation velocities to within a few per cent for a wide range of explosives, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  13. A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Xu, Kun

    1999-01-01

    This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.

  14. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  15. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  16. Chemical modelling of molecular sources

    NASA Astrophysics Data System (ADS)

    Nejad, L. A. M.; Millar, T. J.

    1987-09-01

    The authors present detailed results of a chemical kinetic model of the outer envelope (1016cm to 1018cm) of the carbon-rich star IRC +10216. The chemistry is driven by a combination of cosmic-ray ionization and ultraviolet radiation and, starting from 7 parent molecules injected into the envelope, the authors find that a complex chemistry ensues. Ion-molecule reactions can efficiently build hydrocarbon species and account for the observed abundances of CH3CN and HNC. Reactions involving CO may lead to observable abundances of oxygen-bearing molecules such as C3O, CH2CO and HCO+.

  17. Biomass torrefaction: modeling of volatile and solid product evolution kinetics.

    PubMed

    Bates, Richard B; Ghoniem, Ahmed F

    2012-11-01

    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  18. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  19. Accelerating the Computation of Detailed Chemical Reaction Kinetics for Simulating Combustion of Complex Fuels

    SciTech Connect

    Grout, Ray W

    2012-01-01

    Combustion of hydrocarbon fuels has been a very challenging scientific and engineering problem due to the complexity of turbulent flows and hydrocarbon reaction kinetics. There is an urgent need to develop an efficient modeling capability to accurately predict the combustion of complex fuels. Detailed chemical kinetic models for the surrogates of fuels such as gasoline, diesel and JP-8 consist of thousands of chemical species and Arrhenius reaction steps. Oxygenated fuels such as bio-fuels and heavier hydrocarbons, such as from newer fossil fuel sources, are expected to have a much more complex chemistry requiring increasingly larger chemical kinetic models. Such models are beyond current computational capability, except for homogeneous or partially stirred reactor type calculations. The advent of highly parallel multi-core processors and graphical processing units (GPUs) promises a steep increase in computational performance in the coming years. This paper will present a software framework that translates the detailed chemical kinetic models to high- performance code targeted for GPU accelerators.

  20. Fast algorithm for calculating chemical kinetics in turbulent reacting flow

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Pratt, D. T.

    1986-01-01

    This paper addresses the need for a fast batch chemistry solver to perform the kinetics part of a split operator formulation of turbulent reacting flows, with special attention focused on the solution of the ordinary differential equations governing a homogeneous gas-phase chemical reaction. For this purpose, a two-part predictor-corrector algorithm which incorporates an exponentially fitted trapezoidal method was developed. The algorithm performs filtering of ill-posed initial conditions, automatic step-size selection, and automatic selection of Jacobi-Newton or Newton-Raphson iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm, termed CREK1D (combustion reaction kinetics, one-dimensional), compared favorably with the code LSODE when tested on two representative problems drawn from combustion kinetics, and is faster than LSODE.

  1. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  2. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  3. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

  4. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path.

  5. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path. PMID:26117883

  6. A multipurpose reduced chemical-kinetic mechanism for methanol combustion

    NASA Astrophysics Data System (ADS)

    Fernández-Tarrazo, Eduardo; Sánchez-Sanz, Mario; Sánchez, Antonio L.; Williams, Forman A.

    2016-07-01

    A multipurpose reduced chemical-kinetic mechanism for methanol combustion comprising 8 overall reactions and 11 reacting chemical species is presented. The development starts by investigating the minimum set of elementary reactions needed to describe methanol combustion with reasonable accuracy over a range of conditions of temperature, pressure, and composition of interest in combustion. Starting from a 27-step mechanism that has been previously tested and found to give accurate predictions of ignition processes for these conditions, it is determined that the addition of 11 elementary reactions taken from its basis (San Diego) mechanism extends the validity of the description to premixed-flame propagation, strain-induced extinction of non-premixed flames, and equilibrium composition and temperatures, giving results that compare favourably with experimental measurements and also with computations using the 247-step detailed San Diego mechanism involving 50 reactive species. Specifically, premixed-flame propagation velocities and extinction strain rates for non-premixed counterflow flames calculated with the 38-step mechanism show departures from experimental measurements and detailed-chemistry computations that are roughly on the order of 10%, comparable with expected experimental uncertainties. Similar accuracy is found in comparisons of autoignition times over the range considered, except at very high temperatures, under which conditions the computations tend to overpredict induction times for all of the chemistry descriptions tested. From this 38-step mechanism, the simplification is continued by introducing steady-state approximations for the intermediate species CH3, CH4, HCO, CH3O, CH2OH, and O, leading to an 8-step reduced mechanism that provides satisfactory accuracy for all conditions tested. The flame computations indicate that thermal diffusion has a negligible influence on methanol combustion in all cases considered and that a mixture-average species

  7. The Role of Comprehensive Detailed Chemical Kinetic Reaction Mechanisms in Combustion Research

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-07-16

    Recent developments by the authors in the field of comprehensive detailed chemical kinetic reaction mechanisms for hydrocarbon fuels are reviewed. Examples are given of how these mechanisms provide fundamental chemical insights into a range of combustion applications. Practical combustion consists primarily of chemical heat release from reactions between a fuel and an oxidizer, and computer simulations of practical combustion systems have become an essential tool of combustion research (Westbrook et al., 2005). At the heart of most combustion simulations, the chemical kinetic submodel frequently is the most detailed, complex and computationally costly part of a system model. Historically, the chemical submodel equations are solved using time-implicit numerical algorithms, due to the extreme stiffness of the coupled rate equations, with a computational cost that varies roughly with the cube of the number of chemical species in the model. While early mechanisms (c. 1980) for apparently simple fuels such as methane (Warnatz, 1980) or methanol (Westbrook and Dryer, 1979) included perhaps 25 species, current detailed mechanisms for much larger, more complex fuels such as hexadecane (Fournet et al., 2001; Ristori et al., 2001; Westbrook et al., 2008) or methyl ester methyl decanoate (Herbinet et al., 2008) have as many as 2000 or even 3000 species. Rapid growth in capabilities of modern computers has been an essential feature in this rapid growth in the size and complexity of chemical kinetic reaction mechanisms.

  8. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  9. The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone

    SciTech Connect

    Pichon, S.; Black, G.; Simmie, J.M.; Curran, H.J.; Chaumeix, N.; Yahyaoui, M.; Donohue, R.

    2009-02-15

    Acetone ignition delay and stretch-free laminar flame speed measurements have been carried out and a kinetic model has been developed to simulate these and literature data for acetone and for ketene, which was found to be an important intermediate in its oxidation. The mechanism has been based on one originally devised for dimethyl ether and modified through validation of the hydrogen, carbon monoxide and methane sub-mechanisms. Acetone oxidation in argon was studied behind reflected shock waves in the temperature range 1340-1930 K, at 1 atm and at equivalence ratios of 0.5, 1 and 2; it is also shown that the addition of up to 15% acetone to a stoichiometric n-heptane mixture has no effect on the measured ignition delay times. Flame speeds at 298 K and 1 atm of pure acetone in air were measured in a spherical bomb; a maximum flame speed of {proportional_to}35 cm s{sup -1} at {phi}=1.15 is indicated. (author)

  10. A chemical kinetic model for NO sub x removal in an aqueous scrubber system using the additive Fe(II)ter dot EDTA

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1992-01-01

    Addition of the metal chelate, ferrous{center dot} ethylenediaminetetraacetate anion (Fe(II){center dot}EDTA{sup 2{minus}}), has been shown to increase the amount of gaseous nitrogen oxides absorbed from a gas stream containing sulfur dioxide, where an aqueous scrubbing process is used to treat the gas. Recently, we published data on improved systems for NO{sub x} removal that incorporate an antioxidant and/or reducing agent (A/R) in the process along with the Fe(H){center dot}EDTA. The purpose of the A/R is to maintain the highest possible concentration of iron in the +2 form. The major mechanism for NO removal is believed to be the equilibrium reaction of Fe(II){center dot}EDTA with dissolved NO to form a Fe(II){center dot}EDTA{center dot}NO complex. It has been shown that both sulfite and bisulfite anions can react with Fe(II){center dot}EDTA{center dot}NO to regenerate Fe(II){center dot}EDTA and other products. In a complex system, other oxidation and reduction mechanisms are also possible. We have chosen, therefore, to approach this problem empirically by fitting our experimental data to a model containing at most three kinetic terms, chosen from among the following: a baseline removal rate, which is equivalent to the rate of reaction of Fe(II){center dot}EDTA with nitric oxide; a regeneration rate, which is equivalent to decomposition of the Fe(II){center dot}EDTA{center dot}NO complex to Fe(II){center dot}EDTA; an oxidation rate, which is a combined rate for all possible oxidation reactions involving Fe(II){center dot}EDTA; and a reduction rate, which is a combined rate for all possible reduction reactions involving ferric-EDTA in the system.

  11. A chemical kinetic model for NO{sub x} removal in an aqueous scrubber system using the additive Fe[II]{center_dot}EDTA

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1992-09-01

    Addition of the metal chelate, ferrous{center_dot} ethylenediaminetetraacetate anion (Fe[II]{center_dot}EDTA{sup 2{minus}}), has been shown to increase the amount of gaseous nitrogen oxides absorbed from a gas stream containing sulfur dioxide, where an aqueous scrubbing process is used to treat the gas. Recently, we published data on improved systems for NO{sub x} removal that incorporate an antioxidant and/or reducing agent (A/R) in the process along with the Fe[H]{center_dot}EDTA. The purpose of the A/R is to maintain the highest possible concentration of iron in the +2 form. The major mechanism for NO removal is believed to be the equilibrium reaction of Fe[II]{center_dot}EDTA with dissolved NO to form a Fe[II]{center_dot}EDTA{center_dot}NO complex. It has been shown that both sulfite and bisulfite anions can react with Fe[II]{center_dot}EDTA{center_dot}NO to regenerate Fe[II]{center_dot}EDTA and other products. In a complex system, other oxidation and reduction mechanisms are also possible. We have chosen, therefore, to approach this problem empirically by fitting our experimental data to a model containing at most three kinetic terms, chosen from among the following: a baseline removal rate, which is equivalent to the rate of reaction of Fe[II]{center_dot}EDTA with nitric oxide; a regeneration rate, which is equivalent to decomposition of the Fe[II]{center_dot}EDTA{center_dot}NO complex to Fe[II]{center_dot}EDTA; an oxidation rate, which is a combined rate for all possible oxidation reactions involving Fe[II]{center_dot}EDTA; and a reduction rate, which is a combined rate for all possible reduction reactions involving ferric-EDTA in the system.

  12. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  13. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  14. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    SciTech Connect

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere.

  15. Viral kinetic modeling: state of the art

    DOE PAGESBeta

    Canini, Laetitia; Perelson, Alan S.

    2014-06-25

    Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viralmore » replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.« less

  16. Viral kinetic modeling: state of the art

    SciTech Connect

    Canini, Laetitia; Perelson, Alan S.

    2014-06-25

    Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viral replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.

  17. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    SciTech Connect

    Santoro, Robers; Dryer, Frederick; Ju, Yiguang

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  18. Hard-sphere kinetic models for inert and reactive mixtures.

    PubMed

    Polewczak, Jacek

    2016-10-19

    I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A (*), B (*), in which the chemical reactions are of the type [Formula: see text], with A (*) and B (*) being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided. PMID:27545341

  19. Hard-sphere kinetic models for inert and reactive mixtures

    NASA Astrophysics Data System (ADS)

    Polewczak, Jacek

    2016-10-01

    I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A *, B *, in which the chemical reactions are of the type A+B\\rightleftharpoons {{A}\\ast}+{{B}\\ast} , with A * and B * being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided.

  20. Hard-sphere kinetic models for inert and reactive mixtures.

    PubMed

    Polewczak, Jacek

    2016-10-19

    I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A (*), B (*), in which the chemical reactions are of the type [Formula: see text], with A (*) and B (*) being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided.

  1. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    PubMed

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  2. Theory of homogeneous nucleation - A chemical kinetic view

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Qiu, H.

    1986-01-01

    A simple function with two undetermined parameters has been used in place of the Thomson-Gibbs relation to relate the activation energy of the vaporization reaction to cluster size. The parameters are iterated to assume optimum values in numerical computation so experimental data may be correlated. Calculations show this approach closely predicts and correlates available data for water, benzene, and ethanol. The nucleation formulism is redeveloped with an emphasis on the chemical kinetic view. Surface tension of the liquid and free energy of droplet formation are not used in its derivation.

  3. Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1973-01-01

    Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.

  4. Kinetic Modeling using BioPAX ontology

    PubMed Central

    Ruebenacker, Oliver; Moraru, Ion. I.; Schaff, James C.; Blinov, Michael L.

    2010-01-01

    Thousands of biochemical interactions are available for download from curated databases such as Reactome, Pathway Interaction Database and other sources in the Biological Pathways Exchange (BioPAX) format. However, the BioPAX ontology does not encode the necessary information for kinetic modeling and simulation. The current standard for kinetic modeling is the System Biology Markup Language (SBML), but only a small number of models are available in SBML format in public repositories. Additionally, reusing and merging SBML models presents a significant challenge, because often each element has a value only in the context of the given model, and information encoding biological meaning is absent. We describe a software system that enables a variety of operations facilitating the use of BioPAX data to create kinetic models that can be visualized, edited, and simulated using the Virtual Cell (VCell), including improved conversion to SBML (for use with other simulation tools that support this format). PMID:20862270

  5. A green approach towards adoption of chemical reaction model on 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane decomposition by differential isoconversional kinetic analysis.

    PubMed

    Das, Mitali; Shu, Chi-Min

    2016-01-15

    This study investigated the thermal degradation products of 2,5-dimethyl-2,5-di-(tert-butylperoxy) hexane (DBPH), by TG/GC/MS to identify runaway reaction and thermal safety parameters. It also included the determination of time to maximum rate under adiabatic conditions (TMR(ad)) and self-accelerating decomposition temperature obtained through Advanced Kinetics and Technology Solutions. The apparent activation energy (Ea) was calculated from differential isoconversional kinetic analysis method using differential scanning calorimetry experiments. The Ea value obtained by Friedman analysis is in the range of 118.0-149.0 kJ mol(-1). The TMR(ad) was 24.0 h with an apparent onset temperature of 82.4°C. This study has also established an efficient benchmark for a thermal hazard assessment of DBPH that can be applied to assure safer storage conditions.

  6. Joint Non-kinetic Effects Model (JNEM)

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Metivier, Timothy

    2006-01-01

    This slide presentation reviews the development of the Joint Non-kinetic Effects Model (JNEM), which is tool to support Battle Command Training that links simulation-generated non-kinetic events and outcomes to Training Audience Command and Staff decisions. JNEM helps create the operating environment for the following population groups (P-groups): (1) Local Civilians on the Battlefield, (2) Inter-Governmental Organizations (3) Non-Governmental Organizations (4) Contractors on the battlefield.

  7. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  8. Chemical Kinetic Study of Toluene Oxidation Under Premixed and Nonpremixed Conditions

    SciTech Connect

    Costa, I D; Bozzelli, J W; Seiser, R; Pitz, W J; Westbrook, C K; Chen, C -; Fournet, R; Seshadri, K; Battin-Leclerc, F; Billaud, F

    2003-12-10

    A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. A detailed chemical-kinetic mechanism for toluene was improved by adding a more accurate description of the phenyl + O{sub 2} reaction channels, toluene decomposition reactions and the benzyl + O reaction. Results of the chemical kinetic mechanism are compared with experimental data obtained from premixed and non-premixed systems. Under premixed conditions, predicted ignition delay times are compared with new experimental data obtained in shock tube. Also, calculated species concentration histories are compared to experimental flow reactor data from the literature. Under non-premixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations are performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in non-premixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. For both premixed and non-premixed systems, sensitivity analysis was used to identify the reaction rate constants that control the overall rate of oxidation in each of the systems considered. Under shock tube conditions, the reactions that influence ignition delay time are H + O{sub 2} chain branching, the toluene decomposition reaction to give an H atom, and the toluene + H abstraction reaction. The reactions that influence autoignition in non-premixed systems involve the benzyl + HO{sub 2} reaction and the phenyl + O{sub 2} reaction.

  9. Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Fredrickson, Glenn H.

    2009-12-01

    Hybrid molecular dynamics/Monte Carlo simulations are used to study melts of unentangled, thermoreversibly associating supramolecular polymers. In this first of a series of papers, we describe and validate a model that is effective in separating the effects of thermodynamics and chemical kinetics on the dynamics and mechanics of these systems, and is extensible to arbitrarily nonequilibrium situations and nonlinear mechanical properties. We examine the model's quiescent (and heterogeneous) dynamics, nonequilibrium chemical dynamics, and mechanical properties. Many of our results may be understood in terms of the crossover from diffusion-limited to kinetically limited sticky bond recombination, which both influences and is influenced by polymer physics, i.e., the connectivity of the parent chains.

  10. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    SciTech Connect

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  11. Development of Detailed Kinetic Models for Fischer-Tropsch Fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Carstensen, H; Dean, A M

    2008-10-28

    Fischer-Tropsch (FT) fuels can be synthesized from a syngas stream generated by the gasification of biomass. As such they have the potential to be a renewable hydrocarbon fuel with many desirable properties. However, both the chemical and physical properties are somewhat different from the petroleum-based hydrocarbons that they might replace, and it is important to account for such differences when considering using them as replacements for conventional fuels in devices such as diesel engines and gas turbines. FT fuels generally contain iso-alkanes with one or two substituted methyl groups to meet the pour-point specifications. Although models have been developed for smaller branched alkanes such as isooctane, additional efforts are required to properly capture the kinetics of the larger branched alkanes. Recently, Westbrook et al. developed a chemical kinetic model that can be used to represent the entire series of n-alkanes from C{sub 1} to C{sub 16} (Figure 1). In the current work, the model is extended to treat 2,2,4,4,6,8,8-heptamethylnonane (HMN), a large iso-alkane. The same reaction rate rules used in the iso-octane mechanism were incorporated in the HMN mechanism. Both high and low temperature chemistry was included so that the chemical kinetic model would be applicable to advanced internal combustion engines using low temperature combustion strategies. The chemical kinetic model consists of 1114 species and 4468 reactions. Concurrently with this effort, work is underway to improve the details of specific reaction classes in the mechanism, guided by high-level electronic structure calculations. Attention is focused upon development of accurate rate rules for abstraction of the tertiary hydrogens present in branched alkanes and properly accounting for the pressure dependence of the ?-scission, isomerization, and R + O{sub 2} reactions.

  12. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    PubMed Central

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051

  13. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  14. From prelife to life: how chemical kinetics become evolutionary dynamics

    PubMed Central

    Chen, Irene A.

