Science.gov

Sample records for chemical oxygen demand

  1. Downscaling the chemical oxygen demand test.

    PubMed

    Carbajal-Palacios, Patricia; Balderas-Hernandez, Patricia; Ibanez, Jorge G; Roa-Morales, Gabriela

    2014-01-01

    The usefulness of the standard chemical oxygen demand (COD) test for water characterization is offset to some extent by its requirement for highly toxic or expensive Cr, Ag, and Hg species. In addition, oxidation of the target samples by chromate requires a 2-3 h heating step. We have downscaled this method to obtain a reduction of up to ca. 80% in the use and generation of toxic residues and a time reduction of up to ca. 67%. This also translates into considerable energy savings by reducing the time required for heating as well as costly labour time. Such reductions can be especially important for analytical laboratories with heavy loads of COD analyses. Numerical results obtained with the standard COD method for laboratory KHP samples (potassium hydrogen phthalate) show an average relative error of 1.41% vs. an average of 2.14% obtained with the downsized or small-scale version. The average % standard deviation when using the former is 2.16% vs. 3.24% obtained with the latter. When analysing municipal wastewater samples, the relative error is smaller for the proposed small-scale method than for the standard method (0.05 vs. 0.58, respectively), and the % std. dev. is 1.25% vs. 1.06%. The results obtained with various industrial wastewaters show good agreement with those obtained using the standard method. Chloride ions do not interfere at concentrations below 2000 mg Nacl/L. This highly encouraging proof-of-concept offers a potentially alternative greener approach to COD analysis. PMID:24701932

  2. Chemical Oxygen Demand. Training Module 5.107.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with standard method procedures for determining the Chemical Oxygen Demand (COD) of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers analytical procedures,…

  3. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    PubMed Central

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  4. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively.

  5. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  6. The impact of chlorine disinfection on biochemical oxygen demand levels in chemically enhanced primary treatment effluent.

    PubMed

    Dai, Ji; Jiang, Feng; Shang, Chii; Chau, Kwok-ming; Tse, Yuet-kar; Lee, Chi-fai; Chen, Guang-Hao; Fang, Jingyun; Zhai, Liming

    2013-01-01

    The response trends of biochemical oxygen demand (BOD) and organic strength after the chlorination/dechlorination process were explored through a 2-year, 5-month chemically enhanced primary treatment (CEPT) effluent onsite monitoring program and a 2-month laboratory-scale study. The monitoring results showed that better instantaneous mixing at the chlorine injection point reduced the effect of chlorination/dechlorination on the 5-day BOD levels. The laboratory study results demonstrated that chlorination did not change the particle size distribution, dissolved organic carbon, or chemical oxygen demand of the organic content of the effluent. Nevertheless, chlorination/dechlorination strongly affected the BOD measurement when nitrification was inhibited by changing bioactivity/biodegradation rates. PMID:23863431

  7. Reduction of chemical oxygen demand of industrial wastes using subcritical water oxidation

    SciTech Connect

    Lin, J.C.; Chang, C.J. )

    1992-10-01

    If wastes have strong toxicity, high organic content, and a deep hue, they are difficult to handle in the waste disposal. It is very practical that waste of this kind is treated by Subcritical Water Oxidation (SWO). In our work, caprolactum (CPL) waste, purged from a petrochemical plant, and dyeing waste, purged from a textile plant, were individually treated by a semi-batch SWO process. Within a one-hour treatment, Chemical Oxygen Demand (COD) reduction reached 89% for CPL waste (6.90 MPa, 260[degree]C) and 95% for dyeing waste (6.90 MPa, 240[degree]C). There is also a great improvement in hue, especially for the dyeing waste. When CPL wastewater was treated by the SWO process using a chromium metal powder as a catalyst, COD reduction improved further under the same operating conditions. A kinetic model was used to illustrate the oxidation mechanism and the effectiveness of the catalyst. The oxygen concentration in the effluent showed that oxygen consumption corresponded to COD reduction. With the monitoring of concentrations of total soluble chromium in the effluent, a suitable reaction period could be found in order to meet the standard of the Environmental Protection Agency (EPA). 12 refs., 11 figs., 2 tabs.

  8. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand.

    PubMed

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-08-19

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5-7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5-1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method.

  9. Spatial Autocorrelation Analysis of Chinese Inter-Provincial Industrial Chemical Oxygen Demand Discharge

    PubMed Central

    Zhao, Xiaofeng; Huang, Xianjin; Liu, Yibo

    2012-01-01

    A spatial autocorrelation analysis method is adopted to process the spatial dynamic change of industrial Chemical Oxygen Demand (COD) discharge in China over the past 15 years. Studies show that amount and intensity of industrial COD discharges are on a decrease, and the tendency is more remarkable for discharge intensity. There are large differences between inter-provincial discharge amount and intensity, and with different spatial differentiation features. Global spatial autocorrelation analysis reveals that Global Moran’s I of discharge amount and intensity is on the decrease. In space, there is an evolution from an agglomeration pattern to a discretization pattern. Local spatial autocorrelation analysis shows that the agglomeration area of industrial COD discharge amount and intensity varies greatly in space with time. Stringent environmental regulations and increased funding for environmental protections are the crucial factors to cut down industrial COD discharge amount and intensity. PMID:22829788

