Sample records for chemical modification methods

  1. Advances in chemical synthesis of structurally modified bioactive RNAs.

    PubMed

    Li, Ziyuan; Zhou, Haipin; Wu, Xiaoming; Yao, Hequan

    2013-01-01

    Methods for the chemical synthesis of RNA have been available for almost half century, and presently, RNA could be chemically synthesized by automated synthesizers, using protected ribonucleosides preactivated as phosphoramidites, which has already been covered by many reviews. In addition to advancement on synthetic methods, a variety of modifications have also been made on the synthesized oligonucleotides, and previous reviews on the general synthesis of RNAs have not covered this area. In this tutorial review, three types of modifications have been summarized standing at the viewpoint of medicinal chemistry: (1) modifications on nucleobase, comprising substituent introduction and replacement with pseudobase; (2) modifications on ribose, consisting of modifications on the 2', 3' or 5'-position, alternation of configuration, and conformational restriction on ribose; (3) modifications on internucleoside linkages, including amide, formacetal, sulfide, sulfone, ether, phosphorothiolate and phosphorothioate linkages. Synthetic methods achieving these modifications along with the functions or values of these modifications have also been discussed and commented on.

  2. Chemical methods for encoding and decoding of posttranslational modifications

    PubMed Central

    Chuh, Kelly N.; Batt, Anna R.; Pratt, Matthew R.

    2016-01-01

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full compliment of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. PMID:26933738

  3. Physical and chemical modification of starches: A review.

    PubMed

    Zia-Ud-Din; Xiong, Hanguo; Fei, Peng

    2017-08-13

    The development of green material in the last decade has been increased, which tends to reduce the impact of humans on the environment. Starch as an agro-sourced polymer has become very popular recently due to its characteristics, such as wide availability, low cost, and total compostability without toxic residues. Starch is the most abundant organic compound found in nature after cellulose. Starches are inherently unsuitable for most applications and, therefore, must be modified physically and/or chemically to enhance their positive attributes and/or to minimize their defects. Modification of starches is generally carried out by using physical methods that are simple and inexpensive due to the absence of chemical agents. However, chemical modification involves the exploitation of hydroxyl group present in the starches that brings about the desired results for the utilization of starches for specific applications. All these techniques have the tendency to produce starches with altered physicochemical properties and modified structural attributes for various food and nonfood applications. This paper reviews the recent knowledge and developments using physical modification methods, some chemical modification methods, and a combination of both to produce a novel molecule with substantial applications, in food industry along with future perspectives.

  4. Sulfenic acid chemistry, detection and cellular lifetime☆

    PubMed Central

    Gupta, Vinayak; Carroll, Kate S.

    2014-01-01

    Background Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods. Scope of review This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered. Major conclusions Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins. General significance Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. PMID:23748139

  5. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    PubMed

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  6. General Characteristics of the Changes in the Thermal Stability of Proteins and Enzymes After the Chemical Modification of Their Functional Groups

    NASA Astrophysics Data System (ADS)

    Kutuzova, G. D.; Ugarova, N. N.; Berezin, Ilya V.

    1984-11-01

    The principal structural and physicochemical factors determining the stability of protein macromolecules in solution and the characteristics of the structure of the proteins from thermophilic microorganisms are examined. The mechanism of the changes in the thermal stability of proteins and enzymes after the chemical modification of their functional side groups and the experimental data concerning the influence of chemical modification on the thermal stability of proteins are analysed. The dependence of the stabilisation effect and of the changes in the structure of protein macromolecules on the degree of modification and on the nature of the modified groups and the groups introduced into proteins in the course of modification (their charge and hydrophobic properties) is demonstrated. The great practical value of the method of chemical modification for the preparation of stabilised forms of biocatalysts is shown in relation to specific examples. The bibliography includes 178 references.

  7. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  8. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    PubMed

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Zinc Oxide—From Synthesis to Application: A Review

    PubMed Central

    Kołodziejczak-Radzimska, Agnieszka; Jesionowski, Teofil

    2014-01-01

    Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide. PMID:28788596

  10. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  11. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    PubMed

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Articles of protective clothing adapted for deflecting chemical permeation and methods therefor

    DOEpatents

    Vo-Dinh, Tuan

    1996-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  13. Articles of protective clothing adapted for deflecting chemical permeation and methods there for

    DOEpatents

    Vo-Dinh, T.

    1996-02-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. 12 figs.

  14. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    PubMed

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  15. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  16. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    DOT National Transportation Integrated Search

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  17. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  18. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  19. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  20. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization

    PubMed Central

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-01-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  1. Incorporation of unnatural sugars for the identification of glycoproteins.

    PubMed

    Zaro, Balyn W; Hang, Howard C; Pratt, Matthew R

    2013-01-01

    Glycosylation is an abundant post-translational modification that alters the fate and function of its substrate proteins. To aid in understanding the significance of protein glycosylation, identification of target proteins is key. As with all proteomics experiments, mass spectrometry has been established as the desired method for substrate identification. However, these approaches require selective enrichment and purification of modified proteins. Chemical reporters in combination with bioorthogonal reactions have emerged as robust tools for identifying post-translational modifications including glycosylation. We provide here a method for the use of bioorthogonal chemical reporters for isolation and identification of glycosylated proteins. More specifically, this protocol is a representative procedure from our own work using an alkyne-bearing O-GlcNAc chemical reporter (GlcNAlk) and a chemically cleavable azido-azo-biotin probe for the identification of O-GlcNAc-modified proteins.

  2. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  3. Chemical Methods for the Direct Detection and Labeling of S-Nitrosothiols

    PubMed Central

    Bechtold, Erika

    2012-01-01

    Abstract Significance: Posttranslational modification of proteins through phosphorylation, glycosylation, and oxidation adds complexity to the proteome by reversibly altering the structure and function of target proteins in a highly controlled fashion. Recent Advances: The study of reversible cysteine oxidation highlights a role for this oxidative modification in complex signal transduction pathways. Nitric oxide (NO), and its respective metabolites (including reactive nitrogen species), participates in a variety of these cellular redox processes, including the reversible oxidation of cysteine to S-nitrosothiols (RSNOs). RSNOs act as endogenous transporters of NO, but also possess beneficial effects independent of NO-related signaling, which suggests a complex and versatile biological role. In this review, we highlight the importance of RSNOs as a required posttranslational modification and summarize the current methods available for detecting S-nitrosation. Critical Issues: Given the limitations of these indirect detection methods, the review covers recent developments toward the direct detection of RSNOs by phosphine-based chemical probes. The intrinsic properties that dictate this phosphine/RSNO reactivity are summarized. In general, RSNOs (both small molecule and protein) react with phosphines to yield reactive S-substituted aza-ylides that undergo further reactions leading to stable RSNO-based adducts. Future Directions: This newly explored chemical reactivity forms the basis of a number of exciting potential chemical methods for protein RSNO detection in biological systems. Antioxid. Redox Signal. 17, 981–991. PMID:22356122

  4. Source term evaluation for combustion modeling

    NASA Technical Reports Server (NTRS)

    Sussman, Myles A.

    1993-01-01

    A modification is developed for application to the source terms used in combustion modeling. The modification accounts for the error of the finite difference scheme in regions where chain-branching chemical reactions produce exponential growth of species densities. The modification is first applied to a one-dimensional scalar model problem. It is then generalized to multiple chemical species, and used in quasi-one-dimensional computations of shock-induced combustion in a channel. Grid refinement studies demonstrate the improved accuracy of the method using this modification. The algorithm is applied in two spatial dimensions and used in simulations of steady and unsteady shock-induced combustion. Comparisons with ballistic range experiments give confidence in the numerical technique and the 9-species hydrogen-air chemistry model.

  5. tRNAmodpred: a computational method for predicting posttranscriptional modifications in tRNAs

    PubMed Central

    Machnicka, Magdalena A.; Dunin-Horkawicz, Stanislaw; de Crécy-Lagard, Valerie; Bujnicki, Janusz M.

    2016-01-01

    tRNA molecules contain numerous chemically altered nucleosides, which are formed by enzymatic modification of the primary transcripts during the complex tRNA maturation process. Some of the modifications are introduced by single reactions, while other require complex series of reactions carried out by several different enzymes. The location and distribution of various types of modifications vary greatly between different tRNA molecules, organisms and organelles. We have developed a computational method tRNAmodpred, for predicting modifications in tRNA sequences. Briefly, our method takes as an input one or more unmodified tRNA sequences and a set of protein sequences corresponding to a proteome of a cell. Subsequently it identifies homologs of known tRNA modification enzymes in the proteome, predicts tRNA modification activities and maps them onto known pathways of RNA modification from the MODOMICS database. Thereby, theoretically possible modification pathways are identified, and products of these modification reactions are proposed for query tRNAs. This method allows for predicting modification patterns for newly sequenced genomes as well as for checking tentative modification status of tRNAs from one species treated with enzymes from another source, e.g. to predict the possible modifications of eukaryotic tRNAs expressed in bacteria. tRNAmodpred is freely available as web server at http://genesilico.pl/trnamodpred/. PMID:27016142

  6. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    PubMed

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  7. Long-term drug modification to the surface of mesenchymal stem cells by the avidin-biotin complex method.

    PubMed

    Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2017-12-05

    Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.

  8. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity

    PubMed Central

    Basila, Megan; Kelley, Melissa L.

    2017-01-01

    Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications. In addition, the use of synthetic gRNA allows for the incorporation of chemical modifications for enhanced properties including improved stability. Previous studies have demonstrated the utility of chemically modified gRNAs, but have focused on one pattern with multiple modifications in co-electroporation with Cas9 mRNA or multiple modifications and patterns with Cas9 plasmid lipid co-transfections. Here we present gene editing results using a series of chemically modified synthetic sgRNA molecules and chemically modified crRNA:tracrRNA molecules in both electroporation and lipid transfection assessing indel formation and/or phenotypic gene knockout. We show that while modifications are required for co-electroporation with Cas9 mRNA, some modification patterns of the gRNA are toxic to cells compared to the unmodified gRNA and most modification patterns do not significantly improve gene editing efficiency. We also present modification patterns of the gRNA that can modestly improve Cas9 gene editing efficiency when co-transfected with Cas9 mRNA or Cas9 protein (> 1.5-fold difference). These results indicate that for certain applications, including those relevant to primary cells, the incorporation of some, but not all chemical modification patterns on synthetic crRNA:tracrRNA or sgRNA can be beneficial to CRISPR-Cas9 gene editing. PMID:29176845

  9. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.

    PubMed

    Basila, Megan; Kelley, Melissa L; Smith, Anja van Brabant

    2017-01-01

    Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications. In addition, the use of synthetic gRNA allows for the incorporation of chemical modifications for enhanced properties including improved stability. Previous studies have demonstrated the utility of chemically modified gRNAs, but have focused on one pattern with multiple modifications in co-electroporation with Cas9 mRNA or multiple modifications and patterns with Cas9 plasmid lipid co-transfections. Here we present gene editing results using a series of chemically modified synthetic sgRNA molecules and chemically modified crRNA:tracrRNA molecules in both electroporation and lipid transfection assessing indel formation and/or phenotypic gene knockout. We show that while modifications are required for co-electroporation with Cas9 mRNA, some modification patterns of the gRNA are toxic to cells compared to the unmodified gRNA and most modification patterns do not significantly improve gene editing efficiency. We also present modification patterns of the gRNA that can modestly improve Cas9 gene editing efficiency when co-transfected with Cas9 mRNA or Cas9 protein (> 1.5-fold difference). These results indicate that for certain applications, including those relevant to primary cells, the incorporation of some, but not all chemical modification patterns on synthetic crRNA:tracrRNA or sgRNA can be beneficial to CRISPR-Cas9 gene editing.

  10. Physical modification of palm kernel meal improved available carbohydrate, physicochemical properties and in vitro digestibility in economic freshwater fish.

    PubMed

    Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan

    2013-12-01

    Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.

  11. CO[subscript 2] Rebreathing: An Undergraduate Laboratory to Study the Chemical Control of Breathing

    ERIC Educational Resources Information Center

    Domnik, N. J.; Turcotte, S. E.; Yuen, N. Y.; Iscoe, S.; Fisher, J. T.

    2013-01-01

    The Read CO[subscript]2 rebreathing method (Read DJ. "A clinical method for assessing the ventilatory response to carbon dioxide." "Australas Ann Med" 16: 20-32, 1967) provides a simple and reproducible approach for studying the chemical control of breathing. It has been widely used since the modifications made by Duffin and…

  12. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

    PubMed Central

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  13. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.

    PubMed

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Bruhn, Laurakay; Dellinger, Douglas J

    2018-01-25

    CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs

    PubMed Central

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Dellinger, Douglas J

    2018-01-01

    Abstract CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. PMID:29216382

  15. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities.

    PubMed

    Rueda, Nazzoly; Dos Santos, Jose C S; Ortiz, Claudia; Torres, Rodrigo; Barbosa, Oveimar; Rodrigues, Rafael C; Berenguer-Murcia, Ángel; Fernandez-Lafuente, Roberto

    2016-06-01

    Chemical modification of enzymes and immobilization used to be considered as separate ways to improve enzyme properties. This review shows how the coupled use of both tools may greatly improve the final biocatalyst performance. Chemical modification of a previously immobilized enzyme is far simpler and easier to control than the modification of the free enzyme. Moreover, if protein modification is performed to improve its immobilization (enriching the enzyme in reactive groups), the final features of the immobilized enzyme may be greatly improved. Chemical modification may be directed to improve enzyme stability, but also to improve selectivity, specificity, activity, and even cell penetrability. Coupling of immobilization and chemical modification with site-directed mutagenesis is a powerful instrument to obtain fully controlled modification. Some new ideas such as photoreceptive enzyme modifiers that change their physical properties under UV exposition are discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review

    PubMed Central

    Elzaki, Baha I.; Zhang, Yue Jun

    2016-01-01

    Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625

  17. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD.

    PubMed

    Ida; Matsuyama; Yamamoto

    2000-07-01

    Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.

  18. The influence of chemical methods (acid modification) on elephant foot yam flour to improve physical and chemical quality on processed food

    NASA Astrophysics Data System (ADS)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2018-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by acid modification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour of the experimental result discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using acid modification method. The physical and chemical quality of each elephant foot yam flour of the experimental result sample were assessed using proximate analysis. The resulting tuber flour weighed 50 grams and the soaked in acid solution with various concentrations 5 %, 10 % and 15 % with soaking duration 30, 60 and 90 minutes at temperature 35 °C. The resulting suspension was washed 3 times, filtered and then dried by cabinet dryer using 46 °C for 2 days. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was acid modification to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The acid modification as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 80, a = 8 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 72%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 11%. The content of protein and fiber on the elephant foot yam flour also can be maintained at a level of 8% and 1.9% levels.

  19. Methods for the collection of geochemical data from the sediments of the tidal Potomac River and estuary and data for 1978-1980

    USGS Publications Warehouse

    Goodwin, S.D.; Schultz, B.I.; Parkhurst, D.L.; Simon, N.S.; Callendar, Edward

    1984-01-01

    The chemical composition of bottom sediments and their associated pore waters from the tidal Potomac River and Estuary was studied from May 1978 through June 1980. Pore waters were routinely analyzed for pH, Eh, alkalinity, and concentrations of sulfide, sulfate, phosphate, carbon, ammonium, silica, iron, manganese, chloride, sodium, potassium, calcium, and magnesium. Porosity, weight loss on ignition, and carbon, nitrogen, and phosphorus contents were determined for the solid sediments. The range of salinity and chemical composition encountered in the estuary frequently necessitated modifications of standard methods of analysis. Therefore, the methods used, their modifications, and their limitations are presented in some detail. The appendix lists the data obtained from six sampling periods. (USGS)

  20. Structure-based design of novel chemical modification of the 3'-overhang for optimization of short interfering RNA performance.

    PubMed

    Xu, Lexing; Wang, Xin; He, Hongwei; Zhou, Jinming; Li, Xiaoyu; Ma, Hongtao; Li, Zelin; Zeng, Yi; Shao, Rongguang; Cen, Shan; Wang, Yucheng

    2015-02-10

    Short interfering RNAs (siRNAs) are broadly used to manipulate gene expression in mammalian cells. Although chemical modification is useful for increasing the potency of siRNAs in vivo, rational optimization of siRNA performance through chemical modification is still a challenge. In this work, we designed and synthesized a set of siRNAs containing modified two-nucleotide 3'-overhangs with the aim of strengthening the interaction between the 3'-end of the siRNA strand and the PAZ domain of Ago2. Their efficiency of binding to the PAZ domain was calculated using a computer modeling program, followed by measurement of RNA-Ago2 interaction in a surface plasmon resonance biochemical assay. The results suggest that increasing the level of binding of the 3'-end of the guiding strand with the PAZ domain, and/or reducing the level of binding of the sense strand through modifying the two-nucleotide 3'-overhangs, affects preferential strand selection and improves siRNA activity, while we cannot exclude the possibility that the modifications at the 3'-end of the sense strand may also affect the recognition of the 5'-end of the guiding strand by the MID domain. Taken together, our work presents a strategy for optimizing siRNA performance through asymmetric chemical modification of 3'-overhangs and also helps to develop the computer modeling method for rational siRNA design.

  1. Regioselective chemical modification of monoclonal antibodies

    DOEpatents

    Ranadive, Girish; Rosenzweig, Howard S.; Epperly, Michael; Bloomer, William

    1993-01-01

    A method of selectively modifying an immunoglobulin having at least one Fab region and at least one Fc region, each region having an isoelectric point wherein said isoelectric point of the Fab fragment of said immunoglobulin is different than the isoelectric point of the Fc fragment of the immunoglobulin, said method comprising modification of the immunoglobulin at a pH between the respective isoelectric points of the Fab and Fc fragments of the immunoglobulin.

  2. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers

    PubMed Central

    Tanahashi, Mitsuru

    2010-01-01

    Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

  3. Covalent immobilization of metal organic frameworks onto chemical resistant poly(ether ether ketone) jacket for stir bar extraction.

    PubMed

    Wang, Chenlu; Zhou, Wei; Liao, Xiaoyan; Wang, Xuemei; Chen, Zilin

    2018-09-26

    Preparation of stir bar extraction (SBSE) device with high physical and chemical stability is important and challenging by date. A novel poly (ether ether ketone) (PEEK) tube with excellent mechanical property and chemical stability was firstly used as jacket of metal bar for preparation of stir bar. By employing covalent modification method, the inherent chemical resistant problem of PEEK which restricts the modification of sorbents was well solved. After functionalization, plenty of benzoic acid groups were formed onto the PEEK jacket. Metal organic frameworks of aluminium-based Materials of Institute Lavoisier-68 (MIL-68) was in situ immobilized onto the PEEK surface (MIL-68@PEEK) by the bonding with benzoic acid groups. Afterwards, a facile dumbbell-shaped structure was designed for reducing the friction between sorbents and bottom of container. Due to superior property of the PEEK jacket and the covalent modification method, the MIL-68 modified PEEK jacket SBSE device showed good robustness. After coupling with HPLC-MS/MS, the MIL-68@PEEK-based SBSE device was used to analyse of three parabens including methyl paraben, ethyl paraben and propyl paraben. The method had low limit detection up to 1 pg mL -1 with good linearity (R 2  ≥ 0.9978) and good reproducibility (relative standard deviation ≤ 9.74%). The method has been applied to the detection of parabens in cosmetics and rabbit plasma after painted with cosmetics with recoveries between 73.25% and 104.23%. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Controlled levels of protein modification through a chromatography-mediated bioconjugation

    DOE PAGES

    Kwant, Richard L.; Jaffe, Jake; Palmere, Peter J.; ...

    2015-02-27

    Synthetically modified proteins are increasingly finding applications as well-defined scaffolds for materials. In practice it remains difficult to construct bioconjugates with precise levels of modification because of the limited number of repeated functional groups on proteins. This article describes a method to control the level of protein modification in cases where there exist multiple potential modification sites. A protein is first tagged with a handle using any of a variety of modification chemistries. This handle is used to isolate proteins with a particular number of modifications via affinity chromatography, and then the handle is elaborated with a desired moiety usingmore » an oxidative coupling reaction. This method results in a sample of protein with a well-defined number of modifications, and we find it particularly applicable to systems like protein homomultimers in which there is no way to discern between chemically identical subunits. We demonstrate the use of this method in the construction of a protein-templated light-harvesting mimic, a type of system which has historically been difficult to make in a well-defined manner.« less

  5. Protein mass analysis of histones.

    PubMed

    Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G

    2003-09-01

    Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.

  6. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    PubMed

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  7. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.

    PubMed

    Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu

    2014-06-25

    A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.

  8. Regioselective chemical modification of monoclonal antibodies

    DOEpatents

    Ranadive, G.; Rozenzweig, H.S.; Epperly, M.; Bloomer, W.

    1993-05-04

    A method is presented of selectively modifying an immunoglobulin having at least one Fab region and at least one Fc region. Each region has an isoelectric point where the isoelectric point of the Fab fragment of the immunoglobulin is different from the isoelectric point of the Fc fragment of the immunoglobulin. The method comprises of a modification of the immunoglobulin at a pH between the respective isoelectric points of the Fab and Fc fragments of the immunoglobulin.

  9. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    PubMed

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and physico-chemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy

    2017-01-01

    This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    PubMed Central

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; ROMIEU, Olivier; CRUZ, Roel; FLORES, Hector; CUISINIER, Frédéric; PÉREZ, Elías; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA). The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT). Results and Conclusions: Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system. PMID:23559114

  12. Chemical synthesis of membrane proteins by the removable backbone modification method.

    PubMed

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  13. Modified polyether-sulfone membrane: a mini review

    PubMed Central

    Alenazi, Noof A.; Hussein, Mahmoud A.; Alamry, Khalid A.; Asiri, Abdullah M.