    2015-01-01

    Conspectus Life is that which evolves. Living systems are the products of evolutionary processes and are capable of undergoing further evolution. A crucial question for the origin of life is the following: when do chemical kinetics become evolutionary dynamics? In this paper we review properties of ‘prelife’ and discuss the transition from prelife to life. We describe prelife as a chemical system where activated monomers can co-polymerize into macromolecules (such as RNA). These macromolecules are information carriers. Their physical and chemical properties depend to a certain extent on their particular sequence of monomers. We consider prelife as a logical precursor of life, where macromolecules are formed by copolymerization, but they are not capable of replication. Prelife can undergo ‘prevolutionary dynamics’. There can be mutation, selection and cooperation. Prelife selection, however, is blunt: small differences in rate constants lead to small differences in abundance. Life emerges with the ability of replication. In the resulting evolutionary dynamics selection is sharp: small differences in rate constants can lead to large differences in abundance. We also study the competition of different ‘prelives’ and find that there can be selection for those systems which ultimately give rise to replication. The transition from prelife to life can occur over an extended period of time. There may not have been a single moment which marks the origin of life. Instead prelife seeds many attempts for the origin of life. Eventually life takes over and destroys prelife. PMID:22335792

  15. Model Independent Bounds on Kinetic Mixing

    SciTech Connect

    Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

    2011-08-22

    New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

  16. Uncovering Oscillations, Complexity, and Chaos in Chemical Kinetics Using Mathematica

    NASA Astrophysics Data System (ADS)

    Ferreira, M. M. C.; Ferreira, W. C., Jr.; Lino, A. C. S.; Porto, M. E. G.

    1999-06-01

    Unlike reactions with no peculiar temporal behavior, in oscillatory reactions concentrations can rise and fall spontaneously in a cyclic or disorganized fashion. In this article, the software Mathematica is used for a theoretical study of kinetic mechanisms of oscillating and chaotic reactions. A first simple example is introduced through a three-step reaction, called the Lotka model, which exhibits a temporal behavior characterized by damped oscillations. The phase plane method of dynamic systems theory is introduced for a geometric interpretation of the reaction kinetics without solving the differential rate equations. The equations are later numerically solved using the built-in routine NDSolve and the results are plotted. The next example, still with a very simple mechanism, is the Lotka-Volterra model reaction, which oscillates indefinitely. The kinetic process and rate equations are also represented by a three-step reaction mechanism. The most important difference between this and the former reaction is that the undamped oscillation has two autocatalytic steps instead of one. The periods of oscillations are obtained by using the discrete Fourier transform (DFT)-a well-known tool in spectroscopy, although not so common in this context. In the last section, it is shown how a simple model of biochemical interactions can be useful to understand the complex behavior of important biological systems. The model consists of two allosteric enzymes coupled in series and activated by its own products. This reaction scheme is important for explaining many metabolic mechanisms, such as the glycolytic oscillations in muscles, yeast glycolysis, and the periodic synthesis of cyclic AMP. A few of many possible dynamic behaviors are exemplified through a prototype glycolytic enzymatic reaction proposed by Decroly and Goldbeter. By simply modifying the initial concentrations, limit cycles, chaos, and birhythmicity are computationally obtained and visualized.

  17. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  18. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  19. Reduced and simplified chemical kinetics for air dissociation using Computational Singular Perturbation

    NASA Technical Reports Server (NTRS)

    Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.

    1990-01-01

    The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.

  20. Kinetic Relaxation Models for Energy Transport

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Markowich, Peter; Takata, Shigeru

    2007-04-01

    Kinetic equations with relaxation collision kernels are considered under the basic assumption of two collision invariants, namely mass and energy. The collision kernels are of BGK-type with a general local Gibbs state, which may be quite different from the Gaussian. By the use of the diffusive length/time scales, energy transport systems consisting of two parabolic equations with the position density and the energy density as unknowns are derived on a formal level. The H theorem for the kinetic model is presented, and the entropy for the energy transport systems, which is inherited from the kinetic model, is derived. The energy transport systems for specific examples of the global Gibbs state, such as a power law with negative exponent, a cut-off power law with positive exponent, the Maxwellian, Bose-Einstein, and Fermi-Dirac distributions, arepresented.

  1. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  2. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  3. An open-source chemical kinetics network: VULCAN

    NASA Astrophysics Data System (ADS)

    Tsai, Shang-Min; Lyons, James; Heng, Kevin

    2015-12-01

    I will present VULCAN, an open-source 1D chemical kinetics code suited for the temperature and pressure range relevant to observable exoplanet atmospheres. The chemical network is based on a set of reduced rate coefficients for C-H-O systems. Most of the rate coefficients are based on the NIST online database, and validated by comparing withthermodynamic equilibrium codes (TEA, STANJAN). The difference between the experimental rates and those from the thermodynamical data is carefully examined and discussed. For the numerical method, a simple, quick, semi-implicit Euler integrator is adopted to solve the stiff chemical reactions, within an operator-splitting scheme for computational efficiency.Several test runs of VULCAN are shown in a hierarchical way: pure H, H+O, H+O+C, including controlled experiments performed with a simple analytical temperature-pressure profiles, so that different parameters, such as the stellar irradiation, atmospheric opacities and albedo can be individually explored to understand how these properties affect the temperaturestructure and hence the chemical abundances. I will also revisit the "transport-induced-quenching” effects, and discuss the limitation of this approximation and its impact on observations. Finally, I will discuss the effects of C/O ratio and compare with published work in the literature.VULCAN is written in Python and is part of the publicly-available set of community tools we call the Exoclimes Simulation Platform (ESP; www.exoclime.org). I am a Ph.D student of Kevin Heng at the University of Bern, Switzerland.

  4. A Steady-State Approximation to the Two-Dimensional Master Equation for Chemical Kinetics Calculations.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2015-07-16

    In the field of chemical kinetics, the solution of a two-dimensional master equation that depends explicitly on both total internal energy (E) and total angular momentum (J) is a challenging problem. In this work, a weak-E/fixed-J collisional model (i.e., weak-collisional internal energy relaxation/free-collisional angular momentum relaxation) is used along with the steady-state approach to solve the resulting (simplified) two-dimensional (E,J)-grained master equation. The corresponding solutions give thermal rate constants and product branching ratios as functions of both temperature and pressure. We also have developed a program that can be used to predict and analyze experimental chemical kinetics results. This expedient technique, when combined with highly accurate potential energy surfaces, is cable of providing results that may be meaningfully compared to experiments. The reaction of singlet oxygen with methane proceeding through vibrationally excited methanol is used as an illustrative example.

  5. Chemical-Kinetic Characterization of Autoignition and Combustion of Surrogate Diesel

    SciTech Connect

    Seshadri, K

    2003-03-03

    A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. The research was performed in collaboration Dr. Charles Westbrook and Dr. William Pitz at Lawrence Livermore National Laboratory (LLNL). A detailed chemical-kinetic mechanism for toluene developed at LLNL was employed. Numerical calculations were performed using this mechanism and the results were compared with experimental data obtained from premixed and nonpremixed systems. Under premixed conditions, predicted ignition delay times were compared with new experimental data obtained by I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc at Departement de Chime Physique des Reactions, CNRS-ENSIC, BP. 451, 1, rue Grandville, 51001 Nancy, France. Also, calculated species concentration histories were compared to experimental flow reactor data from the literature. Under nonpremixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations were performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in nonpremixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. The principal objective of this research is to obtain a fundamental understanding of the physical and chemical mechanisms of autoignition and combustion of Diesel in nonpremixed systems. The major components of Diesel are straight-chain paraffins, branched-chain paraffins, cycloparaffins, and aromatics. The results of this research on toluene are expected to be useful in understanding the role of aromatics in combustion of Diesel.

  6. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    SciTech Connect

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  7. Chemical Kinetics in Support of Syngas Turbine Combustion

    SciTech Connect

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We

  8. Deterministic Modelling of BAK Activation Kinetics

    NASA Astrophysics Data System (ADS)

    Grills, C.; Chacko, A.; Crawford, N.; Johnston, P. G.; Fennell, D. A.; O'Rourke, S. F. C.

    2009-08-01

    The molecular mechanism underlying mitochondrial BAK activation during apoptosis remains highly controversial. Two seemingly conflicting models have been proposed. In the activation model, BAK requires so-called activating BH3 only proteins (aBH3) to initiate its conformation change. In the other, displacement from inhibitory pro-survival BCL-2 proteins (PBPs) and monomerization of BAK by PBP restricted dissociator BH3-only proteins (dBH3) is sufficient. To better understand the kinetic implications of these models and reconcile these conflicting but highly evidence-based models, we have employed dynamical systems analysis to explore the kinetics underlying BAK activation as a non-linear reaction system. Our findings accommodate both pure agonism and dissociation as mutually exclusive mechanisms capable of initiating BAK activation. In addition we find our work supports a modelling based approach for predicting resistance to therapeutically relevant small molecules BH3 mimetics.

  9. Chemical Kinetics of Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Tran, T.; Chiar, J.; Tielens, A. G. G. M.

    2012-05-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise about 10% of the carbon in the interstellar medium. There is evidence of modification of PAHs in protoplanetary disks. What happens to these molecules as they are incorporated into protoplanetary disks? We address this question by investigating the chemical kinetics of PAHs in the disk environment. Kress et al. (2010) investigated the chemical behavior of PAHs at temperatures from 1000 to 2000 K at a pressure of 1e-6 bar, and proposed the concept of the 'soot line', analogous to the 'snow line' in the solar nebula. Inside of the soot line, PAHs are irreversibly destroyed via thermally-driven reactions. We will extend this study to more realistic disk conditions and timescales. In a related project (see poster by Tran, Chiar, et al.), we are investigating the differences in the PAH physical characteristics in quiescent dense clouds versus the environment around embedded protostars. Together, these studies will help us understand (1) the fate of interstellar PAHs in planet-forming disks and (2) the relationship between interstellar and solar system PAHs. We also will investigate the soot line in disks around sub-solar mass stars (e.g. M dwarfs). This work has been supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory (PI: V. Meadows) and the NASA/EPOESS program (PI: C. Phillips).

  10. A Detailed Chemical Kinetic Analysis of Low Temperature Non-Sooting Diesel Combustion

    SciTech Connect

    Aceves, S M; Flowers, D L

    2004-10-01

    We have developed a model of the diesel fuel injection process for application to analysis of low temperature non-sooting combustion. The model uses a simplified mixing correlation and detailed chemical kinetics, and analyzes a parcel of fuel as it moves along the fuel jet, from injection into evaporation and ignition. The model predicts chemical composition and soot precursors, and is applied at conditions that result in low temperature non-sooting combustion. Production of soot precursors is the first step toward production of soot, and modeling precursor production is expected to give insight into the overall evolution of soot inside the engine. The results of the analysis show that the model has been successful in describing many of the observed characteristics of low temperature combustion. The model predicts results that are qualitatively similar to those obtained for soot formation experiments at conditions in which the EGR rate is increased from zero to very high values as the fueling rate is kept constant. The model also describes the two paths to achieve non-sooting combustion. The first is smokeless rich combustion and the second is modulated kinetics (MK). The importance of the temperature after ignition and the equivalence ratio at the time of ignition is demonstrated, as these parameters can be used to collapse onto a single line all the results for soot precursors for multiple fueling rates. A parametric analysis indicates that precursor formation increases considerably as the gas temperature in the combustion chamber and the characteristic mixing time are increased. The model provides a chemical kinetic description of low temperature diesel combustion that improves the understanding of this clean and efficient regime of operation.

  11. Modeling the enzyme kinetic reaction.

    PubMed

    Atangana, Abdon

    2015-09-01

    The Enzymatic control reactions model was presented within the scope of fractional calculus. In order to accommodate the usual initial conditions, the fractional derivative used is in Caputo sense. The methodologies of the three analytical methods were used to derive approximate solution of the fractional nonlinear system of differential equations. Two methods use integral operator and the other one uses just an integral. Numerical results obtained exhibit biological behavior of real world problem.

  12. Kinetics model development of cocoa bean fermentation

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  13. A Piagetian Learning Cycle for Introductory Chemical Kinetics.

    ERIC Educational Resources Information Center

    Batt, Russell H.

    1980-01-01

    Described is a Piagetian learning cycle based on Monte Carlo modeling of several simple reaction mechanisms. Included are descriptions of learning cycle phases (exploration, invention, and discovery) and four BASIC-PLUS computer programs to be used in the explanation of chemical reacting systems. (Author/DS)

  14. Are improper kinetic models hampering drug development?

    PubMed Central

    2014-01-01

    Reproducibility of biological data is a significant problem in research today. One potential contributor to this, which has received little attention, is the over complication of enzyme kinetic inhibition models. The over complication of inhibitory models stems from the common use of the inhibitory term (1 + [I]/Ki), an equilibrium binding term that does not distinguish between inhibitor binding and inhibitory effect. Since its initial appearance in the literature, around a century ago, the perceived mechanistic methods used in its production have spurred countless inhibitory equations. These equations are overly complex and are seldom compared to each other, which has destroyed their usefulness resulting in the proliferation and regulatory acceptance of simpler models such as IC50s for drug characterization. However, empirical analysis of inhibitory data recognizing the clear distinctions between inhibitor binding and inhibitory effect can produce simple logical inhibition models. In contrast to the common divergent practice of generating new inhibitory models for every inhibitory situation that presents itself. The empirical approach to inhibition modeling presented here is broadly applicable allowing easy comparison and rational analysis of drug interactions. To demonstrate this, a simple kinetic model of DAPT, a compound that both activates and inhibits γ-secretase is examined using excel. The empirical kinetic method described here provides an improved way of probing disease mechanisms, expanding the investigation of possible therapeutic interventions. PMID:25374788

  15. Computational model for Halorhodopsin photocurrent kinetics

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Stefanescu, Roxana; Talathi, Sachin

    2013-03-01

    Optogenetics is a rapidly developing novel optical stimulation technique that employs light activated ion channels to excite (using channelrhodopsin (ChR)) or suppress (using halorhodopsin (HR)) impulse activity in neurons with high temporal and spatial resolution. This technique holds enormous potential to externally control activity states in neuronal networks. The channel kinetics of ChR and HR are well understood and amenable for mathematical modeling. Significant progress has been made in recent years to develop models for ChR channel kinetics. To date however, there is no model to mimic photocurrents produced by HR. Here, we report the first model developed for HR photocurrents based on a four-state model of the HR photocurrent kinetics. The model provides an excellent fit (root-mean-square error of 3.1862x10-4, to an empirical profile of experimentally measured HR photocurrents. In combination, mathematical models for ChR and HR photocurrents can provide effective means to design test light based control systems to regulate neural activity, which in turn may have implications for the development of novel light based stimulation paradigms for brain disease control. I would like to thank the University of Florida and the Physics Research Experience for Undergraduates (REU) program, funded through NSF DMR-1156737. This research was also supported through start-up funds provided to Dr. Sachin Talathi

  16. Tropospheric chemical models

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.

    1992-01-01

    The differences in atmospheric composition over the globe and the short- and long-term variations in this composition are the net effect of several atmospheric and biospheric processes: biospheric emissions, atmospheric circulation, atmospheric chemical transformations and finally deposition back to the surface. Accurate and realistic atmospheric chemistry and circulation models are essential to interpret the observed global distributions and trends of atmospheric species in terms of these underlying processes. Comparisons between model predictions and observations test current understanding of these processes and models used in conjunction with inverse methods allow deductions of the rates of these processes from the observations. With the planned inclusion of at least CO and CH4 observations on the Earth Observing System (EOS) satellites, together with the large global data set expected from in situ observations under the International Global Atmospheric Chemistry (IGAC) Project, the further development of global three-dimensional high-resolution atmospheric chemistry and circulation models in order to interpret this new data is a high-priority endeavor.

  17. Thermodynamics and Kinetics of Chemical Equilibrium in Solution.

    ERIC Educational Resources Information Center

    Leenson, I. A.

    1986-01-01

    Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)

  18. Kinetic model for multidimensional opinion formation

    NASA Astrophysics Data System (ADS)

    Boudin, Laurent; Monaco, Roberto; Salvarani, Francesco

    2010-03-01

    In this paper, we deal with a kinetic model to describe the evolution of the opinion in a closed group with respect to a choice between multiple options (e.g., political parties), which takes into account two main mechanisms of opinion formation, namely, the interaction between individuals and the effect of the mass media. We numerically test the model in some relevant cases and eventually provide an existence and a uniqueness result for it.

  19. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  20. Viral kinetic modeling: state of the art.

    PubMed

    Canini, Laetitia; Perelson, Alan S

    2014-10-01

    Viral kinetic (VK) modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how VK modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viral replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, VK modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. We expect that VK modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.

  1. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  2. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  3. A Review of Research on the Teaching and Learning of Chemical Kinetics

    ERIC Educational Resources Information Center

    Bain, Kinsey; Towns, Marcy H.

    2016-01-01

    We review literature on the teaching and learning of chemical kinetics at both the secondary and tertiary levels. Our aim in doing so is to summarize research literature, synthesize recommendations for future research, and suggest implications for practitioners. Two main bodies of literature emerged from the chemical kinetics education research:…

  4. Exploring Secondary Students' Understanding of Chemical Kinetics through Inquiry-Based Learning Activities

    ERIC Educational Resources Information Center

    Chairam, Sanoe; Klahan, Nutsuda; Coll, Richard K.

    2015-01-01

    This research is trying to evaluate the feedback of Thai secondary school students to inquiry-based teaching and learning methods, exemplified by the study of chemical kinetics. This work used the multiple-choice questions, scientifically practical diagram and questionnaire to assess students' understanding of chemical kinetics. The findings…

  5. KinChem: A Computational Resource for Teaching and Learning Chemical Kinetics

    ERIC Educational Resources Information Center

    da Silva, Jose´ Nunes, Jr.; Sousa Lima, Mary Anne; Silva Sousa, Eduardo Henrique; Oliveira Alexandre, Francisco Serra; Melo Leite, Antonio Jose´, Jr.

    2014-01-01

    This paper presents a piece of educational software covering a comprehensive number of topics of chemical kinetics, which is available free of charge in Portuguese and English. The software was developed to support chemistry educators and students in the teaching-learning process of chemical kinetics by using animations, calculations, and…

  6. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics

    ERIC Educational Resources Information Center

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf

    2015-01-01

    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  7. Identifying Alternative Conceptions of Chemical Kinetics among Secondary School and Undergraduate Students in Turkey

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin

    2010-01-01

    This study identifies some alternative conceptions of chemical kinetics held by secondary school and undergraduate students (N = 191) in Turkey. Undergraduate students who participated are studying to become chemistry teachers when they graduate. Students' conceptions about chemical kinetics were elicited through a series of written tasks and…

  8. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

    SciTech Connect

    Liu Di

    2008-10-01

    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples.

  9. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model.

    PubMed

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A

    2010-04-15

    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations. PMID:20185187

  10. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model.

    PubMed

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A

    2010-04-15

    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations.

  11. Chemical Kinetics of the TPS and Base Bleeding During Flight Test

    NASA Technical Reports Server (NTRS)

    Osipov, Viatcheslav; Ponizhovskaya, Ekaterina; Hafiychuck, Halyna; Luchinsky, Dmitry; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.

    2012-01-01

    The present research deals with thermal degradation of polyurethane foam (PUF) during flight test. Model of thermal decomposition was developed that accounts for polyurethane kinetics parameters extracted from thermogravimetric analyses and radial heat losses to the surrounding environment. The model predicts mass loss of foam, the temperature and kinetic of release of the exhaust gases and char as function of heat and radiation loads. When PUF is heated, urethane bond break into polyol and isocyanate. In the first stage, isocyanate pyrolyses and oxidizes. As a result, the thermo-char and oil droplets (yellow smoke) are released. In the second decomposition stage, pyrolysis and oxidization of liquid polyol occur. Next, the kinetics of chemical compound release and the information about the reactions occurring in the base area are coupled to the CFD simulations of the base flow in a single first stage motor vertically stacked vehicle configuration. The CFD simulations are performed to estimate the contribution of the hot out-gassing, chemical reactions, and char oxidation to the temperature rise of the base flow. The results of simulations are compared with the flight test data.