  10. High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    2000-02-01

    Many industrial wastewaters have both high organic pollution and sulfate (SO{sub 4}{sup {minus}2}) concentrations. Although biological conversion of organics to methane may be an economical chemical oxygen demand (COD) removal option, significant inhibition of methane production results from reduction of SO{sub 4}{sup {minus}2} to hydrogen sulfide (H{sub 2}S), which is inhibitory to methanogenic microorganisms. Therefore, sulfate-containing wastewater is often not amenable to conventional anaerobic treatment. Recently, limited aeration of recycle flow to hybrid and baffled reactors has been used to treat this wastewater and has been shown to reduce aqueous H{sub 2}S concentrations by causing production of uninhibitory sulfur (S{degree}) and thiosulfate (S{sub 2}O{sub 3}{sup {minus}2}) as well as gas stripping volatile H{sub 2}S. In this study, directly aerated methanogenic fluidized bed reactors (FBRs) achieved increased methane production compared to strictly anaerobic FBRs treating high-sulfate wastewater. Oxygen transfer satisfying up to 28% of the COD load resulted in maximum specific oxygen utilization rates of 0.20 mg oxygen/g volatile solids{center{underscore}dot}min, with significant, concomitant methane production. Under typically inhibitory SO{sub 4}{sup {minus}2} loading, higher aeration caused increased effluent SO{sub 4}{sup {minus}2}, increased H{sub 2}S mass in the offgas, and lower reactor H{sub 2}S concentration. As a result, COD removal increased from 25% for a strictly anaerobic FBR to 87% for an aerated FBR. In addition, aerated systems required significantly less alkalinity supplementation to maintain a pH value of 7, ostensibly because of stripping of acidic carbon dioxide. The potential pH increase associated with aeration also shifts sulfide speciation to less toxic disulfide. Direct, limited aeration of methanogenic FBRs is described as a method for increased COD removal when treating high-COD, high-sulfate wastewater.

  11. Protozoan biomass relation to nutrient and chemical oxygen demand removal in activated sludge mixed liquor.

    PubMed

    Akpor, Oghenerobor B; Momba, Maggy N B; Okonkwo, Jonathan O

    2008-08-01

    The relationship between biomass concentration to nutrient and chemical oxygen demand (COD) removal in mixed liquor supplemented with sodium acetate was investigated, using three protozoan isolates and three different initial biomass concentrations (10(1), 10(2) and 10(3) cells/mL). The study was carried out in a shaking flask environment at a shaking speed of 100 rpm for 96 h at 25 degrees C. Aliquot samples were taken periodically for the determination of phosphate, nitrate, COD and dissolved oxygen, using standard methods. The results revealed remarkable phosphate removal of 82-95% at biomass concentration of 10(3)cells/mL. A high nitrate removal of over 87% was observed at all initial biomass concentration in mixed liquor. There was an observed COD increase of over 50% in mixed liquor in at the end of 96-h incubation and this was irrespective of initial biomass concentration used for inoculation. The study shows the trend in nutrient and COD removal at different biomass concentrations of the test isolates in mixed liquor.

  12. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed.

  13. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. PMID:25704155

  14. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Ay, Murat; Kisi, Ozgur

    2014-04-01

    This paper proposes integration of k-means clustering and multi-layer perceptron (k-means-MLP) methods in modelling chemical oxygen demand (COD) concentration. This proposed method was tested by using daily measured water suspended solids, pH, temperature, discharge and COD concentration data of upstream of the municipal wastewater treatment plant system in Adapazari province of Turkey. Performance of the k-means-MLP method was compared with multi-linear regression, multi-layer perceptron, radial-based neural network, generalized regression neural network, and two different adaptive neuro-fuzzy inference system techniques (subtractive clustering and grid partition). Root mean square error, mean absolute error, mean absolute relative error and determination coefficient statistics were employed for the evaluation accuracy of each model. It was found that the k-means-MLP performed better than the other techniques in estimating COD. Moreover, the k-means clustering combined with the MLP could be used as a tool in modelling daily COD concentration.

  15. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  16. WO₃/W nanopores sensor for chemical oxygen demand (COD) determination under visible light.

    PubMed

    Li, Xuejin; Bai, Jing; Liu, Qiang; Li, Jianyong; Zhou, Baoxue

    2014-06-17

    A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L(-1) as electrolyte under the light intensity of 214 μW·cm(-2) and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3-60 mg·L(-1) with a limit value of 1 mg·L(-1), which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water.

  17. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film.

    PubMed

    Wang, Jinqi; Wu, Can; Wu, Kangbing; Cheng, Qin; Zhou, Yikai

    2012-07-29

    Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co(2+) concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO(3))(2), possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L(-1). The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.

  18. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters.