    2017-01-01

    Abstract Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane. PMID:29491825

  14. Modified polyether-sulfone membrane: a mini review.

    PubMed

    Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M

    2017-01-01

    Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.

  15. Chemical modification of nanocrystal surfaces

    DOEpatents

    Alivisatos, A. Paul; Owen, Jonathan

    2013-05-07

    A method is disclosed. The method includes obtaining a precursor nanoparticle comprising a base material and a first ligand attached to the base material, and reacting the precursor nanoparticle with a reactant comprising a silicon bond, thereby removing the first ligand.

  16. Environmental chemical exposures and human epigenetics

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  17. Expanding the Bioactive Chemical Space of Anthrabenzoxocinones through Engineering the Highly Promiscuous Biosynthetic Modification Steps.

    PubMed

    Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong

    2018-01-19

    Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.

  18. Genetic engineering and chemical conjugation of potato virus X.

    PubMed

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  19. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less

  1. A nonlinear model for gas chromatograph systems

    NASA Technical Reports Server (NTRS)

    Feinberg, M. P.

    1975-01-01

    Fundamental engineering design techniques and concepts were studied for the optimization of a gas chromatograph-mass spectrometer chemical analysis system suitable for use on an unmanned, Martian roving vehicle. Previously developed mathematical models of the gas chromatograph are found to be inadequate for predicting peak heights and spreading for some experimental conditions and chemical systems. A modification to the existing equilibrium adsorption model is required; the Langmuir isotherm replaces the linear isotherm. The numerical technique of Crank-Nicolson was studied for use with the linear isotherm to determine the utility of the method. Modifications are made to the method eliminate unnecessary calculations which result in an overall reduction of the computation time of about 42 percent. The Langmuir isotherm is considered which takes into account the composition-dependent effects on the thermodynamic parameter, mRo.

  2. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.

    PubMed

    Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo

    2012-10-01

    Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Determination of Meteorite Porosity Using Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  4. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting.

    PubMed

    Shin, Sung-Ho; Bae, Young Eun; Moon, Hyun Kyung; Kim, Jungkil; Choi, Suk-Ho; Kim, Yongho; Yoon, Hyo Jae; Lee, Min Hyung; Nah, Junghyo

    2017-06-27

    Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.

  5. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions

    NASA Astrophysics Data System (ADS)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze

    2015-03-01

    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  6. Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites.

    PubMed

    Thinon, Emmanuelle; Fernandez, Joseph P; Molina, Henrik; Hang, Howard C

    2018-05-04

    S-Fatty-acylation is the covalent attachment of long chain fatty acids, predominately palmitate (C16:0, S-palmitoylation), to cysteine (Cys) residues via a thioester linkage on proteins. This post-translational and reversible lipid modification regulates protein function and localization in eukaryotes and is important in mammalian physiology and human diseases. While chemical labeling methods have improved the detection and enrichment of S-fatty-acylated proteins, mapping sites of modification and characterizing the endogenously attached fatty acids are still challenging. Here, we describe the integration and optimization of fatty acid chemical reporter labeling with hydroxylamine-mediated enrichment of S-fatty-acylated proteins and direct tagging of modified Cys residues to selectively map lipid modification sites. This afforded improved enrichment and direct identification of many protein S-fatty-acylation sites compared to previously described methods. Notably, we directly identified the S-fatty-acylation sites of IFITM3, an important interferon-stimulated inhibitor of virus entry, and we further demonstrated that the highly conserved Cys residues are primarily modified by palmitic acid. The methods described here should facilitate the direct analysis of protein S-fatty-acylation sites and their endogenously attached fatty acids in diverse cell types and activation states important for mammalian physiology and diseases.

  7. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  8. Properties Characterization of Chemically Modified Hemp Hurds

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Estokova, Adriana; Terpakova, Eva; Geffert, Anton; Kacik, Frantisek; Singovszka, Eva; Holub, Marian

    2014-01-01

    The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differential scanning calorimetry). Size exclusion chromatography (SEC) measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH. PMID:28788294

  9. Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives

    PubMed Central

    Staruch, RMT; Griffin, MF; Butler, PEM

    2016-01-01

    Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214

  10. Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul

    2017-10-01

    Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.

  11. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    NASA Astrophysics Data System (ADS)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  12. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    NASA Astrophysics Data System (ADS)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  13. Method and apparatus for laser/plasma chemical processing of substrates

    DOEpatents

    Gee, J.M.; Hargis, P.J. Jr.

    1984-07-21

    A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.

  14. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.

    PubMed

    Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot

    2014-09-01

    Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility. © 2013 Wiley Periodicals, Inc.

  15. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  16. Mechanism-based strategies for protein thermostabilization.

    PubMed

    Mozhaev, V V

    1993-03-01

    Strategies for stabilizing enzymes can be derived from a two-step model of irreversible inactivation that involves preliminary reversible unfolding, followed by an irreversible step. Reversible unfolding is best prevented by covalent immobilization, whereas methods such as covalent modification of amino acid residues or 'medium engineering' (by the addition of low-molecular-weight compounds) are effective against irreversible 'incorrect' refolding. Genetic modification of the protein sequence is the most effective approach for preventing chemical deterioration.

  17. Adhesion of nitrile rubber (NBR) to polyethylene terephthalate (PET) fabric. Part 1: PET surface modification by methylenediphenyl di-isocyanate (MDI)

    NASA Astrophysics Data System (ADS)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-01-01

    Fiber to rubber adhesion is an important subject in rubber composite industry. It is well known that surface physical, mechanical and chemical treatments are effective methods to improve interfacial bonding. Ultra violet (UV) light irradiation is an efficient method which is used to increase interfacial interactions. In this research UV assisted chemical modification of PET fabric was used to increase its bonding to nitrile rubber (NBR). NBR is perfect selection to produce fuel and oil resistant rubber parts but it has weak bonding to fabrics. For this purpose at first, the PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was reacted and grafted to carboxylated PET. T-peel test was used to evaluate PET fabric to NBR bonding strength. Attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR-AT) was used to assess surface modifications of the PET fabrics. The chemical composition of the PET surfaces before and after carboxylation and MDI grafting was investigated by X-ray photoelectron spectroscopy (XPS). It was found that at vulcanizing temperature of 150 °C, carboxylation in contrary to MDI grafting, improved considerably PET to NBR adhesion. Finally effect of curing temperature on PET to NBR bonding strength was determined. It was found that increasing vulcanizing temperature to 170 °C caused considerable improvement (about 134%) in bonding strength.

  18. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.

    PubMed

    Song, Chun-Xiao; Szulwach, Keith E; Fu, Ye; Dai, Qing; Yi, Chengqi; Li, Xuekun; Li, Yujing; Chen, Chih-Hsin; Zhang, Wen; Jian, Xing; Wang, Jing; Zhang, Li; Looney, Timothy J; Zhang, Baichen; Godley, Lucy A; Hicks, Leslie M; Lahn, Bruce T; Jin, Peng; He, Chuan

    2011-01-01

    In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.

  19. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    NASA Astrophysics Data System (ADS)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  20. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO2 Chromatography.

    PubMed

    Ibáñez-Vea, María; Huang, Honggang; Martínez de Morentin, Xabier; Pérez, Estela; Gato, Maria; Zuazo, Miren; Arasanz, Hugo; Fernández-Irigoyen, Joaquin; Santamaría, Enrique; Fernandez-Hinojal, Gonzalo; Larsen, Martin R; Escors, David; Kochan, Grazyna

    2018-03-02

    Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile. To overcome this drawback, most methods induce S-nitrosylation chemically in proteins using nitrosylating compounds before analysis, with the risk of introducing nonphysiological S-nitrosylation. Here we present a novel method to efficiently identify endogenous S-nitrosopeptides in the macrophage total proteome. Our approach is based on the labeling of S-nitrosopeptides reduced by ascorbate with a cysteine specific phosphonate adaptable tag (CysPAT), followed by titanium dioxide (TiO 2 ) chromatography enrichment prior to nLC-MS/MS analysis. To test our procedure, we performed a large-scale analysis of this low-abundant modification in a murine macrophage cell line. We identified 569 endogeneous S-nitrosylated proteins compared with 795 following exogenous chemically induced S-nitrosylation. Importantly, we discovered 579 novel S-nitrosylation sites. The large number of identified endogenous S-nitrosylated peptides allowed the definition of two S-nitrosylation consensus sites, highlighting protein translation and redox processes as key S-nitrosylation targets in macrophages.

  1. One-pot Synthesis and Surface Modification of Fe3O4 Nanoparticles Using Polyvinyl Alcohol by Coprecipitation and Ultrasonication Methods

    NASA Astrophysics Data System (ADS)

    Nugraha, Aditya D.; Wulandari, Ika O.; Hutami Rahayu, L. B.; Riva'i, Imam; Santojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    Among the various substances developed through nanoparticles, iron oxide (Fe3O4) nanoparticle is one of the substances that have been widely used in various fields such as industry, agriculture, biotechnology and biomedicine. The synthesis of Fe3O4 nanoparticle can be carried out by two methods, consist of chemical and mechanical synthesis methods. Coprecipitation is one of the most commonly used methods for chemical synthesis. Fe3O4 compounds are easily oxidized because they are amphoteric. To avoid the continuous oxidation process, chemical modification process should be carried out with the addition of a solution of polyvinyl alcohol (PVA). In this study, PVA-coated Fe3O4 nanoparticles were synthesized by in-situ coprecipitation and ultrasonication methods through direct mixing (one-pot synthesis) of the iron (II) chloride tetrahydrate (FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), and PVA under alkaline condition. The effects of addition amount of NH3solution (by adjusting its flow rate using automated syringe pump) and PVA concentration were gently studied. Interaction of PVA with Fe3O4 nanoparticle was identified by infrared spectroscopy whereas lattice parameters and crystallite sizes of the synthesized Fe3O4 nanoparticles and PVA-coated Fe3O4 nanoparticles were assessed by X-ray diffraction (XRD).

  2. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  3. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    PubMed

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  4. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of up to eight times with respect to an equivalent single-grid method, and by two times with respect to an artificially-stabilized MG method.

  5. Mid-infrared spectroscopy and chemometrics in corn starch classification

    NASA Astrophysics Data System (ADS)

    Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.

    1997-06-01

    The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.

  6. Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis.

    PubMed

    Sheng, Yifeng; Sun, Guanqing; Ngai, To

    2016-04-05

    Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability.

  7. Improvement of activity and stability of chloroperoxidase by chemical modification

    PubMed Central

    Liu, Jian-Zhong; Wang, Min

    2007-01-01

    Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF), modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications. PMID:17511866

  8. Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2013-11-15

    Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less

  9. Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels-Alder Reaction.

    PubMed

    Zhu, Jun; Hiltz, Jonathan; Tefashe, Ushula M; Mauzeroll, Janine; Lennox, R Bruce

    2018-06-21

    The chemical modification of an sp 2 hybridized carbon surface in a controllable manner is very challenging but also crucial for many applications. An inverse electron demand Diels-Alder (IEDDA) reaction using microcontact printing technique is introduced to spatially control the modification of a highly ordered pyrolytic graphite (HOPG) surface under ambient conditions. The covalent modification was characterized by Raman spectroscopy, XPS, and SECM. Tetrazine derivatives can effectively react with an HOPG surface and with microcontact printing methods resulting in spatially patterned surfaces being produced with micrometer-scale resolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improving vegetable oil properties for lubrication methods

    USDA-ARS?s Scientific Manuscript database

    The inherent problems of vegetable oils, such as poor oxidation and low-temperature properties, can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, you will see how functionalization helps overcome these disadvantages....

  11. Interlaminar Toughening of Fiber Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    Bian, Dakai

    Modification in the resin-rich region between plies, also known as the interlaminar region, was investigated to increase the toughness of laminate composites structures. To achieve suitable modifications, the complexities of the physical and chemical processes during the resin curing procedure must be studied. This includes analyses of the interactions among the co-dependent microstructure, process parameters, and material responses. This dissertation seeks to investigate these interactions via a series of experimental and numerical analyses of the geometric- and temperature-based effects on locally interleaving toughening methods and further interlaminar synergistic toughening without interleaf. Two major weaknesses in composite materials are the brittle resin-rich interlaminar region which forms between the fiber plies after resin infusion, and the ply dropoff region which introduces stress concentration under loads. To address these weaknesses and increase the delamination resistance of the composite specimens, a dual bonding process was explored to alleviate the dropoff effect and toughen the interlaminar region. Hot melt bonding was investigated by applying clamping pressure to ductile thermoplastic interleaf and fiber fabric at an elevated temperature, while diffusion bonding between thermoplastic interleaf and thermoset resin is performed during the resin infusion. This method increased the fracture energy level and thus delamination resistance in the interlaminar region because of deep interleaf penetration into fiber bundles which helped confining crack propagation in the toughened area. The diffusion and precipitation between thermosets and thermoplastics also improved the delamination resistance by forming a semi-interpenetration networks. This phenomenon was investigated in concoctions of low-concentration polystyrene additive modified epoxy system, which facilitates diffusion and precipitation without increasing the viscosity of the system. Additionally, chemical reaction induced phase separation, concentration of polystyrene, and various curing temperatures are used to evaluate their effects on diffusion and precipitation. These effects were directly investigated by performing attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The diffusivity and curing kinetics experiments are performed to quantify the diffusivity coefficient of epoxy, hardener and thermoplastics, as well as the reaction rate constant of curing epoxy at various temperatures. Finally, mechanical testing and fracture surface imaging were used to quantify the improvements and characterize the toughening mechanism. Further improvement on delamination resistance was studied through the synergistic effect of combining different modification methods without the interleaf. Polysulfone molecules are end-capped with epoxide groups. Fiber surface is functionalized with amino groups to generate micro-mechanical interlocks. The interaction between two individual modifications chemically links the modified semi-interpenetration networks to the improved interfacial strength between fiber and epoxy to. The impact of the additive on the crosslinking density was examined through glass transition temperatures, and the chemical modification was characterized by Raman spectroscopy. Mode I and II fracture tests were performed to quantify the improvement of delamination resistance under pure opening and shear loads. The mechanism of synergistic effect was explained based on the fracture surface morphology and the interactions between the modification methods.

  12. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  13. Harnessing of radio frequency discharge for production of biologically compatible coatings for ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.

    Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less

  14. Surface modification of biomaterials using plasma immersion ion implantation and deposition

    PubMed Central

    Lu, Tao; Qiao, Yuqin; Liu, Xuanyong

    2012-01-01

    Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed. PMID:23741609

  15. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    PubMed

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  16. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    PubMed

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  17. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  18. Roman sophisticated surface modification methods to manufacture silver counterfeited coins

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.

    2017-11-01

    By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.

  19. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    PubMed

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    DOEpatents

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  1. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    DOEpatents

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  2. In-injection port thermal desorption for explosives trace evidence analysis.

    PubMed

    Sigman, M E; Ma, C Y

    1999-10-01

    A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.

  3. Meeting Expanding Needs to Collect Food Intake Specificity: The Nutrition Data System for Research (NDS-R)

    NASA Technical Reports Server (NTRS)

    VanHeel, Nancy; Pettit, Janet; Rice, Barbara; Smith, Scott M.

    2003-01-01

    Food and nutrient databases are populated with data obtained from a variety of sources including USDA Reference Tables, scientific journals, food manufacturers and foreign food tables. The food and nutrient database maintained by the Nutrition Coordinating Center (NCC) at the University of Minnesota is continually updated with current nutrient data and continues to be expanded with additional nutrient fields to meet diverse research endeavors. Data are strictly evaluated for reliability and relevance before incorporation into the database; however, the values are obtained from various sources and food samples rather than from direct chemical analysis of specific foods. Precise nutrient values for specific foods are essential to the nutrition program at the National Aeronautics and Space Administration (NASA). Specific foods to be included in the menus of astronauts are chemically analyzed at the Johnson Space Center for selected nutrients. A request from NASA for a method to enter the chemically analyzed nutrient values for these space flight food items into the Nutrition Data System for Research (NDS-R) software resulted in modification of the database and interview system for use by NASA, with further modification to extend the method for related uses by more typical research studies.

  4. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  5. Physical Training Methods For Mine Rescuers In 2015

    NASA Astrophysics Data System (ADS)

    Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor

    2015-07-01

    Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.

  6. An improved method of chemical analysis for low levels of nitrogen in forest streams or in rainwater.

    Treesearch

    Elly E. Holcombe; Duane G. Moore; Richard L. Fredriksen

    1986-01-01

    A modification of the macro-Kjeldahl method that provides increased sensitivity was developed for determining very low levels of nitrogen in forest streams and in rain-water. The method is suitable as a routine laboratory procedure. Analytical range of the method is 0.02 to 1.5 mg/L with high recovery and excellent precision and ac-curacy. The range can be increased to...

  7. Synthetic Biological Approaches to Natural Product Biosynthesis

    PubMed Central

    Winter, Jaclyn M; Tang, Yi

    2012-01-01

    Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

  8. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy

    PubMed Central

    Barhoumi, Aoune; Halas, Naomi J.

    2013-01-01

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449

  9. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    PubMed

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  10. Improving the quality of aquatic toxicity tests: Lessons learned and proficiency needs

    EPA Science Inventory

    Aquatic toxicity testing methodologies have been widely used to assess potential adverse effects of chemicals and wastewater discharges on aquatic life in the United States since the 1970’s. Over the years, continued method modifications, increased training, and technical r...

  11. Covalent Chemical 5'-Functionalization of RNA with Diazo Reagents.

    PubMed

    Gampe, Christian M; Hollis-Symynkywicz, Micah; Zécri, Frédéric

    2016-08-22

    Functionalization of RNA at the 5'-terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5'-nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5'-phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5'-end of RNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  13. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    PubMed Central

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  14. 40 CFR 455.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating and... received a modification by Best Engineering Judgement for modifications not listed in Table 8 to this part...

  15. 40 CFR 455.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating and... received a modification by Best Engineering Judgement for modifications not listed in Table 8 to this part...

  16. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

    NASA Astrophysics Data System (ADS)

    Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María

    2017-08-01

    Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

  17. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    PubMed

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  18. Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland.

    PubMed

    Helm, Mark; Alfonzo, Juan D

    2014-02-20

    Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    PubMed Central

    Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.

    2018-01-01

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580

  20. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    PubMed

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  1. Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene

    PubMed Central

    Kim, Jaehyeon; Khan, Muhammad Ejaz; Ko, Jae-Hyeon; Kim, Jong Hun; Lee, Eui-Sup; Suh, Joonki; Wu, Junqiao; Kim, Yong-Hyun; Park, Jeong Young; Lyeo, Ho-Ki

    2016-01-01

    Thermal energy transport across the interfaces of physically and chemically modified graphene with two metals, Al and Cu, was investigated by measuring thermal conductance using the time-domain thermoreflectance method. Graphene was processed using a He2+ ion-beam with a Gaussian distribution or by exposure to ultraviolet/O3, which generates structural or chemical disorder, respectively. Hereby, we could monitor changes in the thermal conductance in response to varying degrees of disorder. We find that the measured conductance increases as the density of the physical disorder increases, but undergoes an abrupt modulation with increasing degrees of chemical modification, which decreases at first and then increases considerably. Moreover, we find that the conductance varies inverse proportionally to the average distance between the structural defects in the graphene, implying a strong in-plane influence of phonon kinetics on interfacial heat flow. We attribute the bimodal results to an interplay between the distinct effects on graphene’s vibrational modes exerted by graphene modification and by the scattering of modes. PMID:27698372

  2. Artificial enzymes with protein scaffolds: structural design and modification.

    PubMed

    Matsuo, Takashi; Hirota, Shun

    2014-10-15

    Recent development in biochemical experiment techniques and bioinformatics has enabled us to create a variety of artificial biocatalysts with protein scaffolds (namely 'artificial enzymes'). The construction methods of these catalysts include genetic mutation, chemical modification using synthetic molecules and/or a combination of these methods. Designed evolution strategy based on the structural information of host proteins has become more and more popular as an effective approach to construct artificial protein-based biocatalysts with desired reactivities. From the viewpoint of application of artificial enzymes for organic synthesis, recently constructed artificial enzymes mediating oxidation, reduction and C-C bond formation/cleavage are introduced in this review article. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Proteomic analyses of the environmental toxicity of carcinogenic chemicals

    EPA Science Inventory

    Protein expression and posttranslational modifications consistently change in response to the exposure to environmental chemicals. Recent technological advances in proteomics provide new tools for more efficient characterization of protein expression and posttranslational modific...

  4. Modeling the Effect of Surface Modification of Gold Nanoparticles Irradiated with 60Co on the Secondary Particles Emission Spectrum

    NASA Astrophysics Data System (ADS)

    Belousov, A. V.; Morozov, V. N.; Krusanov, G. A.; Kolyvanova, M. A.; Chernyaev, A. P.; Shtil, A. A.

    2018-03-01

    The Monte Carlo method (computer simulation) is used to construct a physical model of secondary particles emission induced by the simulated irradiation of a gold nanoparticle with 60Co. It is demonstrated that the modification of the nanoparticle surface with polyethylene glycol affects the spectrum of secondary electrons produced in a nanoparticle and leaving it and its shell. The model takes into account the size and the chemical composition of the shell and provides an opportunity to design antitumor radiosensitizers based on gold nanoparticles.