  12. KINETICS AND SCALING OF METABOLIC BIOTRANSFORMATION IN FISH: EFFECTS ON BIOACCUMULATION PREDICTED BY INCORPORATING IN VITRO DATA INTO TWO KINETIC MODELS

    EPA Science Inventory

    Metabolism data reported in these two abstracts will advance EPA's ability to extrapolate toxicological data among fish species. This information can be used to improve ecological risk assessments for metabolized compounds, parameterize chemical kinetic models, and optimize the d...

  13. Cometary impact and amino acid survival - Chemical kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2006-01-01

    The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.

  14. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations.

    PubMed

    Wu, Fuke; Tian, Tianhai; Rawlings, James B; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence. PMID:27155630

  15. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations.

    PubMed

    Wu, Fuke; Tian, Tianhai; Rawlings, James B; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  16. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    NASA Astrophysics Data System (ADS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-05-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  17. Chemical Kinetic Simulation of the Combustion of Bio-based Fuels

    SciTech Connect

    Ashen, Ms. Refuyat; Cushman, Ms. Katherine C.

    2007-10-01

    Due to environmental and economic issues, there has been an increased interest in the use of alternative fuels. However, before widespread use of biofuels is feasible, the compatibility of these fuels with specific engines needs to be examined. More accurate models of the chemical combustion of alternative fuels in Homogeneous Charge Compression Ignition (HCCI) engines are necessary, and this project evaluates the performance of emissions models and uses the information gathered to study the chemical kinetics involved. The computer simulations for each alternative fuel were executed using the Chemkin chemical kinetics program, and results from the runs were compared with data gathered from an actual engine that was run under similar conditions. A new heat transfer mechanism was added to the existing model's subroutine, and simulations were then conducted using the heat transfer mechanism. Results from the simulation proved to be accurate when compared with the data taken from the actual engine. The addition of heat transfer produced more realistic temperature and pressure data for biodiesel when biodiesel's combustion was simulated in an HCCI engine. The addition of the heat transfer mechanism essentially lowered the peak pressures and peak temperatures during combustion of all fuels simulated in this project.

  18. Impact of kinetic parameters on heat transfer modeling for a pultrusion process

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Roux, J. A.; Vaughan, J. G.; Donti, R. P.; Hassouneh, A.

    An examination is conducted of pultrusion heat model predictions for various parameters of resin chemical kinetics; these parameters' values affect model heat-transfer results and model predictions. Attention is given to the applicability of DSC kinetic parameters to resin cure modeling, by comparing the predicted product cure temperature profiles and resin degree-of-cure values with pultrusion experiment results obtained for both carbon and glass reinforcements, different pull speeds and fiber volumes, and various die temperature profiles.

  19. Kinetic modeling of non-ideal explosives with CHEETAH

    SciTech Connect

    Fried, L E; Howard, W M; Souers, P C

    1998-08-06

    We report an implementation of the Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions. Other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. We find that we can replicate experimental detonation velocities to within a few per cent, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  20. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  1. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lin, Feng

    2016-04-01

    Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.

  2. Use of a pressuremeter to measure the kinetics of carbon dioxide evolution in chemically leavened wheat flour dough.

    PubMed

    Bellido, Guillermo G; Scanlon, Martin G; Sapirstein, Harry D; Page, John H

    2008-11-12

    Among a number of impediments to a wider use of chemical leavening agents in bakery applications is the lack of standardized instrumentation capable of providing information on the rates of CO2 production from chemical leaveners in a format that is meaningful to both the technologist (i.e., the dough rate of reaction or DRR) and the researcher (e.g., in terms of fundamental unitskmol CO2 per kg of dough per s). This paper presents an original methodology to carry out the DRR test using a commercial pressuremeter, the Gassmart apparatus, and to model the kinetics of CO2 evolution of chemically leavened dough. Lean formula doughs were leavened at 27 and 39 degrees C with four chemical leavening systems containing sodium bicarbonate and one of four leavening acids, sodium acid pyrophosphate 40 (SAPP), adipic acid (ADA), potassium acid tartrate (KAT), and glucono-delta-lactone (GDL). Chemical kinetics theory was used to gain an insight into the reaction mechanisms responsible for the evolution of carbon dioxide from the leaveners. A first-order reaction kinetics model was found to be suitable for describing the neutralizing properties of GDL and ADA leavening systems, whereas a first-order reaction kinetics model for irreversible parallel reactions better described the leavening properties of the acidic salts KAT and SAPP.

  3. Use of a pressuremeter to measure the kinetics of carbon dioxide evolution in chemically leavened wheat flour dough.

    PubMed

    Bellido, Guillermo G; Scanlon, Martin G; Sapirstein, Harry D; Page, John H

    2008-11-12

    Among a number of impediments to a wider use of chemical leavening agents in bakery applications is the lack of standardized instrumentation capable of providing information on the rates of CO2 production from chemical leaveners in a format that is meaningful to both the technologist (i.e., the dough rate of reaction or DRR) and the researcher (e.g., in terms of fundamental unitskmol CO2 per kg of dough per s). This paper presents an original methodology to carry out the DRR test using a commercial pressuremeter, the Gassmart apparatus, and to model the kinetics of CO2 evolution of chemically leavened dough. Lean formula doughs were leavened at 27 and 39 degrees C with four chemical leavening systems containing sodium bicarbonate and one of four leavening acids, sodium acid pyrophosphate 40 (SAPP), adipic acid (ADA), potassium acid tartrate (KAT), and glucono-delta-lactone (GDL). Chemical kinetics theory was used to gain an insight into the reaction mechanisms responsible for the evolution of carbon dioxide from the leaveners. A first-order reaction kinetics model was found to be suitable for describing the neutralizing properties of GDL and ADA leavening systems, whereas a first-order reaction kinetics model for irreversible parallel reactions better described the leavening properties of the acidic salts KAT and SAPP. PMID:18841986

  4. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  5. The chemical shock tube as a tool for studying high-temperature chemical kinetics

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.

    1986-01-01

    Although the combustion of hydrocarbons is our primary source of energy today, the chemical reactions, or pathway, by which even the simplest hydro-carbon reacts with atmospheric oxygen to form CO2 and water may not always be known. Furthermore, even when the reaction pathway is known, the reaction rates are always under discussion. The shock tube has been an important and unique tool for building a data base of reaction rates important in the combustion of hydrocarbon fuels. The ability of a shock wave to bring the gas sample to reaction conditions rapidly and homogeneously makes shock-tube studies of reaction kinetics extremely attractive. In addition to the control and uniformity of reaction conditions achieved with shock-wave methods, shock compression can produce gas temperatures far in excess of those in conventional reactors. Argon can be heated to well over 10 000 K, and temperatures around 5000 K are easily obtained with conventional shock-tube techniques. Experiments have proven the validity of shock-wave theory; thus, reaction temperatures and pressures can be calculated from a measurement of the incident shock velocity. A description is given of the chemical shock tube and auxiliary equipment and of two examples of kinetic experiments conducted in a shock tube.

  6. Equivalence of on-Lattice Stochastic Chemical Kinetics with the Well-Mixed Chemical Master Equation in the Limit of Fast Diffusion.

    PubMed

    Stamatakis, Michail; Vlachos, Dionisios G

    2011-12-14

    Well-mixed and lattice-based descriptions of stochastic chemical kinetics have been extensively used in the literature. Realizations of the corresponding stochastic processes are obtained by the Gillespie stochastic simulation algorithm and lattice kinetic Monte Carlo algorithms, respectively. However, the two frameworks have remained disconnected. We show the equivalence of these frameworks whereby the stochastic lattice kinetics reduces to effective well-mixed kinetics in the limit of fast diffusion. In the latter, the lattice structure appears implicitly, as the lumped rate of bimolecular reactions depends on the number of neighbors of a site on the lattice. Moreover, we propose a mapping between the stochastic propensities and the deterministic rates of the well-mixed vessel and lattice dynamics that illustrates the hierarchy of models and the key parameters that enable model reduction.

  7. Kinetic modeling in PET imaging of hypoxia

    PubMed Central

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  8. Kinetic and hydrodynamic models of chemotactic aggregation

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Sire, Clément

    2007-10-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.

  9. Innovative Laser Techniques in Chemical Kinetics: A Pedagogical Survey.

    ERIC Educational Resources Information Center

    Kovalenko, Laurie J.; Leone, Stephen R.

    1988-01-01

    Considers two types of laser applications in kinetics. Explores short laser pulses to prepare a reactant in a known state and a continuous laser as a probe to monitor specific species in a reaction. Describes how lasers work and provides several examples of kinetic reactions. (ML)

  10. Application of Chemical Kinetics to Deterioration of Foods.

    ERIC Educational Resources Information Center

    Labuza, T. P.

    1984-01-01

    Possible modes of food deterioration (such as microbial decay, nonenzymatic browning, senescence, lipid oxidation) are reviewed. A basic mathematical approach to the kinetics of food deterioration, kinetic approach to accelerating shelf-life deterioration, and shelf-life predictions are discussed. (JN)

  11. Cluster kinetics model for mixtures of glassformers

    NASA Astrophysics Data System (ADS)

    Brenskelle, Lisa A.; McCoy, Benjamin J.

    2007-10-01

    For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.

  12. Aggregation kinetics in a model colloidal suspension

    SciTech Connect

    Bastea, S

    2005-08-08

    The authors present molecular dynamics simulations of aggregation kinetics in a colloidal suspension modeled as a highly asymmetric binary mixture. Starting from a configuration with largely uncorrelated colloidal particles the system relaxes by coagulation-fragmentation dynamics to a structured state of low-dimensionality clusters with an exponential size distribution. The results show that short range repulsive interactions alone can give rise to so-called cluster phases. For the present model and probably other, more common colloids, the observed clusters appear to be equilibrium phase fluctuations induced by the entropic inter-colloidal attractions.

  13. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

    PubMed

    Bazant, Martin Z

    2013-05-21

    Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over

  14. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

    PubMed

    Bazant, Martin Z

    2013-05-21

    Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over

  15. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  16. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.

    1985-01-01

    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  17. A kinetic model of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  18. Detailed kinetics modeling of indium phosphide films in MOCVD reactors

    SciTech Connect

    Masi, M.; Cavallotti, C.; Radaelli, G.; Carra, S.

    1998-12-31

    The deposition kinetics of InP in MOCVD reactors is presented. The proposed chemical mechanism involves both gas phase and surface reactions. The fundamental hypothesis adopted in deriving the mechanism was a dual site dissociative adsorption of the precursors on the growing surface. In any case, all the rate constants either were taken from the literature or estimated through thermochemical methods. In addition, the deposition reactor was simulated by means of a monodimensional model that accounts for the main reactor features through the boundary layer theory.

  19. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  1. Melting behavior of typical thermoplastic materials--an experimental and chemical kinetics study.

    PubMed

    Wang, Nan; Tu, Ran; Ma, Xin; Xie, Qiyuan; Jiang, Xi

    2013-11-15

    A medium-scale melting experiment rig was designed and constructed in this study. A detailed experimental study was conducted on the melting behavior and the chemical kinetic characteristics of three typical thermoplastic materials, including polypropylene (PP), polyethylene (PE) and polystyrene (PS). It is observed that the thermal decomposition of the thermoplastic materials mainly consists of three stages: the initial heating stage, the melting-dominated stage and the gasification-dominated stage. Melting of the materials examined takes place within a certain temperature range. The melting temperature of PS is the lowest, moreover, it takes the shortest time to be completely liquefied. To quantitatively represent the chemical kinetics, an nth-order reaction model was employed to interpret the thermal decomposition behavior of the materials. The calculated reaction order is largely in accordance with the small-scale thermal gravimetric analysis (TGA). The small difference between the results and TGA data suggests that there are some limitations in the small-scale experiments in simulating the behavior of thermoplastic materials in a thermal hazard. Therefore, investigating the thermal physical and chemical properties of the thermoplastic materials and their thermal hazard prevention in medium or large-scale experiments is necessary for the fire safety considerations of polymer materials.

  2. Brittle failure kinetics model for concrete

    SciTech Connect

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  3. Chemical kinetic study of the oxidation of toluene and related cyclic compounds

    SciTech Connect

    Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

    2009-10-01

    Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

  4. Autoignition chemistry of the hexane isomers: An experimental and kinetic modeling study

    SciTech Connect

    Curran, H.J.; Gaffuri, P.; Pitz, W.J.; Westbrook, C.K.; Leppard, W.R.

    1995-06-01

    Autoignition of the five distinct isomers of hexane is studied experimentally under motored engine conditions and computationally using a detailed chemical kinetic reaction mechanism. Computed and experimental results are compared and used to help understand the chemical factors leading to engine knock in spark-ignited engines and the molecular structure factors contributing to octane rating for hydrocarbon fuels. The kinetic model reproduces observed variations in critical compression ratio with fuel structure, and it also provides intermediate and final product species concentrations in very dose agreement with observed results. In addition, the computed results provide insights into the kinetic origins of fuel octane sensitive.

  5. Wealth redistribution in conservative linear kinetic models

    NASA Astrophysics Data System (ADS)

    Toscani, G.

    2009-10-01

    We introduce and discuss kinetic models for wealth distribution which include both taxation and uniform redistribution. The evolution of the continuous density of wealth obeys a linear Boltzmann equation where the background density represents the action of an external subject on the taxation mechanism. The case in which the mean wealth is conserved is analyzed in full details, by recovering the analytical form of the steady states. These states are probability distributions of convergent random series of a special structure, called perpetuities. Among others, Gibbs distribution appears as steady state in case of total taxation and uniform redistribution.

  6. The kinetic regime of the Vicsek model

    NASA Astrophysics Data System (ADS)

    Chepizhko, A. A.; Kulinskii, V. L.

    2009-12-01

    We consider the dynamics of the system of self-propelling particles modeled via the Vicsek algorithm in continuum time limit. It is shown that the alignment process for the velocities can be subdivided into two regimes: "fast" kinetic and "slow" hydrodynamic ones. In fast kinetic regime the alignment of the particle velocity to the local neighborhood takes place with characteristic relaxation time. So, that the bigger regions arise with the velocity alignment. These regions align their velocities thus giving rise to hydrodynamic regime of the dynamics. We propose the mean-field-like approach in which we take into account the correlations between density and velocity. The comparison of the theoretical predictions with the numerical simulations is given. The relation between Vicsek model in the zero velocity limit and the Kuramoto model is stated. The mean-field approach accounting for the dynamic change of the neighborhood is proposed. The nature of the discontinuity of the dependence of the order parameter in case of vectorial noise revealed in Gregorie and Chaite, Phys. Rev. Lett., 92, 025702 (2004) is discussed and the explanation of it is proposed.

  7. ACCURACY AND COST CONSIDERATIONS IN CHOOSING A CHEMICAL MECHANISM FOR OPERATIONAL USE IN AQ MODELS

    EPA Science Inventory

    There are several contemporary chemical kinetic mechanisms available for use in tropospheric air quality simulation models, with varying degrees of condensation of the chemical reaction pathways. Likewise, there are several different numerical solution methods available to use w...

  8. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 3: Illustrative test problems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.; Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  9. A Kinetic Model of Active Extensile Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Chakraborty, Bulbul; Baskaran, Aparna

    Recent experiments in active filament networks reveal interesting rheological properties (Dan Chen: APS March Meeting 2015 D49.00001). This system consumes ATP to produce an extensile motion in bundles of microtubules. This extension then leads to self generated stresses and spontaneous flows. We propose a minimal model where the activity is modeled by self-extending bundles that are part of a cross linked network. This network can reorganize itself through buckling of extending filaments and merging events that alter the topology of the network. We numerically simulate this minimal kinetic model and examine the emergent rheological properties and determine how stresses are generated by the extensile activity. We will present results that focus on the effects of confinement and network connectivity of the bundles on stress fluctuations and response of an active gel.

  10. On Kinetics Modeling of Vibrational Energy Transfer

    NASA Technical Reports Server (NTRS)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  11. CHEMSODE: A stiff ODE solver for the equations of chemical kinetics

    SciTech Connect

    Aro, C.J.

    1995-01-01

    This report describes the CHEMSODE package: a collection of FORTRAN subroutines for the automatic integration of systems of ordinary differential equations (ODEs) arising in atmospheric chemical kinetics. The mathematical basis and code are presented here.

  12. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

  13. A laboratory model for interstellar chemical evolution.

    PubMed

    Ishikawa, Y; Kuriki, K

    1983-01-01

    The chemistry in a supersonic plasma source flow was studied as a laboratory model for interstellar chemical evolution. It is important to match the similarity parameters for cosmic and laboratory conditions, which connect the temporal and spatial scales of the two cases. The apparatus simulated the conditions in a molecular cloud with respect to molecular-ionic reaction fraction, temperature, and non-equilibrium kinetics. The plasma flow was found to be cold enough, by the radical expansion, to produce polyatomic molecules. From the simple atomic plasma as reactant, cyanopolyyne and unsaturated hydrocarbons were synthesized in the present experiment. These molecules are also inherent in molecular clouds. The reaction mechanism is discussed.

  14. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    SciTech Connect

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  15. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken L.; Riebe, Clifford S.; Jesse Hahm, W.

    2016-06-01

    Chemical erosion contributes solutes to oceans, influencing atmospheric CO2 and thus global climate via the greenhouse effect. Quantifying how chemical erosion rates vary with climate and tectonics is therefore vital to understanding feedbacks that have maintained Earth's environment within a habitable range over geologic time. If chemical erosion rates are strongly influenced by the availability of fresh minerals for dissolution, then there should be strong connections between climate, which is modulated by chemical erosion, and tectonic uplift, which supplies fresh minerals to Earth's surface. This condition, referred to as supply-limited chemical erosion, implies strong tectonic control of chemical erosion rates. It differs from kinetic-limited chemical erosion, in which dissolution kinetics and thus climatic factors are the dominant regulators of chemical erosion rates. Here we present a statistical method for determining whether chemical erosion of silicate-rich bedrock is supply limited or kinetic limited, as an approach for revealing the relative importance of tectonics and climate in Earth's silicate weathering thermostat. We applied this method to published data sets of mineral supply rates and regolith chemical depletion and were unable to reject the null hypothesis that chemical erosion is supply limited in 8 of 16 cases. In seven of the remaining eight cases, we found behavior that is closer to supply limited than kinetic limited, suggesting that tectonics may often dominate over climate in regulating chemical erosion rates. However, statistical power analysis shows that new measurements across a wider range of supply rates are needed to help quantify feedbacks between climate and tectonics in Earth's long-term climatic evolution.