    PubMed

    Zhang, Shanqing; Li, Lihong; Zhao, Huijun

    2009-10-15

    A photoelectrochemical probe for rapid determination of chemical oxygen demand (COD) is developed using a nanostructured mixed-phase TiO2 photoanode, namely PeCOD probe. A UV-LED light source and a USB mircroelectrochemical station are powered and controlled by a laptop computer, which makes the probe portable for onsite COD analyses. The photoelectrochemical measurement of COD was optimized in terms of light intensity, applied bias, and pH. Under the optimized conditions, the net steady state currents originated from the oxidation of organic compounds were found to be directly proportional to COD concentrations. A practical detection limit of 0.2 ppm COD and a linear range of 0-120 ppm COD were achieved. The analytical method using the portable PeCOD probe has the advantages of being rapid, low cost, robust, user-friendly, and environmental friendly. It has been successfully applied to determine the COD values of the synthetic samples consisting of potassium hydrogen phthalate, D-glucose, glutamic acid, glutaric acid, succinic acid, and malonic acid, and real samples from various industries, such as bakery, oil and grease manufacturer, poultry, hotel, fine food factory, and fresh food producer, commercial bread manufacturer. Excellent agreement between the proposed method and the conventional COD method (dichromate) was achieved. PMID:19921898

  19. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    PubMed

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  20. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  1. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods.

    PubMed

    Retes-Pruneda, Jose Luis; Davila-Vazquez, Gustavo; Medina-Ramírez, Iliana; Chavez-Vela, Norma Angelica; Lozano-Alvarez, Juan Antonio; Alatriste-Mondragon, Felipe; Jauregui-Rincon, Juan

    2014-08-01

    The goal of this research is to find a more effective treatment for tequila vinasses (TVs) with potential industrial application in order to comply with the Mexican environmental regulations. TVs are characterized by their high content of solids, high values of biochemical oxygen demand (BODs), chemical oxygen demand (COD), low pH and intense colour; thus, disposal of untreated TVs severely impacts the environment. Physicochemical and biological treatments, and a combination of both, were probed on the remediation of TVs. The use of alginate for the physicochemical treatment of TVs reduced BOD5 and COD values by 70.6% and 14.2%, respectively. Twenty white-rot fungi (WRF) strains were tested in TV-based solid media. Pleurotus ostreatus 7992 and Trametes trogii 8154 were selected due to their ability to grow on TV-based solid media. Ligninolytic enzymes' production was observed in liquid cultures of both fungi. Using the selected WRF for TVs' bioremediation, both COD and BOD5 were reduced by 88.7% and 89.7%, respectively. Applying sequential physicochemical and biological treatments, BOD5 and COD were reduced by 91.6% and 93.1%, respectively. Results showed that alginate and selected WRF have potential for the industrial treatment of TVs.

  2. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater.

    PubMed

    Erable, Benjamin; Etcheverry, Luc; Bergel, Alain

    2011-03-01

    The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.

  3. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    PubMed

    Erguven, G O; Yildirim, N

    2016-01-01

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils. PMID:27262810

  4. Removal of chemical oxygen demand and dissolved nutrients by a sunken lawn infiltration system during intermittent storm events.

    PubMed

    Hou, Lizhu; Yang, Huan; Li, Ming

    2014-01-01

    Urban surface water runoff typically contains high but varying amounts of organic matter and nutrients that require removal before reuse. Infiltration systems such as sunken lawns can improve water quality. However, there is currently insufficient information describing the treatment efficiency of lawn-based infiltration systems. In this study, novel sunken lawn infiltration systems (SLISs) were designed and their pollutant removal effectiveness was assessed. The results revealed that SLISs with Poa pratensis and Lolium perenne effectively removed most chemical oxygen demand (CODCr) and dissolved nutrients. Average CODCr, total nitrogen (TN), ammonium-nitrogen (NH4(+)-N) and total phosphorus (TP) concentrations were reduced by 78.93, 66.64, 71.86 and 75.83%, respectively, and the corresponding effluent concentrations met the standard for urban miscellaneous water consumption in China. The NH4(+)-N in the synthetic runoff was shown to be removed by adsorption during the stormwater dosing and nitrification during subsequent dry days, as well as through uptake by plants. Phosphorus was mainly removed by adsorption and chemical precipitation. The NH4(+)-N and phosphorus Langmuir isotherm model fitted the clay loam soil adsorption process better than the Freundlich model. Overall, these results indicate that an SLIS provides an alternative means of removing runoff pollutants owing to its efficiency, easy operation and maintenance. PMID:24473312

  5. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  6. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters.

    PubMed

    Liao, Jianjun; Lin, Shiwei; Zeng, Min; Yang, Yue

    2016-05-01

    A three-electrode configuration is often required in the conventional photoelectrochemical measurements. Nevertheless, one common drawback is the reference electrode and the counter electrode used in the measurements, which has been proved to be an impediment for the miniaturization. In this study, a simple, cost-effective and miniature photoelectrochemical sensor based on high sensitive organic electrochemical transistor (OECT) is developed and used for the determination of chemical oxygen demand (COD) in wastewaters. The devices show detection limit down to 0.01 mg/L COD, which is two orders of magnitude better than that of the conventional photoelectrochemical method. The excellent sensing performance can be contributed to the novel sensing mechanism of OECT devices. That is, the devices are sensitive to the potential changes induced by the photoelectrochemical reaction on TiO2 nanotube arrays gate electrodes. Real sample analyses are also carried out. The results demonstrate that the measured COD values using the OECT devices and the standard dichromate methods are in a good agreement. Since the proposed sensor is constructed on a miniature transistor, it is expected that the device shows a promising application on the integrated COD monitoring platform.