  5. Modification to the AOAC Sporicidal Activity of Disinfectants Test (Method 966.04): collaborative study.

    PubMed

    Tomasino, Stephen F; Hamilton, Martin A

    2006-01-01

    In an effort to improve AOAC Method 966.04, the Sporicidal Activity of Disinfectants Test, selected modifications to the procedure were evaluated in a collaborative study. Method 966.04 is used to generate efficacy data to support the product registration of sporicides and sterilants. The method is a carrier-based test that provides a qualitative measure of product efficacy against spores of Bacillus subtilis and Clostridium sporogenes. The use of garden soil extract and the lack of standard procedures for the enumeration of spores and neutralization of the test chemicals have been considered problematic for many years. The proposed modifications were limited to the B. subtilis and hard surface carrier (porcelain penicylinder) components of the method. The study included the evaluation of a replacement for soil extract nutrient broth and an establishment of a minimum spore titer per carrier, both considered crucial for the improvement and utilization of the method. Additionally, an alternative hard surface material and a neutralization confirmation procedure were evaluated. To determine the equivalence of the proposed alternatives to the standard method, 3 medium/carrier combinations, (1) soil extract nutrient broth/porcelain carrier (current method), (2) nutrient agar amended with 5 microg/mL manganese sulfate/porcelain carrier, and (3) nutrient agar amended with 5 microg/mL manganese sulfate/stainless steel carrier were analyzed for carrier counts, HCI resistance, efficacy, quantitative efficacy, and spore wash-off. The test chemicals used in the study represent 3 chemical classes and are commercially available antimicrobial liquid products: sodium hypochlorite (bleach), glutaraldehyde, and a combination of peracetic acid and hydrogen peroxide. Four laboratories participated in the study. The results of the spore titer per carrier, HCI resistance, efficacy, and wash-off studies demonstrate that amended nutrient agar in conjunction with the porcelain is comparable to the current method, soil extract nutrient broth/porcelain. The nutrient agar method is simple, inexpensive, reproducible, and provides an ample supply of high quality spores. Due to the current use of porcelain carriers for testing C. sporogenes, it is advisable to retain the use of porcelain carriers until stainless steel can be evaluated as a replacement carrier material for Clostridium. The evaluation of stainless steel for Clostridium has been initiated by the Study Director. Study Director recommendations for First Action revisions are provided in a modified method.

  6. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  7. Modification and Utilization of Nanoporous Gold for Loading and Release of Drugs

    NASA Astrophysics Data System (ADS)

    Al-badri, Ibtisam

    Nanoporous gold (np-Au) is a sponge-like structure of gold, which can be created by removing the less noble element from the precursor alloy, most typically silver or copper, using different chemical or electrochemical methods. It consists of interconnected ligaments and gaps between the ligaments, whose width can range from a few nanometers to a few hundreds of nanometers, creating a high surface area-to-volume ratio. Due to its many important properties (e.g., conductivity, high surface area-to-volume ratio, plasmonic response, biocompatibility, chemically inertness, and physically robustness), np-Au is suitable for different types of applications, including as a transducer for biosensors, in catalysis, for biomolecule separation, as a substrate for enzyme immobilization, and in drug delivery. The widths of the ligaments and gaps of np-Au can be easily tuned by varying conditions during the pre- or post-production process, for example, time kept in an acid bath and post-annealing (e.g. thermal, chemical, and electrochemical), depending on the requirement of the study. Thermal annealing is a commonly used process for tuning the ligaments and pore size of np-Au. However, the effects of thermal annealing on modification of ligaments and gaps sizes are not completely understood and more research needs to be done. Herein, we have explored the effect of annealing time and thickness of the np-Au sample on modification of ligaments and gaps. Furthermore, we used the electroless plating method to cover the pores or gaps partially on the surface without modifying the interior of np-Au. As-prepared np-Au was then studied as a platform for molecular loading and releasing kinetics for the possible use in drug delivery. We have found that simply applying the electroless deposition for 1 to 5 min can drastically decrease the rate of release of the molecules, and flow cell-based loading is the preferred way to load the molecules inside np-Au compared to the static method. The structure of the np-Au monoliths before and after the modification was characterized using Energy-Dispersive X-ray Spectroscopy (EDS) and scanning electron microscopy (SEM), whereas the molecular loading and releasing studies were performed using UV-Vis spectrophotometer.

  8. Investigation of Chemically Treated Test-Strips for Ozone Measurement

    NASA Technical Reports Server (NTRS)

    Bush, Linda C.

    1997-01-01

    A colorimetric passive ozone monitoring system is currently in use in the GLOBE project, as well as several other environmental studies, as commercially supplied as Eco-Badge by Vistanomics. This simple, but effective, system consists of papers treated with a chemical preparation, tin(II) diphenylcarbazidel that reacts with ozone to change them from white to purple. The intensity of the purple coloration is dependent on the concentration of ozone. Our previous contributions to that method of analysis involved modest modifications to the chemical substrate employed. The new formulation improved the reproducibility and linearity of the color change of treated papers.

  9. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  10. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  11. Chemical modification of wood : a short review

    Treesearch

    Roger M. Rowell

    2006-01-01

    For most markets for wood, it is used without any treatments or modifications. When wood is used in adverse environments, it may be treated with chemicals to help prevent decay, improve water resistance, reduce the effects of ultraviolet radiation or increase fire retardancy. Many of these treatments involve the use of toxic or corrosive chemicals that can harm the...

  12. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  13. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-05-01

    In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Variation of the chemical reactivity of Thermus thermophilus HB8 ribosomal proteins as a function of pH.

    PubMed

    Running, William E; Reilly, James P

    2010-10-01

    Ribosomes occupy a central position in cellular metabolism, converting stored genetic information into active cellular machinery. Ribosomal proteins modulate both the intrinsic function of the ribosome and its interaction with other cellular complexes, such as chaperonins or the signal recognition particle. Chemical modification of proteins combined with mass spectrometric detection of the extent and position of covalent modifications is a rapid, sensitive method for the study of protein structure and flexibility. By altering the pH of the solution, we have induced non-denaturing changes in the structure of bacterial ribosomal proteins and detected these conformational changes by covalent labeling. Changes in ribosomal protein modification across a pH range from 6.6 to 8.3 are unique to each protein, and correlate with their structural environment in the ribosome. Lysine residues whose extent of modification increases as a function of increasing pH are on the surface of proteins, but in close proximity either to glutamate and aspartate residues, or to rRNA backbone phosphates. Increasing pH disrupts tertiary and quaternary interactions mediated by hydrogen bonding or ionic interactions, and regions of protein structure whose conformations are sensitive to these changes are of potential importance in modulating the flexibility of the ribosome or its interaction with other cellular complexes.

  15. Surface modification: advantages, techniques, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliabilitymore » of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.« less

  16. Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate

    NASA Astrophysics Data System (ADS)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Fhong, Soon Chin; Sahdan, Mohd Zainizan; Nayan, Nafarizal

    2017-01-01

    The atmospheric pressure plasma jet with low frequency and argon as working gas is presented in this paper to demonstrate its application for glass substrate clean and modification. The glass substrate clean by atmospheric pressure plasma jet is an efficient method to replace other substrate clean method. A comparative analysis is done in this paper between substrate cleaned by chemical and plasma treatment methods. Water contact angle reading is taken for a different method of substrate clean and period of treatment. Under the plasma treatment, the sample shows low surface adhesion due to having the surface property of super hydrophilic surface 7.26°. This comparative analysis is necessary in the industrial application for cost production due to sufficient time and method of substrate clean.

  17. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  18. Micro methods and micro apparatus for chemical pathology with special reference to paediatrics

    PubMed Central

    Clayton, Barbara E.; Jenkins, P.

    1966-01-01

    This article describes methods and apparatus which permit the estimation of a particular substance without requiring more blood than can conveniently and safely be removed from a child by capillary puncture. No reference will be made to the use of methods on the Technicon Auto-Analyzer as that machine is not yet generally geared to paediatric work, although a few centres have made their own modifications to permit certain methods to be performed on capillary samples of blood. PMID:5937614

  19. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    NASA Astrophysics Data System (ADS)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.

  20. Controlling the cell adhesion property of silk films by graft polymerization.

    PubMed

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  1. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  2. Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent

    NASA Astrophysics Data System (ADS)

    Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy

    2017-03-01

    A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.

  3. Chemical modification of citrus pectin: Structural, physical and rheologial implications.

    PubMed

    Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro

    2018-04-01

    The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  5. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers.

    PubMed

    Gopalan Nair, Kalaprasad; Dufresne, Alain; Gandini, Alessandro; Belgacem, Mohamed Naceur

    2003-01-01

    The purpose of this study was to chemically modify the surface of chitin whiskers and to investigate the effect of the incorporation of these modified whiskers into a natural rubber (NR) matrix on the properties of the ensuing nanocomposite. Different chemical coupling agents were tested, namely, phenyl isocyanate (PI), alkenyl succinic anhydride (ASA) (Accosize 18 from American Cyanamid), and 3-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (TMI). The extent of chemical modification was evaluated by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and surface energy analysis. After chemical modification, nanocomposite films were obtained using a toluene natural rubber solution in which the whiskers were dispersed. Their mechanical properties were found to be inferior to those of unmodified chitin/NR composites presented in our previous study. In fact, even though there is an increase in filler-matrix interaction as a result of chemical modification of the chitin whiskers, this does not contribute to the improvement in the mechanical properties of the resulting nanocomposite. It is concluded that this loss of performance is due to the partial destruction of the three-dimensional network of chitin whiskers assumed to be present in the unmodified composites.

  6. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    PubMed

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  7. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  8. Physico-chemical behaviour of β irradiated plastic materials currently used as packagings and medical products

    NASA Astrophysics Data System (ADS)

    Yagoubi, N.; Baillet, A.; Pellerin, F.; Ferrier, D.

    1995-11-01

    The combined chromatographic technics and thermal analysis constitute an informative methodology for studying the modifications which could occur following a radiotreatment of plastic material at different doses (25 to 100 kGy). Several plastic materials used as packagings (PVC, PE, PS) were investigated. SEC method coupled with UV and DDL detections was applied to document any changes in molecular weight distribution. Reticulation and scission were the main observed degradation phenomena. These structural modifications were supported by TGA data, while the DSC provided information on modifications in crystallinity. In addition, RP-HPLC was carried out for the evaluation of the radiochemical behaviour of the additives and monomers. Firstly we demonstrated the degradation of high molecular weight phenolic antioxidants in BHT within the PEVA. Secondly, the modifications of amino 6 caproic acid and ɛ caprolactam, present in polyamid 6, depend on the irradiation doses.

  9. Key advances in the chemical modification of nanocelluloses.

    PubMed

    Habibi, Youssef

    2014-03-07

    Nanocelluloses, including nanocrystalline cellulose, nanofibrillated cellulose and bacterial cellulose nanofibers, have become fascinating building blocks for the design of new biomaterials. Derived from the must abundant and renewable biopolymer, they are drawing a tremendous level of attention, which certainly will continue to grow in the future driven by the sustainability trend. This growing interest is related to their unsurpassed quintessential physical and chemical properties. Yet, owing to their hydrophilic nature, their utilization is restricted to applications involving hydrophilic or polar media, which limits their exploitation. With the presence of a large number of chemical functionalities within their structure, these building blocks provide a unique platform for significant surface modification through various chemistries. These chemical modifications are prerequisite, sometimes unavoidable, to adapt the interfacial properties of nanocellulose substrates or adjust their hydrophilic-hydrophobic balance. Therefore, various chemistries have been developed aiming to surface-modify these nano-sized substrates in order to confer to them specific properties, extending therefore their use to highly sophisticated applications. This review collocates current knowledge in the research and development of nanocelluloses and emphasizes more particularly on the chemical modification routes developed so far for their functionalization.

  10. Modification of the flow pass method as applied to problems of chemistry of planet atmospheres

    NASA Technical Reports Server (NTRS)

    Parshev, V. A.

    1980-01-01

    It was shown that the modified flow pass method possesses considerable effectiveness, both in the case when the coefficient of diffusion changes severely in the examined region and in the case when diffusion is the prevalent process, as compared with chemical reactions. The case when a regular pass proves inapplicable, or applicable in a limited interval of the decisive parameters, was examined.

  11. Development of a high temperature microbial fermentation process for butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeor, Jeffery D. St.; Reed, David W.; Daubaras, Dayna L.

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donormore » and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.« less

  12. Chemical labelling for visualizing native AMPA receptors in live neurons

    NASA Astrophysics Data System (ADS)

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  13. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  14. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications

    NASA Astrophysics Data System (ADS)

    Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François

    2010-02-01

    The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.

  15. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  16. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.

  18. Influence of succinylation on physicochemical property of yak casein micelles.

    PubMed

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  20. Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications

    PubMed Central

    Akazawa-Ogawa, Yoko; Takashima, Mizuki; Lee, Young-Ho; Ikegami, Takahisa; Goto, Yuji; Uegaki, Koichi; Hagihara, Yoshihisa

    2014-01-01

    The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation. PMID:24739391

  1. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    PubMed

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  2. Surface Engineering and Patterning Using Parylene for Biological Applications

    PubMed Central

    Tan, Christine P.; Craighead, Harold G.

    2010-01-01

    Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensors and biological microenvironments. A variety of substituted precursors enables direct coating of functionalised parylenes onto biomedical implants and microfluidics, providing a convenient method for designing biocompatible and bioactive surfaces. This article will review the emerging role and applications of parylene as a biomaterial for surface chemical modification and provide a future outlook.

  3. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  4. High-Performance Ultrathin Organic-Inorganic Hybrid Silicon Solar Cells via Solution-Processed Interface Modification.

    PubMed

    Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua

    2017-07-05

    Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.

  5. A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs

    PubMed Central

    Taoka, Masato; Nobe, Yuko; Hori, Masayuki; Takeuchi, Aiko; Masaki, Shunpei; Yamauchi, Yoshio; Nakayama, Hiroshi; Takahashi, Nobuhiro; Isobe, Toshiaki

    2015-01-01

    We present a liquid chromatography–mass spectrometry (LC-MS)-based method for comprehensive quantitative identification of post-transcriptional modifications (PTMs) of RNA. We incorporated an in vitro-transcribed, heavy isotope-labeled reference RNA into a sample RNA solution, digested the mixture with a number of RNases and detected the post-transcriptionally modified oligonucleotides quantitatively based on shifts in retention time and the MS signal in subsequent LC-MS. This allowed the determination and quantitation of all PTMs in Schizosaccharomyces pombe ribosomal (r)RNAs and generated the first complete PTM maps of eukaryotic rRNAs at single-nucleotide resolution. There were 122 modified sites, most of which appear to locate at the interface of ribosomal subunits where translation takes place. We also identified PTMs at specific locations in rRNAs that were altered in response to growth conditions of yeast cells, suggesting that the cells coordinately regulate the modification levels of RNA. PMID:26013808

  6. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures. II. Chemical and physical properties.

    PubMed

    Ačkar, Durđica; Subarić, Drago; Babić, Jurislav; Miličević, Borislav; Jozinović, Antun

    2014-08-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures on chemical and physical properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetanhydride and azelaic acid and acetanhydride in 4, 6 and 8% (w/w). Total starch content, resistant starch content, degree of modification, changes in FT-IR spectra, colour, gel texture and freeze-thaw stability were determined. Results showed that resistant starch content increased by both investigated modifications, and degree of modification increased proportionally to amount of reagents used. FT-IR analysis of modified starches showed peak around 1,740 cm(-1), characteristic for carbonyl group of ester. Total colour difference caused by modifications was detectable by trained people. Adhesiveness significantly increased, while freeze-thaw stability decreased by both investigated modifications.

  7. Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films.

    PubMed

    Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino

    2017-01-24

    For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D scaffolds, and the chemical modifications caused by EtO, in addition to its toxicity, interfere with PCL bioactivity.

  8. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  10. A new low temperature solid modification in 1-isothiocyanato-4-(trans-4-propylcyclohexyl)benzene (3CHBT) probed by Raman spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vikram, K.; Singh, Ranjan K.; Gupta, Satyendra Nath

    2018-02-01

    Raman spectra of 1-isothiocyanato-4-(trans 4-propylcyclohexyl)benzene (3CHBT) were studied in the region, 1450-2300 cm- 1 at twenty two different temperatures in the range, 83-293 K in cooling and heating cycles. All bands in this region were critically evaluated in term of linewidth, peak position and relative intensity. Raman bands at 2085 cm- 1 and 2120 cm- 1 shows clear evidence of a solid modification through anomaly in temperature dependence peak positions and linewidths variation in the temperature range 173-203 K. A detailed analysis of the variation of the linewidth and peak position of the two component bands leads to the conclusion that the molecular/dimer arrangement in crystalline packing changed between 173 K and 203 K. This solid modification was also analyzed at the molecular level. The 2085 cm- 1 and 2120 cm- 1 bands were corresponded as parallel and anti-parallel dimers of 3CHBT, which are identified as dimer I (D1) and dimer II (D2), respectively. The structures of both the dimers have been optimized by quantum chemical calculations employing density functional theoretic (DFT) methods.

  11. Modified silicas with different structure of grafted methylphenylsiloxane layer

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Terpiłowski, Konrad; Kozakevych, Roman; Sternik, Dariusz; Deryło-Marczewska, Anna; Tertykh, Valentin

    2016-06-01

    The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces.

  12. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Treesearch

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  13. Applications of artificial intelligence for chemical inference. V.

    NASA Technical Reports Server (NTRS)

    Sheikh, Y. M.; Delfino, A. B.; Schroll, G.; Duffield, A. M.; Djerassi, C.; Buchanan, B. G.; Sutherland, G. L.; Feigenbaum, E. A.; Lederberg, J.; Buchs, A.

    1970-01-01

    Discussion of the modification of the DENDRAL computer program to extend the program to cyclic structures which exceed numerically the linear molecules of a given composition. IR, NMR and mass spectroscopy is used to develop a method for identification of each of the 27 possible ketones (exclusive of 5 cyclopropanones) of composition C6H10O.

  14. MODIFIED N.R.C. VERSION OF THE U.S.G.S. SOLUTE TRANSPORT MODEL. VOLUME 1. MODIFICATIONS

    EPA Science Inventory

    The methods described in the report can be used with the modified N.R.C. version of the U.S.G.S. Solute Transport Model to predict the concentration of chemical parameters in a contaminant plume. The two volume report contains program documentation and user's manual. The program ...

  15. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Gongming

    Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify these metal oxide photoelectrode for waste water treatment and chemical fuel generation.

  16. Chemical Modification of Cyclodextrin and Amylose by Click Reaction and Its Application to the Synthesis of Poly-alkylamine-Modified Antibacterial Sugars.

    PubMed

    Yamamura, Hatsuo

    2017-01-01

    Cyclodextrin (CD) can be chemically modified into desired and sophisticated functional molecules. However, poly-modification often produces complicated mixtures, resulting in a low yield of the desired product. As the most promising procedure to solve such problems and to achieve poly-modification of the CD molecule, we present here the Huisgen 1,3-dipolar cycloaddition, known as a click reaction. This review will describe the results of our microwave-assisted click reaction for the poly-modification of CD and amylose molecules, and its application to the study of synthetic membrane active antibacterial derivatives.

  17. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  18. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  19. Identification of Sialic Acid Linkages on Intact Glycopeptides via Differential Chemical Modification Using IntactGIG-HILIC

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Wu, Wells W.; Shen, Rong-Fong; Bern, Marshall; Cipollo, John

    2018-04-01

    Mass spectrometric analysis of intact glycopeptides can reveal detailed information about glycosite, glycan structural features, and their heterogeneity. Sialyl glycopeptides can be positively, negatively, or neutrally charged depending on pH of their buffer solution and ionization conditions. To detect sialoglycopeptides, a negative-ion mode mass spectrometry may be applied with a minimal loss of sialic acids, although the positively charged or neutral glycopeptides may be excluded. Alternatively, the sialyl glycopeptides can be identified using positive-ion mode analysis by doping a high concentration of sodium salts to the analytes. Although manipulation of unmodified sialoglycopeptides can be useful for analysis of samples, less than optimal ionization, facile loss of sialyl and unfavorable ionization of accompanying non-sialyl peptides make such strategies suboptimal. Currently available chemical derivatization methods, while stabilizing for sialic acid, mask sialic acid linkage configuration. Here, we report the development of a novel approach to neutralize sialic acids via sequentially chemical modification that also reveals their linkage configuration, often an important determinant in biological function. This method utilizes several components to facilitate glycopeptide identification. These include the following: solid phase derivatization, enhanced ionization of sialoglycopeptides, differentiation of sialic acid linkage, and enrichment of the modified glycopeptides by hydrophilic interaction liquid chromatography. This technology can be used as a tool for quantitative analysis of protein sialylation in diseases with determination of sialic acid linkage configuration. [Figure not available: see fulltext.

  20. Marine exposure of preservative-treated small wood panels

    Treesearch

    B. R. Johnson; D. I. Gutzmer

    1984-01-01

    Small wood panels treated with many different chemicals have been exposed to limnorian and teredine marine borers in the sea at Key West, Florida. These preservatives and treatments include creosotes with and without modification, waterborne salts, salt-creosote dual treatments, chemical modifications of wood, and modified polymers. In spite of the accelerated nature...

  1. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  2. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.

    PubMed

    Chabbert, Christophe D; Adjalley, Sophie H; Steinmetz, Lars M; Pelechano, Vicent

    2018-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) or microarray hybridization (ChIP-on-chip) are standard methods for the study of transcription factor binding sites and histone chemical modifications. However, these approaches only allow profiling of a single factor or protein modification at a time.In this chapter, we present Bar-ChIP, a higher throughput version of ChIP-Seq that relies on the direct ligation of molecular barcodes to chromatin fragments. Bar-ChIP enables the concurrent profiling of multiple DNA-protein interactions and is therefore amenable to experimental scale-up, without the need for any robotic instrumentation.

  3. Surface modification using the biomimetic method in alumina-zirconia porous ceramics obtained by the replica method.

    PubMed

    Silva, André D R; Rigoli, Willian R; Osiro, Denise; Mello, Daphne C R; Vasconcellos, Luana M R; Lobo, Anderson O; Pallone, Eliria M J A

    2018-01-12

    The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al 2 O 3 containing 5% by volume of ZrO 2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  4. Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity

    PubMed Central

    Dergousova, Elena A.; Petrushanko, Irina Yu.; Klimanova, Elizaveta A.; Mitkevich, Vladimir A.; Ziganshin, Rustam H.; Lopina, Olga D.; Makarov, Alexander A.