  16. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    SciTech Connect

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  17. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  18. Using chemical organization theory for model checking

    PubMed Central

    Kaleta, Christoph; Richter, Stephan; Dittrich, Peter

    2009-01-01

    Motivation: The increasing number and complexity of biomodels makes automatic procedures for checking the models' properties and quality necessary. Approaches like elementary mode analysis, flux balance analysis, deficiency analysis and chemical organization theory (OT) require only the stoichiometric structure of the reaction network for derivation of valuable information. In formalisms like Systems Biology Markup Language (SBML), however, information about the stoichiometric coefficients required for an analysis of chemical organizations can be hidden in kinetic laws. Results: First, we introduce an algorithm that uncovers stoichiometric information that might be hidden in the kinetic laws of a reaction network. This allows us to apply OT to SBML models using modifiers. Second, using the new algorithm, we performed a large-scale analysis of the 185 models contained in the manually curated BioModels Database. We found that for 41 models (22%) the set of organizations changes when modifiers are considered correctly. We discuss one of these models in detail (BIOMD149, a combined model of the ERK- and Wnt-signaling pathways), whose set of organizations drastically changes when modifiers are considered. Third, we found inconsistencies in 5 models (3%) and identified their characteristics. Compared with flux-based methods, OT is able to identify those species and reactions more accurately [in 26 cases (14%)] that can be present in a long-term simulation of the model. We conclude that our approach is a valuable tool that helps to improve the consistency of biomodels and their repositories. Availability: All data and a JAVA applet to check SBML-models is available from http://www.minet.uni-jena.de/csb/prj/ot/tools Contact: dittrich@minet.uni-jena.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19468053

  19. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    SciTech Connect

    Lin Feng Meyer, Christian

    2009-04-15

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  20. Iteration Scheme for Implicit Calculations of Kinetic and Equilibrium Chemical Reactions in Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Ramshaw, J. D.; Chang, C. H.

    1995-02-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described (J. D. Ramshaw and A. A. Amsden, J. Comput. Phys.59, 484 (1985); 71 , 224 (1987)). Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in some regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow.

  1. A generalized Fisher equation and its utility in chemical kinetics.

    PubMed

    Ross, John; Fernández Villaverde, Alejandro; Banga, Julio R; Vázquez, Sara; Morán, Federico

    2010-07-20

    A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The GFE is an exact mathematical result that has been widely used in population dynamics and genetics, where it originated. Here we demonstrate that the GFE can also be useful in other fields, specifically in chemistry, with models of two chemical reaction systems for which the mechanisms and rate coefficients correspond reasonably well to experiments. A bad fit of the GFE can be a sign of high levels of measurement noise; for low or moderate levels of noise, fulfillment of the GFE is not degraded. Hence, the GFE presents a noise threshold that may be used to test the validity of experimental measurements without requiring any additional information. In a different approach information about the system (model) is included in the calculations. In that case, the discrepancy with the GFE can be used as an optimization criterion for the determination of rate coefficients in a given reaction mechanism.

  2. Kinetic modelling of heterogeneous catalytic systems

    NASA Astrophysics Data System (ADS)

    Stamatakis, Michail

    2015-01-01

    The importance of heterogeneous catalysis in modern life is evidenced by the fact that numerous products and technologies routinely used nowadays involve catalysts in their synthesis or function. The discovery of catalytic materials is, however, a non-trivial procedure, requiring tedious trial-and-error experimentation. First-principles-based kinetic modelling methods have recently emerged as a promising way to understand catalytic function and aid in materials discovery. In particular, kinetic Monte Carlo (KMC) simulation is increasingly becoming more popular, as it can integrate several sources of complexity encountered in catalytic systems, and has already been used to successfully unravel the underlying physics of several systems of interest. After a short discussion of the different scales involved in catalysis, we summarize the theory behind KMC simulation, and present the latest KMC computational implementations in the field. Early achievements that transformed the way we think about catalysts are subsequently reviewed in connection to latest studies of realistic systems, in an attempt to highlight how the field has evolved over the last few decades. Present challenges and future directions and opportunities in computational catalysis are finally discussed.

  3. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  4. Kinetic modelling of coupled transport across biological membranes.

    PubMed

    Korla, Kalyani; Mitra, Chanchal K

    2014-04-01

    In this report, we have modelled a secondary active co-transporter (symport and antiport), based on the classical kinetics model. Michaelis-Menten model of enzyme kinetics for a single substrate, single intermediate enzyme catalyzed reaction was proposed more than a hundred years ago. However, no single model for the kinetics of co-transport of molecules across a membrane is available in the literature We have made several simplifying assumptions and have followed the basic Michaelis-Menten approach. The results have been simulated using GNU Octave. The results will be useful in general kinetic simulations and modelling.

  5. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Schexnayder, C. J., Jr.

    1981-01-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant; however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  6. Chemical uncertainties in modeling hot Jupiters atmospheres

    NASA Astrophysics Data System (ADS)

    Hebrard, Eric; Domagal-Goldman, Shawn

    2015-11-01

    Most predictions and interpretations of observations in beyond our Solar System have occurred through the use of 1D photo-thermo-chemical models. Their predicted atmospheric compositions are highly dependent on model parameters. Chemical reactions are based on empirical parameters that must be known at temperatures ranging from 100 K to above 2500 K and at pressures from millibars to hundreds of bars. Obtained from experiments, calculations and educated-guessed estimations, these parameters are always evaluated with substantial uncertainties. However, although of practical use, few models of exoplanetary atmospheres have considered these underlying chemical uncertainties and their consequences. Recent progress has been made recently that allow us to (1) evaluate the accuracy and precision of 1D models of planetary atmospheres, with quantifiable uncertainties on their predictions for the atmospheric composition and associated spectral features, (2) identify the ‘key parameters’ that contribute the most to the models predictivity and should therefore require further experimental or theoretical analysis, (3) reduce and optimize complex chemical networks for their inclusion in multidimensional atmospheric models.First, a global sampling approach based on low discrepancy sequences has been applied in order to propose error bars on simulations of the atmospheres HD 209458b and HD 189733b, using a detailed kinetic model derived from applied combustion models that was methodically validated over a range of temperatures and pressures typical for these hot Jupiters. A two-parameters temperature-dependent uncertainty factor has been assigned to each considered rate constant. Second, a global sensitivity approach based on high dimensional model representations (HDMR) has been applied in order to identify those reactions which make the largest contributions to the overall uncertainty of the simulated results. The HDMR analysis has been restricted to the most important

  7. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. PMID:22951329

  8. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

  9. Optimization of chemical reactor feed by simulations based on a kinetic approach.

    PubMed

    Guinand, Charles; Dabros, Michal; Roduit, Bertrand; Meyer, Thierry; Stoessel, Francis

    2014-10-01

    Chemical incidents are typically caused by loss of control, resulting in runaway reactions or process deviations in different stages of the production. In the case of fed-batch reactors, the problem generally encountered is the accumulation of heat. This is directly related to the temperature of the process, the reaction kinetics and adiabatic temperature rise, which is the maximum temperature attainable in the event of cooling failure. The main possibility to control the heat accumulation is the use of a well-controlled adapted feed. The feed rate can be adjusted by using reaction and reactor dynamic models coupled to Model Predictive Control. Thereby, it is possible to predict the best feed profile respecting the safety constraints.

  10. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.

    2011-05-01

    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  11. Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Berkemeier, T.; Schilling-Fahnestock, K. A.; Seinfeld, J. H.; Pöschl, U.

    2014-08-01

    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC0). It varies in the range of 10-30 g mol-1, depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.

  12. Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Berkemeier, T.; Schilling-Fahnestock, K.; Seinfeld, J.; Poeschl, U.

    2014-12-01

    The dominant component of atmospheric organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM/dlogC0). It varies in the range of 10-30 g mol-1 depending on the molecular size of the SOA precursor and the O:C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and described the properties of the products, pathways and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.

  13. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  14. The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Tremblin, P.; Baraffe, I.; Amundsen, D. S.; Mayne, N. J.; Venot, O.; Goyal, J.

    2016-10-01

    In this work we investigate the impact of calculating non-equilibrium chemical abundances consistently with the temperature structure for the atmospheres of highly-irradiated, close-in gas giant exoplanets. Chemical kinetics models have been widely used in the literature to investigate the chemical compositions of hot Jupiter atmospheres which are expected to be driven away from chemical equilibrium via processes such as vertical mixing and photochemistry. All of these models have so far used pressure-temperature (P-T) profiles as fixed model input. This results in a decoupling of the chemistry from the radiative and thermal properties of the atmosphere, despite the fact that in nature they are intricately linked. We use a one-dimensional radiative-convective equilibrium model, ATMO, which includes a sophisticated chemistry scheme to calculate P-T profiles which are fully consistent with non-equilibrium chemical abundances, including vertical mixing and photochemistry. Our primary conclusion is that, in cases of strong chemical disequilibrium, consistent calculations can lead to differences in the P-T profile of up to 100 K compared to the P-T profile derived assuming chemical equilibrium. This temperature change can, in turn, have important consequences for the chemical abundances themselves as well as for the simulated emission spectra. In particular, we find that performing the chemical kinetics calculation consistently can reduce the overall impact of non-equilibrium chemistry on the observable emission spectrum of hot Jupiters. Simulated observations derived from non-consistent models could thus yield the wrong interpretation. We show that this behaviour is due to the non-consistent models violating the energy budget balance of the atmosphere.

  15. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  16. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    NASA Astrophysics Data System (ADS)

    Yadav, Vishnu P.; Mukherjee, Rudra Palash; Bantraj, Kandi; Maity, Sunil K.

    2010-10-01

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  17. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K.; Mukherjee, Rudra Palash; Bantraj, Kandi

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  18. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs.

    PubMed

    Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D

    2016-03-01

    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  19. Chemical gas-dynamics beyond Wang Chang-Uhlenbeck's kinetics

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Evgeniy G.; Gorbachev, Yuriy E.

    2014-12-01

    Wang Chang-Uhlenbeck equation does not give possibility to take into account intermolecular processes such as redistribution of the energy among different degrees of freedom. The modification of the generalized Wang Chang-Uhlenbeck equation including such processes is proposed. It allows to study for instance the kinetics of non-radiative transitions. Limitations of this approach are connected with the requirements of absence of polarization of rotational momentum and phases of intermolecular vibrations.

  20. Chemical gas-dynamics beyond Wang Chang-Uhlenbeck's kinetics

    SciTech Connect

    Kolesnichenko, Evgeniy G.; Gorbachev, Yuriy E.

    2014-12-09

    Wang Chang-Uhlenbeck equation does not give possibility to take into account intermolecular processes such as redistribution of the energy among different degrees of freedom. The modification of the generalized Wang Chang-Uhlenbeck equation including such processes is proposed. It allows to study for instance the kinetics of non-radiative transitions. Limitations of this approach are connected with the requirements of absence of polarization of rotational momentum and phases of intermolecular vibrations.

  1. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  2. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  3. An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree.

    PubMed

    Kebede, Biniam T; Grauwet, Tara; Magpusao, Johannes; Palmers, Stijn; Michiels, Chris; Hendrickx, Marc; Loey, Ann Van

    2015-07-15

    To have a better understanding of chemical reactions during shelf-life, an integrated analytical and engineering toolbox: "fingerprinting-kinetics" was used. As a case study, a thermally sterilised carrot puree was selected. Sterilised purees were stored at four storage temperatures as a function of time. Fingerprinting enabled selection of volatiles clearly changing during shelf-life. Only these volatiles were identified and studied further. Next, kinetic modelling was performed to investigate the suitability of these volatiles as quality indices (markers) for accelerated shelf-life testing (ASLT). Fingerprinting enabled selection of terpenoids, phenylpropanoids, fatty acid derivatives, Strecker aldehydes and sulphur compounds as volatiles clearly changing during shelf-life. The amount of Strecker aldehydes increased during storage, whereas the rest of the volatiles decreased. Out of the volatiles, based on the applied kinetic modelling, myristicin, α-terpinolene, β-pinene, α-terpineol and octanal were identified as potential markers for ASLT. PMID:25722143

  4. Leaching Kinetics of Atrazine and Inorganic Chemicals in Tilled and Orchard Soils

    NASA Astrophysics Data System (ADS)

    Szajdak, Lech W.; Lipiec, Jerzy; Siczek, Anna; Nosalewicz, Artur; Majewska, Urszula

    2014-04-01

    The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.

  5. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms

    SciTech Connect

    Pepiot-Desjardins, P.; Pitsch, H.

    2008-07-15

    Production rates obtained from a detailed chemical mechanism are analyzed in order to quantify the coupling between the various species and reactions involved. These interactions can be represented by a directed relation graph. A geometric error propagation strategy applied to this graph accurately identifies the dependencies of specified targets and creates a set of increasingly simplified kinetic schemes containing only the chemical paths deemed the most important for the targets. An integrity check is performed concurrently with the reduction process to avoid truncated chemical paths and mass accumulation in intermediate species. The quality of a given skeletal model is assessed through the magnitude of the errors introduced in the target predictions. The applied error evaluation is variable-dependent and unambiguous for unsteady problems. The technique yields overall monotonically increasing errors, and the smallest skeletal mechanism that satisfies a user-defined error tolerance over a selected domain of applicability is readily obtained. An additional module based on life-time analysis identifies a set of species that can be modeled accurately by quasi-steady state relations. An application of the reduction procedure is presented for autoignition using a large iso-octane mechanism. The whole process is automatic, is fast, has moderate CPU and memory requirements, and compares favorably to other existing techniques. (author)

  6. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  7. A general moment expansion method for stochastic kinetic models

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.

    2013-05-01

    Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.

  8. A new kinetic model for human iodine metabolism

    SciTech Connect

    Ficken, V.J.; Allen, E.W.; Adams, G.D.

    1985-05-01

    A new kinetic model of iodine metabolism incorporating preferential organification of tyrosil (TYR) residues of thyroglobulin is developed and evaluated for euthyroid (n=5) and hyperthyroid (n=11) subjects. Iodine and peripheral T4 metabolims were measured with oral /sup 131/I-NaI and intravenous /sup 125/I-74 respectively. Data (obtained over 10 days) and kinetic model are analyzed using the SAAM27 program developed by Berman (1978). Compartment rate constants (mean rate per hour +- ISD) are tabulated in this paper. Thyroid and renal iodide clearance compare favorably with values reported in the literature. TYR rate constants were not unique; however, values obtained are within the range of rate constants determined from the invitro data reported by others. Intraluminal iodine as coupled TYR is predicted to be 21% for euthyroid and 59% for hyperthyroid subjects compared to analytical chemical methods of 30% and 51% respectively determined elsewhere. The authors plan to evaluate this model as a method of predicting the thyroid radiation dose from orally administered I/sup 131/.

  9. Shear-Driven Reconnection in Kinetic Models

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  10. Kinetic modelling of krypton fluoride laser systems

    SciTech Connect

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  11. Percolation in a kinetic opinion exchange model

    NASA Astrophysics Data System (ADS)

    Chandra, Anjan Kumar

    2012-02-01

    We study the percolation transition of the geometrical clusters in the square-lattice LCCC model [a kinetic opinion exchange model introduced by Lallouache, Chakrabarti, Chakraborti, and Chakrabarti, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.056112 82, 056112 (2010)] with the change in conviction and influencing parameter. The cluster is comprised of the adjacent sites having an opinion value greater than or equal to a prefixed threshold value of opinion (Ω). The transition point is different from that obtained for the transition of the order parameter (average opinion value) found by Lallouache Although the transition point varies with the change in the threshold value of the opinion, the critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size, the cluster size distribution, and the Binder cumulant remain the same. The exponents are also independent of the values of conviction and influencing parameters, indicating the robustness of this transition. The exponents do not match any other known percolation exponents (e.g., the static Ising, dynamic Ising, and standard percolation). This means that the LCCC model belongs to a separate universality class.

  12. Chemical Process Modeling and Control.

    ERIC Educational Resources Information Center

    Bartusiak, R. Donald; Price, Randel M.

    1987-01-01

    Describes some of the features of Lehigh University's (Pennsylvania) process modeling and control program. Highlights the creation and operation of the Chemical Process Modeling and Control Center (PMC). Outlines the program's philosophy, faculty, technical program, current research projects, and facilities. (TW)

  13. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  14. Validity conditions for moment closure approximations in stochastic chemical kinetics

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-08-28

    Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.

  15. A kinetic model for subtractive hybridization.

    PubMed Central

    Milner, J J; Cecchini, E; Dominy, P J

    1995-01-01

    Nucleic acid sequences that differ in abundance between two populations (target sequences) can be cloned by multiple rounds of subtractive hybridization and amplification by PCR. These sequences can be cDNAs representing up-regulated mRNAs, or genomic DNAs from deletion mutants. We have derived an equation that describes the recovery of such sequences, and have used this to simulate the outcome of up to 10 rounds of subtractive hybridization and PCR amplification. When the model was tested by comparing its predictions with the published results from genomic and cDNA subtractions, the predictions of the model were generally in good agreement with the published data. We have modelled the outcomes of genomic subtractions, for a variety of genomes, and have used it to compare various strategies for enriching targets. The model predicts that for genomes of less than 5 x 10(8) bp, deletions of as small as 1 kbp should represent > 99% of the DNA after three to six rounds of hybridization (depending on the enrichment procedure). As genomes increase in size, the kinetics of hybridization become an important limiting factor. However, even for genomes as large as 3 x 10(9) bp, it should be possible to isolate deletions of 5 kbp using the appropriate conditions. These simulations suggest that such methods offer a realistic alternative to chromosome walking for identifying genomic deletions for which there are known phenotypes, thereby considerably reducing time and effort. For cDNA subtractive hybridization, the model predicts that after six rounds of hybridization, sequences that do not differ in abundance between the tester and driver populations (the background) will represent < 1% of the subtracted population, and even quite modestly upregulated cDNAs should be successfully enriched. Where several up-regulated cDNAs are present, the predicted final representation is dependent on both the initial abundance and the degree of up-regulation. PMID:7870584

  16. Kinetic modeling and sensitivity analysis of plasma-assisted combustion

    NASA Astrophysics Data System (ADS)

    Togai, Kuninori

    Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the

  17. Kinetic models as a route to control acrylamide formation in food.

    PubMed

    Wedzicha, Bronislaw L; Mottram, Donald S; Elmore, J Stephen; Koutsidis, Georgios; Dodson, Andrew T

    2005-01-01

    A kinetic model for the formation of acrylamide in potato, rye and wheat products has been derived, and kinetic parameters calculated for potato by multi-response modeling of reducing sugar (glucose and fructose), amino acid, asparagine and acrylamide concentrations with time. The kinetic mechanism shares, with Maillard browning, a rate limiting (probably dicarbonylic) intermediate, and includes reaction steps of this intermediate which are competitive with respect to acrylamide formation. A pathway representing physical and/or chemical losses of acrylamide accounts for the measured reduction of acrylamide yield at long reaction times. A mechanistic hypothesis regarding the competing reactions of Strecker aldehyde formation and tautomerization followed by beta-elimination to give acrylamide, features in the kinetic model and can be used to determine the factors which steer the reaction towards acrylamide. A predictive application of this model is for 'what-if' experiments to explore the conditions which lead to reduced acrylamide yields. PMID:16438302

  18. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Goekoglu, Sueleyman

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  19. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.

    PubMed

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P

    2010-03-25

    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications.

  20. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.