  7. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. PMID:26789200

  8. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater.

  9. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  10. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30 °C at pH 6.0 using 20 g/L dose in 120 min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20 g/L dose, also in 120 min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate.

  11. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent.

  12. A repair algorithm for radial basis function neural network and its application to chemical oxygen demand modeling.

    PubMed

    Qiao, Jun-Fei; Han, Hong-Gui

    2010-02-01

    This paper presents a repair algorithm for the design of a Radial Basis Function (RBF) neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype randomly initialized in the feature space. The algorithm has two main phases: an architecture learning phase and a parameter adjustment phase. The architecture learning phase uses a repair strategy based on a sensitivity analysis (SA) of the network's output to judge when and where hidden nodes should be added to the network. New nodes are added to repair the architecture when the prototype does not meet the requirements. The parameter adjustment phase uses an adjustment strategy where the capabilities of the network are improved by modifying all the weights. The algorithm is applied to two application areas: approximating a non-linear function, and modeling the key parameter, chemical oxygen demand (COD) used in the waste water treatment process. The results of simulation show that the algorithm provides an efficient solution to both problems. PMID:20180254

  13. A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill.

    PubMed

    Kim, Youngkyu; Yang, GoSu

    2002-10-01

    The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively. PMID:12418726

  14. Influence of chemical oxygen demand/total Kjeldahl nitrogen ratio and sludge age on nitrification of nitrogenous wastewater.

    PubMed

    Sharma, R; Gupta, S K

    2004-01-01

    Four laboratory-scale biological nitrification units (influent total Kjeldahl nitrogen [TKN] = 1002 to 1062 mg/L) were operated at chemical oxygen demand (COD)/TKN ratios of approximately 0.5, 1.0,15, and 2.0 and at three different sludge ages of 30, 20, and 10 days to study the influence of COD/TKN, sludge age, COD loading, and TKN loading on nitrification and nitrifiers. Percent nitrification was found to increase with decreases in COD/TKN and increases in sludge age. The average nitrifier concentration increased from 460 mg/L at a COD/TKN of 2.22 and a sludge age of 10 days to 706 mg/L at a COD/TKN of 0.676 and a sludge age of 30 days. The nitrifier fraction was found to be higher at a lower COD/TKN and lower at a higher COD/TKN. The nitrifier fraction increased with the decrease in sludge age and COD loadings and the increase in TKN loadings. The effect of sludge age on the nitrifier fraction was amplified at a COD/ TKN of approximately 0.5 rather than at approximately 2.0. The nitrification rate (kilograms TKN oxidized per kilograms nitrifiers per day) was shown to be dependent on COD/TKN and sludge age. The activity performed by Nitrobacter was affected at all COD/TKN ratios studied as well as at a sludge age of 10 days. This was manifested by the accumulation of high levels of nitrite-nitrogen in the nitrified effluent. The presence of heterotrophs did not affect nitrification rates and the growth of nitrifiers, which were found to be beneficial. High sludge age and COD loadings resulted in a higher sludge volume index of more than 200 mL/g mixed liquor suspended solids. Microscopic examination showed filamentous structure of sludge under these conditions. It is concluded from the investigations that a sludge age of 30 days and a COD/TKN of approximately 1.0 are optimal to yield maximum nitrification and nitrifier growth rates for treating high-strength nitrogenous wastewater.

  15. Effect of spent cotton stalks on color removal and chemical oxygen demand lowering in olive oil mill wastewater by white rot fungi.

    PubMed

    Kahraman, S; Yeşilada, O

    1999-01-01

    Wastewater from olive oil mill was decolorized (and its chemical oxygen demand reduced in static cultivation) using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus sajor-caju. The effect of cotton stalk on decolorizing and COD removing capability was demonstrated. P. chrysosporium (in 20% medium with cotton stalk) reduced the COD by 48% and color by 58%, F. trogii (in 30% medium with cotton stalk)) by 51 and 55%, respectively.

  16. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

  17. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads. PMID:25164570

  18. Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology.

    PubMed

    Hu, Dong-Xue; Tian, Yu; Chen, Zhao-Bo; Ge, Hui; Cui, Yu-Bo; Ran, Chun-Qiu

    2015-01-01

    Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.

  19. Capacity of a newly isolated fungus Pleurotus eryngii from Tunceli, Ovacik for chemical oxygen demand reduction and biodecolorization of Azo-Dye Congo Red.