    2017-01-01

    Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity. To this aim, we have detected such modifications in the Na,K-ATPase α1-subunit purified from duck salt glands and tried to eliminate them by chemical reducing agents and the glutaredoxin1/glutathione reductase enzyme system. Detection of cysteine modifications was performed using mass spectrometry and Western blot analysis. We have found that purified Na,K-ATPase α1-subunit contains glutathionylated, nitrosylated, and oxidized cysteines. Chemical reducing agents partially eliminate these modifications that leads to the slight increase of the enzyme activity. Enzyme system glutaredoxin/glutathione reductase, unlike chemical reducing agents, produces significant increase of the enzyme activity. At the same time, the enzyme system deglutathionylates native Na,K-ATPase to a lesser degree than chemical reducing agents. This suggests that the enzymatic reducing system glutaredoxin/glutathione reductase specifically affects glutathionylation of the regulatory cysteine residues of Na,K-ATPase α1-subunit. PMID:28230807

  5. Rodent-repellent studies. III. Advanced studies in the evaluation of chemical repellents

    USGS Publications Warehouse

    Bellack, E.; DeWitt, J.B.

    1949-01-01

    In order to bridge the gap between preliminary screening of chemicals for potential rodent repellency and the application ofthese compounds to paper cartons, more advanced studies in the evaluation ofpromising materials have been carried out. These studies have resulted in: (1) a modification of the food acceptance technique which eliminates doubtful compounds and also provides a closer analogy to the ultimate goal, and (2) a method for rapidly testing chemicals incorporated in paper. When the results of these latter tests are expressed as a function of time, it can be shown that a distinct correlation exists between the deterrency exhibited by treated paper and the repellency of treated food.

  6. Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation

    PubMed Central

    Murphy, Amanda R.; John, Peter St.; Kaplan, David L.

    2009-01-01

    A simple chemical modification method using diazonium coupling chemistry was developed to tailor the structure and hydrophilicity of silk fibroin protein. The extent of modification using several aniline derivatives was characterized using UV/vis and 1H NMR spectroscopy, and the resulting protein structure was analyzed with ATR-FTIR spectroscopy. Introduction of hydrophobic functional groups facilitated rapid conversion of the protein from a random coil to a β-sheet structure, while addition of hydrophilic groups inhibited this process. hMSCs were grown on these modified silks to assess the biocompatibility of these materials. The hydrophilicity of the silk derivatives was found to affect the growth rate and morphology, but hMSCs were able to attach, proliferate and differentiate into an osteogenic lineage on all of the silk derivatives. PMID:18417206

  7. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  8. Biochar modification to enhance sorption of inorganics from water.

    PubMed

    Sizmur, Tom; Fresno, Teresa; Akgül, Gökçen; Frost, Harrison; Moreno-Jiménez, Eduardo

    2017-12-01

    Biochar can be used as a sorbent to remove inorganic pollutants from water but the efficiency of sorption can be improved by activation or modification. This review evaluates various methods to increase the sorption efficiency of biochar including activation with steam, acids and bases and the production of biochar-based composites with metal oxides, carbonaceous materials, clays, organic compounds, and biofilms. We describe the approaches, and explain how each modification alters the sorption capacity. Physical and chemical activation enhances the surface area or functionality of biochar, whereas modification to produce biochar-based composites uses the biochar as a scaffold to embed new materials to create surfaces with novel surface properties upon which inorganic pollutants can sorb. Many of these approaches enhance the retention of a wide range of inorganic pollutants in waters, but here we provide a comparative assessment for Cd 2+ , Cu 2+ , Hg 2+ , Pb 2+ , Zn 2+ , NH 4 + , NO 3 - , PO 4 3- , CrO 4 2- and AsO 4 3- . Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.

    PubMed

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  10. Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke

    PubMed Central

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948

  11. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities.

    PubMed

    Getachew, Adane Tilahun; Chun, Byung Soo

    2017-06-01

    Polysaccharides are an abundant resource in coffee beans and have proved to show numerous bioactivities. Despite their abundance, their activities are not always satisfactory mostly due to their structure and large molecular size. Molecular modifications of native polysaccharides can overcome this problem. In this study, we used a novel and green method to modify native coffee polysaccharides using subcritical water (SCW) treatment. The SCW treatment was used at the temperature of 180°C-220°C and pressure of 30-60bar. The molecular and structural modification of the polysaccharides was confirmed using several techniques such as FT-IR, UV spectroscopy, XRD, and TGA. The antioxidant activity of the modified polysaccharides was evaluated using several chemical and Saccharomyces cerevisiae-based high throughput assays. The modified polysaccharides showed high antioxidant activities in all tested assays. Moreover, the polysaccharides showed high DNA protection activities. Therefore, SCW could be employed as a green solvent for molecular modification of polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impact of the excess sludge modification with selected chemical reagents on the increase of dissolved organic substances concentration compounds transformations in activated sludge.

    PubMed

    Zawieja, Iwona; Lidia, Wolny; Marta, Próba

    2017-07-01

    Submission of excess sludge initial disintegration process significantly affects the efficiency of anaerobic stabilization process. Expression of increasing the concentration of organic matter in dissolved form is to increase sludge disintegration. As a result of chemical modification is an increase of the chemical oxygen demand and the concentration of volatile fatty acids. The aim of this study was to determine the impact of the disintegration process with selected chemical reagents to increase the concentration of organic substances in dissolved form. The process of chemical disintegration of excess sludge was treated using the following reagents: Mg(OH) 2 , Ca(OH) 2 , HCl, H 2 SO 4 , H 2 O 2 . The modification was carried out at ambient temperature for 2, 6 and 24h. During sludge disintegration it was noticed the growth of indicators values that confirmed the susceptibility of prepared sludge to biodegradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine.

    PubMed

    Ohno, Satoshi; Matsui, Megumi; Yokogawa, Takashi; Nakamura, Masashi; Hosoya, Takamitsu; Hiramatsu, Toshiyuki; Suzuki, Masaaki; Hayashi, Nobuhiro; Nishikawa, Kazuya

    2007-03-01

    An efficient method for site-selective modification of proteins using an unnatural amino acid, 3-azidotyrosine has been developed. This method utilizes the yeast amber suppressor tRNA(Tyr)/mutated tyrosyl-tRNA synthetase pair as a carrier of 3-azidotyrosine in an Escherichia coli cell-free translation system, and triarylphosphine derivatives for specific modification of the azido group. Using rat calmodulin (CaM) as a model protein, we prepared several unnatural CaM molecules, each carrying an azidotyrosine at predetermined positions 72, 78, 80 or 100, respectively. Post-translational modification of these proteins with a conjugate compound of triarylphosphine and biotin produced site-selectively biotinylated CaM molecules. Reaction efficiency was similar among these proteins irrespective of the position of introduction, and site-specificity of biotinylation was confirmed using mass spectrometry. In addition, CBP-binding activity of the biotinylated CaMs was confirmed to be similar to that of wild-type CaM. This method is intrinsically versatile in that it should be easily applicable to introducing any other desirable compounds (e.g., probes and cross-linkers) into selected sites of proteins as far as appropriate derivative compounds of triarylphosphine could be chemically synthesized. Elucidation of molecular mechanisms of protein functions and protein-to-protein networks will be greatly facilitated by making use of these site-selectively modified proteins.

  14. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    PubMed

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  15. Chemical copatterning strategies using azlactone-based block copolymers

    DOE PAGES

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...

    2017-09-01

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  16. Chemical copatterning strategies using azlactone-based block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  17. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    NASA Astrophysics Data System (ADS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-02-01

    Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  19. Effects of channel modifications on the hydrology of Chicod Creek basin, North Carolina, 1975-87

    USGS Publications Warehouse

    Mason, R.R.; Simmons, C.E.; Watkins, S.A.

    1990-01-01

    Drainage modifications in this Coastal Plain basin from 1978 to 1981 consisted of channel excavation and clearing of blockages. A study was begun in 1975 to define hydrologic conditions of the basin before, during, and after modifications and to determine what changes were attributed to modifications. Surface-water conditions were altered during and following modifications. Minimum flow at Juniper Branch was increased from less than 0.1 cu ft/sec to 0.4 cu ft/second;streamflow variability was reduced from an index of 0.87 to 0.49. In-channel velocity at Chicod Creek was increased from a mean of 0.4 ft/sec to 1.5 ft/sec. Substantial groundwater level declines were observed in wells 180 and 250 ft from Juniper Branch during the modifications phase;these were 0.4 and 0.2 ft, respectively. However, most surface-water and groundwater conditions returned nearly to premodification levels by 1987. Water-quality characteristics monitored during the investigation included physical, chemical, and bacteriological characteristics. Physical characteristics monitored were suspended sediment, temperature, dissolved oxygen, and pH. Of these physical characteristics, only sediment concentrations increased substantially during channel modifications. Chemical characteristics studied were major dissolved constituents, nutrients, trace metals, and pesticides. Substantial changes ranged from a decline in total iron concentrations of 77% to an increase in total nitrite concentrations of 130%. Changes in many chemical characteristics persisted following channel modifications. Bacterial counts did not change substantially.

  20. Vision & Strategy: Predictive Ecotoxicology in the 21st Century

    DTIC Science & Technology

    2011-01-01

    their relative abundance or modifications QSARs —Correlation of ecological or toxicological activity with chemical structure to understand or predict...data and collection methods. The dramatic increase in the amount of toxicological data we can collect and analyze is complemented by our improved...diverse disciplines such as biochemistry, ecology, molecular biology, toxicology , bioinformatics, and health and environmental risk assess- ment

  1. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    PubMed

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Modified nucleoside triphosphates exist in mammals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05472f

    PubMed Central

    Jiang, Han-Peng; Xiong, Jun; Liu, Fei-Long; Ma, Cheng-Jie; Tang, Xing-Lin; Feng, Yu-Qi

    2018-01-01

    DNA and RNA contain diverse chemical modifications that exert important influences in a variety of cellular processes. In addition to enzyme-mediated modifications of DNA and RNA, previous in vitro studies showed that pre-modified nucleoside triphosphates (NTPs) can be incorporated into DNA and RNA during replication and transcription. Herein, we established a chemical labeling method in combination with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis for the determination of endogenous NTPs in the mammalian cells and tissues. We synthesized 8-(diazomethyl)quinoline (8-DMQ) that could efficiently react with the phosphate group under mild condition to label NTPs. The developed method allowed sensitive detection of NTPs, with the detection limits improved by 56–137 folds. The results showed that 12 types of endogenous modified NTPs were distinctly determined in the mammalian cells and tissues. In addition, the majority of these modified NTPs exhibited significantly decreased contents in human hepatocellular carcinoma (HCC) tissues compared to tumor-adjacent normal tissues. Taken together, our study revealed the widespread existence of various modified NTPs in eukaryotes. PMID:29780546

  3. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing

    PubMed Central

    Babczyk, Patrick; Conzendorf, Clelia; Klose, Jens; Schulze, Margit; Harre, Kathrin; Tobiasch, Edda

    2014-01-01

    This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade. PMID:26237251

  4. Chemical labelling for visualizing native AMPA receptors in live neurons

    PubMed Central

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-01-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders. PMID:28387242

  5. Effects of chemically modified wood on bond durability

    Treesearch

    Rishawn Brandon; Rebecca E. Ibach; Charles R. Frihart

    2005-01-01

    Chemical modification of wood can improve its dimensional stability and resistance to biological degradation and moisture, but modification can also create a new surface for bonding. Acetylation of wood results in the loss of hydroxyl groups, making the wood more hydrophobic and reduces its ability to hydrogen-bond with the adhesive. In contrast, reacting wood with...

  6. Ultrasonic modification of carbon materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Rachiy, Bogdan I.; Nykoliuk, Marian O.; Budzulyak, Ivan M.; Kachmar, Andrii I.

    2017-01-01

    The paper is devoted to study the ultrasonic impact on the biomass of natural raw materials, which were used for the creation a nanoporous carbon material (NCM), which was used as electrode material for electrochemical capacitors (EC). The dry shells of apricot seeds were a feedstock, which were modified by the chemical treatment in the phosphoric acid and part of them were impacted by ultrasonic waves for 25 minutes. The NCM, which were obtained by carbonization at 550 °C, were modified by chemical treatment in the nitric acid. Thus, the different of modification NCM was obtained to compare their capacitance characteristics for EC. From experimental data we can do a conclusion, that ultrasonic modification and chemical treatment in nitric acidare improvecapacitance characteristics of NCM for EC.

  7. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  8. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  9. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    PubMed

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  10. Drug Solubility: Importance and Enhancement Techniques

    PubMed Central

    Savjani, Ketan T.; Gajjar, Anuradha K.; Savjani, Jignasa K.

    2012-01-01

    Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics. PMID:22830056

  11. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  12. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering

    PubMed Central

    Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin

    2017-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates. PMID:28348368

  13. Diazo Compounds: Versatile Tools for Chemical Biology.

    PubMed

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  14. Harnessing epigenome modifications for better crops

    USDA-ARS?s Scientific Manuscript database

    Chemical DNA modifications such as methylation influence translation of the DNA code to specific genetic outcomes. While such modifications can be heritable, others are transient, and their overall contribution to plant genetic diversity remains intriguing but uncertain. The focus of this article is...

  15. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    PubMed Central

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  16. Proteomic analysis of the reproductive organs of the hermaphroditic gastropod Lymnaea stagnalis exposed to different endocrine disrupting chemicals.

    PubMed

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.

  17. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

    PubMed Central

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis. PMID:24363793

  18. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  19. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    NASA Astrophysics Data System (ADS)

    Semenov, A. P.; Smirnyagina, N. N.; Tsyrenov, B. O.; Dasheev, D. E.; Khaltarov, Z. M.

    2017-05-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 105 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement.

  20. Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization

    NASA Astrophysics Data System (ADS)

    Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

  1. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  2. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    PubMed

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tailor-made resealable micro(bio)reactors providing easy integration of in situ sensors

    NASA Astrophysics Data System (ADS)

    Viefhues, Martina; Sun, Shiwen; Valikhani, Donya; Nidetzky, Bernd; Vrouwe, Elwin X.; Mayr, Torsten; Bolivar, Juan M.

    2017-06-01

    Flow microreactors utilizing immobilized enzymes are of great interest in biocatalysis development. Most of the common devices are permanently closed, single-use systems, which allow limited physical and chemical surface modifications and evaluation methods. In this paper we will present resealable flowcells that overcome these limitations and moreover allow a quick and easy integration of sensor systems, because of the use of modular building blocks. The devices were utilized to study the enzyme activity of glucose oxidase immobilized on chemically modified glass surfaces under flow conditions, employing integrated optical oxygen sensors for on-line monitoring.

  4. Post-polymerization functionalization of polyolefins.

    PubMed

    Boaen, Nicole K; Hillmyer, Marc A

    2005-03-01

    Polyolefins are macromolecular alkanes and include the most familiar and most commercially produced plastic, polyethylene. The low cost of these materials combined with their diverse and desirable property profiles drive such large-scale production. One property that renders polyolefins so attractive is their resistance to harsh chemical environments. However, this attribute becomes a severe limitation when attempting to chemically convert these plastics into value-added materials. Functionalization of polymers is a useful methodology for the generation of new materials with wide ranging applications, and this tutorial review describes both new and established methods for the post-polymerization modification of polyolefins.

  5. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  6. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    PubMed Central

    Bramsen, Jesper B.; Pakula, Malgorzata M.; Hansen, Thomas B.; Bus, Claus; Langkjær, Niels; Odadzic, Dalibor; Smicius, Romualdas; Wengel, Suzy L.; Chattopadhyaya, Jyoti; Engels, Joachim W.; Herdewijn, Piet; Wengel, Jesper; Kjems, Jørgen

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2–8 of either siRNA strand counting from the 5′-end) and complementary sequences in the 3′UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA–target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low. PMID:20453030

  7. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  8. Stormwater filtration of toxic heavy metal ions using lignocellulosic materials selection process, fiberization, chemical modification, and mat formation

    Treesearch

    James S. Han

    1999-01-01

    Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...

  9. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    PubMed

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.

    PubMed

    Cheng, Huhu; Huang, Yaxin; Shi, Gaoquan; Jiang, Lan; Qu, Liangti

    2017-07-18

    Graphene, with large delocalized π electron cloud on a two-dimensional (2D) atom-thin plane, possesses excellent carrier mobility, large surface area, high light transparency, high mechanical strength, and superior flexibility. However, the lack of intrinsic band gap, poor dispersibility, and weak reactivity of graphene hinder its application scope. Heteroatom-doping regulation and surface modification of graphene can effectively reconstruct the sp 2 bonded carbon atoms and tailor the surface chemistry and interfacial interaction, while microstructure mediation on graphene can induce the special chemical and physical properties because of the quantum confinement, edge effect, and unusual mass transport process. Based on these regulations on graphene, series of methods and techniques are developed to couple the promising characters of graphene into the macroscopic architectures for potential and practical applications. In this Account, we present our effort on graphene regulation from chemical modification to microstructure control, from the morphology-designed macroassemblies to their applications in functional systems excluding the energy-storage devices. We first introduce the chemically regulative graphene with incorporated heteroatoms into the honeycomb lattice, which could open the intrinsic band gap and provide many active sites. Then the surface modification of graphene with functional components will improve dispersibility, prevent aggregation, and introduce new functions. On the other hand, microstructure mediation on graphene sheets (e.g., 0D quantum dots, 1D nanoribbons, and 2D nanomeshes) is demonstrated to induce special chemical and physical properties. Benefiting from the effective regulation on graphene sheets, diverse methods including dimension-confined strategy, filtration assembly, and hydrothermal treatment have been developed to assemble individual graphene sheets to macroscopic graphene fibers, films, and frameworks. These rationally regulated graphene sheets and well-constructed assemblies present promising applications in energy-conversion materials and device systems focusing on actuators that can convert different energy forms (e.g., electric, chemical, photonic, thermal, etc.) to mechanical actuation and electrical generators that can directly transform environmental energy to electric power. These results reveal that graphene sheets with surface chemistry and microstructure regulations as well as their rationally designed assemblies provide a promising and abundant platform for development of diverse functional devices. We hope that this Account will promote further efforts toward fundamental research on graphene regulation and the wide applications of advanced designed assemblies in new types of energy-conversion materials/devices and beyond.

  11. Ultrasonic modification of carbon materials for electrochemical capacitors.

    PubMed

    Rachiy, Bogdan I; Nykoliuk, Marian O; Budzulyak, Ivan M; Kachmar, Andrii I

    2017-12-01

    The paper is devoted to study the ultrasonic impact on the biomass of natural raw materials, which were used for the creation a nanoporous carbon material (NCM), which was used as electrode material for electrochemical capacitors (EC). The dry shells of apricot seeds were a feedstock, which were modified by the chemical treatment in the phosphoric acid and part of them were impacted by ultrasonic waves for 25 minutes. The NCM, which were obtained by carbonization at 550 °C, were modified by chemical treatment in the nitric acid. Thus, the different of modification NCM was obtained to compare their capacitance characteristics for EC. From experimental data we can do a conclusion, that ultrasonic modification and chemical treatment in nitric acidare improvecapacitance characteristics of NCM for EC.

  12. Selective Modification of Chitin and Chitosan: En Route to Tailored Oligosaccharides.

    PubMed

    Carvalho, Luísa C R; Queda, Fausto; Santos, Cátia V Almeida; Marques, M Manuel B

    2016-12-19

    Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The threemore » appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)« less

  15. A Vastly Increased Chemical Variety of RNA Modifications Containing a Thioacetal Structure.

    PubMed

    Dal Magro, Christina; Keller, Patrick; Kotter, Annika; Werner, Stephan; Duarte, Victor; Marchand, Virginie; Ignarski, Michael; Freiwald, Anja; Müller, Roman-Ulrich; Dieterich, Christoph; Motorin, Yuri; Butter, Falk; Atta, Mohamed; Helm, Mark

    2018-06-25

    Recently discovered new chemical entities in RNA modifications have involved surprising functional groups that enlarge the chemical space of RNA. Using LC-MS, we found over 100 signals of RNA constituents that contained a ribose moiety in tRNAs from E. coli. Feeding experiments with variegated stable isotope labeled compounds identified 37 compounds that are new structures of RNA modifications. One structure was elucidated by deuterium exchange and high-resolution mass spectrometry. The structure of msms 2 i 6 A (2-methylthiomethylenethio-N6-isopentenyl-adenosine) was confirmed by methione-D3 feeding experiments and by synthesis of the nucleobase. The msms 2 i 6 A contains a thioacetal, shown in vitro to be biosynthetically derived from ms 2 i 6 A by the radical-SAM enzyme MiaB. This enzyme performs thiomethylation, forming ms 2 i 6 A from i 6 A in a first turnover. The new thioacetal is formed by a second turnover. Along with the pool of 36 new modifications, this work describes a new layer of RNA modification chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  17. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  18. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

    PubMed Central

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-01-01

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2′-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli. Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. coli enzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  19. Experimental Study on Modification of Concrete with Asphalt Admixture

    NASA Astrophysics Data System (ADS)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (<1%) and high resistance to aggressive environments were obtained in this study. AP content was reduced from 10% (previous investigations) to 2-4% of cement mass thanks to the special compaction method. Excellent chloride ion penetration resistance and carbonation resistance of concrete containing AP admixture is due to the asphalt barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  20. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  1. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  2. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  3. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    PubMed

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  4. Structural landscape of base pairs containing post-transcriptional modifications in RNA

    PubMed Central

    Seelam, Preethi P.; Sharma, Purshotam

    2017-01-01

    Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704

  5. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    PubMed Central

    Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long

    2012-01-01

    The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063

  6. Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Gu, Guo-Hua; Lin, Qing-Quan; Zhang, Ling-Ling; Huang, Luo-Luo; Zhao, Jun-Yao

    2016-05-01

    A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  8. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  9. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity

    PubMed Central

    Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina

    2015-01-01

    Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662

  10. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  11. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    PubMed Central

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  12. Chemical Structure and Surface Modification of Dendritic Nanomaterials Tailored for Therapeutic and Diagnostic Applications.