    PubMed

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P

    2010-03-25

    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications. PMID:20235606

  1. Kinetic modeling of cell metabolism for microbial production.

    PubMed

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. PMID:26724578

  2. A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR

    PubMed Central

    Zhang, Na; Wang, Xin; Ye, Zhizhen; Jin, Yizheng

    2014-01-01

    The synthesis of Mg-doped ZnO nanocrystals was employed as a model system to quantitatively study the chemical kinetics of the precursor conversion reactions at synthetic conditions and the correlations with the formation of doped nanocrystals. An accurate method using Fourier transform infrared spectroscopy was developed to explore the alcoholysis reactions of the cationic precursors. Our study showed that three independent factors, molar ratio of dopant precursor, reaction temperature and coordination ligands of cationic precursors influenced the relative reactivity of magnesium to zinc precursor, and in turn the formation of Mg-doped ZnO nanocrystals with defined shapes and properties. This understanding underpins the advancement of the syntheses of doped nanocrystals and should be useful for future rational design of new synthetic systems. PMID:24619066

  3. NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Fleming, E. L.; Friedl, R.; Huie, R. E.; Jackman, C. H.; Kolb, C. E., Jr.; Kurylo, M. J., III; Orkin, V. L.; Wine, P. H.

    2014-12-01

    Atmospheric chemistry models must include a large number of processes to accurately describe the temporal and spatial behavior of atmospheric composition. They require a wide range of chemical and physical data (parameters) that describe elementary gas-phase and heterogeneous processes. The review and evaluation of chemical and physical data has, therefore, played an important role in the development of chemical models and in their use in environmental assessment activities. The NASA data panel was originally established in 1977 by the NASA Upper Atmosphere Research Program Office to provide a critical evaluation of kinetic and photochemical data for use in laboratory studies and in atmospheric modeling of stratospheric ozone. Today, the NASA data panel evaluations have a broader atmospheric focus and include Ox, O(1D), singlet O2, HOx, NOx, Organic, FOx, ClOx, BrOx, IOx, SOx, and Na reactions, three-body reactions, equilibrium constants, photochemistry, aqueous chemistry, heterogeneous chemistry and processes, and thermodynamic parameters. The 2011 evaluation (JPL 10-6 available at http://jpldataeval.jpl.nasa.gov.) includes the comprehensive coverage of ~670 bimolecular reactions, 75 three-body reactions, 24 equilibrium constants, 215 photochemical species, 355 aqueous and heterogeneous processes, thermodynamic parameters for 590 species, and over 4000 literature citations. Each evaluation includes (1) recommended values (e.g. rate coefficients, absorption cross sections, and uptake coefficients) with estimated uncertainty factors and (2) a note describing the available experimental and theoretical data and explanation for the recommendation. As new studies have become available over the years the recommendations are critically reviewed and updated as warranted (the next evaluation is scheduled for release in early 2015). This presentation provides an overview of the NASA data panel evaluation process and the methodology used to estimate uncertainties. Examples on

  4. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Rimmer, P. B.; Helling, Ch

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2, H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  5. Chemical kinetic considerations for postflame synthesis of carbon nanotubes in premixed flames using a support catalyst

    SciTech Connect

    Gopinath, Prarthana; Gore, Jay

    2007-11-15

    Multiwalled carbon nanotubes (MWCNTs) on a grid supported cobalt nanocatalyst were grown, by exposing it to combustion gases from ethylene/air rich premixed flames. Ten equivalence ratios ({phi}) were investigated, as follows: 1.37, 1.44, 1.47, 1.50, 1.55, 1.57, 1.62, 1.75, 1.82, and 1.91. MWCNT growth could be observed for the range of equivalence ratios between 1.45 and 1.75, with the best yield restricted to the range 1.5-1.6. A one-dimensional premixed flame code with a postflame heat loss model, including detailed chemistry, was used to estimate the gas phase chemical composition that favors MWCNT growth. The results of the calculations show that the mixture, including the water gas shift reaction, is not even in partial chemical equilibrium. Therefore, past discussions of compositional parameters that relate to optimum carbon nanotube (CNT) growth are revised to include chemical kinetic effects. Specifically, rapid departures of the water gas shift reaction from partial equilibrium and changes in mole fraction ratios of unburned C{sub 2} hydrocarbons to hydrogen correlate well with experimentally observed CNT yields. (author)

  6. Chemical oscillations arise solely from kinetic nonlinearity and hence can occur near equilibrium.

    PubMed Central

    Walz, D; Caplan, S R

    1995-01-01

    A minimal kinetic scheme for a system displaying sustained chemical oscillations is presented. The system is isothermal, and all steps in the scheme are kinetically reversible. The oscillations are analyzed and the crucial points elucidated. Both positive and negative feedback, if properly introduced, support oscillations, provided the state responsible for feedback is optimally buffered. It is shown that the requisite nonlinearity is introduced at the kinetic level because of feedback regulation and not, as is usually assumed, by large affinities that introduce nonlinearity at the thermodynamic level. Hence, sustained oscillations may occur near equilibrium. PMID:8580313

  7. Integrating chemical kinetic rate equations by selective use of stiff and nonstiff methods

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1985-01-01

    The effect of switching between nonstiff and stiff methods on the efficiency of algorithms for integrating chemical kinetic rate equations is presented. Different integration methods are tested by application of the packaged code LSODE to four practical combustion kinetics problems. The problems describe adiabatic, homogeneous gas-phase combustion reactions. It is shown that selective use of nonstiff and stiff methods in different regimes of a typical batch combustion problem is faster than the use of either method for the entire problem. The implications of this result to the development of fast integration techniques for combustion kinetic rate equations are discussed.

  8. Integrating chemical kinetic rate equations by selective use of stiff and nonstiff methods

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1985-01-01

    The effect of switching between nonstiff and stiff methods on the efficiency of algorithms for integrating chemical kinetic rate equations was examined. Different integration methods were tested by application of the packaged code LSODE to four practical combustion kinetics problems. The problems describe adiabatic, and homogeneous gas phase combustion reactions. It is shown that selective use of nonstiff and stiff methods in different regimes of a typical batch combustion problem is faster than the use of either method for the entire problem. The implications which result in the development of fast integration techniques for combustion kinetic rate equations are discussed.

  9. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.

  10. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  11. A Kinetic Model for the Radio CME

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Gary, D. E.

    2009-05-01

    Current studies on Coronal Mass Ejections (CMEs) are mostly concentrated on their macroscopic properties as measured on White-Light images. On the other hand, radio emissions from CMEs carry the information of high energy particles associated with them, but usually without spatial information. In this regard, the rare radio maps of the 1998 April 20 CME obtained with the Nancay radioheliograph between 164 and 432 MHz (called a radio CME by Bastian et al. in 2001) offer an exceptional opportunity to explore the spatial distribution of high energy electrons inside the CME loop. We present a detailed kinetic model for the radio CME employing the lower hybrid (LH) waves excited by the CME shock as the primary electron acceleration mechanism, and magnetic mirroring and Coulomb collisions as the propagation effects inside the expanding loop. The main constraint in this modeling comes from the fact that the LH waves accelerate electrons parallel to the magnetic field and the accelerated electrons should gain, during propagation, sufficient amount of the perpendicular momentum to emit the synchrotron radiation as observed. The relative magnetic field variation responsible for the magnetic mirroring is inferred from the geometrical shape of the CME on the images of the Large Angle and Spectrometric Coronagraph Experiment (LASCO), and the field strength and the amplitude of the LH waves are determined from the observed radio spectra. The modeling is focused on the spatial distribution of the LH waves most plausible to explain the radio maps, and the result is discussed in relation to the associated shock property.

  12. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    SciTech Connect

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

    2010-02-19

    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  13. Reactibodies generated by kinetic selection couple chemical reactivity with favorable protein dynamics.

    PubMed

    Smirnov, Ivan; Carletti, Eugénie; Kurkova, Inna; Nachon, Florian; Nicolet, Yvain; Mitkevich, Vladimir A; Débat, Hélène; Avalle, Bérangère; Belogurov, Alexey A; Kuznetsov, Nikita; Reshetnyak, Andrey; Masson, Patrick; Tonevitsky, Alexander G; Ponomarenko, Natalia; Makarov, Alexander A; Friboulet, Alain; Tramontano, Alfonso; Gabibov, Alexander

    2011-09-20

    Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (V(L)) and variable heavy (V(H)) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes. PMID:21896761

  14. A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Rao, C. S. R.

    1976-01-01

    A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.

  15. Enskog-like kinetic models for vehicular traffic

    SciTech Connect

    Klar, A.; Wegener, R.

    1997-04-01

    In the present paper a general criticism of kinetic equations for vehicular traffic is given. The necessity of introducing an Enskog-type correction into these equations is shown. An Enskog-like kinetic traffic flow equation is presented and fluid dynamic equations are derived. This derivation yields new coefficients for the standard fluid dynamic equations of vehicular traffic. Numerical simulations for inhomogeneous traffic flow situations are shown together with a comparison between kinetic and fluid dynamics models.

  16. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect

    Washington, K.E.

    1986-01-01

    Renewed interest in space nuclear applications has motivated the study of a specialized reactor kinetics model. Consideration of a kinetics model favorable for study of the feasibility of automatic control of these devices is warranted. The need to bridge this gap between reactor kinetics and automatic control in conjunction with the control drum design characteristic of next generation paper space reactors inspired the development of a new Reflected Kinetics (RK) model. An extension of the conventional point-kinetics (PK) model was done in order to explicitly correlate reactivity and the reflector/absorber control drums characteristic of space nuclear reactor designs. Open-loop computations and numerical comparison to analytic PK equations indicated that the RK model is a functional alternative to equivalent bare point kinetics in the analysis of moderate transients. Variations in the RK reflector-to-core transfer probabilities and coolant flow rate do indeed drive the transient differently than the lumped insertion of equivalent reactivity amounts in the core. These computations illustrated the potential importance of the utilization of variable coolant flow rate to aid control in space reactor systems limited by minimal drum reactivity worth. Additionally the Doppler reactivity shutdown mechanism was concluded to be the primarily reliable means of safety shutdown in such systems. The structure of the RK equations proved to be advantageous for integration of automatic control.

  17. Detailed Chemical Kinetic Reaction Mechanisms for Combustion of Isomers of Heptane

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H C; Boercker, J; Kunrath, E

    2001-03-26

    Detailed chemical kinetic reaction mechanisms are developed for all nine chemical isomers of heptane (C{sub 7}H{sub 16}), following techniques and models developed previously for other smaller alkane hydrocarbon species. These reaction mechanisms are tested at high temperatures by computing shock tube ignition delay times and at lower temperatures by simulating ignition in a rapid compression machine. Although the corresponding experiments have not been reported in the literature for most of these isomers of heptane, intercomparisons between the computed results for these isomers and comparisons with available experimental results for other alkane fuels are used to validate the reaction mechanisms as much as possible. Differences in the overall reaction rates of these fuels are discussed in terms of differences in their molecular structure and the resulting variations in rates of important elementary reactions. Reaction mechanisms in this study are works in progress and the results reported here are subject to change, based on model improvements and corrections of errors not yet discovered.

  18. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw.

    PubMed

    Mahmood-ul-Hassan, M; Suthar, V; Rafique, E; Ahmad, R; Yasin, M

    2015-07-01

    In this study, cadmium (Cd), chromium (Cr), and lead (Pb) adsorption potential of unmodified and modified sugarcane bagasse and ground wheat straw was explored from aqueous solution through batch equilibrium technique. Both the materials were chemically modified by treating with sodium hydroxide (NaOH) alone and in combination with nitric acid (HNO3) and sulfuric acid (H2SO4). Two kinetic models, pseudo-first order and pseudo-second order were used to follow the adsorption process and reaction fallowed the later model. The Pb removal by both the materials was highest and followed by Cr and Cd. The chemical treatment invariably increased the adsorption capacity and NaOH treatment proved more effective than others. Langmuir maximum sorption capacity (q m) of Pb was utmost (12.8-23.3 mg/g of sugarcane bagasse, 14.5-22.4 mg/g of wheat straw) and of Cd was least (1.5-2.2 mg/g of sugarcane bagasse, 2.5-3.8 mg/g of wheat straw). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. Results demonstrate that agricultural waste materials used in this study could be used to remediate the heavy metal-polluted water.

  19. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    PubMed

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  20. Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study

    SciTech Connect

    Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.; Westbrook, C.K.

    1987-03-24

    A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 575-715 K, equivalence ratios of 0.8 - 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species and all conditions measured experimentally in the static reactor. Overall, the calculated concentrations of carbon monoxide, acetaldehyde, acrolein, and propane oxide agreed well with those measured. The calculated concentrations of ethane are low compared to the experimental measurements, and the calculated concentrations of formaldehyde are high. Agreement for concentrations of carbon dioxide, methane, and methanol is mixed. The characteristic s-shape of the fuel concentration history is well predicted. Modeling calculations identified some of the key reaction steps at the present conditions. Addition of OH to propene and H atom abstraction by OH from propene are important steps in determining the subsequent distributions of intermediate products, such as acetaldehyde, acrolein and formaldehyde. Allyl radicals are very abundant in propene oxidation, and the primary steps found to be responsible for their consumption are reaction with CH/sub 3/O/sub 2/ and HO/sub 2/. 37 refs., 5 figs., 1 tab.

  1. Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study

    SciTech Connect

    Wilk, R.D.; Gernansky, N.P.; Pitz, W.J.; Westbrook, C.K.

    1987-01-01

    A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 575-715 K, equivalence ratios of 0.8 - 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species and all conditions measured experimentally in the static reactor. Overall, the calculated concentrations of carbon monoxide, acetaldehyde, acrolein, and propene oxide agreed well with those measured. The calculated concentrations of ethene are low compared to the experimental measurements, and the calculated concentrations of formaldehyde are high. Agreement for concentrations of carbon dioxide, methane, and methanol is mixed. The characteristic s-shape of the fuel concentration history is well predicted. Modeling calculations identified some of the key reaction steps at the present conditions. Addition of OH to propene and H atom abstraction by OH from propene are important steps in determining the subsequent distributions of intermediate products, such as acetaldehyde, acrolein and formaldehyde. Allyl radicals are very abundant in propene oxidation, and the primary steps found to be responsible for their consumption are reaction with CH/sub 3/O/sub 2/ and HO/sub 2/.

  2. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    PubMed

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui

    2016-11-15

    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice. PMID:27450963

  3. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    PubMed

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui

    2016-11-15

    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice.

  4. A dynamic physicochemical model for chemical phosphorus removal.

    PubMed

    Hauduc, H; Takács, I; Smith, S; Szabo, A; Murthy, S; Daigger, G T; Spérandio, M

    2015-04-15

    A dynamic physico-chemical model for chemical phosphorus removal in wastewater is presented as a tool to optimize chemical dosing simultaneously while ensuring compliant effluent phosphorus concentration. This new model predicts the kinetic and stoichiometric variable processes of precipitation of hydrous ferric oxides (HFO), phosphates adsorption and co-precipitation. It is combined with chemical equilibrium and physical precipitation reactions in order to model observed bulk dynamics in terms of pH. The model is calibrated and validated based on previous studies and experimental data from Smith et al. (2008) and Szabo et al. (2008) as a first step for full-plant implementation. The simulation results show that the structure of the model describes adequately the mechanisms of adsorption and co-precipitation of phosphate species onto HFO and that the model is robust under various experimental conditions.

  5. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  6. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  7. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  8. Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1986-01-01

    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

  9. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  10. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariëtte; Nehrke, Gernot; Gustafsson, Jon Petter; Van Cappellen, Philippe

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rate on the cation to anion ratio in solution, we extend the growth model for binary symmetrical electrolyte crystals of Zhang and Nancollas (1998) by combining it with the surface complexation model for the chemical structure of the calcite-aqueous solution interface of Wolthers et al. (2008). To maintain crystal stoichiometry, the rate of attachment of calcium ions to step edges is assumed to equal the rate of attachment of carbonate plus bicarbonate ions. The model parameters are optimized by fitting the model to the step velocities obtained previously by atomic force microscopy (AFM, Teng et al., 2000; Stack and Grantham, 2010). A variable surface roughness factor is introduced in order to reconcile the new process-based growth model with bulk precipitation rates measured in seeded calcite growth experiments. For practical applications, we further present empirical parabolic rate equations fitted to bulk growth rates of calcite in common background electrolytes and in artificial seawater-type solutions. Both the process-based and empirical growth rate equations agree with measured calcite growth rates over broad ranges of ionic strength, pH, solution stoichiometry and degree of supersaturation.

  11. A Generalized Kinetic Model for Heterogeneous Gas-Solid Reactions

    SciTech Connect

    Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A.

    2012-08-15

    We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used.

  12. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Hansen, Lee D.; Frank, Harvey

    1987-01-01

    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  13. Rigorous valid ranges for optimally reduced kinetic models

    SciTech Connect

    Oluwole, Oluwayemisi O.; Bhattacharjee, Binita; Tolsma, John E.; Barton, Paul I.; Green, William H.

    2006-07-15

    Reduced chemical kinetic models are often used in place of a detailed mechanism because of the computational expense of solving the complete set of equations describing the reacting system. Mathematical methods for model reduction are usually associated with a nominal set of reaction conditions for which the model is reduced. The important effects of variability in these nominal conditions are often ignored because there is no convenient way to deal with them. In this work, we introduce a method to identify rigorous valid ranges for reduced models; i.e., the reduced models are guaranteed to replicate the full model to within an error tolerance under all conditions in the identified valid range. Previous methods have estimated valid ranges using a limited set of variables (usually temperature and a few species compositions) and cannot guarantee that the reduced model is accurate at all points in the estimated range. The new method is demonstrated by identifying valid ranges for models reduced from the GRI-Mech 3.0 mechanism with 53 species and 325 reactions, and a truncated propane mechanism with 94 species and 505 reactions based on the comprehensive mechanism of Marinov et al. A library of reduced models is also generated for several prespecified ranges composing a desired state space. The use of these reduced models with error control in reacting flow simulations is demonstrated through an Adaptive Chemistry example. By using the reduced models in the simulation only when they are valid the Adaptive Chemistry solution matches the solution obtained using the detailed mechanism. (author)

  14. Chemical mechanism of lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung. pH-dependence of kinetic parameters.