    PubMed

    Yildirim, N; Gonen, U

    2015-06-07

    Biodecolorization of Congo red dye in both agar—plate and agitated liquid culture mediums by newly isolated white rot fungus Pleurotus eryngii has been studied. This fungus isolated from Tunceli—Ovacik province of Turkey. We have also examined the chemical oxygen demand reduction after decolorization under agitated liquid culture medium. For agar plate screening the decolorization capacity of P. eryngii, growth and decolorization halos were determined on saboroud dextrose agar (SDA) plates containing 0.05, 0.1, 0.5, 1 and 2 g/l of Congo red. P. eryngii showed certain decolorization capacities and was able to decolorize all studied concentrations of Congo red, but not to the same extent. Our results indicated that the new isolate P. eryngii had maximum decolorization (87% at 100 mg/l initial dye concentration) and chemical oxygen demand reduction (82% at 25 mg/l initial dye concentration) activities after 7 days under agitated submerged culture conditions. This new isolate could be an effective bioremediation tool for treatment of Congo red containing textile wastewater.

  20. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    PubMed

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  1. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal.

    PubMed

    Fongsatitkul, P; Wareham, D G; Elefsiniotis, P; Charoensuk, P

    2011-12-01

    This study investigated the ability of an anaerobic/anoxic/oxic (A2/O) system to treat a slaughterhouse wastewater. The system employed two identical continuous-flow reactors (101 total liquid volume each) running in parallel with the main operational variable, being the internal recycle (IR) rate. The chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) performance was evaluated as the IR flowrate was increased from a Q of 151d(-1) to 4Q at a system hydraulic retention time of 16 h and a solids retention time of 10 d. The COD:TKN and COD:TP ratios were 8.2:1 and 54:1, which supported both nitrogen and phosphorus removal. For all IR multiples of Q, the COD removal was in excess of 90%. The TKN removal showed a modest improvement (a 4-5% increase, depending on the dissolved oxygen (DO)) as the IR doubled from Q to 2Q, but no further increase was observed at the 4Q IR rate. The TP removal reached its optimum (around 85%-89% (again depending on the DO)) at the 2Q rate.

  2. Ozonation of sludge-press liquors: Determination of carbonyl compounds by the PFBOA method and the effect on the chemical oxygen demand

    SciTech Connect

    Boyle, L.L.; McCullough, N.H.; Poppelen, P. van

    1996-12-31

    The European Community Urban Waste Water Treatment Directive, May 1991, requires water service companies to provide sufficient wastewater treatment to meet a new limit set for the Chemical Oxygen Demand (COD) in final effluent and new legislation has placed limits on the levels of COD that can be discharged from wastewater treatment works using secondary treatment processes. The current permitted upper level for COD in the final effluent is 125 mg per litre. Ozone is a strong oxidant and disinfectant and in contrast to chlorine, does not produce chlorinated by-products from its reaction with natural organic matter in water. In spite of the successful use of ozone for the treatment of potable waters since the early part of the century very few studies have been undertaken into possible chemical by-products which might arise from ozonation. Since the amount of ozone applied is always lower than that required to oxidize all the organic matter to carbon dioxide and water, a number of semi-oxidation products such as aromatic, phenolic and aliphatic carboxylic acids, aldehydes and ketones can be expected to be formed. The ozonation of sludge-press liquors and the resultant effect on COD was investigated. The concentration of carbonyl compounds was analyzed using O-(pentafluorobenzyl) hydroxylamine (PFBOA) as a derivatising agent in Gas Chromatographic (GC) determination.

  3. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  4. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite

  5. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  6. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater*

    PubMed Central

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-01-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2∙d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3∙d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2∙d). The results lead to a design organic load of 1.5 kg COD/(m3∙d) to reach an effluent COD in the range of 50–120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter. PMID:24101209

  7. The removal of chemical oxygen demand from primary-treated domestic wastewater in subsurface-flow reed beds using different substrates.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2003-01-01

    Subsurface-flow experimental reed beds were designed and built based on a combination of two design methodologies. Four different growing media were used with a combination of topsoil, gravel, river sand, and mature wastewater biosolids compost to determine the best substrate for chemical oxygen demand removal. Eight units were constructed, two for each material. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary-treated domestic wastewater was continuously fed to the beds for more than 6 months. The best performance was achieved by the gravel reed beds, with an average removal rate higher than 50%. Soil-based beds containing topsoil and sand only managed to attain removals of approximately 10%. The reed beds containing compost in their substrate produced the worst treatment, mainly because of leaching of organic substances from the compost. Primarily as a result of channel flow, all beds showed significant deviation from the designed retention time. There was no significant difference in the performance of planted and unplanted reed beds.

  8. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control.

  9. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC.

  10. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring.

  11. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    NASA Astrophysics Data System (ADS)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  12. Sediment oxygen demand in eastern Kansas streams, 2014 and 2015

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.

    2016-08-29

    Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.

  13. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  14. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  15. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

  16. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  17. Potential oxygen demand of sediments from Lake Erie

    USGS Publications Warehouse

    Schloesser, D.W.; Stickel, R.G.; Bridgeman, T.B.