    PubMed

    Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo

    2017-01-01

    Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    NASA Astrophysics Data System (ADS)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  14. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  15. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  16. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing

    2012-12-01

    The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.

  17. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  18. Computational methods in metabolic engineering for strain design.

    PubMed

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Large area ultraviolet photodetector on surface modified Si:GaN layers

    NASA Astrophysics Data System (ADS)

    Anitha, R.; R., Ramesh; Loganathan, R.; Vavilapalli, Durga Sankar; Baskar, K.; Singh, Shubra

    2018-03-01

    Unique features of semiconductor based heterostructured photoelectric devices have drawn considerable attention in the recent past. In the present work, large area UV photodetector has been fabricated utilizing interesting Zinc oxide microstructures on etched Si:GaN layers. The surface of Si:GaN layer grown by metal organic chemical vapor deposition method on sapphire has been modified by chemical etching to control the microstructure. The photodetector exhibits response to Ultraviolet light only. Optimum etching of Si:GaN was required to exhibit higher responsivity (0.96 A/W) and detectivity (∼4.87 × 109 Jones), the two important parameters for a photodetector. Present method offers a tunable functionality of photodetector through modification of top layer microstructure. A comparison with state of art materials has also been presented.

  20. Chemical modification of cellulosic fibers for better convertibility in packaging applications.

    PubMed

    Vuoti, Sauli; Laatikainen, Elina; Heikkinen, Harri; Johansson, Leena-Sisko; Saharinen, Erkki; Retulainen, Elias

    2013-07-25

    Cellulose fiber has been modified by mechanical and chemical means in order to improve paper properties, which respond to moisture and temperature. When the cellulose is first refined and then etherified using hydroxypropylation under dry conditions, the paper sheets prepared from the hydroxypropylated cellulose show improved elongation. When the level of hydroxypropylation is high enough, the paper sheets also become transparent. Additionally, the effect of cellulose activation using different mechanical methods has been compared by esterification reactions. It is shown that removal of water is the most crucial step for the esterification reactions while other methods have a lesser impact. The paper sheets prepared from the esterified cellulose fibers show an increase in contact angles and high hydrophobicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Recent Methods for Purification and Structure Determination of Oligonucleotides.

    PubMed

    Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-12-18

    Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.

  2. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok

    2014-08-27

    We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.

  3. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  5. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC–UV–MS

    PubMed Central

    Russell, Susan P.; Limbach, Patrick A.

    2013-01-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less. PMID:23500350

  6. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  7. Chemical Synthesis of Circular Proteins*

    PubMed Central

    Tam, James P.; Wong, Clarence T. T.

    2012-01-01

    Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain. PMID:22700959

  8. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    PubMed

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  9. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  10. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  11. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents

    PubMed Central

    Kędziora, Anna; Speruda, Mateusz; Rybka, Jacek; Łukowiak, Anna; Bugla-Płoskońska, Gabriela

    2018-01-01

    Silver is considered as antibacterial agent with well-known mode of action and bacterial resistance against it is well described. The development of nanotechnology provided different methods for the modification of the chemical and physical structure of silver, which may increase its antibacterial potential. The physico-chemical properties of silver nanoparticles and their interaction with living cells differs substantially from those of silver ions. Moreover, the variety of the forms and characteristics of various silver nanoparticles are also responsible for differences in their antibacterial mode of action and probably bacterial mechanism of resistance. The paper discusses in details the aforementioned aspects of silver activity. PMID:29393866

  12. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... conducted by ``a licensed professional engineer or foreign equivalent who works in the chemical engineering... chemical engineering field. EPA views renewable fuel production to fall generally within the chemical... basic organic chemical manufacturers. Industry 424690 5169 Chemical and allied products merchant...

  13. Recent Advances in Chemical Modification of Peptide Nucleic Acids

    PubMed Central

    Rozners, Eriks

    2012-01-01

    Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652

  14. Functionalization of chitosan by click chemistry

    NASA Astrophysics Data System (ADS)

    Cheaburu-Yilmaz, Catalina Natalia; Karavana, Sinem Yaprak; Yilmaz, Onur

    2017-12-01

    Chitosan modification represents a challenge nowadays. The variety of compounds which can be obtained with various architectures and different functionalities made it attractive to be used in fields like pharmacy and material science. Presents study deals with the chemical modification of chitosan by using click chemistry technique. The study adopted the approach of clicking azidated chitosan with a synthesized alkyne terminated polymer i.e. poly N isopropylacrylamide with thermoresponsive properties. Structures were confirmed by the FT-IR and HNMR spectra. Thermal characterization was performed showing different thermal behaviour with the chemical modification. The final synthesized graft copolymer can play important role within pharmaceutical formulations carrying drugs for topical or oral treatments.

  15. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  16. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  17. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    PubMed

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  18. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins.

    PubMed

    Orr, Asuka A; Gonzalez-Rivera, Juan C; Wilson, Mark; Bhikha, P Reena; Wang, Daiqi; Contreras, Lydia M; Tamamis, Phanourios

    2018-02-01

    There are over 150 currently known, highly diverse chemically modified RNAs, which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is known about the wealth of such interactions. This can be attributed to the lack of tools that allow the rapid study of all the potential RNA modifications that might mediate RNA-protein interactions. As a promising step toward this direction, here we present a computational protocol for the characterization of interactions between proteins and RNA containing post-transcriptional modifications. Given an RNA-protein complex structure, potential RNA modified ribonucleoside positions, and molecular mechanics parameters for capturing energetics of RNA modifications, our protocol operates in two stages. In the first stage, a decision-making tool, comprising short simulations and interaction energy calculations, performs a fast and efficient search in a high-throughput fashion, through a list of different types of RNA modifications categorized into trees according to their structural and physicochemical properties, and selects a subset of RNA modifications prone to interact with the target protein. In the second stage, RNA modifications that are selected as recognized by the protein are examined in-detail using all-atom simulations and free energy calculations. We implement and experimentally validate this protocol in a test case involving the study of RNA modifications in complex with Escherichia coli (E. coli) protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further advancement of the protocol can broaden our understanding of protein interactions with all known RNA modifications in several systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    PubMed

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  1. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  2. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  3. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  4. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)

    PubMed Central

    Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.

    2017-01-01

    The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158

  5. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    PubMed

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  6. Chemical Data Reporting - Previously Collected Data

    EPA Pesticide Factsheets

    EPA now refers to the Inventory Update Reporting (IUR) rule as the Chemical Data Reporting (CDR) Rule. This change was effective with the publication of the Inventory Update Reporting Modifications; Chemical Data Reporting Final Rule in August 2011.

  7. A targeted mass spectrometry-based approach for the identification and characterization of proteins containing α-aminoadipic and γ-glutamic semialdehyde residues

    PubMed Central

    Chavez, Juan D.; Bisson, William H.

    2011-01-01

    The site-specific identification of α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) residues in proteins is reported. Semialdehydic protein modifications result from the metal-catalyzed oxidation of Lys or Arg and Pro residues, respectively. Most of the analytical methods for the analysis of protein carbonylation measure change to the global level of carbonylation and fail to provide details regarding protein identity, site, and chemical nature of the carbonylation. In this work, we used a targeted approach, which combines chemical labeling, enrichment, and tandem mass spectrometric analysis, for the site-specific identification of AAS and GGS sites in proteins. The approach is applied to in vitro oxidized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an untreated biological sample, namely cardiac mitochondrial proteins. The analysis of GAPDH resulted in the site-specific identification of two AAA and four GGS residues. Computational evaluation of the identified AAS and GGS sites in GAPDH indicated that these sites are located in flexible regions, show high solvent accessibility values, and are in proximity with possible metal ion binding sites. The targeted proteomic analysis of semialdehydic modifications in cardiac mitochondria yielded nine AAS modification sites which were unambiguously assigned to distinct lysine residues in the following proteins: ATP/ATP translocase isoforms 1 and 2, ubiquinol cytochrome-c reductase core protein 2, and ATP synthase α-subunit. PMID:20957471

  8. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  9. The structural damages of lens crystallins induced by peroxynitrite and methylglyoxal, two causative players in diabetic complications and preventive role of lens antioxidant components.

    PubMed

    Moghadam, Sogand Sasan; Oryan, Ahmad; Kurganov, Boris I; Tamaddon, Ali-Mohammad; Alavianehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar; Yousefi, Reza

    2017-10-01

    Peroxynitrite (PON) and methylglyoxal (MGO), two diabetes-associated compounds, are believed to be important causative players in development of diabetic cataracts. In the current study, different spectroscopic methods, gel electrophoresis, lens culture and microscopic assessments were applied to examine the impact of individual, subsequent or simultaneous modification of lens crystallins with MGO and PON on their structure, oligomerization and aggregation. The protein modifications were confirmed with detection of the significantly increased quantity of carbonyl groups and decreased levels of sulfhydryl, tyrosine and tryptophan. Also, lens proteins modification with these chemical agents was accompanied with important structural alteration, oligomerization, disulfide/chromophore mediated protein crosslinking and important proteolytic instability. All these structural damages were more pronounced when the lens proteins were modified in the presence of both mentioned chemical agents, either in sequential or simultaneous manner. Ascorbic acid and glutathione, as the main components of lens antioxidant defense mechanism, were also capable to markedly prevent the damaging effects of PON and MGO on lens crystallins, as indicated by gel electrophoresis. The results of this study may highlight the importance of lens antioxidant defense system in protection of crystallins against the structural insults induced by PON and MGO during chronic hyperglycemia in the diabetic patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase.

    PubMed

    Brogan, Alex P S; Bui-Le, Liem; Hallett, Jason P

    2018-06-25

    The increasing requirement to produce platform chemicals and fuels from renewable sources means advances in biocatalysis are rapidly becoming a necessity. Biomass is widely used in nature as a source of energy and as chemical building blocks. However, recalcitrance towards traditional chemical processes and solvents provides a significant barrier to widespread utility. Here, by optimizing enzyme solubility in ionic liquids, we have discovered solvent-induced substrate promiscuity of glucosidase, demonstrating an unprecedented example of homogeneous enzyme bioprocessing of cellulose. Specifically, chemical modification of glucosidase for solubilization in ionic liquids can increase thermal stability to up to 137 °C, allowing for enzymatic activity 30 times greater than is possible in aqueous media. These results establish that through a synergistic combination of chemical biology (enzyme modification) and reaction engineering (solvent choice), the biocatalytic capability of enzymes can be intensified: a key step towards the full-scale deployment of industrial biocatalysis.

  11. Surface segregation of additives on SnO 2 based powders and their relationship with macroscopic properties

    NASA Astrophysics Data System (ADS)

    Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas

    2002-07-01

    Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.

  12. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).

    PubMed

    Pei, Yiwen; Lowe, Andrew B; Roth, Peter J

    2017-01-01

    Polymerization-induced self-assembly (PISA) is an extremely versatile method for the in situ preparation of soft-matter nanoparticles of defined size and morphologies at high concentrations, suitable for large-scale production. Recently, certain PISA-prepared nanoparticles have been shown to exhibit reversible polymorphism ("shape-shifting"), typically between micellar, worm-like, and vesicular phases (order-order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus-responsive nano-objects. Reversible pH-responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature-triggered order-order transitions, conversely, do not rely on inherently thermo-responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post-modification of reactive PISA-made particles. Emerging applications and future research directions of this "smart" nanoparticle behavior are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein.

    PubMed

    Jennings, M L; Anderson, M P

    1987-02-05

    A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.

  14. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.

    PubMed

    Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito

    2016-10-24

    To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.

  15. Modelling threats to water quality from fire suppression chemicals and post-fire erosion

    NASA Astrophysics Data System (ADS)

    Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William

    2014-05-01

    Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.

  16. Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.

    2000-02-01

    Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.

  17. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  18. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.

    PubMed

    Lo, Justin C; Campbell, David A; Kennedy, Christopher J; Gobas, Frank A P C

    2015-10-01

    To improve current bioaccumulation assessment methods, a methodology is developed, applied, and investigated for measuring in vivo biotransformation rates of hydrophobic organic substances in the body (soma) and gastrointestinal tract of the fish. The method resembles the Organisation for Economic Co-operation and Development (OECD) 305 dietary bioaccumulation test but includes reference chemicals to determine both somatic and gastrointestinal biotransformation rates of test chemicals. Somatic biotransformation rate constants for the test chemicals ranged between 0 d(-1) and 0.38 (standard error [SE] 0.03)/d(-1) . Gastrointestinal biotransformation rate constants varied from 0 d(-1) to 46 (SE 7) d(-1) . Gastrointestinal biotransformation contributed more to the overall biotransformation in fish than somatic biotransformation for all test substances but 1. Results suggest that biomagnification tests can reveal the full extent of biotransformation in fish. The common presumption that the liver is the main site of biotransformation may not apply to many substances exposed through the diet. The results suggest that the application of quantitative structure-activity relationships (QSARs) for somatic biotransformation rates and hepatic in vitro models to assess the effect of biotransformation on bioaccumulation can underestimate biotransformation rates and overestimate the biomagnification potential of chemicals that are biotransformed in the gastrointestinal tract. With some modifications, the OECD 305 test can generate somatic and gastrointestinal biotransformation data to develop biotransformation QSARs and test in vitro-in vivo biotransformation extrapolation methods. © 2015 SETAC.

  19. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    DTIC Science & Technology

    2007-09-30

    have attempted to develop methods based on chemical structural modification to prevent galvanically-induced composite corrosion. [9, 10-12] These...of the two metallopolymers 11 and 12 show characteristic MLCT (metal-to-ligand charge transfer) absorption band of tris(bipyridyl)Ru(II) unit at k...showed absorption band at 450 nm and emission band at 325 nm of tris(bipyridyl)Ru(II) units in its respective UV-vis and fluorescence spectra. Very

  20. Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets.

    PubMed

    López Durán, Verónica; Larsson, Per A; Wågberg, Lars

    2018-02-15

    Despite the different chemical approaches used earlier to increase the ductility of fibre-based materials, it has not been possible to link the chemical modification to their mechanical performance. In this study, cellulose fibres have been modified by periodate oxidation, alone or followed either by borohydride reduction, reductive amination or chlorite oxidation. In addition, TEMPO oxidation, and TEMPO oxidation in combination with periodate oxidation and further reduction with sodium borohydride have also been studied. The objective was to gain understanding of the influence of different functional groups on the mechanical and structural properties of handsheets made from the modified fibres. It was found that the modifications studied improved the tensile strength of the fibres to different extents, but that only periodate oxidation followed by borohydride reduction provided more ductile fibre materials. Changes in density, water-holding capacity and mechanical performance were also quantified and all are dependent on the functional group introduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of modified titanium surfaces physical and chemical characteristics

    NASA Astrophysics Data System (ADS)

    Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw

    2017-11-01

    Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.

  2. Identification and characterization of ana o 3 modifications on arginine-111 residue in heated cashew nuts

    USDA-ARS?s Scientific Manuscript database

    Heating foods can alter the physical, chemical, and biological characteristics of the proteins we consume. Raw and roasted cashew nut extracts were evaluated for allergen modifications by mass-spectrometry. We did not identify modifications on Ana o 1 or Ana o 2, but we observed two independent mo...

  3. Chemoenzymatic Labeling of Proteins: Techniques and Approaches

    PubMed Central

    Rashidian, Mohammad; Dozier, Jonathan K.; Distefano, Mark D.

    2013-01-01

    Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally-occurring post-translational modifications, for creating antibody-drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics and protein-protein interactions and for the preparation of protein-polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups are not only inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase and N-myristoyl transferase. PMID:23837885

  4. Structural and chemical aspects of HPMA copolymers as drug carriers.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Matrix-assisted laser desorption/ionization mass spectrometry for the evaluation of the C-terminal lysine distribution of a recombinant monoclonal antibody.

    PubMed

    Lazar, Alexandru C; Kloczewiak, Marek A; Mazsaroff, Istvan

    2004-01-01

    Recombinant monoclonal antibodies produced using mammalian cell lines contain multiple chemical modifications. One specific modification resides on the C-terminus of the heavy chain. Enzymes inside the cell can cleave the C-terminal lysine from the heavy-chain molecules, and variants with and without C-terminal lysine can be produced. In order to fully characterize the protein, there is a need for analytical methods that are able to account for the different product variants. Conventional analytical methods used for the measurement of the distribution of the two different variants are based on chemical or enzymatic degradation of the protein followed by chromatographic separation of the degradation products. Chromatographic separations with gradient elution have long run times, and analyses of multiple samples are time-consuming. This paper reports development of a novel method for the determination of the relative amounts of the two C-terminal heavy-chain variants based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) measurements of the cyanogen bromide degraded recombinant monoclonal antibody products. The distribution of the variants is determined from the MALDI-TOF mass spectra by measuring the peak areas of the two C-terminal peptides. The assay was used for the assessment of the C-terminal lysine distribution in different development lots. The method was able to differentiate between the products obtained using the same cell line as well as between products obtained from different cell lines. Copyright 2004 John Wiley & Sons, Ltd.

  6. Modeling covalent-modifier drugs.

    PubMed

    Awoonor-Williams, Ernest; Walsh, Andrew G; Rowley, Christopher N

    2017-11-01

    In this review, we present a summary of how computer modeling has been used in the development of covalent-modifier drugs. Covalent-modifier drugs bind by forming a chemical bond with their target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed. In some cases, this results in irreversible inhibition of the target, but some targeted covalent inhibitor (TCI) drugs bind covalently but reversibly. Computer modeling is widely used in drug discovery, but different computational methods must be used to model covalent modifiers because of the chemical bonds formed. Structural and bioinformatic analysis has identified sites of modification that could yield selectivity for a chosen target. Docking methods, which are used to rank binding poses of large sets of inhibitors, have been augmented to support the formation of protein-ligand bonds and are now capable of predicting the binding pose of covalent modifiers accurately. The pK a 's of amino acids can be calculated in order to assess their reactivity towards electrophiles. QM/MM methods have been used to model the reaction mechanisms of covalent modification. The continued development of these tools will allow computation to aid in the development of new covalent-modifier drugs. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A covalent modification for graphene by adamantane groups through two-step chlorination-Grignard reactions

    NASA Astrophysics Data System (ADS)

    Sun, Xuzhuo; Li, Bo; Lu, Mingxia

    2017-07-01

    Chemical modification of graphene is a promising approach to manipulate its properties for its end applications. Herein we designed a two-step route through chlorination-Grignard reactions to covalently decorate the surface of graphene with adamantane groups. The chemically modified graphene was characterized by Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Chlorination of graphene occurred rapidly, and the substitution of chlorine atoms on chlorinated graphene by adamantane Grignard reagent afforded adamantane graphene in almost quantitative yield. Adamantane groups were found to be covalently bonded to the graphene carbons. The present two-step procedure may provide an effective and facile route for graphene modification with varieties of organic functional groups.

  8. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  9. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  10. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  11. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications

    PubMed Central

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field. PMID:29164107

  12. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications.

    PubMed

    Campos, Estefânia V R; Oliveira, Jhones L; Fraceto, Leonardo F

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  13. Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery.

    PubMed

    Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping

    2015-08-05

    Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.

  14. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various PTMs

    PubMed Central

    2011-01-01

    Background Various solutions have been introduced for the identification of post-translational modification (PTM) from tandem mass spectrometry (MS/MS) in proteomics field but the identification of peptide modifiers, such as Ubiquitin (Ub) and ubiquitin-like proteins (Ubls), is still a challenge. The fragmentation of peptide modifier produce complex shifted ion mass patterns in combination with other PTMs, which makes it difficult to identify and locate the PTMs on a protein sequence. Currently, most PTM identification methods do not consider the complex fragmentation of peptide modifier or deals it separately from the other PTMs. Results We developed an advanced PTM identification method that inspects possible ion patterns of the most known peptide modifiers as well as other known biological and chemical PTMs to make more comprehensive and accurate conclusion. The proposed method searches all detectable mass differences of measured peaks from their theoretical values and the mass differences within mass tolerance range are grouped as mass shift classes. The most possible locations of multiple PTMs including peptide modifiers can be determined by evaluating all possible scenarios generated by the combination of the qualified mass shift classes.The proposed method showed excellent performance in the test with simulated spectra having various PTMs including peptide modifiers and in the comparison with recently developed methods such as QuickMod and SUMmOn. In the analysis of HUPO Brain Proteome Project (BPP) datasets, the proposed method could find the ubiquitin modification sites that were not identified by other conventional methods. Conclusions This work presents a novel method for identifying bothpeptide modifiers that generate complex fragmentation patternsand PTMs that are not fragmented during fragmentation processfrom tandem mass spectra. PMID:22373085

  15. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  16. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  17. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  18. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  19. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  20. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  1. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  2. Enhancement of Spartium junceum L. fibres properties

    NASA Astrophysics Data System (ADS)

    Kovačević, Z.; Bischof, S.; Antonović, A.

    2017-10-01

    Properties of lignocellulosic Spartium junceum L. (SJL) fibres were investigated in order to use them as reinforcement in composite material production. The fibres were obtained by microwave maceration process and additionally modified with NaOH, nanoclay and citric acid with the aim to improve their mechanical, thermal and other physical-chemical properties. Tensile and thermal properties of these natural fibres were enhanced by the different modification treatment which is investigated by the Vibrodyn/Vibroskop method and thermogravimetric analysis (TGA), whilst determination of chemical composition and fibre’s surface properties were explored using scanning electron microscope (SEM), electron dispersive spectroscopy (EDS) and elektrokinetic analyser. All the results show great improvement of nanoclay/citric acid modified SJL properties.