    PubMed Central

    Pérez-Gil, J; Martín, J; Acebal, C; Arche, R

    1990-01-01

    Lysophosphatidylcholine: lysophosphatidylcholine acyltransferase is an enzyme that catalyses two reactions: hydrolysis of lysophosphatidylcholine and transacylation between two molecules of lysophosphatidylcholine to give disaturated phosphatidylcholine. Following the kinetic model previously proposed for this enzyme [Martín, Pérez-Gil, Acebal & Arche (1990) Biochem. J. 266, 47-53], the values of essential pK values in free enzyme and substrate-enzyme complexes have now been determined. The chemical mechanism of catalysis was dependent on the deprotonation of a histidine residue with pK about 5.7. This result was supported by the perturbation of pK values by addition of organic solvent. Very high and exothermic enthalpy of ionization was measured, indicating that a conformational re-arrangement in the enzyme accompanies the ionization of the essential histidine residue. These results, as well as the results from previous studies, enabled the proposal of a chemical mechanism for the enzymic reactions catalysed by lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung. PMID:2241908

  15. The Teaching and Learning of Chemical Kinetics Supported with MS Excel

    ERIC Educational Resources Information Center

    Zain, Sharifuddin Md; Rahman, Noorsaadah Abdul; Chin, Lee Sui

    2013-01-01

    Students in 12 secondary schools in three states of Malaysia were taught to use worksheets on the chemical kinetics topic which had been pre-created using the MS Excel worksheets. After the teaching, an opinion survey of 612 Form Six students from these schools was conducted. The results showed that almost all the students felt that MS Excel…

  16. Cooperative Learning Instruction for Conceptual Change in the Concepts of Chemical Kinetics

    ERIC Educational Resources Information Center

    Kirik, Ozgecan Tastan; Boz, Yezdan

    2012-01-01

    Learning is a social event and so the students need learning environments that enable them to work with their peers so that they can learn through their interactions. This study discusses the effectiveness of cooperative learning compared to traditional instruction in terms of students' motivation and understanding of chemical kinetics in a high…

  17. New integration techniques for chemical kinetic rate equations. I - Efficiency comparison

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1986-01-01

    A comparison of the efficiency of several recently developed numerical techniques for solving chemical kinetic rate equations is presented. The solution procedures examined include two general-purpose codes, EPISODE and LSODE, developed as multipurpose differential equation solvers, and three specialzed codes, CHEMEQ, CREK1D, and GCKP84, developed specifically for chemical kinetics. The efficiency comparison is made by applying these codes to two practical combustion kinetics problems. Both problems describe adiabatic, constant-pressure, gas-phase chemical reactions and include all three combustion regimes: induction, heat release, and equilibration. The comparison shows that LSODE is the fastest routine currently available for solving chemical kinetic rate equations. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for temperature can be significantly faster than evaluation of the temperature by integration of its time derivative. Significant increases in computational speed are realized by updating the reaction rate constants only when the temperature change exceeds an amount Delta-T that is problem dependent. An approximate expression for the automatic evaluation of Delta-T is presented and is shown to result in increased computational speed.

  18. A. G. Vernon Harcourt: A Founder of Chemical Kinetics and a Friend of "Lewis Carroll."

    ERIC Educational Resources Information Center

    Shorter, John

    1980-01-01

    Outlines the life of A. G. Vernon Harcourt, a founder of chemical kinetics, contributor to the purification of coal gas from sulfur compounds, inventor of the percentage chloroform inhaler, friend to Lewis Carroll, and instructor to the Prince of Wales. (CS)

  19. Research in chemical kinetics. Progress report, August 1, 1987--July 20, 1988

    SciTech Connect

    Rowland, F.S.

    1996-09-01

    This paper describes chemical kinetics research in the following areas: reactions of thermalized tritium atoms with organo-tin compounds; studies on the hydrolysis of OCS and CS{sub 2}; thermal chlorine 38 reactions with 2,3-dichloro-hexafluoro-2-butene; and thermal T reactions with fluoroethylenes.

  20. Designing and Evaluating an Evidence-Informed Instruction in Chemical Kinetics

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin; Aydogdu, Cemil

    2011-01-01

    We have investigated the effects of a teaching intervention based on evidence from educational theories and research data, on students' ideas in chemical kinetics. A quasi-experimental design was used to compare the outcomes for the intervention. The subjects of the study were 83 university first-year students, who were in two different classes in…

  1. INFLUENCE OF ORGANIC COSOLVENTS ON THE SORPTION KINETICS OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    A quantitative examination of the kinetics of sorption of hydrophobic organic chemicals by soils from mixed solvents reveals that the reverse sorption rate constant (k2) increases log-linearly with increasing volume fraction of organic cosolvent (fc). This relationship was expec...

  2. From a hybrid model to a fully kinetic model: On the modeling of planetary plasma environments by a fully kinetic electromagnetic global model HYB-em

    NASA Astrophysics Data System (ADS)

    Pohjola, Valter; Kallio, Esa; Jarvinen, Riku

    We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new model enables us to (1) study the stability of various planetary plasma regions in three dimensional space, (2) analyze the propa-gation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform(e.g. ion-neutral collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this presentation we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expan-sion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. We demonstrate that the HYB-em model is capable of describing these space plasma situations successfully. The analysis suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.

  3. From a hybrid model to a fully kinetic model: On the modeling of planetary plasma environments by a fully kinetic electromagnetic global model HYB-em

    NASA Astrophysics Data System (ADS)

    Pohjola, Valter; Kallio, Esa

    2010-05-01

    We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new model enables us to (1) study the stability of various planetary plasma regions in three dimensional space, (2) analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this presentation we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expansion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. We demonstrate that the HYB-em model is capable of describing these space plasma situations successfully. The analysis suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.

  4. Validity of Various Approaches to Global Kinetic Modeling of Material Lifetimes

    SciTech Connect

    Burnham, A K; Dinh, L N

    2006-09-11

    Chemical kinetic modeling has been used for many years in process optimization, estimating real-time material performance, and lifetime prediction. Chemists have tended towards developing detailed mechanistic models, while engineers have tended towards global or lumped models. Many, if not most, applications use global models by necessity, since it is impractical or impossible to develop a rigorous mechanistic model. Model fitting acquired a bad connotation in the thermal analysis community after that community realized a decade after other disciplines that deriving kinetic parameters for an assumed model from a single heating rate produced unreliable and sometimes nonsensical results. In its place, advanced isoconversional methods, which have their roots in the Friedman and Ozawa-Flynn-Wall methods of the 1960s, have become increasingly popular. In fact, as pointed out by the ICTAC kinetics project in 2000, valid kinetic parameters can be derived by both isoconversional and model fitting methods as long as a diverse set of thermal histories are used to derive the kinetic parameters. The current paper extends the understanding from that project to give a better appreciation of the strengths and weaknesses of isoconversional and model-fitting approaches. Examples are given from a variety of data sets.

  5. A Comparison of Isoconversional and Model-Fitting Approaches to Kinetic Parameter Estimation and Application Predictions

    SciTech Connect

    Burnham, A K

    2006-05-17

    Chemical kinetic modeling has been used for many years in process optimization, estimating real-time material performance, and lifetime prediction. Chemists have tended towards developing detailed mechanistic models, while engineers have tended towards global or lumped models. Many, if not most, applications use global models by necessity, since it is impractical or impossible to develop a rigorous mechanistic model. Model fitting acquired a bad name in the thermal analysis community after that community realized a decade after other disciplines that deriving kinetic parameters for an assumed model from a single heating rate produced unreliable and sometimes nonsensical results. In its place, advanced isoconversional methods (1), which have their roots in the Friedman (2) and Ozawa-Flynn-Wall (3) methods of the 1960s, have become increasingly popular. In fact, as pointed out by the ICTAC kinetics project in 2000 (4), valid kinetic parameters can be derived by both isoconversional and model fitting methods as long as a diverse set of thermal histories are used to derive the kinetic parameters. The current paper extends the understanding from that project to give a better appreciation of the strengths and weaknesses of isoconversional and model-fitting approaches. Examples are given from a variety of sources, including the former and current ICTAC round-robin exercises, data sets for materials of interest, and simulated data sets.

  6. Kinetic modeling of methyl butanoate in shock tube.

    PubMed

    Huynh, Lam K; Lin, Kuang C; Violi, Angela

    2008-12-25

    An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation

  7. Kinetic and chemical mechanisms for the effects of univalent cations on the spectral properties of aromatic amine dehydrogenase.

    PubMed Central

    Zhu, Z; Davidson, V L

    1998-01-01

    Univalent cations and pH influence the UV-visible absorption spectrum of the tryptophan tryptophylquinone (TTQ) enzyme, aromatic amine dehydrogenase (AADH). Little spectral perturbation was observed when pH was varied in the absence of univalent cations. The addition of alkali metal univalent cations (K+, Na+, Li+, Rb+ or Cs+) to oxidized AADH caused significant changes in its absorption spectrum. The apparent Kd for each cation, determined from titrations of the spectral perturbation, decreased with increasing pH. Transient kinetic studies involving rapid mixing of AADH with cations and pH jump revealed that the rate of the cation-induced spectral changes initially decreased with increasing cation concentration to a minimum value, then increased with increasing cation concentration. A kinetic model was developed to fit these data, determine the true pH-independent Kd values for K+ and Na+, and explain the pH-dependence of the apparent Kd. A chemical reaction mechanism, based on the kinetic data, is presented in which the metallic univalent cation facilitates the chemical modification of the TTQ prosthetic group to form an hydroxide adduct which gives rise to the spectral change. Addition of NH4(+)/NH3 to AADH caused changes in the absorption spectrum which were very different form those caused by addition of the metallic univalent cations. The kinetics of the reaction induced by addition of NH4+/NH3 were also different, being simple saturation kinetics. Another reaction mechanism is proposed for the NH4+/NH3-induced spectral change that involves nucleophilic addition of the unprotonated NH3 to TTQ. The general relevance of these data and models to the physiological reactions of TTQ-dependent enzymes and to the roles of univalent cations in modulating enzyme activity are discussed. PMID:9405291

  8. Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mishra, Vishal

    2016-09-01

    The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.

  9. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms.

    PubMed

    Jahid, Iqbal Kabir; Ha, Sang-Do

    2014-05-01

    The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (p<0.05) the biofilms matrix. The Weibull parameter b-value correlated (R(2)=0.6835) with the biofilms matrix removal. The present findings deduce that the Weibull model is suitable to determine biofilms matrix reduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.

  10. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms.

    PubMed

    Jahid, Iqbal Kabir; Ha, Sang-Do

    2014-05-01

    The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (p<0.05) the biofilms matrix. The Weibull parameter b-value correlated (R(2)=0.6835) with the biofilms matrix removal. The present findings deduce that the Weibull model is suitable to determine biofilms matrix reduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens. PMID:24552163

  11. Modelling chemical depletion profiles in regolith

    USGS Publications Warehouse

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  12. Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Chen, Lingen; Sun, Fengrui

    2016-03-01

    The finite-time thermodynamic method based on probability analysis can more accurately describe various performance parameters of thermodynamic systems. Based on the relation between optimal efficiency and power output of a generalized Carnot heat engine with a finite high-temperature heat reservoir (heat source) and an infinite low-temperature heat reservoir (heat sink) and with the only irreversibility of heat transfer, this paper studies the problem of power optimization of chemically driven heat engine based on first and second order reaction kinetic theory, puts forward a model of the coupling heat engine which can be run periodically and obtains the effects of the finite-time thermodynamic characteristics of the coupling relation between chemical reaction and heat engine on the power optimization. The results show that the first order reaction kinetics model can use fuel more effectively, and can provide heat engine with higher temperature heat source to increase the power output of the heat engine. Moreover, the power fluctuation bounds of the chemically driven heat engine are obtained by using the probability analysis method. The results may provide some guidelines for the character analysis and power optimization of the chemically driven heat engines.

  13. Apatite Biomineralization: Model Studies of Composition and Kinetics

    NASA Astrophysics Data System (ADS)

    Tecklenburg, M. M. J.; Urbanawiz, S. A.; Derry, A. W.; Ling, M. L.; Zhou, D.; Pavan, B.

    2014-06-01

    Biomineralization of bone and teeth is modeled via studies of apatite crystallization to assess the effects of constituent ions and centrifugal force on kinetics of the amorphous to crystalline phase transition.

  14. A model for lignin alteration - Part I: A kinetic reaction-network model

    USGS Publications Warehouse

    Payne, D.F.; Ortoleva, P.J.

    2001-01-01

    A new quantitative model is presented which simulates the maturation of lignin-derived sedimentary organic matter under geologic conditions. In this model, compositionally specific reactants evolve to specific intermediate and mobile products through balanced, nth order processes, by way of a network of sequential and parallel reactions. The chemical kinetic approach is based primarily on published observed structural transformations of naturally matured, lignin-derived, sedimentary organic matter. Assuming that Upper Cretaceous Williams Fork coal in the Piceance Basin is primarily lignin-derived, the model is calibrated for the Multi-Well Experiment(MWX) Site in this basin. This kind of approach may be applied to other selectively preserved chemical components of sedimentary organic matter. ?? 2001 Elsevier Science Ltd. All rights reserved.

  15. Can accurate kinetic laws be created to describe chemical weathering?

    NASA Astrophysics Data System (ADS)

    Schott, Jacques; Oelkers, Eric H.; Bénézeth, Pascale; Goddéris, Yves; François, Louis

    2012-11-01

    Knowledge of the mechanisms and rates of mineral dissolution and growth, especially close to equilibrium, is essential for describing the temporal and spatial evolution of natural processes like weathering and its impact on CO2 budget and climate. The Surface Complexation approach (SC) combined with Transition State Theory (TST) provides an efficient framework for describing mineral dissolution over wide ranges of solution composition, chemical affinity, and temperature. There has been a large debate for several years, however, about the comparative merits of SC/TS versus classical growth theories for describing mineral dissolution and growth at near-to-equilibrium conditions. This study considers recent results obtained in our laboratory on oxides, hydroxides, silicates, and carbonates on near-equilibrium dissolution and growth via the combination of complementary microscopic and macroscopic techniques including hydrothermal atomic force microscopy, hydrogen-electrode concentration cell, mixed flow and batch reactors. Results show that the dissolution and precipitation of hydroxides, kaolinite, and hydromagnesite powders of relatively high BET surface area closely follow SC/TST rate laws with a linear dependence of both dissolution and growth rates on fluid saturation state (Ω) even at very close to equilibrium conditions (|ΔG| < 500 J/mol). This occurs because sufficient reactive sites (e.g. at kink, steps, and edges) are available at the exposed faces for dissolution and/or growth, allowing reactions to proceed via the direct and reversible detachment/attachment of reactants at the surface. In contrast, for magnesite and quartz, which have low surface areas, fewer active sites are available for growth and dissolution. Such minerals exhibit rates dependencies on Ω at near equilibrium conditions ranging from linear to highly non-linear functions of Ω, depending on the treatment of the crystals before the reaction. It follows that the form of the f

  16. Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications

    SciTech Connect

    Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

    2009-04-21

    New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well

  17. An integral representation of functions in gas-kinetic models

    NASA Astrophysics Data System (ADS)

    Perepelitsa, Misha

    2016-08-01

    Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.

  18. The Development of a Detailed Chemical Kinetic Mechanism for Diisobutylene and Comparison to Shock Tube Ignition Times

    SciTech Connect

    Metcalfe, W; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

    2005-01-21

    There is much demand for chemical kinetic models to represent practical fuels such as gasoline, diesel and aviation fuel. These blended fuels contain hundreds of components whose identity and amounts are often unknown. A chemical kinetic mechanism that would represent the oxidation of all these species with accompanying chemical reactions is intractable with current computational capabilities, chemical knowledge and manpower resources. The use of surrogate fuels is an approach to make the development of chemical kinetic mechanisms for practical fuels tractable. A surrogate fuel model consists of a small number of fuel components that can be used to represent the practical fuel and still predict desired characteristics of the practical fuel. These desired fuel characteristics may include ignition behavior, burning velocity, fuel viscosity, fuel vaporization, and fuel emissions (carbon monoxide, hydrocarbons, soot and nitric oxides). Gasoline consists of many different classes of hydrocarbons including n-alkanes, alkenes, iso-alkanes, cycloalkanes, cycloalkenes, and aromatics. One approach is to use a fuel surrogate that has a single component from each class of hydrocarbon in gasoline so that the unique molecular structure of each class is represented. This approach may lead to reliable predictions of many of the combustion properties of the practical fuel. In order to obtain a fuel surrogate mechanism, detailed chemical kinetic mechanisms must be developed for each component in the surrogate. In this study, a detailed chemical kinetic mechanism is developed for diisobutylene, a fuel intended to represent alkenes in practical fuels such as gasoline, diesel, and aviation fuel. The fuel component diisobutylene usually consists of a mixture of two conjugate olefins of iso-octane: 1- or 2-pentene, 2,4,4-trimethyl. Diisobutylene has a similar molecular structure to iso-octane, so that its kinetics offers insight into the effect of including a double bond in the carbon

  19. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study.

    PubMed

    Xie, Hong-Bin; Li, Chao; He, Ning; Wang, Cheng; Zhang, Shaowen; Chen, Jingwen

    2014-01-01

    Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified.

  20. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study.

    PubMed

    Xie, Hong-Bin; Li, Chao; He, Ning; Wang, Cheng; Zhang, Shaowen; Chen, Jingwen

    2014-01-01

    Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified. PMID:24438015

  1. Chemical modeling of waste sludges

    SciTech Connect

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.

  2. Features in chemical kinetics. II. A self-emerging definition of slow manifolds.

    PubMed

    Nicolini, Paolo; Frezzato, Diego

    2013-06-21

    In the preceding paper of this series (Part I [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101 (2013)]) we have unveiled some ubiquitous features encoded in the systems of polynomial differential equations normally applied in the description of homogeneous and isothermal chemical kinetics (mass-action law). Here we proceed by investigating a deeply related feature: the appearance of so-called slow manifolds (SMs) which are low-dimensional hyper-surfaces in the neighborhood of which the slow evolution of the reacting system occurs after an initial fast transient. Indeed a geometrical definition of SM, devoid of subjectivity, "naturally" follows in terms of a specific sub-dimensional domain embedded in the peculiar region of the concentrations phase-space that in Part I we termed as "attractiveness region." Numerical inspections on simple low-dimensional model cases are presented, including the benchmark case of Davis and Skodje [J. Chem. Phys. 111, 859 (1999)] and the preliminary analysis of a simplified model mechanism of hydrogen combustion. PMID:23802946

  3. Turbulent hydrocarbon combustions kinetics - Stochastic modeling and verification

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Farmer, R. C.; Tucker, Kevin

    1989-01-01

    Idealized reactors, that are designed to ensure perfect mixing and are used to generate the combustion kinetics for complex hydrocarbon fuels, may depart from the ideal and influence the kinetics model performance. A complex hydrocarbon kinetics model that was established by modeling a jet-stirred combustor (JSC) as a perfectly stirred reactor (PSR), is reevaluated with a simple stochastic process in order to introduce the unmixedness effect quantitatively into the reactor system. It is shown that the comparisons of the predictions and experimental data have improved dramatically with the inclusion of the unmixedness effect in the rich combustion region. The complex hydrocarbon kinetics is therefore verified to be mixing effect free and be applicable to general reacting flow calculations.

  4. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  5. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.

  6. Hybrid fluid/kinetic model for parallel heat conduction

    SciTech Connect

    Callen, J.D.; Hegna, C.C.; Held, E.D.

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  7. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    PubMed

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  8. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  9. Kinetic exchange models: From molecular physics to social science

    NASA Astrophysics Data System (ADS)

    Patriarca, Marco; Chakraborti, Anirban

    2013-08-01

    We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.

  10. Kinetic model for the collisionless sheath of a collisional plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; Guo, Zehua

    2016-08-01

    Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. These predictions are contrasted here with direct kinetic simulations, showing good agreement.

  11. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  12. Physics-based model for electro-chemical process

    SciTech Connect

    Zhang, Jinsuo

    2013-07-01

    Considering the kinetics of electrochemical reactions and mass transfer at the surface and near-surface of the electrode, a physics-based separation model for separating actinides from fission products in an electro-refiner is developed. The model, taking into account the physical, chemical and electrochemical processes at the electrode surface, can be applied to study electrorefining kinetics. One of the methods used for validation has been to apply the developed model to the computation of the cyclic voltammetry process of PuCl{sub 3} and UCl{sub 3} at a solid electrode in molten KCl-LiCl. The computed results appear to be similar to experimental measures. The separation model can be applied to predict materials flows under normal and abnormal operation conditions. Parametric studies can be conducted based on the model to identify the most important factors that affect the electrorefining processes.