    2005-01-01

    Dreissenid mussels (Dreissena polymorpha and D. bugensis) biodeposit large quantities of filtered materials (i.e., feces and pseudofeces) directly on bottom substrates. These biodeposits have the potential to increase oxygen demand in sediments and overlying waters and thus contribute to hypolimnetic anoxia in Lake Erie. We hypothesized that higher potential oxygen demand of sediments would occur in areas near shore than in offshore hypolimnetic waters as a result of biodeposits carried by currents from littoral water where mussels, available foods, and biodeposits may be most abundant. To address this hypothesis, we measured potential oxygen demand (mg O2/L/120 h incubation) at six sites near shore and six sites offshore monthly June to September 2002 and August 2003. In addition, we compared, in post priori hypothesis, seven sites with and five sites without dreissenid mussels. Contrary to our hypotheses, potential oxygen demand was not significantly higher in bottles containing nearshore sediments than offshore sediments. Similarly, potential oxygen demand was not significantly higher at sites with dreissenid mussels than at sites without mussels. Data are consistent with pre-dreissenid studies which show oxygen demand and percent ash-free dry weights of sediments were higher offshore than near shore and ash-free dry weight of sediments decreased June to September. Therefore, the present study provides no evidence that dreissenid mussels have contributed directly-via biodeposition-to increased anoxia observed in Lake Erie in the mid to late 1990s.

  18. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  19. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater.

    PubMed

    Wu, Yi-Ju; Whang, Liang-Ming; Chang, Ming-Yu; Fukushima, Toshikazu; Lee, Ya-Chin; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Yang, Charn-Yi; Fu, Ryan; Tsai, Tsair-Yuan

    2013-08-01

    This study investigated impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand (COD) on nitrification performance in one full-scale membrane bioreactor (MBR) treating monoethanolamine (MEA)/dimethyl sulfoxide (DMSO)-containing thin film transistor liquid crystal display (TFT-LCD) wastewater. Poor nitrification was observed under high organic loading and high colloidal COD conditions, suggesting that high F/M ratio and colloidal COD situations should be avoided to minimize their negative impacts on nitrification. According to the nonmetric multidimensional scaling (NMS) statistical analyses on terminal restriction fragment length polymorphism (T-RFLP) results of ammonia monooxygenase (amoA) gene, the occurrence of Nitrosomonas oligotropha-like ammonia oxidizing bacteria (AOB) was positively related to successful nitrification in the MBR systems, while Nitrosomonas europaea-like AOB was positively linked to nitrification rate, which can be attributed to the high influent total nitrogen condition. Furthermore, Nitrobacter- and Nitrospira-like nitrite oxidizing bacteria (NOB) were both abundant in the MBR systems, but the continuously low nitrite environment is likely to promote the growth of Nitrospira-like NOB.

  20. [Microbial biosensors for detection of biological oxygen demand (a review)].

    PubMed

    Ponamoreva, O N; Arliapov, V A; Alferov, V A; Reshetilov, A N

    2011-01-01

    The review briefs recent advances in application of biosensors for determining biological oxygen demand (BOD) in water. Special attention is focused on the principles of operation of microbial BOD sensors; the information about biorecognition elements in such systems and the methods used for immobilization of biological components in film biosensors is summarized. Characteristics of some BOD sensor models are considered in detail.

  1. Glucagon increases hepatic oxygen supply-demand ratio in pigs

    SciTech Connect

    Gelman, S.; Dillard, E.; Parks, D.A.

    1987-05-01

    The present study was performed on eight young pigs to test the hypothesis that glucagon increases hepatic oxygen supply to a greater extent than hepatic oxygen uptake, providing a better hepatic oxygen supply-demand relationship. The experiments were performed under pentobarbital sodium anesthesia and controlled ventilation. Splanchnic blood flow was studied using radioactive microspheres. Glucagon was administered in doses of 1 and 5 ..mu..g x kg/sup -1/ x min/sup -1/. During glucagon infusion, hepatic arterial blood flow substantially increased, splenic and pancreatic blood flows increased moderately, while stomach and intestinal blood flows, as well as portal blood flow did not change significantly. Shunting of both 9- and 15-..mu..m spheres through preportal tissues did not change significantly. Oxygen content in arterial or portal venous blood did not change significantly, while it increased in hepatic venous blood by 30%. There were no differences in the effects between the doses of glucagon administered. There was no correlation found between changes in hepatic oxygen supply and cardiac output or blood pressure. The changes observed during glucagon administration resulted in an increase in oxygen delivery to the liver and hepatic oxygen supply-uptake ratio.

  2. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  3. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    USGS Publications Warehouse

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    Sediment samples were collected near each chamber and analyzed for percent water, percent sand, and percent organics. The sand content ranged from 0.1 to 6.2 percent and averaged 1.8 percent. The organic content ranged from 1.4 to 9.6 and averaged 5.6 percent. No statistically significant correlations were found between these sediment characteristics and sediment oxygen demand.