  3. Optoelectronic investigation of nanodiamond interactions with human blood

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  4. A review of chemical methods for the selective sulfation and desulfation of polysaccharides.

    PubMed

    Bedini, Emiliano; Laezza, Antonio; Parrilli, Michelangelo; Iadonisi, Alfonso

    2017-10-15

    Sulfated polysaccharides are known to possess several biological activities, with their sulfation pattern acting as a code able to transmit functional information. Due to their high biological and biomedical importance, in the last two decades many reports on the chemical modification of their sulfate distribution as well as on the regioselective insertion of sulfate groups on non-sulfated polysaccharides appeared in literature. In this Review we have for the first time collected these reports together, categorizing them into three different classes: i) regioselective sulfation reactions, ii) regioselective desulfation reactions, iii) regioselective insertion of sulfate groups through multi-step strategies, and discussing their scope and limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments.

    PubMed

    Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J

    2004-05-01

    Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.

  6. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles.

    PubMed

    Hund-Rinke, Kerstin; Baun, Anders; Cupi, Denisa; Fernandes, Teresa F; Handy, Richard; Kinross, John H; Navas, José M; Peijnenburg, Willie; Schlich, Karsten; Shaw, Benjamin J; Scott-Fordsmand, Janeck J

    2016-12-01

    Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO 2 ). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO 2 NMs and Ag NM and detailed method descriptions are available.

  7. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.

  8. Formation of grafted surface layers on silicon dioxide particles and their investigation by means of thermoprogrammed oxidation

    NASA Astrophysics Data System (ADS)

    Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.

    2017-03-01

    Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.

  9. Optogenetic Random Mutagenesis Using Histone-miniSOG in C. elegans.

    PubMed

    Noma, Kentaro; Jin, Yishi

    2016-11-14

    Forward genetic screening in model organisms is the workhorse to discover functionally important genes and pathways in many biological processes. In most mutagenesis-based screens, researchers have relied on the use of toxic chemicals, carcinogens, or irradiation, which requires designated equipment, safety setup, and/or disposal of hazardous materials. We have developed a simple approach to induce heritable mutations in C. elegans using germline-expressed histone-miniSOG, a light-inducible potent generator of reactive oxygen species. This mutagenesis method is free of toxic chemicals and requires minimal laboratory safety and waste management. The induced DNA modifications include single-nucleotide changes and small deletions, and complement those caused by classical chemical mutagenesis. This methodology can also be used to induce integration of extrachromosomal transgenes. Here, we provide the details of the LED setup and protocols for standard mutagenesis and transgene integration.

  10. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  11. Taking the plunge: chemical reaction dynamics in liquids.

    PubMed

    Orr-Ewing, Andrew J

    2017-12-11

    The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.

  12. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    NASA Astrophysics Data System (ADS)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the significant reduction of computational cost rather than the QK chemical model to reach the same accuracy because of applying more proper collision model and consequently, decrease of the particles collision number.

  13. [Study on surface modification and biocompatibility of NiTi alloy intravascular stents].

    PubMed

    Shen, Yang; Wang, Gui-xue; Quan, Xue-jun; Yu, Qing-song

    2006-01-01

    This paper introduces the surface modification of NiTi alloy intravascular stents for roughness by chemical erosion and plasma deposition technology. The stent which had been granulated with chemical erosion was treated with TiO2 film prepared with Gel-sol. The study on the biocompatibility of the modified stent by the above two ways shows that the modified stent is rougher, and its anticoagulation and hydrophilicity are improved. However, the capability of erosion resistance is not enhanced significantly.

  14. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    PubMed Central

    Chang, Hongjin; Xie, Juan; Zhao, Baozhou; Liu, Botong; Xu, Shuilin; Ren, Na; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2014-01-01

    The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs), such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs. PMID:28346995

  15. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-02-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance.

  16. Endogenously generated DNA nucleobase modifications source, and significance as possible biomarkers of malignant transformation risk, and role in anticancer therapy.

    PubMed

    Olinski, Ryszard; Gackowski, Daniel; Cooke, Marcus S

    2018-01-01

    The DNA of all living cells undergoes continuous structural and chemical alteration, which may be derived from exogenous sources, or endogenous, metabolic pathways, such as cellular respiration, replication and DNA demethylation. It has been estimated that approximately 70,000 DNA lesions may be generated per day in a single cell, and this has been linked to a wide variety of diseases, including cancer. However, it is puzzling why potentially mutagenic DNA modifications, occurring at a similar level in different organs/tissue, may lead to organ/tissue specific cancers, or indeed non-malignant disease - what is the basis for this differential response? We suggest that it is perhaps the precise location of damage, within the genome, that is a key factor. Finally, we draw attention to the requirement for reliable methods for identification and quantification of DNA adducts/modifications, and stress the need for these assays to be fully validated. Once these prerequisites are satisfied, measurement of DNA modifications may be helpful as a clinical parameter for treatment monitoring, risk group identification and development of prevention strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. N6-methyladenine: a conserved and dynamic DNA mark

    PubMed Central

    O’Brown, Zach Klapholz; Greer, Eric Lieberman

    2017-01-01

    Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA code to confer many different cellular phenotypes. This biological versatility is accomplished in large part by post-translational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions, and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the 6th position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in more recently evolved metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes. PMID:27826841

  18. Fast modification on wheat straw outer surface by water vapor plasma and its application on composite material.

    PubMed

    Chen, Weimin; Xu, Yicheng; Shi, Shukai; Cao, Yizhong; Chen, Minzhi; Zhou, Xiaoyan

    2018-02-02

    The presence of non-poplar extracts, cutin, and wax layer in the wheat straw outer surface (WOS) greatly limit its application in bio-composite preparation. In this study, a dielectric-barrier-discharge plasma using water vapor as feeding gas was used to fast modify the WOS. The morphology, free radical concentrations, surface chemical components, and contact angles of WOS before and after plasma modification were investigated. Wheat straw was further prepared into wheat straw-based composites (WSC) and its bonding strength was evaluated by a paper tension meter. The results showed that water vapor plasma leads to the appearance of surface roughness, the generation of massive free radicals, and the introduction of oxygen-containing groups. In addition, both initial and equilibrium contact angle and the surface total free energy were significantly increased after plasma modification. These results synergistically facilitate the spread and permeation of adhesive onto the WOS and thus improve the bonding strength of all prepared WSCs. A good linear relationship between bonding strength and surface roughness parameters, contact angles, and total free energy were observed. In general, this study provided a time-saving and cost-effective modification method to realize WSC manufacture.

  19. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    PubMed Central

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  20. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    PubMed

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  1. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  2. 21 CFR 1313.53 - Waiver of modification of rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXPORTATION OF LIST I AND LIST II CHEMICALS Hearings § 1313.53 Waiver of modification of rules. The... in this part by notice in advance of the hearing, if he determines that no party in the hearing will...

  3. Fluorinated silica microchannel surfaces

    DOEpatents

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  4. Fluoroalkenylphosphonates

    NASA Astrophysics Data System (ADS)

    Kadyrov, A. A.; Rokhlin, E. M.

    1988-09-01

    In this review we survey the methods for the preparation of derivatives of fluoroalkenylphosphonic acid and their reactions. The main methods for obtaining these compounds are based on the reactions of fluoroolefins with phosphites and also on the elimination of halogens, hydrogen halides and alkyl halides from fluoroalkylphosphonates or fluorine-containing phosphorus ylides. The chemical properties of fluoroalkenylphosphonates are due to the combined effect of the fluorine atoms and the phosphonate group. Their reactions with different reagents leads to modifications of the phosphonate group, addition to the C=C bond, replacement of the vinyl halogen atom, and cleavage of the C-P bond. The bibliography includes 96 references.

  5. Difunctionalization of alkenes with iodine and tert-butyl hydroperoxide (TBHP) at room temperature for the synthesis of 1-(tert-butylperoxy)-2-iodoethanes.

    PubMed

    Wang, Hao; Chen, Cui; Liu, Weibing; Zhu, Zhibo

    2017-01-01

    We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-( tert -butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-( tert -butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.

  6. 40 CFR 60.489a - List of chemicals produced by affected facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false List of chemicals produced by affected... Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006 § 60.489a List of chemicals produced by affected...

  7. Recent advances of chitosan nanoparticles as drug carriers

    PubMed Central

    Wang, Jun Jie; Zeng, Zhao Wu; Xiao, Ren Zhong; Xie, Tian; Zhou, Guang Lin; Zhan, Xiao Ri; Wang, Shu Ling

    2011-01-01

    Chitosan nanoparticles are good drug carriers because of their good biocompatibility and biodegradability, and can be readily modified. As a new drug delivery system, they have attracted increasing attention for their wide applications in, for example, loading protein drugs, gene drugs, and anticancer chemical drugs, and via various routes of administration including oral, nasal, intravenous, and ocular. This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications. PMID:21589644

  8. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence

    PubMed Central

    Morello-Frosch, Rachel; Sen, Saunak; Zeise, Lauren; Woodruff, Tracey J.

    2017-01-01

    Background Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. Objectives To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. Methods We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). Results We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46–9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53–2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. Conclusions We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress. PMID:28700705

  9. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized withmore » concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.« less

  10. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    PubMed

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion

    PubMed Central

    Bohlke, Nina; Budisa, Nediljko

    2014-01-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543

  12. 40 CFR 455.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pesticide Chemicals Formulating and Packaging... Best Engineering Judgement for modifications not listed in Table 8 to this part 455); (2) The...

  13. 40 CFR 455.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pesticide Chemicals Formulating and Packaging... Best Engineering Judgement for modifications not listed in Table 8 to this part 455); (2) The...

  14. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  15. Bio-functionalization of biomedical metals.

    PubMed

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.

  16. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples.

    PubMed

    Verant, Michelle L; Bohuski, Elizabeth A; Lorch, Jeffery M; Blehert, David S

    2016-03-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid from P. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer-based qPCR test for P. destructans to refine quantification capabilities of this assay. © 2016 The Author(s).

  17. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples

    USGS Publications Warehouse

    Verant, Michelle; Bohuski, Elizabeth A.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid fromP. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer–based qPCR test for P. destructans to refine quantification capabilities of this assay.

  18. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    PubMed Central

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  19. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    PubMed Central

    Herndon, J. Marvin

    2015-01-01

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction. PMID:26270671

  20. Chemical modification of uniform soils and soils with high/low plasticity index.

    DOT National Transportation Integrated Search

    2016-08-01

    The addition of chemicals into the subgrade has been widely used during construction to improve the soil properties. The chemicals, often Lime Kiln Dust (LKD) and Portland cement, are added to the soil to improve its workability, compactability and e...

  1. Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Cumulative Risk Assessment

    EPA Science Inventory

    Simultaneous or sequential exposure to multiple chemicals may cause interactions in the pharmacokinetics (PK) and/or pharmacodynamics (PD) of the individual chemicals. Such interactions can cause modification of the internal or target dose/response of one chemical in the mixture ...

  2. 40 CFR 455.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating and... listed in Table 8 to this part 455 (or received a modification by Best Engineering Judgement for...

  3. 40 CFR 455.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pesticide Chemicals Formulating and Packaging... listed in Table 8 to this part 455 (or received a modification by Best Engineering Judgement for...

  4. 40 CFR 455.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pesticide Chemicals Formulating and... listed in Table 8 to this part 455 (or received a modification by Best Engineering Judgement for...

  5. 40 CFR 455.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Pesticide Chemicals Formulating and Packaging... listed in Table 8 to this part 455 (or received a modification by Best Engineering Judgement for...

  6. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    PubMed Central

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  7. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.

    PubMed

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-04-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  8. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    PubMed

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.

  9. Novel trace chemical detection algorithms: a comparative study

    NASA Astrophysics Data System (ADS)

    Raz, Gil; Murphy, Cara; Georgan, Chelsea; Greenwood, Ross; Prasanth, R. K.; Myers, Travis; Goyal, Anish; Kelley, David; Wood, Derek; Kotidis, Petros

    2017-05-01

    Algorithms for standoff detection and estimation of trace chemicals in hyperspectral images in the IR band are a key component for a variety of applications relevant to law-enforcement and the intelligence communities. Performance of these methods is impacted by the spectral signature variability due to presence of contaminants, surface roughness, nonlinear dependence on abundances as well as operational limitations on the compute platforms. In this work we provide a comparative performance and complexity analysis of several classes of algorithms as a function of noise levels, error distribution, scene complexity, and spatial degrees of freedom. The algorithm classes we analyze and test include adaptive cosine estimator (ACE and modifications to it), compressive/sparse methods, Bayesian estimation, and machine learning. We explicitly call out the conditions under which each algorithm class is optimal or near optimal as well as their built-in limitations and failure modes.

  10. The use of elemental sulfur as an alternative feedstock for polymeric materials

    NASA Astrophysics Data System (ADS)

    Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae; Yoon, Hyunsik; Simmonds, Adam G.; Ji, Hyun Jun; Dirlam, Philip T.; Glass, Richard S.; Wie, Jeong Jae; Nguyen, Ngoc A.; Guralnick, Brett W.; Park, Jungjin; Somogyi, Árpád; Theato, Patrick; Mackay, Michael E.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey

    2013-06-01

    An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g-1 at 100 cycles) and enhanced capacity retention.

  11. The Influence of Chemical Modification on Linker Rotational Dynamics in Metal-Organic Frameworks.

    PubMed

    Damron, Joshua T; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay; Matzger, Adam J; Ramamoorthy, Ayyalusamy

    2018-05-21

    The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.

    PubMed

    Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F

    2017-03-16

    RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  13. Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation.

    PubMed

    Freedy, Allyson M; Matos, Maria J; Boutureira, Omar; Corzana, Francisco; Guerreiro, Ana; Akkapeddi, Padma; Somovilla, Víctor J; Rodrigues, Tiago; Nicholls, Karl; Xie, Bangwen; Jiménez-Osés, Gonzalo; Brindle, Kevin M; Neves, André A; Bernardes, Gonçalo J L

    2017-12-20

    Chemical modification of proteins is essential for a variety of important diagnostic and therapeutic applications. Many strategies developed to date lack chemo- and regioselectivity as well as result in non-native linkages that may suffer from instability in vivo and adversely affect the protein's structure and function. We describe here the reaction of N-nucleophiles with the amino acid dehydroalanine (Dha) in a protein context. When Dha is chemically installed in proteins, the addition of a wide-range N-nucleophiles enables the rapid formation of amine linkages (secondary and tertiary) in a chemoselective manner under mild, biocompatible conditions. These new linkages are stable at a wide range of pH values (pH 2.8 to 12.8), under reducing conditions (biological thiols such as glutathione) and in human plasma. This method is demonstrated for three proteins and is shown to be fully compatible with disulfide bridges, as evidenced by the selective modification of recombinant albumin that displays 17 structurally relevant disulfides. The practicability and utility of our approach is further demonstrated by the construction of a chemically modified C2A domain of Synaptotagmin-I protein that retains its ability to preferentially bind to apoptotic cells at a level comparable to the native protein. Importantly, the method was useful for building a homogeneous antibody-drug conjugate with a precise drug-to-antibody ratio of 2. The kinase inhibitor crizotinib was directly conjugated to Dha through its piperidine motif, and its antibody-mediated intracellular delivery results in 10-fold improvement of its cancer cell-killing efficacy. The simplicity and exquisite site-selectivity of the aza-Michael ligation described herein allows the construction of stable secondary and tertiary amine-linked protein conjugates without affecting the structure and function of biologically relevant proteins.

  14. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    PubMed

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  15. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    NASA Astrophysics Data System (ADS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  16. Modifications of Antiepileptic Drugs for Improved Tolerability and Efficacy

    PubMed Central

    Landmark, Cecilie Johannessen; Johannessen, Svein I.

    2008-01-01

    Introduction A large number of antiepileptic drugs (AEDs) are available today, but they may not be satisfactory regarding clinical efficacy, tolerance, toxicity or pharmacokinetic properties. The purpose of this review is to focus upon the rationale behind the chemical modifications of several recently marketed AEDs or drugs in development and to categorize them according to the main purposes for the improvements: better efficacy or tolerability accompanied by improved pharmacokinetic properties. Material and Method AEDs that have been chemically modified to new derivatives during the last years are reviewed based on recent publications and PubMed-searches. Results and Discussion Improvement in pharmacokinetic parameters may affect both tolerability and efficacy. Modifications to improve tolerability include various valproate analogues, divided into aliphatic amides, cyclic derivatives or amino acid conjugates. Furthermore, there are the carbamazepine analogues oxcarbazepine and eslicarbazepine, the felbamate analogues fluorofelbamate and carisbamate (RWJ 33369), and the lamotrigine analogue JZP-4. The levetiracetam analogues brivaracetam and seletracetam and the derivatives of gabapentin, pregabalin and XP13512, have improved selectivity compared to their parent compounds. Other new drugs have new mechanisms of action related to GABA and glutamate receptors; the glutamate antagonists like topiramate (talampanel and NS-1209), and GABAA receptor agonists, benzodiazepine or progesterone analogues (ELB-139 and ganaxolone). Conclusion Further challenges for development of new AEDs include investigations of target molecules affected by pathophysiological processes and detailed structure-activity relationships with focus on stereoselectivity. These potential drugs may become of importance in future drug therapy in epilepsy and other CNS disorders. PMID:19787095

  17. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners

    PubMed Central

    Yu, Seok-Ho; Boyce, Michael; Wands, Amberlyn M.; Bond, Michelle R.; Bertozzi, Carolyn R.; Kohler, Jennifer J.

    2012-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation. PMID:22411826

  18. Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures

    DTIC Science & Technology

    2008-04-01

    chemical modification of protein cage materials and controlled chemical synthesis under mild biological conditions. High- resolution structural...properties based on a combination of controlled mobility and metal ligand interactions. Using the exterior surface of the CCMV viral cage we have chemically ...follows: Patterning by microplotter was achieved by depositing a preselected antibody solution directly onto chemically activated silicon or gold

  19. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP)

    PubMed Central

    Shah, Dinen D.; Singh, Surinder M.; Dzieciatkowska, Monika

    2017-01-01

    Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell. PMID:28886061

  20. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  2. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification

    PubMed Central

    Garibay, Sergio J.; Wang, Zhenqiang; Cohen, Seth M.

    2010-01-01

    A metal-organic framework (MOF) containing 2-amino-1,4-benzenedicarboxylate (NH2-BDC) as a building block is shown to undergo chemical modification with a set of cyclic anhydrides. The modification of the aluminum-based MOF known as MIL-53(Al)-NH2 (MIL = Matérial Institut Lavoisier) by these reagents is demonstrated by using a variety of methods, including NMR and ESI-MS, and the structural integrity of the modified MOFs has been confirmed by TGA, PXRD, and gas sorption analysis. Reaction with these cyclic anhydrides produces MOFs that display carboxylic acid functional groups within their pores. Furthermore, it is shown that maleic acid functionalized MIL-53(Al)-AMMal can act as a Brønsted acid catalyst and facilitate the methanolysis of several small epoxides. Experiments show that MIL-53(Al)-AMMal acts in a heterogeneous manner and is recyclable with consistent activity over at least three catalytic cycles. The findings presented here demonstrate several important features of covalent postsynthetic modification (PSM) on MOFs, including: 1) facile introduction of catalytic functionality using simple organic reagents (e.g. anhydrides); 2) the ability to utilize and recycle organocatalytic MOFs; 3) control of catalytic activity through choice of functional group. The findings clearly illustrate that covalent postsynthetic modification represents a powerful means to access new MOF compounds that serve as organocatalytic materials. PMID:20698561

  4. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.

    PubMed

    Takeyoshi, Masahiro; Iida, Kenji; Shiraishi, Keiji; Hoshuyama, Satsuki

    2005-01-01

    The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA. Copyright 2005 John Wiley & Sons, Ltd.

  5. Laser modification of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk

    2018-01-01

    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.

  6. Unknown sequence amplification: Application to in vitro genome walking in Chlamydia trachomatis L2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copley, C.G.; Boot, C.; Bundell, K.

    1991-01-01

    A recently described technique, Chemical Genetics' unknown sequence amplification method, which requires only one specific oligonucleotide, has broadened the applicability of the polymerase chain reaction to DNA of unknown sequence. The authors have adapted this technique to the study of the genome of Chlamydia trachomatis, an obligate intracellular bacterium, and describe modifications that significantly improve the utility of this approach. These techniques allow for rapid genomic analysis entirely in vitro, using DNA of limited quantity of purity.

  7. Low-molecular-weight heparins: differential characterization/physical characterization.

    PubMed

    Guerrini, Marco; Bisio, Antonella

    2012-01-01

    Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.

  8. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  9. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  10. Synthesis and characterization of CdSe/ZnS quantum dots conjugated with poly (ethylene glycol) diamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in; Kaur, Gurvir

    2015-08-28

    Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.

  11. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    NASA Astrophysics Data System (ADS)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, G.; Daugomah, J.; Devane, J.