  13. Kinetics of the chemical reduction of nitrate by zero-valent iron.

    PubMed

    Rodríguez-Maroto, J M; García-Herruzo, F; García-Rubio, A; Gómez-Lahoz, C; Vereda-Alonso, C

    2009-02-01

    The use of reactive barriers is one of the preferred remediation technologies for the remediation of groundwater contamination. An adequate design of these barriers requires the understanding of the kinetics of the reaction between the target contaminant and the solid phase in the barrier. A study of the kinetics between metallic iron and aqueous nitrate is presented in this paper. Published literature regarding this reaction indicates that researchers are far from a consensus about the mechanism of this reaction. This paper presents the results obtained from experiments performed at different constant pH values and iron dosages, together with a mathematical analysis of the kinetic results. We have found that an Eley-Rideal kinetic model yields a good explanation of the relatively complicated dependence between rate of nitrate reduction and the pH value of the solution.

  14. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    SciTech Connect

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-07

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  15. New integration techniques for chemical kinetic rate equations. 2: Accuracy comparison

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1985-01-01

    A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.

  16. New integration techniques for chemical kinetic rate equations. II - Accuracy comparison

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1986-01-01

    A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction heat release, and equilibration. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.

  17. Double-focusing mixing jet for XFEL study of chemical kinetics

    PubMed Central

    Wang, Dingjie; Weierstall, Uwe; Pollack, Lois; Spence, John

    2014-01-01

    Several liquid sample injection methods have been developed to satisfy the requirements for serial femtosecond X-ray nanocrystallography, which enables radiation-damage-free determination of molecular structure at room temperature. Time-resolved nanocrystallography would combine structure analysis with chemical kinetics by determining the structures of the transient states and chemical kinetic mechanisms simultaneously. A windowless liquid mixing jet device has been designed for this purpose. It achieves fast uniform mixing of substrates and enzymes in the jet within 250 µs, with an adjustable delay between mixing and probing by the X-ray free-electron laser beam of up to 1 s for each frame of a ‘movie’. The principle of the liquid mixing jet device is illustrated using numerical simulation, and experimental results are presented using a fluorescent dye. PMID:25343806

  18. On Accounting for the Interplay of Kinetic and Non-Kinetic Aspects in Population Mobility Models

    SciTech Connect

    Perumalla, Kalyan S; Bhaduri, Budhendra L

    2006-01-01

    Several important applications are placing demands on satisfactory characterization of the bi-directional interaction between kinetic and non-kinetic aspects in the mobility of people and commodities. Example applications include: emergency planning which needs to account for strong interplay of vehicular transport with inventory levels of critical supplies and/or people's psychologies; energy planning for normal day-to-day activities which considers the relation between travel patterns and energy usage; and, policy making for futuristic scenarios which examines the correlation between transportation behaviors and environmental/economic concerns. All these require new and holistic approaches for capturing the interplay of kinetic and non-kinetic aspects of mobility, as those aspects cannot be treated separately. Accurate characterization of such interplay requires proper integration of three distinct components, namely, data, models and computation. The availability of new sources of high-resolution data, and of detailed models together with recent advances in scalable computational methods now permits accurate capture of such an important interplay. This paper serves to highlight and argue that the interplay can in fact be captured in a high level of detail in simulations, enabled by the availability of new data, models and computational capabilities. Some of the challenges that are encountered in incorporating the interplay are outlined and plausible solution approaches are described in the context of large-scale scenarios involving mobility of people and commodities.

  19. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  20. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  1. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  2. Three-dimensional kinetic Monte Carlo simulations of diamond chemical vapor deposition.

    PubMed

    Rodgers, W J; May, P W; Allan, N L; Harvey, J N

    2015-06-01

    A three-dimensional kinetic Monte Carlo model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model includes adsorption of CHx (x = 0, 3) species, insertion of CHy (y = 0-2) into surface dimer bonds, etching/desorption of both transient adsorbed species and lattice sidewalls, lattice incorporation, and surface migration but not defect formation or renucleation processes. A value of ∼200 kJ mol(-1) for the activation Gibbs energy, ΔG(‡) etch, for etching an adsorbed CHx species reproduces the experimental growth rate accurately. SCD and MCD growths are dominated by migration and step-edge growth, whereas in NCD and UNCD growths, migration is less and species nucleate where they land. Etching of species from the lattice sidewalls has been modelled as a function of geometry and the number of bonded neighbors of each species. Choice of appropriate parameters for the relative decrease in etch rate as a function of number of neighbors allows flat-bottomed etch pits and/or sharp-pointed etch pits to be simulated, which resemble those seen when etching diamond in H2 or O2 atmospheres. Simulation of surface defects using unetchable, immobile species reproduces other observed growth phenomena, such as needles and hillocks. The critical nucleus for new layer growth is 2 adjacent surface carbons, irrespective of the growth regime. We conclude that twinning and formation of multiple grains rather than pristine single-crystals may be a result of misoriented growth islands merging, with each island forming a grain, rather than renucleation caused by an adsorbing defect species. PMID:26049516

  3. Three-dimensional kinetic Monte Carlo simulations of diamond chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rodgers, W. J.; May, P. W.; Allan, N. L.; Harvey, J. N.

    2015-06-01

    A three-dimensional kinetic Monte Carlo model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model includes adsorption of CHx (x = 0, 3) species, insertion of CHy (y = 0-2) into surface dimer bonds, etching/desorption of both transient adsorbed species and lattice sidewalls, lattice incorporation, and surface migration but not defect formation or renucleation processes. A value of ˜200 kJ mol-1 for the activation Gibbs energy, ΔG‡etch, for etching an adsorbed CHx species reproduces the experimental growth rate accurately. SCD and MCD growths are dominated by migration and step-edge growth, whereas in NCD and UNCD growths, migration is less and species nucleate where they land. Etching of species from the lattice sidewalls has been modelled as a function of geometry and the number of bonded neighbors of each species. Choice of appropriate parameters for the relative decrease in etch rate as a function of number of neighbors allows flat-bottomed etch pits and/or sharp-pointed etch pits to be simulated, which resemble those seen when etching diamond in H2 or O2 atmospheres. Simulation of surface defects using unetchable, immobile species reproduces other observed growth phenomena, such as needles and hillocks. The critical nucleus for new layer growth is 2 adjacent surface carbons, irrespective of the growth regime. We conclude that twinning and formation of multiple grains rather than pristine single-crystals may be a result of misoriented growth islands merging, with each island forming a grain, rather than renucleation caused by an adsorbing defect species.

  4. Theoretical study of gas hydrate decomposition kinetics: model predictions.

    PubMed

    Windmeier, Christoph; Oellrich, Lothar R

    2013-11-27

    In order to provide an estimate of intrinsic gas hydrate dissolution and dissociation kinetics, the Consecutive Desorption and Melting Model (CDM) was developed in a previous publication (Windmeier, C.; Oellrich, L. R. J. Phys. Chem. A 2013, 117, 10151-10161). In this work, an extensive summary of required model data is given. Obtained model predictions are discussed with respect to their temperature dependence as well as their significance for technically relevant areas of gas hydrate decomposition. As a result, an expression for determination of the intrinsic gas hydrate decomposition kinetics for various hydrate formers is given together with an estimate for the maximum possible rates of gas hydrate decomposition. PMID:24199870

  5. Kinetic modelling of phenol co-oxidation using horseradish peroxidase.

    PubMed

    Carvalho, R H; Lemos, F; Lemos, M A N D A; Vojinović, V; Fonseca, L P; Cabral, J M S

    2006-07-01

    Phenol is an industrial pollutant and its removal from industrial wastewaters is of great importance. In order to design optimised phenol removal procedures by using horseradish peroxidase-based systems, there are some points that have to be dealt with. One of the most important issues is the need for reliable kinetics as this is one of the difficulties found during process scale-up. Although simplified kinetics can be used for limited ranges of operating conditions, they are not usually reliable for the description of varying process conditions. The present work describes the implementation of a kinetic model, based on a mechanism, for the co-oxidation of phenol and 4-aminoantipyrine (Am-NH2), which is used as a chromogen agent, with hydrogen peroxide as the oxidant. The model covers not only the variation of the concentrations of all the species involved, but also the effect of temperature in the reaction. The estimation of kinetic rate constants and activation energies for the various steps in the mechanism is performed with a single optimisation procedure, and all the experimental results are described using a unique set of parameters, which, thus, is valid over an extended range of operating conditions. The mechanism allowed the determination of a reliable kinetic model which is appropriate for the range of experimental conditions used. The computational model was also tested with an independent set of experiments with different conditions from the ones for which the parameters were estimated. PMID:16612606

  6. Inhibition of nickel precipitation by gluconate. 2: Kinetic modeling

    SciTech Connect

    Hu, H.L.; Nikolaidis, N.P.; Grasso, D.

    1998-08-01

    Gluconate has been shown to inhibit nickel precipitation. This can result in adverse system performance when treating nickel plating wastewater. A kinetic model based on the formation of major species was developed to simulate nickel precipitation in the absence and presence of gluconate. The model was calibrated and verified against batch kinetic experimental results. The model simulated the studied nickel-gluconate systems well. However, no universal mechanisms could be adopted to explain all of the phenomena observed in the kinetic study, indicating different controlling mechanisms in each system. The results of this study can be used to evaluate optimum conditions for nickel precipitation and to aid in the design of treatment processes enhancing the optimization of nickel recovery from metal finishing wastewaters.

  7. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    SciTech Connect

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  8. Information on living systems: A kinetic approach. Comment on the paper "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    NASA Astrophysics Data System (ADS)

    Urrutia, L.

    2016-03-01

    Information appears naturally in the description of living systems. In kinetic models of such systems, information defined as the knowledge that a population has of the structure of the environment plays a key role in the dynamics of the system. For example, on chemotaxis models of cell movement, the concentration of a certain chemical substance can be understood to be the information that cells have of the structure of the surrounding media, and adapt their movement to that [6,7].

  9. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  10. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  11. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  12. Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics

    SciTech Connect

    Sen, Baris Ali; Menon, Suresh; Hawkes, Evatt R.

    2010-03-15

    Large eddy simulation (LES) of a non-premixed, temporally evolving, syngas/air flame is performed with special emphasis on speeding-up the sub-grid chemistry computations using an artificial neural networks (ANN) approach. The numerical setup for the LES is identical to a previous direct numerical simulation (DNS) study, which reported considerable local extinction and reignition physics, and hence, offers a challenging test case. The chemical kinetics modeling with ANN is based on a recent approach, and replaces the stiff ODE solver (DI) to predict the species reaction rates in the subgrid linear eddy mixing (LEM) model based LES (LEMLES). In order to provide a comprehensive evaluation of the current approach, additional information on conditional statistics of some of the key species and temperature are extracted from the previous DNS study and are compared with the LEMLES using ANN (ANN-LEMLES, hereafter). The results show that the current approach can detect the correct extinction and reignition physics with reasonable accuracy compared to the DNS. The syngas flame structure and the scalar dissipation rate statistics obtained by the current ANN-LEMLES are provided to further probe the flame physics. It is observed that, in contrast to H{sub 2}, CO exhibits a smooth variation within the region enclosed by the stoichiometric mixture fraction. The probability density functions (PDFs) of the scalar dissipation rates calculated based on the mixture fraction and CO demonstrate that the mean value of the PDF is insensitive to extinction and reignition. However, this is not the case for the scalar dissipation rate calculated by the OH mass fraction. Overall, ANN provides considerable computational speed-up and memory saving compared to DI, and can be used to investigate turbulent flames in a computationally affordable manner. (author)

  13. Detailed Chemical Kinetic Reaction Mechanisms for Autoignition of Isomers of Heptane Under Rapid Compression

    SciTech Connect

    Westbrook, C K; Pitz, W J; Boercker, J E; Curran, H J; Griffiths, J F; Mohamed, C; Ribaucour, M

    2001-12-17

    Detailed chemical kinetic reaction mechanisms are developed for combustion of all nine isomers of heptane (C{sub 7}H{sub 16}), and these mechanisms are tested by simulating autoignition of each isomer under rapid compression machine conditions. The reaction mechanisms focus on the manner in which the molecular structure of each isomer determines the rates and product distributions of possible classes of reactions. The reaction pathways emphasize the importance of alkylperoxy radical isomerizations and addition reactions of molecular oxygen to alkyl and hydroperoxyalkyl radicals. A new reaction group has been added to past models, in which hydroperoxyalkyl radicals that originated with abstraction of an H atom from a tertiary site in the parent heptane molecule are assigned new reaction sequences involving additional internal H atom abstractions not previously allowed. This process accelerates autoignition in fuels with tertiary C-H bonds in the parent fuel. In addition, the rates of hydroperoxyalkylperoxy radical isomerization reactions have all been reduced so that they are now equal to rates of analogous alkylperoxy radical isomerizations, significantly improving agreement between computed and experimental ignition delay times in the rapid compression machine. Computed ignition delay times agree well with experimental results in the few cases where experiments have been carried out for specific heptane isomers, and predictive model calculations are reported for the remaining isomers. The computed results fall into three general groups; the first consists of the most reactive isomers, including n-heptane, 2-methyl hexane and 3-methyl hexane. The second group consists of the least reactive isomers, including 2,2-dimethyl pentane, 3,3-dimethyl pentane, 2,3-dimethyl pentane, 2,4-dimethyl pentane and 2,2,3-trimethyl butane. The remaining isomer, 3-ethyl pentane, was observed computationally to have an intermediate level of reactivity. These observations are generally

  14. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    SciTech Connect

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  15. Kinetic model for dilute traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana A.

    The flow of traffic represents a many-particle non-equilibrium problem with important practical consequences. Traffic behavior has been studied using a variety of approaches, including fluid dynamics models, Boltzmann equation, and recently cellular automata (CA). The CA model for traffic flow that Nagel and Schreckenberg (NS) introduced can successfully mimic many of the known features of the traffic flow. We show that in the dilute limit of the NS model, where vehicles exhibit free flow, cars show significant nearest neighbor correlation primarily via a short-range repulsion. introduce an approximate analytic model to describe this dilute limit. We show that the distribution of the distance between consecutive vehicles obeys a drift-diffusion equation. We compared this model with direct simulations. The steady state solution and relaxation of this model agrees well with direct simulations. We explore how this model breaks down as the transition to jams occurs.

  16. A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Flowers, D; Smith, J R; Dibble, R; Chen, J Y

    2002-08-12

    This paper shows how a computer can systematically remove non-essential chemical reactions from a large chemical kinetic mechanism. The computer removes the reactions based upon a single solution using a detailed mechanism. The resulting reduced chemical mechanism produces similar numerical predictions significantly faster than predictions that use the detailed mechanism. Specifically, a reduced chemical kinetics mechanism for iso-octane has been derived from a detailed mechanism by eliminating unimportant reaction steps and species. The reduced mechanism has been developed for the specific purpose of fast and accurate prediction of ignition timing in an HCCI engine. The reduced mechanism contains 199 species and 383 reactions, while the detailed mechanism contains 859 species and 3606 reactions. Both mechanisms have been used in numerical simulation of HCCI combustion. The simulations show that the reduced mechanism predicts pressure traces and heat release with good accuracy, similar to the accuracy obtained with the detailed mechanism. As may be expected, emissions of hydrocarbon and carbon monoxide are not as well predicted with the reduced mechanism as with the detailed mechanism, since the reduced mechanism was targeted for predicting HCCI ignition and not HC and CO emissions. Considering that the reduced mechanism requires about 25 times less computational time than the detailed mechanism (2 hours vs. 2 days), the ability to automatically generate a problem specific reduced mechanism is an important new tool for combustion research in general.

  17. Equilibration Kinetics and Chemical Diffusion of Indium-Doped TiO2.

    PubMed

    Nowotny, Janusz; Alim, Mohammad A

    2015-04-30

    The present work reports the gas/solid equilibration kinetics for In-doped TiO2 (0.4 atom % In) at elevated temperatures (1023-1273 K) in the gas phase of controlled oxygen activity [10(-13) Pa < p(O2) < 10(5) Pa]. Thus, the determined chemical diffusion coefficient is considered in terms of a microdiffusion coefficient that is reflective of the transport kinetics within very narrow ranges of oxygen activities. In analogy to pure TiO2, the chemical diffusion coefficient for In-doped TiO2 exhibits a maximum at the n-p transition point. The activation energy of the chemical diffusion exhibits a decrease with temperature from 200 kJ/mol at 1023 K to an insignificant value at 1273 K. This effect is reflective of a segregation-induced electrical potential barrier blocking the transport of defects. The absolute value of the chemical diffusion coefficient for In-doped TiO2 is larger from that of pure TiO2 by a factor of approximately 10. The effect of indium on the diffusion rate is considered in terms of the associated concentration of oxygen vacancies, which are formed in order to satisfy the charge neutrality for In-doped TiO2.

  18. Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters using Different Optimization Tools

    NASA Astrophysics Data System (ADS)

    Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash

    2015-04-01

    The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.

  19. Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD)

    NASA Astrophysics Data System (ADS)

    Salvage, Karen M.; Yeh, Gour-Tsyh

    1998-08-01

    This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations

  20. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law.

    PubMed

    Nicolini, Paolo; Frezzato, Diego

    2013-06-21

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution ω[over dot]=-ω(2) along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] this outcome will be naturally related to the

  1. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law

    NASA Astrophysics Data System (ADS)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-01

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally

  2. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  3. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-II

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two-dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  4. Soluble kinetic model for spinodal decomposition

    SciTech Connect

    Scheucher, M.; Spohn, H.

    1988-10-01

    We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.

  5. Monosaccharide production in an acid sulfite process: kinetic modeling.

    PubMed

    Rueda, C; Fernández-Rodríguez, J; Ruiz, G; Llano, T; Coz, A

    2015-02-13

    Spent sulfite liquor is a lignocellulosic waste obtained after the sulfite pulping process. It is mainly formed by sugars and lignosulfonates which are isolated from the pulp during the cooking process. The current work investigates the kinetic modeling of the sulfite process from a biorefinery point of view since monosaccharides present in the spent liquor can be used as a raw material in further biorefinery processes to produce other value-added products. Kinetic parameters of carbohydrate degradation have been determined following sugar and inhibitors from wood to spent liquor, using laboratory scale reactors and different temperatures, 130, 140 and 150 °C. Three types of reaction schemes were developed. Kinetic parameters were obtained for each one using first and n order reactions, using Aspen Custom Modeler. Results show that the best temperature to be used in the process is 130 °C, giving the maximum sugar conversion, 33.91 mol% and obtaining 13.81 mol% of decomposition products.

  6. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-04-01

    Absorption of acid gases such as CO{sub 2} and H{sub 2}S from natural and process gases is of great industrial importance. The kinetics of the reaction between CO{sub 2} and aqueous diethanolamine (DEA) were estimated over the temperature range of 293--343 K from absorption data obtained in a laminar-liquid jet absorber. The absorption data were obtained over a wide range of DEA concentrations and for CO{sub 2} partial pressures near atmospheric. A rigorous numerical mass-transfer model based on penetration theory in which all chemical reactions are considered to be reversible was developed and used to estimate kinetic rate coefficients from the experimental absorption data. The kinetic data were found to be consistent with the zwitterion mechanism. The scarce zwitterion rate coefficient estimates reported in the literature are in fair agreement with the results of this work.