  4. Biochemical oxygen demand sensor using Serratia marcescens LSY 4.

    PubMed

    Kim, M N; Kwon, H S

    1999-01-01

    A microbial biochemical oxygen demand (BOD) sensor consisting of Serratia marcescens LSY 4 and an oxygen electrode was prepared for estimation of the biochemical oxygen demand. The response of the BOD sensor was insensitive to pH in the range of pH 6.0-8.0, and the baseline drift of the signal was nearly absent even in unbuffered aqueous solution. Because heavy metal ions were precipitated from the phosphate buffer solution, unbuffered solution was used to investigate the effect of the concentration of heavy metal ions on the sensor response. Contrary to previous studies, not only Cu2+ and Ag+ but also Cd2+ and Zn2+ significantly decreased the response of the BOD sensor in unbuffered solution. Graft polymerization of sodium styrene sulfonate on the surface of the porous teflon membrane was carried out to absorb the heavy metal ions permeating through the membrane. Tolerance against Zn2+ was induced for S. marcescens LSY 4 to make the cells less sensitive to the presence of heavy metal ions. The membrane modification and the Zn2+ tolerance induction showed some positive effects in such a way that they reduced the inhibitory effects of Zn2+ and Cd2+ on the sensitivity of the BOD sensor. However, they had no effect on the protection of the cells against the interference of Cu2+ and Ag+ on the performance of the sensor.

  5. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 23.1450...

  6. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 23.1450...

  7. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... placarded to show— (1) The rate of oxygen flow, in liters per minute; (2) The duration of oxygen flow,...

  8. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... placarded to show— (1) The rate of oxygen flow, in liters per minute; (2) The duration of oxygen flow,...

  9. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... placarded to show— (1) The rate of oxygen flow, in liters per minute; (2) The duration of oxygen flow,...

  10. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  11. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies. PMID:25898071

  12. Methods for assessing biochemical oxygen demand (BOD): a review.

    PubMed

    Jouanneau, S; Recoules, L; Durand, M J; Boukabache, A; Picot, V; Primault, Y; Lakel, A; Sengelin, M; Barillon, B; Thouand, G

    2014-02-01

    The Biochemical Oxygen Demand (BOD) is one of the most widely used criteria for water quality assessment. It provides information about the ready biodegradable fraction of the organic load in water. However, this analytical method is time-consuming (generally 5 days, BOD5), and the results may vary according to the laboratory (20%), primarily due to fluctuations in the microbial diversity of the inoculum used. Work performed during the two last decades has resulted in several technologies that are less time-consuming and more reliable. This review is devoted to the analysis of the technical features of the principal methods described in the literature in order to compare their performances (measuring window, reliability, robustness) and to identify the pros and the cons of each method.

  13. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement.

    PubMed

    Liu, J; Björnsson, L; Mattiasson, B

    2000-02-01

    A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4-8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below +/- 5.6%, standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. +/- 15% standard deviation.

  14. Multi-scale analysis of oxygen demand trends in an urbanizing Oregon watershed, USA.

    PubMed

    Boeder, Mike; Chang, Heejun

    2008-06-01

    Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. We estimated trends from the mid-1990s to 2003, using the seasonal Mann-Kendall's test, for percent saturation dissolved oxygen (DO), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and ammonia-nitrogen (NH(3)-N) for 12 sites in the Rock Creek watershed, northwest Oregon, USA. In order to understand the influence of landscape change, scale, and stormwater runoff management on dissolved oxygen trends, we calculated land cover change through aerial photo interpretation at full-basin, local (near sample point) basin, and 100m stream buffer scales, for the years 1994 and 2000. Significant (p < or = 0.05) trends occurred in DO (increasing at five sites), COD (decreasing at seven sites), TKN (decreasing at five sites, increasing at one site), and NH(3)-N (decreasing at one site, increasing at one site). Significant land cover change occurred in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area) (p < or = 0.05). Correlation results indicated that: (1) forest cover negatively influenced COD at the full basin scale and positively influences NH(3)-N at local scales, (2) residential land cover influenced oxygen demand variables at local scales, (3) agricultural land cover did not influence oxygen demand, (4) local topography negatively influenced TKN and NH(3)-N, and (5) stormwater runoff management infrastructure correlated positively with COD at the local scale. This study indicates that landscape factors influencing DO conditions for the study streams act at multiple scales, suggesting that better knowledge of scale-process interactions can guide watershed managers' decision making in order to maintain improving water quality conditions. PMID:18201815

  15. Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands.

    PubMed

    Snyder, G K; Farrelly, C; Coelho, J R

    1992-01-01

    The effects of changes in oxygen supply and oxygen demands on fiber cross-sectional areas, capillary densities and capillary to fiber ratios were determined in three skeletal muscles of rat. The muscles examined were the vastus lateralis, soleus, and diaphragm. Reduced oxygen supply was produced by subjecting rats to ambient hypoxia, and increased oxygen demands were produced by subjecting rats to low ambient temperatures or treatment with thyroxin. Capillaries were visualized by injecting fluorescent dyes into the circulation. Muscles were quick frozen at resting lengths to preserve normal fiber geometry and were subsequently sectioned on a cryostat. All of the muscles sampled from animals in the experimental groups had elevated capillary densities. However, capillary to fiber ratios were not increased significantly in any muscle, for any experimental condition. Thus, all of the observed differences in capillarity were due to changes in the intrinsic rate of muscle fiber growth. Further, the relations of capillary density and capillary to fiber ratio to fiber area were the same as those obtained during normal maturation, suggesting that capillary growth is closely linked to the intrinsic rate of fiber growth.