    Urbanization of coastal regions has resulted in the increased discharge of polycyclic aromatic hydrocarbons trace metals and habitat changes/modifications in adjacent upland areas which may affect grass shrimp populations. A study was conducted comparing larval abundance and adult grass shrimp biomass, abundance, size structure and sex ratios in an urbanized estuary, Murrells Inlet with pristine North Inlet, a NOAA national estuarine research reserve and sanctuary site. A total of 60 sites were sampled during the peak of grass shrimp abundance and compared in terms of spatial distributions and other relevant ancillary information. Factors such as sediment contaminant levels, physico-chemical parametersmore » and land-use habitat modification were statistically compared using a Geographical Information Processing (GIP) techniques and appropriate spatial statistical methods. GIP results indicated similar levels of larval abundance in both estuaries and identified specific nursery ground regions in both estuaries. Adult grass shrimp abundances were greatly reduced in urban areas and grass shrimp desert regions were identified. These areas were correlated with regions having high levels of chemical contaminants and greatest physical disturbances. The mortality rate between larval and adult stages was much higher in urban areas suggesting that urbanization had a profound impact on grass shrimp.« less

  13. Assessment of the structure of pegylated-recombinant protein therapeutics by the NMR fingerprint assay.

    PubMed

    Hodgson, Derek J; Aubin, Yves

    2017-05-10

    A number of recombinant protein therapeutic products, such as filgrastim (methionyl granulocyte colony stimulating factor [Met-GCSF] used to boost the immune system in chemotherapy treated cancer patients), and interferon alpha-2 (used for the treatment of various viral infections), have been chemically modified with the addition of a polyethylene glycol (PEG) chain. This modification prolongs residency of the drug in the body and reduces metabolic degradation, which allows less frequent administration of the products. Here we show how NMR spectroscopy methods can assess the higher order structure (HOS) of pegylated-filgrastim (Neulasta®), pegylated interferon-α2a (Pegasys®) pegylated interferon-α2b (PEG-Intron®) purchased from the marketplace. The addition of the PEG moiety effectively doubles the molecular weight of the three products. This presents a significant challenge for the application of NMR techniques. Nevertheless, the results showed that high-resolution spectra could be recorded for two of the three products. Comparison of the spectra of the pegylated protein and the non-pegylated protein shows that the chemical modification did not alter the HOS of these proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy

    PubMed Central

    Boschi, Alessandra; Martini, Petra; Uccelli, Licia

    2017-01-01

    The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188Re is readily available from an 188W/188Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications. PMID:28106830

  15. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy.

    PubMed

    Boschi, Alessandra; Martini, Petra; Uccelli, Licia

    2017-01-19

    The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188 Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188 Re is readily available from an 188 W/ 188 Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188 Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications.

  16. Chemical biology on the genome.

    PubMed

    Balasubramanian, Shankar

    2014-08-15

    In this article I discuss studies towards understanding the structure and function of DNA in the context of genomes from the perspective of a chemist. The first area I describe concerns the studies that led to the invention and subsequent development of a method for sequencing DNA on a genome scale at high speed and low cost, now known as Solexa/Illumina sequencing. The second theme will feature the four-stranded DNA structure known as a G-quadruplex with a focus on its fundamental properties, its presence in cellular genomic DNA and the prospects for targeting such a structure in cels with small molecules. The final topic for discussion is naturally occurring chemically modified DNA bases with an emphasis on chemistry for decoding (or sequencing) such modifications in genomic DNA. The genome is a fruitful topic to be further elucidated by the creation and application of chemical approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  18. Triacetic acid lactone production from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  19. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  20. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2013-09-01

    we obtain cleavage patterns consistent with the administered UV dosage and that sequencing libraries generated for both yeast and human cells show...understanding the mutations they cause. 15. SUBJECT TERMS UV DNA modification, HeLa cells, Skin Cancer 16. SECURITY CLASSIFICATION OF: 17...of mutations that are caused by UV light in cells and correlate them to modification frequencies. Understanding the initial chemical changes

  1. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    PubMed

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The effect of different collagen modifications for titanium and titanium nitrite surfaces on functions of gingival fibroblasts.

    PubMed

    Ritz, U; Nusselt, T; Sewing, A; Ziebart, T; Kaufmann, K; Baranowski, A; Rommens, P M; Hofmann, Alexander

    2017-01-01

    Targeted modifications of the bulk implant surfaces using bioactive agents provide a promising tool for improvement of the long-term bony and soft tissue integration of dental implants. In this study, we assessed the cellular responses of primary human gingival fibroblasts (HGF) to different surface modifications of titanium (Ti) and titanium nitride (TiN) alloys with type I collagen or cyclic-RGDfK-peptide in order to define a modification improving long-term implants in dental medicine. Employing Ti and TiN implants, we compared the performance of simple dip coating and anodic immobilization of type I collagen that provided collagen layers of two different thicknesses. HGF were seeded on the different coated implants, and adhesion, proliferation, and gene expression were analyzed. Although there were no strong differences in initial cell adhesion between the groups at 2 and 4 hours, we found that all surface modifications induced higher proliferation rates as compared to the unmodified controls. Consistently, gene expression levels of cell adhesion markers (focal adhesion kinase (FAK), integrin beta1, and vinculin), cell differentiation markers (FGFR1, TGFb-R1), extracellular protein markers (type I collagen, vimentin), and cytoskeletal protein marker aktinin-1 were consistently higher in all surface modification groups at two different time points of investigation as compared to the unmodified controls. Our results indicate that simple dip coating of Ti and TiN with collagen is sufficient to induce in vitro cellular responses that are comparable to those of more reliable coating methods like anodic adsorption, chemical cross-linking, or RGD coating. TiN alloys do not possess any positive or adverse effects on HGF. Our results demonstrate a simple, yet effective, method for collagen coating on titanium implants to improve the long term integration and stability of dental implants.

  3. Effects of covalent modification by 4-hydroxy-2-nonenal on the noncovalent oligomerization of ubiquitin.

    PubMed

    Grasso, Giuseppe; Axelsen, Paul H

    2017-01-01

    When lipid membranes containing ω-6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4-hydroxy-2-nonenal (HNE)-a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non-covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Laser-assisted nanomaterial deposition, nanomanufacturing, in situ monitoring and associated apparatus

    DOEpatents

    Mao, Samuel S; Grigoropoulos, Costas P; Hwang, David J; Minor, Andrew M

    2013-11-12

    Laser-assisted apparatus and methods for performing nanoscale material processing, including nanodeposition of materials, can be controlled very precisely to yield both simple and complex structures with sizes less than 100 nm. Optical or thermal energy in the near field of a photon (laser) pulse is used to fabricate submicron and nanometer structures on a substrate. A wide variety of laser material processing techniques can be adapted for use including, subtractive (e.g., ablation, machining or chemical etching), additive (e.g., chemical vapor deposition, selective self-assembly), and modification (e.g., phase transformation, doping) processes. Additionally, the apparatus can be integrated into imaging instruments, such as SEM and TEM, to allow for real-time imaging of the material processing.

  5. Modeling of wastewater treatment system of car parks from petroleum products

    NASA Astrophysics Data System (ADS)

    Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.

    2018-05-01

    The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.

  6. Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies.

    PubMed

    Moez, A Abdel; Aly, S S; Elshaer, Y H

    2012-07-01

    The low density polyethylene (LDPE) films were irradiated with gamma radiation in the dose range varied from 20 to 400 kGy. The induced changes in the chemical structure and dielectric properties for the irradiated films were investigated. The structure modifications: crystallinity as well as possible molecular changes of the polymer were recognized using Fourier Transform Infrared Spectroscopy (FTIR). The optical results were determined from transmission, reflection and absorption spectra for these films. The dielectric properties of these films were calculated using optical methods. Result indicates small variation in crystallinity which could be increased or decreased depending on the relative importance of the structural and chemical changes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Quantum chemical determination of Young's modulus of lignin. Calculations on a beta-O-4' model compound.

    PubMed

    Elder, Thomas

    2007-11-01

    The calculation of Young's modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in response to linear strain. At larger levels of strain, bond rupture is evidenced by abrupt changes in energy, structure, and charge. Based on the current calculations, the bond scission may be occurring through a homolytic reaction between aliphatic carbon atoms. These results may have implications in the reactivity of lignin especially when subjected to processing methods that place large mechanical forces on the structure.

  8. Toxicological features of maleilated polyflavonoids from Pinus radiata (D. Don.) as potential functional additives for biomaterials design.

    PubMed

    García, Danny E; Medina, Paulina A; Zúñiga, Valentina I

    2017-11-01

    Polyflavonoids from Pinus radiata (D. Don.) are an abundant natural oligomers highly desirable as renewable chemicals. However, structural modification of polyflavonoids is a viable strategy in order to use such polyphenols as macrobuilding-blocks for biomaterial design. Polyflavonoids were esterified with three five-member cyclic anhydrides (maleic, itaconic, and citraconic) at 20 °C during 24 h in order to diversify physicochemical-, and biological-properties for agricultural, and food-packaging applications. In addition, the influence of the chemical modification, as well as the chemical structure of the grafting on toxicological features was evaluated. Structural features of derivatives were analyzed by spectroscopy (FT-IR and 1 H-NMR), and the degree of substitution was calculated. Toxicological profile was assessed by using three target species in a wide range of concentration (0.01-100 mgL - 1 ). Effect of polyflavonoids on the growth rate (Selenastrum capricornutum), mortality (Daphnia magna), and germination and radicle length (Lactuca sativa) was determined. Chemical modification affects the toxicological profile on the derivatives in a high extent. Results described remarkable differences in function of the target specie. The bioassays indicate differences of the polyflavonoids toxicological profile associated to the chemical structure of the grafting. Results allowed conclude that polyflavonoids from pine bark show slight toxic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing.

    PubMed

    Zhou, Katherine I; Clark, Wesley C; Pan, David W; Eckwahl, Matthew J; Dai, Qing; Pan, Tao

    2018-05-11

    The abundant RNA modification pseudouridine (Ψ) has been mapped transcriptome-wide by chemically modifying pseudouridines with carbodiimide and detecting the resulting reverse transcription stops in high-throughput sequencing. However, these methods have limited sensitivity and specificity, in part due to the use of reverse transcription stops. We sought to use mutations rather than just stops in sequencing data to identify pseudouridine sites. Here, we identify reverse transcription conditions that allow read-through of carbodiimide-modified pseudouridine (CMC-Ψ), and we show that pseudouridines in carbodiimide-treated human ribosomal RNA have context-dependent mutation and stop rates in high-throughput sequencing libraries prepared under these conditions. Furthermore, accounting for the context-dependence of mutation and stop rates can enhance the detection of pseudouridine sites. Similar approaches could contribute to the sequencing-based detection of many RNA modifications.

  10. Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambovane, Sachin R.; Nune, Satish K.; Kelly, Ryan T.

    Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post synthesis modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs atmore » nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -NH 2, -COCH 3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing, and expand the range of a new class of functionalized MOF-based functional nanomaterials.« less

  11. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Treesearch

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  12. Enhancement in hydrogen evolution using Au-TiO2 hollow spheres with microbial devices modified with conjugated oligoelectrolytes

    PubMed Central

    Ngaw, Chee Keong; Wang, Victor Bochuan; Liu, Zhengyi; Zhou, Yi; Kjelleberg, Staffan; Zhang, Qichun; Tan, Timothy Thatt Yang; Loo, Say Chye Joachim

    2015-01-01

    Objective: Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using Escherichia coli as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC–MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved. Methods: The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO2 hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates. Results: The hybrid PEC–MFC platform generated a photocurrent density of 0.35 mA/cm2 (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm2) under one-sun illumination (100 mW/cm2) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H2 production. No H2 was observed in the P25 standard PEC cell whereas H2 evolution rate was ~3.4 μmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of E. coli through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO2 hollow spheres electrode. Conclusions: The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and semiconductor-based PEC water splitting. PMID:28721235

  13. Identification of Maillard reaction induced chemical modifications on Ara h 1

    USDA-ARS?s Scientific Manuscript database

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  14. Highly selective creation of hydrophilic micro-craters on super hydrophobic surface using electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2014-11-01

    Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).

  15. Characterization of Cell Wall Components and Their Modifications during Postharvest Storage of Asparagus officinalis L.: Storage-Related Changes in Dietary Fiber Composition.

    PubMed

    Schäfer, Judith; Wagner, Steffen; Trierweiler, Bernhard; Bunzel, Mirko

    2016-01-20

    Changes in cell wall composition during storage of plant foods potentially alter the physiological effects of dietary fiber components. To investigate postharvest cell wall modifications of asparagus and their consequences in terms of insoluble dietary fiber structures, asparagus was stored at 20 and 1 °C for different periods of time. Structural analyses demonstrated postharvest changes in the polysaccharide profile, dominated by decreased portions of galactans. Increasing lignin contents correlated with compositional changes (monolignol ratios and linkage types) of the lignin polymer as demonstrated by chemical and two-dimensional nuclear magnetic resonance (2D-NMR) methods. Depending on the storage time and temperature, syringyl units were preferentially incorporated into the lignin polymer. Furthermore, a drastic increase in the level of ester-linked phenolic monomers (i.e., p-coumaric acid and ferulic acid) and polymer cross-links (di- and triferulic acids) was detected. The attachment of p-coumaric acid to lignin was demonstrated by 2D-NMR experiments. Potential consequences of postharvest modifications on physiological effects of asparagus dietary fiber are discussed.

  16. [Study on preparation and physicochemical properties of surface modified sintered bone].

    PubMed

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  17. Coating agents affected toward magnetite nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petcharoen, Karat; Sirivat, Anuvat

    2012-02-01

    Magnetite nanoparticles --MNPs-- are innovative materials used in biological and medical applications. They respond to magnetic field through the superparamagnetic behavior at room temperature. In this study, the MNPs were synthesized via the chemical co-precipitation method using various coating agents. Fatty acids, found naturally in the animal fats, can be used as a coating agent. Oleic acid and hexanoic acid were chosen as the surface modification agents to study the improvement in the suspension of MNPs in water and the magnetite properties. Suspension stability, particle size, and electrical conductivity of MNPs are critically affected by the modification process. The well-dispersed MNPs in water can be improved by the surface modification and the oleic acid coated MNPs possess excellent suspension stability over 1 week. The particle size of MNPs increases up to 40 nm using oleic acid coated MNPs. The electrical conductivity of the smallest particle size is 1.3x10-3 S/cm, which is 5 times higher than that of the largest particle, suggesting potential applications as a biomedical material under both of the electrical and magnetic fields.

  18. Encoded libraries of chemically modified peptides.

    PubMed

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  19. Advances in Antibody Design

    PubMed Central

    Tiller, Kathryn E.; Tessier, Peter M.

    2017-01-01

    The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody–drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics. PMID:26274600

  20. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  1. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).

  2. Atomic Covalent Functionalization of Graphene

    PubMed Central

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two-dimensional materials with fundamentally different electronic and physical properties. Specifically, we focus on recent studies of the addition of atomic hydrogen, fluorine, and oxygen to the basal plane of graphene. In each of these reactions a high energy, activating step initiates the process, breaking the local π structure and distorting the surrounding lattice. Scanning tunneling microscopy experiments reveal that substrate mediated interactions often dominate when the initial binding event occurs. We then compare these substrate effects with the results of theoretical studies that typically assume a vacuum environment. As the surface coverage increases, clusters often form around the initial distortion, and the stoichiometric composition of the saturated end product depends strongly on both the substrate and reactant species. In addition to these chemical and structural observations, we review how covalent modification can extend the range of physical properties that are achievable in two-dimensional materials. PMID:23030800

  3. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed Central

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-01-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance. PMID:11911366

  4. Corrosion and surface modification on biocompatible metals: A review.

    PubMed

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems

    NASA Astrophysics Data System (ADS)

    Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.

    2011-12-01

    Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.

  6. NMR Mapping of Protein Conformational Landscapes using Coordinated Behavior of Chemical Shifts upon Ligand Binding

    PubMed Central

    Cembran, Alessandro; Kim, Jonggul; Gao, Jiali; Veglia, Gianluigi

    2014-01-01

    Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria following linear trajectories of NMR chemical shifts. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues’ response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins. PMID:24604024

  7. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.

    PubMed

    Kim, Daehwan

    2018-02-01

    A pretreatment of lignocellulosic biomass to produce biofuels, polymers, and other chemicals plays a vital role in the biochemical conversion process toward disrupting the closely associated structures of the cellulose-hemicellulose-lignin molecules. Various pretreatment steps alter the chemical/physical structure of lignocellulosic materials by solubilizing hemicellulose and/or lignin, decreasing the particle sizes of substrate and the crystalline portions of cellulose, and increasing the surface area of biomass. These modifications enhance the hydrolysis of cellulose by increasing accessibilities of acids or enzymes onto the surface of cellulose. However, lignocellulose-derived byproducts, which can inhibit and/or deactivate enzyme and microbial biocatalysts, are formed, including furan derivatives, lignin-derived phenolics, and carboxylic acids. These generation of compounds during pretreatment with inhibitory effects can lead to negative effects on subsequent steps in sugar flat-form processes. A number of physico-chemical pretreatment methods such as steam explosion, ammonia fiber explosion (AFEX), and liquid hot water (LHW) have been suggested and developed for minimizing formation of inhibitory compounds and alleviating their effects on ethanol production processes. This work reviews the physico-chemical pretreatment methods used for various biomass sources, formation of lignocellulose-derived inhibitors, and their contributions to enzymatic hydrolysis and microbial activities. Furthermore, we provide an overview of the current strategies to alleviate inhibitory compounds present in the hydrolysates or slurries.

  8. Chemical modification

    Treesearch

    R. M. Rowell

    2004-01-01

    Wood is a hygroscopic resource that was designed to perform, in nature, in a wet environment. Nature is programmed to recycle wood in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds wood from carbon dioxide and water and has all the tools to recycle it back to the starting chemicals...

  9. 76 FR 76674 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various Commodities AGENCY...: This document announces the Agency's receipt of several initial filings of pesticide petitions requesting the establishment or modification of regulations for residues of pesticide chemicals in or on...

  10. Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification.

    PubMed

    Mao, Sifeng; Sato, Chiho; Suzuki, Yuma; Yang, Jianmin; Zeng, Hulie; Nakajima, Hizuru; Yang, Ming; Lin, Jin-Ming; Uchiyama, Katsumi

    2016-10-18

    Various micro surface-modification approaches including photolithography, dip-pen lithography and ink-jet systems have been developed and used to extend the functionalities of solid surfaces. While those approaches work in the "open space", push-pull systems which work in solutions have recently drawn considerable attention. However, the confining flows performed by push-pull systems have realized only the dispense process, while microscale, region-selective chemical reactions have remained unattainable. This study reports a microchemical pen that enables region-selective chemical reactions for the micro surface modification/patterning. The chemical pen is based on the principle of microfluidic laminar flows and the resulting mixing of reagents by the mutual diffusion. The tiny diffusion layer performs as the working region. This report represents the first demonstration of an open microreactor in which two different reagents react on a real solid sample. The multifunctional characteristics of the microchemical pen are confirmed by different types of reactions in many research areas, including inorganic chemistry, polymer science, electrochemistry and biological sample treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extensive Chemical Modifications in the Primary Protein Structure of IgG1 Subvisible Particles Are Necessary for Breaking Immune Tolerance.

    PubMed

    Boll, Björn; Bessa, Juliana; Folzer, Emilien; Ríos Quiroz, Anacelia; Schmidt, Roland; Bulau, Patrick; Finkler, Christof; Mahler, Hanns-Christian; Huwyler, Jörg; Iglesias, Antonio; Koulov, Atanas V

    2017-04-03

    A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.

  12. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  13. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    USDA-ARS?s Scientific Manuscript database

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  14. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  15. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion.

    PubMed

    Bohlke, Nina; Budisa, Nediljko

    2014-02-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function - a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  16. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  17. Base modification strategies to modulate immune stimulation by an siRNA.

    PubMed

    Valenzuela, Rachel Anne P; Suter, Scott R; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Beal, Peter A

    2015-01-19

    Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selection of appropriate training and validation set chemicals for modelling dermal permeability by U-optimal design.

    PubMed

    Xu, G; Hughes-Oliver, J M; Brooks, J D; Yeatts, J L; Baynes, R E

    2013-01-01

    Quantitative structure-activity relationship (QSAR) models are being used increasingly in skin permeation studies. The main idea of QSAR modelling is to quantify the relationship between biological activities and chemical properties, and thus to predict the activity of chemical solutes. As a key step, the selection of a representative and structurally diverse training set is critical to the prediction power of a QSAR model. Early QSAR models selected training sets in a subjective way and solutes in the training set were relatively homogenous. More recently, statistical methods such as D-optimal design or space-filling design have been applied but such methods are not always ideal. This paper describes a comprehensive procedure to select training sets from a large candidate set of 4534 solutes. A newly proposed 'Baynes' rule', which is a modification of Lipinski's 'rule of five', was used to screen out solutes that were not qualified for the study. U-optimality was used as the selection criterion. A principal component analysis showed that the selected training set was representative of the chemical space. Gas chromatograph amenability was verified. A model built using the training set was shown to have greater predictive power than a model built using a previous dataset [1].

  19. [Enzymatic methods in the analysis of musts and wines].

    PubMed

    Lafon-Lafourcade, S

    1978-01-01

    The enzymatic methods are based on the property of the enzymes to catalyse specifically and reversibly the conversion of certain metabolites. These methods, developed thanks to the industrial preparation of enzymes, can be applied with no major modification to the analysis of drinks. About 15 constituants of musts and wines can now be determined by these methods. If their cost price was not relatively high, their specificity, sensitivity and rapidity would enable them to compete with the most precise of chemical methods. This is why they are only used in analytic oenology when chemical analysis is most specific enough or too laborious. Enzymatic measurement allows one by its specificity to determine the amount of residual sugar that is fermentable in a dry wine and by its sensitivity to verifie the total disappearance of the malic acid of the wine. Its rapidity must make it preferable to the long and not very specific chemical measurement, especially concerning the determination of citric acid. But glycerol, ethanol and acetic acid can be measured by chemical or chromatographical means with sufficient precision and for a more modest price. In oenology the methods are essentially used for research. They have permitted the study of the combinations of sulphur anhydride in wines (measurement of cetonic acids). The determination of the isomeric nature of the lactic acid produced from sugars by lactic bacteria is based on their application; this determination is a criterium for the identification and classification of these microorganisms. The measurement of the lactic acid during vinification allows the early disclosure of the first effects of a bacterial development; inversely it permits the invalidation of the existence of a lactic sourness, which a high volatile acidity might point to. Lastly, the enzymatic measurement of gluconic acid allows the health of the crop to be controlled.