  7. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  8. Towards a principled way of making kinetic models from data

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2012-02-01

    Kinetic model extraction from noisy data is the basic route to mechanistic insight in biology. I will show how the tools of Maximum Caliber (the dynamical analog of Maximum Entropy) can be used to infer -and not fit- models in a way which is driven by the structure and limitations of the data. For instance, the typical output of an experiment in systems biology is the stochastic expression of one reporter gene. Master equations used to model the regulatory process underlying the stochastic gene expression require knowledge of a circuit topology and rates. However rates and topology are often fit as these are rarely all independently determinable from the limited data. Our goal is to build a kinetic model from the data available with no adjustable parameter using the tools of Maximum Caliber. We apply our method to infer the statistics of rare stochastic switching events in the genetic toggle switch from fluctuations on shorter measurable timescales. In addition, we discuss how these tools can be used to infer kinetic models from real single molecule data drawn from anomalous folding kinetics of phosphoglycerate kinase and RNA hairpin zipping-unzipping time traces.

  9. Kinetics of steel slag leaching: Batch tests and modeling

    SciTech Connect

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-02-15

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  10. Kinetics of steel slag leaching: Batch tests and modeling.

    PubMed

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-02-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  11. Communication: Kinetics of chemical ordering in Ag-Au and Ag-Ni nanoalloys

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Fortunelli, A.; Negreiros, F.; Wales, D. J.

    2013-09-01

    The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag27Au28 supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag42Ni13 naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.

  12. Chemical reactions involved in penicillin allergy: kinetics and mechanism of penicillin aminolysis.

    PubMed

    Tsuji, A; Yamana, T; Miyamoto, E; Kiya, E

    1975-08-01

    In view of the fundamental importance of the reaction of penicillins with amino groups of proteins to the penicillin allergy, the aminolysis of benzylpenicillin by various amines was kinetically investigated. The formation rate constants, kamide, of benzylpenicilloylamides were determined at 35 degrees, 45 degrees and 60 degrees (mu equals 0.5), and found to obey the general rate law: kamide equals k1[amine] + k2[amine H+] [amine] + k3[amine]2 + k4[amine]aoh. All of the amines exhibited the unassisted nucleophilic rate constant, k1. The relative importance of the other kinetic terms depends on the basicity and the chemical structure of amines. The reaction mechanism of penicillin aminolysis was discussed. Bronsted relations for k1, k2 and k3, except for hydrazines, were satisfactory.

  13. Kinetic theory and models of the global heliosphere

    NASA Astrophysics Data System (ADS)

    Izmodenov, Vladislav

    2016-07-01

    Current state of art in the kinetic-MHD modeling of the solar/stellar wind interaction with the local interstellar medium (LISM) will be reviewed. New model results will be presented as well as compared with currently available observations from both Voyagers and Interstellar Boundary Explorer (IBEX). Differences between model and observations will be discussed. Especial discussion will be on the recently suggested (by M. Opher and J. Drake) two-jet structure of the heliosphere.

  14. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit

    NASA Astrophysics Data System (ADS)

    Liao, Jie

    2015-12-01

    A nonlinear kinetic chemotaxis model with internal dynamics incorporating signal transduction and adaptation is considered. This paper is concerned with: (i) the global solution for this model, and, (ii) its fast adaptation limit to Othmer-Dunbar-Alt type model. This limit gives some insight to the molecular origin of the chemotaxis behaviour. First, by using the Schauder fixed point theorem, the global existence of weak solution is proved based on detailed a priori estimates, under quite general assumptions. However, the Schauder theorem does not provide uniqueness, so additional analysis is required to be developed for uniqueness. Next, the fast adaptation limit of this model is derived by extracting a weak convergence subsequence in measure space. For this limit, the first difficulty is to show the concentration effect on the internal state. Another difficulty is the strong compactness argument on the chemical potential, which is essential for passing the nonlinear kinetic equation to the weak limit.

  15. Gyrofluid turbulence models with kinetic effects

    SciTech Connect

    Dorland, W.; Hammett, G.W.

    1992-12-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u[parallel], T[parallel], and T[perpendicular] along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These FLR phase-mixing'' terms introduce a hyperviscosity-like damping [proportional to] k[sub [perpendicular

  16. Optimization of Time-Course Experiments for Kinetic Model Discrimination

    PubMed Central

    Lages, Nuno F.; Cordeiro, Carlos; Sousa Silva, Marta; Ponces Freire, Ana; Ferreira, António E. N.

    2012-01-01

    Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction. In this work, a method is proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We focus on models with systems of ordinary differential equations as the underlying mathematical description. The method provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-objective optimization problems was used. The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme, glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-substrate mechanism for the kinetics of yeast glyoxalase I. PMID:22403703

  17. Mathematical Modeling of Chemical Stoichiometry

    ERIC Educational Resources Information Center

    Croteau, Joshua; Fox, William P.; Varazo, Kristofoland

    2007-01-01

    In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…

  18. Crystal growth kinetics of the two-step model

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Lin, Chiu-Hsiung

    1987-03-01

    The single crystal technique was used to measure the growth rate of the potassium alum (111) face and the magnesium sulfate (110) face. The two-step model was found appropriate to describe the growth kinetics with the surface integration order of two for potassium alum crystal and of one for magnesium sulfate crystal. The individual rate constants, Kd and Kr, were determined accordingly.

  19. Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles: Reaction Kinetics and Chemical Morphology

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Katrib, Y.; Biskos, G.; Buseck, P. R.; Davidovits, P.; Jayne, J. T.; Mochida, M.; Wise, M. E.; Worsnop, D. R.

    2005-12-01

    Atmospheric particles directly and indirectly affect global climate and have a primary role in regional issues of air pollution, visibility, and human health. Atmospheric particles have a variety of shapes, dimensions, and chemical compositions, and these physicochemical properties evolve (i.e., "age") during transport of the particles through the atmosphere, in part because of the chemical reactions of particle-phase organic molecules with gas-phase atmospheric oxidants. As a global average, hydroxyl radical (OH) and ozone (O3) are responsible quantitatively for most oxidant aging of atmospheric particles. The reactions of the hydroxyl radical occur in the surface region of a particle because of the nearly diffusion-limited bimolecular rate constant of OH with a variety of organic molecules. Ozone, on the other hand, is a selective agent for the unsaturated bonds of organic molecules and may diffuse a considerable distance into particles prior to reaction. The reaction of oleic acid with ozone has recently emerged as a model system to better understand the atmospheric chemical oxidation processes affecting organic particles. The ozonolysis of mixed oleic-acid/stearic-acid (OL/SA) aerosol particles from 0/100 to 100/0 weight percent composition is studied. The magnitude of the divergence of the particle beam inside an aerosol mass spectrometer shows that, in the concentration range 100/0 to 60/40, the mixed OL/SA particles are liquid prior to reaction. Upon ozonolysis, particles with SA composition greater than 25% change shape, indicating that they have solidified. Transmission electron micrographs show that SA(s) forms needles. For SA compositions greater than 10%, the reaction kinetics exhibit an initial fast decay of OL for low O3 exposure with no further loss of OL at higher O3 exposures. For compositions from 50/50 to 10/90, the residual OL concentration remains at 28+/-2% of its initial value. The initial reactive uptake coefficient for O3, as determined by

  20. Second-order kinetic Kohn-Sham lattice model

    NASA Astrophysics Data System (ADS)

    Solórzano, S.; Mendoza, M.; Herrmann, H. J.

    2016-06-01

    In this work, we introduce a semi-implicit second-order correction scheme to the kinetic Kohn-Sham lattice model. This approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two rows of the Periodic Table, finding good agreement with the expected values. Additionally, we simulate the ethane molecule, where we recover the bond lengths and compare the results with standard methods. Finally, we discuss the current applicability of pseudopotentials within the lattice kinetic Kohn-Sham approach.

  1. Kinetic modeling based probabilistic segmentation for molecular images.

    PubMed

    Saad, Ahmed; Hamarneh, Ghassan; Möller, Torsten; Smith, Ben

    2008-01-01

    We propose a semi-supervised, kinetic modeling based segmentation technique for molecular imaging applications. It is an iterative, self-learning algorithm based on uncertainty principles, designed to alleviate low signal-to-noise ratio (SNR) and partial volume effect (PVE) problems. Synthetic fluorodeoxyglucose (FDG) and simulated Raclopride dynamic positron emission tomography (dPET) brain images with excessive noise levels are used to validate our algorithm. We show, qualitatively and quantitatively, that our algorithm outperforms state-of-the-art techniques in identifying different functional regions and recovering the kinetic parameters.

  2. Automated Physico-Chemical Cell Model Development through Information Theory

    SciTech Connect

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  3. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied.

    PubMed

    Bai, Shirong; Davis, Michael J; Skodje, Rex T

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of how that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux.

  4. Kinetic modeling of reactions in heated monosaccharide-casein systems.

    PubMed

    Brands, Carline M J; van Boekel, Martinus A J S

    2002-11-01

    In the present study, a kinetic model of the Maillard reaction occurring in heated monosaccharide-casein systems was proposed. Its parameters, the reaction rate constants, were estimated via multiresponse modeling. The determinant criterion was used as the statistical fit criterion instead of the familiar least squares to avoid statistical problems. The kinetic model was extensively tested by varying the reaction conditions. Different sugars (glucose, fructose, galactose, and tagatose) were studied regarding their effect on the reaction kinetics. This study has shown the power of multiresponse modeling for the unraveling of complicated reaction routes as occur in the Maillard reaction. The iterative process of proposing a model, confronting it with experiments, and criticizing the model was passed through four times to arrive at a model that was largely consistent with all results obtained. A striking difference was found between aldose and ketose sugars as suggested by the modeling results: not the ketoses themselves but only their reaction products were found to be reactive in the Maillard reaction.

  5. Gyrofluid turbulence models with kinetic effects

    SciTech Connect

    Dorland, W.; Hammett, G.W.

    1992-12-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u{parallel}, T{parallel}, and T{perpendicular} along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing`` terms introduce a hyperviscosity-like damping {proportional_to} k{sub {perpendicular}}{sup 2}{vert_bar}{Phi}{sub {rvec k}}{rvec k} {times}{rvec k}{prime}{vert_bar} which should provide a physics-based damping mechanism at high k{perpendicular}{rho} which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.

  6. A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Mclain, A. G.

    1983-01-01

    A chemical kinetic reaction mechanism for the oxidation of silane/hydrogen mixtures is presented and discussed. Shock-tube ignition delay time data were used to evaluate and refine the mechanism. Good agreement between experimental results and the results predicted by the mechanism was obtained by adjusting the rate coefficient for the reaction SiH3 + O2 yields SiH2O + OH. The reaction mechanism was used to theoretically investigate the ignition characteristics of silane/hydrogen mixtures. The results revealed that over the entire range of temperature examined (800 K to 1200 K), substantial reduction in ignition delay times is obtained when silane is added to hydrogen.

  7. Modeling the Kinetics of Open Self-Assembly.

    PubMed

    Verdier, Timothée; Foret, Lionel; Castelnovo, Martin

    2016-07-01

    In this work, we explore theoretically the kinetics of molecular self-assembly in the presence of constant monomer flux as an input, and a maximal size. The proposed model is supposed to reproduce the dynamics of viral self-assembly for enveloped virus. It turns out that the kinetics of open self-assembly is rather quantitatively different from the kinetics of similar closed assembly. In particular, our results show that the convergence toward the stationary state is reached through assembly waves. Interestingly, we show that the production of complete clusters is much more efficient in the presence of a constant input flux, rather than providing all monomers at the beginning of the self-assembly.

  8. In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC®/CaCO3/HAP-200 composite.

    PubMed

    Aragón, Javier; González, Ramón; Fuentes, Gastón; Palin, Luca; Croce, Gianluca; Viterbo, Davide

    2012-02-01

    Coralline calcium-hydroxyapatite and calcium carbonate from Porites Porites coral were added to a polymeric matrix based on polyvinyl acetate (POVIAC(®)), to obtain a novel bone substitute composite as well as a system for the controlled drug (cephalexin) release. Composite samples with different compositions were characterized by physical-chemical and mechanical methods. Furthermore, the in vitro release profile of cephalexin and the kinetic behavior of its release from these composites were analyzed by appropriate mathematical models. It was shown that there is no chemical interaction between the inorganic filler and the polymer matrix, each conserving the original properties of the raw materials. The compressive mechanical strength and Young modulus of the composite with 17.5% of POVIAC(®), has better mechanical properties than those of cancellous bone. The variation of POVIAC(®) content can affect the cephalexin release kinetic in the composite. The cephalexin release mechanism from the composites can be considered as the result of the joint contribution of a prevailing Fickian diffusion and of polymer chain relaxation. It was also demonstrated that cephalexin is occluded inside the composites and not on their surface.

  9. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.

    PubMed

    Yotova, Lyubov; Tzibranska, Irene; Tileva, Filadia; Markx, G H; Georgieva, Nelly

    2009-03-01

    A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (mu(maxapp) from 0.35 to 0.09 h(-1) and K (sapp) from 0.037 to 0.4 g dm(-3)). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters. PMID:19052785

  10. Non isothermal model free kinetics for pyrolysis of rice straw.

    PubMed

    Mishra, Garima; Bhaskar, Thallada

    2014-10-01

    The kinetics of thermal decomposition of rice straw was studied by thermogravimetry. Non-isothermal thermogravimetric data of rice straw decomposition in nitrogen atmosphere at six different heating rates of 5-40 °C/min was used for evaluating kinetics using several model free kinetic methods. The results showed that the decomposition process exhibited two zones of constant apparent activation energies. The values ranged from 142 to 170 kJ/mol (E(avg) = 155.787 kJ/mol), and 170 to 270 kJ/mol (E(avg) = 236.743 kJ/mol) in the conversion range of 5-60% and 61-90% respectively. These values were used to determine the reaction mechanism of process using master plots and compensation parameters. The results show that the reaction mechanism of whole process can be kinetically characterized by two successive reactions, a diffusion reaction followed by a third order rate equation. The kinetic results were validated using isothermal predictions. The results derived are useful for development and optimization of biomass thermochemical conversion systems. PMID:25105267

  11. A spatially resolved surface kinetic model for forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Johnson, Natalie C.; Jackson, Ariel; Lammers, Laura N.; Torchinsky, Abe B.; Weaver, Karrie L.; Bird, Dennis K.; Brown, Gordon E.

    2016-02-01

    The development of complex alteration layers on silicate mineral surfaces undergoing dissolution is a widely observed phenomenon. Given the complexity of these layers, most kinetic models used to predict rates of mineral-fluid interactions do not explicitly consider their formation. As a result, the relationship between the development of the altered layers and the final dissolution rate is poorly understood. To improve our understanding of the relationship between the alteration layer and the dissolution rate, we developed a spatially resolved surface kinetic model for olivine dissolution and applied it to a series of closed-system experiments consisting of three-phases (water (±NaCl), olivine, and supercritical CO2) at conditions relevant to in situ mineral carbonation (i.e. 60 °C, 100 bar CO2). We also measured the corresponding δ26/24Mg of the dissolved Mg during early stages of dissolution. Analysis of the solid reaction products indicates the formation of Mg-depleted layers on the olivine surface as quickly as 2 days after the experiment was started and before the bulk solution reached saturation with respect to amorphous silica. The δ26/24Mg of the dissolved Mg decreased by approximately 0.4‰ in the first stages of the experiment and then approached the value of the initial olivine (-0.35‰) as the steady-state dissolution rate was approached. We attribute the preferential release of 24Mg to a kinetic effect associated with the formation of a Mg-depleted layer that develops as protons exchange for Mg2+. We used experimental data to calibrate a surface kinetic model for olivine dissolution that includes crystalline olivine, a distinct "active layer" from which Mg can be preferentially removed, and secondary amorphous silica precipitation. By coupling the spatial arrangement of ions with the kinetics, this model is able to reproduce both the early and steady-state long-term dissolution rates, and the kinetic isotope fractionation. In the early stages of

  12. Vlasiator: Global Kinetic Magnetospheric Modeling Tool

    NASA Astrophysics Data System (ADS)

    Sandroos, A.; von Alfthan, S.; Hoilijoki, S.; Honkonen, I.; Kempf, Y.; Pokhotelov, D.; Palmroth, M.

    2015-10-01

    We present Vlasiator, a novel code based on Vlasov's equation, developed for modeling magnetospheric plasma on a global scale. We have parallelized the code to petascale supercomputers with a hybrid OpenMP-MPI approach to answer the high computational cost of propagating ion distribution functions in six dimensions. The accuracy of the numerical method is demonstrated by comparing simulated wave dispersion plots to analytical results. Simulations of Earth's bow shock region were able to reproduce many well-known plasma phenomena, such as compressional magnetosonic waves in the foreshock region, and mirror mode instability in the magnetosheath.

  13. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  14. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  15. Comparisons of kinetic ablation models for the capillary discharge

    SciTech Connect

    Li Rui; Li Xingwen; Jia Shenli; Murphy, Anthony B.

    2010-07-15

    The properties of kinetic ablation models are considered in this paper. The widely used kinetic ablation model (model-K) only considers monatomic vapor. A revised model (model-Z) was introduced by taking into account the polyatomic vapor's internal degrees of freedom, as well as the temperature dependence of the average particle mass. In this work, both temperature and pressure dependence of average particle mass and the specific heat ratio {gamma} are taken into account, producing an improved version of model-Z (denoted model-Z{sup *}). Ablation data calculated by model-K and model-Z* for two typical capillary materials are presented. Compared to model-K, model-Z* predicts an increased ablation rate at lower plasma temperature and higher plasma density, and a decreased rate for the opposite conditions. Finally, based on the plasma parameters in a typical discharge cycle, all three models are used to calculate the time-dependent ablation rate and the integrated ablated mass. It is found that the main difference between their results arises because of the different average particle masses near the wall surface, and model-Z* is the most accurate for the discharge cycle considered. Further, it is found that the ablation parameters are highly sensitive to the pressure, in particular, through the pressure dependence of average particle mass.

  16. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model

    NASA Astrophysics Data System (ADS)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.

    2015-06-01

    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  17. Multi-scenario modelling of uncertainty in stochastic chemical systems

    SciTech Connect

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-09-15

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo.

  18. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect

    Dana, Saswati; Raha, Soumyendu

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  19. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump

    NASA Astrophysics Data System (ADS)

    Cao, Yuansheng; Gong, Zongping; Quan, H. T.

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  20. Kinetic Model Development for Lignin Pyrolysis

    SciTech Connect

    Clark, J.; Robichaud, D.; Nimlos, M.

    2012-01-01

    Lignin pyrolysis poses a significant barrier to the formation of liquid fuel products from biomass. Lignin pyrolyzes at higher temperatures than other biomass components (e.g. cellulose and hemi-cellulose) and tends to form radicals species that lead to cross-linking and ultimately char formation. A first step in the advancement of biomass-to-fuel technology is to discover the underlying mechanisms that lead to the breakdown of lignin at lower temperatures into more stable and usable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin (B-O4, a-O4, B-B, B-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to bond homolysis reactions, a variety of concerted elimination pathways are under investigation that tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.