  20. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.

  1. Chemical modification of the cocoa shell surface using diazonium salts.

    PubMed

    Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck

    2017-05-15

    The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Vacuum-based surface modification of organic and metallic substrates

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).

  3. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices.

    PubMed

    Shiroma, Letícia S; Piazzetta, Maria H O; Duarte-Junior, Gerson F; Coltro, Wendell K T; Carrilho, Emanuel; Gobbi, Angelo L; Lima, Renato S

    2016-05-16

    This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al.

  4. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices

    PubMed Central

    Shiroma, Letícia S.; Piazzetta, Maria H. O.; Duarte-Junior, Gerson F.; Coltro, Wendell K. T.; Carrilho, Emanuel; Gobbi, Angelo L.; Lima, Renato S.

    2016-01-01

    This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al. PMID:27181918

  5. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  6. Reliable Resonance Assignments of Selected Residues of Proteins with Known Structure Based on Empirical NMR Chemical Shift Prediction

    PubMed Central

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-01-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100 – 250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation. PMID:25863893

  7. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions.

    PubMed

    Di Santo, Giovanni; Blankenburg, Stephan; Castellarin-Cudia, Carla; Fanetti, Mattia; Borghetti, Patrizia; Sangaletti, Luigi; Floreano, Luca; Verdini, Alberto; Magnano, Elena; Bondino, Federica; Pignedoli, Carlo A; Nguyen, Manh-Thuong; Gaspari, Roberto; Passerone, Daniele; Goldoni, Andrea

    2011-12-16

    Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structures, properties, modifications, and uses of oat starch.

    PubMed

    Zhu, Fan

    2017-08-15

    There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    PubMed

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  10. Tethering of hyperbranched polyols using PEI as a building block to synthesize antifouling PVDF membranes

    NASA Astrophysics Data System (ADS)

    Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang

    2017-10-01

    Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.

  11. Investigation of surface halide modification of nitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  12. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE)

    NASA Astrophysics Data System (ADS)

    Maier, Claudia

    2016-03-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE adduction. Whereas, proteins associated with oxidative phosphorylation displayed retardation toward HNE adduction. We provide a list of 31 protein targets with a total of 61 modification sites that may guide future targeted LC-MS assays to monitor disease progression and/or intervention in preclinical models of ALD and possibly other liver diseases with oxidative stress component.

  13. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    PubMed

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  14. PCR-based detection of a rare linear DNA in cell culture.

    PubMed

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  15. PCR-based detection of a rare linear DNA in cell culture

    PubMed Central

    2002-01-01

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials. PMID:12734566

  16. Structural determination of intact proteins using mass spectrometry

    DOEpatents

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  17. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of Synthesis Method on Electrical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Fuad, M. F. I. Ahmad; Jarni, H. H.; Shariffudin, W. N.; Othman, N. H.; Rahim, A. N. Che Abdul

    2018-05-01

    The aim of this study is to achieve the highest reduction capability and complete reductions of oxygen from graphene oxide (GO) by using different type of chemical methods. The modification of Hummer’s method has been proposed to produce GO, and hydrazine hydrate has been utilized in the GO’s reduction process into graphene. There are two types of chemical method are used to synthesize graphene; 1) Sina’s method and 2) Sasha’s method. Both GO and graphene were then characterized using X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The graph patterns obtained from XRD showed that the values of graphene and GO are within their reliable ranges, FT-IR identified the comparison functional group between GO and graphene. Graphene was verified to experience the reduction process due to absent of functional group consist of oxygen has detected. Electrochemical impedance spectrometry (EIS) was then conducted to test the ability of conducting electricity of two batches (each weighted 1.6g) of graphene synthesized using different methods (Sina’s method and Sasha’s method). Sasha’s method was proven to have lower conductivity value compare to Sina’s method, with value of 6.2E+02 S/m and 8.1E+02 S/m respectively. These values show that both methods produced good graphene; however, by using Sina’s method, the graphene produced has better electrical properties.

  19. Laser surface texturing of polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  20. The Synthesis of Phenyl Acetylene Phenols for Development of New Explosives

    NASA Astrophysics Data System (ADS)

    Chikhradze, Nikoloz; Nadirashvili, Merab; Khomeriki, Sergo; Varshanidze, Iasha

    2017-12-01

    The purpose of this research is to produce derivatives of simple phenols as “raw material” for the synthesis of new phenolic explosives. A big number of valuable products is synthesized from phenol and its homologues including well-known explosives - picric acid, methyl picrate, cresolite, etc. In general, a structural modification of well-known explosives’ molecules is the most important among the methods for the synthesis of new explosives. This method can be used in certain modifications. For example, the synthesis of methyl picrate is possible not only to replace picric acid’s hydroxyl with metoxyl, but with nitration of anisole as well, i. e, by the reciprocating synthesis. Thus, to produce the new analogues of well-known phenolic explosives, the preliminary modification of simple phenols’ molecules and further nitration, presumably by a formation of dinitro derivatives may be performed. The alkylation of phenol, anisole and m - cresol by the secondary phenyl acetylene alcohols in the presence of concentrated phosphoric acid was carried out. Para-substituted alkynyl phenols with high yields were developed. The chemical transformations were carried out by a participation of their molecules’ active centres. The corresponding ethers, esters and saturated isologues have been synthesized. The article describes the conditions of a synthesis of 14 new phenyl acetylenes’ substances that may be used as substrates in a nitration reaction.

  1. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites.

    PubMed

    Abraham, Eldho; Kam, Doron; Nevo, Yuval; Slattegard, Rikard; Rivkin, Amit; Lapidot, Shaul; Shoseyov, Oded

    2016-10-05

    This work presents an environmentally friendly, iodine-catalysed chemical modification method to generate highly hydrophobic, optically active cellulose nanocrystals (CNC). The high degree of ester substitution (DS=2.18), hydrophobicity, crystalline behaviour and optical activity of the generated acetylated CNC (Ac-CNC) were quantified by TEM, FTIR, solid 13C NMR, contact angle, XRD and POM analyses. Ac-CNC possessing substantial enhancement in thermal stability (16.8%) and forms thin films with interlayer distance of 50-150 nm, presenting cavities suitable for entrapping nano and micro particles. Generated Ac-CNC proved as an effective reinforcing agent in hydrophobic polymer matrices for fabricating high performance nanocomposites. When integrated at a very low weight percentage (0.5%) in an epoxy matrix, Ac-CNC provided for a 73% increase in tensile strength and a 98% increase in modulus, demonstrating its remarkable reinforcing potential and effective stress transfer behaviour. The method of modification and the unique properties of the modified CNC (hydrophobicity, crystallinity, reinforcing ability and optical activity) render them a novel bionanomaterial for a range of multipurpose applications.

  2. Chemical modification : a non-toxic approach to wood preservation

    Treesearch

    Roger M. Rowell

    2006-01-01

    Wood can be chemically modified to reduce the moisture content of the cell wall and increases decay resistance. As the level of bonded chemical increases, the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship between the decrease in cell wall moisture Content and...

  3. Chemical modifications of renewable cellulosic materials

    USDA-ARS?s Scientific Manuscript database

    In agriculture, there is a fair amount of byproducts and waste materials. These materials typically contain significant portions of cellulose and hemicellulose. A good opportunity is to take advantage of these relatively cheap renewable materials, carry out chemical reactions, and increase their v...

  4. Isolation, Structural Modification, and HIV Inhibition of Pentacyclic Lupane-Type Triterpenoids from Cassine xylocarpa and Maytenus cuzcoina.

    PubMed

    Callies, Oliver; Bedoya, Luis M; Beltrán, Manuela; Muñoz, Alejandro; Calderón, Patricia Obregón; Osorio, Alex A; Jiménez, Ignacio A; Alcamí, José; Bazzocchi, Isabel L

    2015-05-22

    As a part of our investigation into new anti-HIV agents, we report herein the isolation, structure elucidation, and biological activity of six new (1-6) and 20 known (7-26) pentacyclic lupane-type triterpenoids from the stem of Cassine xylocarpa and root bark of Maytenus cuzcoina. Their stereostructures were elucidated on the basis of spectroscopic and spectrometric methods, including 1D and 2D NMR techniques. To gain a more complete understanding of the structural requirements for anti-HIV activity, derivatives 27-48 were prepared by chemical modification of the main secondary metabolites. Sixteen compounds from this series displayed inhibitory effects of human immunodeficiency virus type 1 replication with IC50 values in the micromolar range, highlighting compounds 12, 38, and 42 (IC50 4.08, 4.18, and 1.70 μM, respectively) as the most promising anti-HIV agents.

  5. Mixing medication into foodstuffs: identifying the issues for paediatric nurses.

    PubMed

    Akram, Gazala; Mullen, Alex B

    2015-04-01

    Medication is often mixed into soft foods to aid swallowing in children. However, this can alter the physical/chemical properties of the active drug. This study reports on the prevalence of the modification procedure, the nature of foodstuffs routinely used and factors which influence how the procedure is performed by nurses working in the National Health Service in Scotland. Mixed methods were employed encompassing an online self-administered questionnaire and semi-structured interviews. One hundred and eleven nurses participated, of whom 87% had modified medication prior to administration. Fruit juice (diluted and concentrated) and yoghurts were most commonly used. The interviews (i) identified the limitations of the procedure; (ii) explored the decision-making process; and (iii) confirmed the procedure was a last resort. This study intends to address some of the uncertainty surrounding the medicine modification procedure within the paediatric population. © 2013 Wiley Publishing Asia Pty Ltd.

  6. Research and application of microbial enzymes--India's contribution.

    PubMed

    Chand, Subhash; Mishra, Prashant

    2003-01-01

    Enzymes have attracted the attention of scientists world over due to their wide range of physiological, analytical and industrial applications. Although enzymes have been isolated, purified and studied from microbial, animal and plant sources, microorganisms represent the most common source of enzymes due to their broad biochemical diversity, feasibility of mass culture and ease of genetic manipulation. With the advent of molecular biology techniques, a number of genes of industrially important enzymes has been cloned and expressed in order to improve the production of enzymes, substrate utilization and other commercially useful properties. Special attention has been focused on enzymes isolated from thermophiles due to their inherent stability and industrial applications. In addition, a variety of methods have been employed to modify enzymes for their industrial usage including strain improvement, chemical modifications, modification of reaction environment, immobilization and protein engineering. A wide range of applications of enzymes in different bioprocess industries is discussed.

  7. Preparation and Characterization of Graphite Waste/CeO2 Composites

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.

    2018-03-01

    In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.

  8. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.

    PubMed

    Gholipourmalekabadi, Mazaher; Mobaraki, Mohammadmahdi; Ghaffari, Maryam; Zarebkohan, Amir; Omrani, Vahid Fallah; Urbanska, Aleksandra M; Seifalian, Alexander

    2017-01-01

    Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity. This comprehensive article reviews the applications of the AuNPs in drug delivery systems along with their corresponding surface modifications. The highlighting results obtained from the preclinical trial are promising and next five years have huge possibility move to the clinical setting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  10. Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Bayer, Veronika; Schiedt, Birgitta; Neumann, Reinhard; Ensinger, Wolfgang

    2008-12-01

    We have developed a facile and reproducible method for surfactant-controlled track-etching and chemical functionalization of single asymmetric nanochannels in PET (polyethylene terephthalate) membranes. Carboxyl groups present on the channel surface were converted into pentafluorophenyl esters using EDC/PFP (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/pentafluorophenol) coupling chemistry. The resulting amine-reactive esters were further covalently coupled with ethylenediamine or propylamine in order to manipulate the charge polarity and hydrophilicity of the nanochannels, respectively. Characterization of the modified channels was done by measuring their current-voltage (I-V) curves as well as their permselectivity before and after the chemical modification. The electrostatic/hydrophobic association of bovine serum albumin on the channel surface was observed through the change in rectification behaviour upon the variation of pH values.

  11. Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17α-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, α,β-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Profiling the nucleobase and structure selectivity of anticancer drugs and other DNA alkylating agents by RNA sequencing.

    PubMed

    Gillingham, Dennis; Sauter, Basilius

    2018-05-06

    Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically the chemical reactivity of DNA alkylators has been determined in vitro with short oligonucleotides. Here we use next generation RNA sequencing to report on the chemoselectivity of alkylating agents. We develop the method with the well-known clinically used DNA modifiying drugs streptozotocin and temozolomide, and then apply the technique to profile RNA modification with uncharacterized alkylation reactions such as with powerful electrophiles like trimethylsilyldiazomethane. The multiplexed and massively parallel format of NGS offers analyses of chemical reactivity in nucleic acids to be accomplished in less time with greater statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein,more » we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.« less

  14. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides.

    PubMed

    Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul

    2014-01-01

    Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

  15. Role of low density lipoprotein in the activation of plasma lysolecithin acyltransferase activity. Effect of chemical and enzymatic modifications of the lipoprotein on enzyme activity.

    PubMed

    Subbaiah, P V; Chen, C H; Bagdade, J D; Albers, J J

    1985-01-01

    The effect of various chemical and enzymatic modifications of low density lipoprotein (LDL) on its ability to activate the isolated human plasma lysolecithin acyltransferase (LAT) was studied. Removal of all lipids from LDL resulted in the complete loss of LAT activation. Removal of only neutral lipids by extraction with heptane retained up to 50% of the original activity, which was not increased further by reconstitution of the LDL with the extracted lipids. Hydrolysis of the diacylphosphoglycerides of the LDL with phospholipases resulted in complete loss of LAT activation which was partially restored by the addition of egg lecithin. Hydrolysis of more than 4% of LDL protein by trypsin led to a linear decrease in activity with complete loss of activity occurring when about 25% of the LDL protein is hydrolyzed. Modification of the arginine groups of LDL reversibly inhibited the activation of LAT. Modification of lysine residues of LDL by acetylation, acetoacetylation or succinylation also abolished its ability to activate lysolecithin acylation.

  16. Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions.

    PubMed

    Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris

    2013-11-01

    Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    PubMed

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    NASA Astrophysics Data System (ADS)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.

  19. Stable biomimetic super-hydrophobic engineering materials.

    PubMed

    Guo, Zhiguang; Zhou, Feng; Hao, Jingcheng; Liu, Weimin

    2005-11-16

    We describe a simple and inexpensive method to produce super-hydrophobic surfaces on aluminum and its alloy by oxidation and chemical modification. Water or aqueous solutions (pH = 1-14) have contact angles of 168 +/- 2 and 161 +/- 2 degrees on the treated surfaces of Al and Al alloy, respectively. The super-hydrophobic surfaces are produced by the cooperation of binary structures at micro- and nanometer scales, thus reducing the energies of the surfaces. Such super-hydrophobic properties will greatly extend the applications of aluminum and its alloy as lubricating materials.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  1. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C58-dimers on Au(111).

    PubMed

    Wilhelm, Jan; Walz, Michael; Stendel, Melanie; Bagrets, Alexei; Evers, Ferdinand

    2013-05-14

    We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.

  2. Chemical modification of coating of Pinus halepensis pollen by ozone exposure.

    PubMed

    Naas, Oumsaad; Mendez, Maxence; Quijada, Melesio; Gosselin, Sylvie; Farah, Jinane; Choukri, Ali; Visez, Nicolas

    2016-07-01

    Pollen coating, located on the exine, includes an extractible lipid fraction. The modification of the pollen coating by air pollutants may have implications on the interactions of pollen with plant stigmas and human cells. Pinus halepensis pollen was exposed to ozone in vitro and the pollen coating was extracted with organic solvent and analyzed by GC-MS. Ozone has induced chemical changes in the coating as observed with an increase in dicarboxylic acids, short-chain fatty acids and aldehydes. 4-Hydroxybenzaldehyde was identified as the main reaction product and its formation was shown to occur both on native pollen and on defatted pollen. 4-Hydroxybenzaldehyde is very likely formed via the ozonolysis of acid coumaric-like monomers constitutive of the sporopollenin. Modification of pollen coating by air pollutants should be accounted for in further studies on effect of pollution on germination and on allergenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging.

    PubMed

    McDonnell, Liam A; Heeren, Ron M A; de Lange, Robert P J; Fletcher, Ian W

    2006-09-01

    To expand the role of high spatial resolution secondary ion mass spectrometry (SIMS) in biological studies, numerous developments have been reported in recent years for enhancing the molecular ion yield of high mass molecules. These include both surface modification, including matrix-enhanced SIMS and metal-assisted SIMS, and polyatomic primary ions. Using rat brain tissue sections and a bismuth primary ion gun able to produce atomic and polyatomic primary ions, we report here how the sensitivity enhancements provided by these developments are additive. Combined surface modification and polyatomic primary ions provided approximately 15.8 times more signal than using atomic primary ions on the raw sample, whereas surface modification and polyatomic primary ions yield approximately 3.8 and approximately 8.4 times more signal. This higher sensitivity is used to generate chemically specific images of higher mass biomolecules using a single molecular ion peak.

  4. Cell signaling, post-translational protein modifications and NMR spectroscopy

    PubMed Central

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy

    2016-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy. PMID:23011410

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, K.S.; Lee, C.K.; Lee, P.L.

    The use of low-cost biological materials for the removal and recovery of heavy metals from solution has been investigated extensively in recent times. To enhance their sorption capacities various chemical modifications on the sorbents were attempted. Freer et al. showed that bark from the Pinus radiata (D. Don) had a greater sorption capacity for metals after treatment with both inorganic acid and formaldehyde. Apple wastes treated with phosphorus oxychloride improved the efficiency of removing metal ions. Ethylenediamine tetraacetic acid (EDTA)-modified groundnut, Arachis hypogea, was reported to improve the sorption of cadmium and lead ions. Modifications with the aid of dyesmore » also enhanced metal sorption. Moss and coconut husk (CH) are readily obtainable in Malaysia. Their sorption potential for metals has been reported. This paper reports on the metal sorption enhancement of these two biosorbents after chemical modification with nitrilotriacetic acid (NTA). 13 refs., 5 figs., 2 tabs.« less

  6. Favorable 2'-substitution in the loop region of a thrombin-binding DNA aptamer.

    PubMed

    Awachat, Ragini; Wagh, Atish A; Aher, Manisha; Fernandes, Moneesha; Kumar, Vaijayanti A

    2018-06-01

    Simple 2'-OMe-chemical modification in the loop region of the 15mer G-rich DNA sequence GGTTGGTGTGGTTGG is reported. The G-quadruplex structure of this thrombin-binding aptamer (TBA), is stabilized by single modifications (T → 2'-OMe-U), depending on the position of the modification. The structural stability also renders significantly increased inhibition of thrombin-induced fibrin polymerization, a process closely associated with blood-clotting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives. © 2014 Institute of Food Technologists®

  8. Clean synthesis of YOF:Er3+, Yb3+ upconversion colloidal nanoparticles in water through liquid phase pulsed laser ablation for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; Kurias, K. M.; Jayaraj, M. K.

    2017-10-01

    Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less

  10. End labeling procedures: an overview.

    PubMed

    Hilario, Elena

    2004-09-01

    There are two ways to label a DNA molecular; by the ends or all along the molecule. End labeling can be performed at the 3'- or 5'-end. Labeling at the 3' end is performed by filling 3'-end recessed ends with a mixture or labeled and unlabeled dNTPs using Klenow or T4 DNA polymerases. Both reactions are template dependent. Terminal deoxynucleotide transferase incorporates dNTPs at the 3' end of any kind of DNA molecule or RNA. Labels incorporated at the 3'-end of the DNA molecule prevent any further extension or ligation to any other molecule, but this can be overcome by labeling the 5'-end of the desired DNA molecule. 5'-end labeling is performed by enzymatic methods (T4 polynucleotide kinase exchange and forward reactions), by chemical modification of sensitized oligonucleotides with phosphoroamidite, or by combined methods. Probe cleanup is recommended when high background problems occur, but caution should be taken not to damage the attached probe with harsh chemicals or by light exposure.

  11. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    PubMed

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    PubMed Central

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  13. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.

  14. High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin

    2018-06-01

    A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.

  15. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  16. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of eachmore » distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.« less

  17. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.

  18. Progress in radiation processing of polymers

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  19. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nanoporous carbon for electric double layer supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Garcia, Betzaida Batalla

    The subject of this study is the synthesis, characterization, chemical composition, and tuning of the porous structure of organic and carbon cryogels for electrochemical applications, particularly supercapacitors. Alternate methods such as an improved synthesis using a reactive catalyst, surface chemical modifications and an electrochemical characterization that takes into account the pore morphology are discussed. Impedance spectroscopy, complex capacitance and power were used to identify key energy losses in the capacitor; an optimal pore size of ca. 2 nm and other features were found. Also, synthesis modification and surface chemistry were used to improve the chemistry and structure of the electrodes reducing metal impurities and removing detrimental functional groups. First, carbon cryogels produced without metal ion impurities were synthesized using hexamine (an amine base catalyst), resorcinol, furaldehyde and solvent mixtures. These metal ion free amine-catalyzed gels also produced strong cryogels that can be machined. The carbon cryogels produced using the amine catalyst have cycle stability performances that exceed that of commercial samples. Carbon cryogels were also doped using ammonia borane to promote boron and nitrogen esters and improved the capacitance up to 30% due to faradaic reactions. Furthermore, nitrogen esters were also introduced into the carbon (via pyrolysis of hexamine) with yields of up to 14 at%. These new esters have low content of oxygen and increased the capacitance up to 50%.

Top