  16. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  17. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  18. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  19. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  20. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  1. Oxygen Demand of Fresh and Stored Sulfide Solutions and Sulfide-Rich Constructed Wetland Effluent.

    PubMed

    Chan, Carolyn; Farahbakhsh, Khosrow

    2015-08-01

    This study investigated the contribution of hydrogen sulfide to biological oxygen demand (BOD5) and chemical oxygen demand (COD) in wastewater effluents, and documented the effect of storage times and conditions on the BOD5 and COD of pH-adjusted sodium sulfide solutions as well as graywater wetland effluent. Initial COD measurements of sulfide solutions were 84-89% of the theoretical oxygen demand (ThOD), 1.996 mg O2/mg S, whereas unseeded BOD5 measurements were 55-77%. For sulfide solutions, all storage conditions led to declines of >15% (COD, BOD5), and >31% (sulfide). For wetland effluent, storage without headspace was effective in reducing COD losses (3.7%), compared to storage with headspace (17%), and affected changes in turbidity, UVA-254 and pH. The results suggest that storage times and conditions should be controlled and reported when reporting BOD5 and COD of sulfide-rich samples. Wetland models representing sulfate reduction as a method of COD removal may need to be reconsidered. PMID:26237688

  2. Biochemical oxygen demand measurement by mediator method in flow system.

    PubMed

    Liu, Ling; Bai, Lu; Yu, Dengbin; Zhai, Junfeng; Dong, Shaojun

    2015-06-01

    Using mediator as electron acceptor for biochemical oxygen demand (BOD) measurement was developed in the last decade (BODMed). However, until now, no BOD(Med) in a flow system has been reported. This work for the first time describes a flow system of BOD(Med) method (BOD(Med)-FS) by using potassium ferricyanide as mediator and carbon fiber felt as substrate material for microbial immobilization. The system can determine the BOD value within 30 min and possesses a wider analytical linear range for measuring glucose-glutamic acid (GGA) standard solution from 2 up to 200 mg L(-1) without the need of dilution. The analytical performance of the BOD(Med)-FS is comparable or better than that of the previously reported BOD(Med) method, especially its superior long-term stability up to 2 months under continuous operation. Moreover, the BOD(Med)-FS has same determination accuracy with the conventional BOD5 method by measuring real samples from a local wastewater treatment plant (WWTP).

  3. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant. PMID:25026585

  4. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  5. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  6. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds.

  7. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... sustained operation by successive replacement of a generator element must be placarded to show— (1) The...

  8. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... sustained operation by successive replacement of a generator element must be placarded to show— (1) The...

  9. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... sustained operation by successive replacement of a generator element must be placarded to show— (1) The...

  10. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450...

  11. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450...

  12. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.

    PubMed

    Higashino, Makoto; Stefan, Heinz G

    2005-09-01

    Dead organic material accumulated on the bed of a lake, reservoir or wetland often provides the substrate for substantial microbial activity as well as chemical processes that withdraw dissolved oxygen (DO) from the water column. A model to estimate the actual DO profile and the "sedimentary oxygen demand (SOD)" must specify the rate of microbial or chemical activity in the sediment as well as the diffusive supply of DO from the water column through the diffusive boundary layer into the sediment. Most previous experimental and field studies have considered this problem with the assumptions that the diffusive boundary layer is (a) turbulent and (b) fully developed. These assumptions require that (a) the flow velocity above the sediment bed is fast enough to produce turbulent mixing in the boundary layer, and (b) the sediment bed is long. In this paper a model for laminar flow and SOD over a sediment bed of finite length is presented and the results are compared with those for turbulent flow. Laminar flow near a sediment bed is encountered in quiescent water bodies such as lakes, reservoirs, river backwaters, wetlands and ponds under calm wind conditions. The diffusive oxygen transfer through the laminar diffusive boundary layer above the sediment surface can restrict the microbial or chemical oxygen uptake inside the sediment significantly. The developing laminar diffusive boundary layer above the sediment/water interface is modeled based on the analogy with heat transfer, and DO uptake inside the sediment is modeled by Michaelis-Menten microbial growth kinetics. The model predicts that the rate of SOD at the beginning of the reactive sediment bed is solely dependent on microbial density in the sediment regardless of flow velocity and type. The rate of SOD, and the DO penetration depth into the sediment decrease in stream-wise direction over the length of the sediment bed, as the diffusive boundary layer above the sediment/water interface thickens. With increasing

  13. Demand and supply of hydrogen as chemical feedstock in USA

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  14. Biochemical oxygen demand. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning biochemical oxygen demand (BOD) in sewage, industrial waste treatment, runoff, and limnology. The effects of salinity on BOD, aerobic, and anaerobic waste treatment processes are described. The use of algae and water hyacinths in wastewater treatment is explored, along with the water quality and biological oxygen demand of specific bodies of water. (Contains 250 citations and includes a subject term index and title list.)

  15. A simplified headspace biochemical oxygen demand test protocol based on oxygen measurements using a fiber optic probe.

    PubMed

    Min, Booki; Kohler, David; Logan, Bruce E

    2004-01-01

    Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can

  16. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  17. Sediment oxygen demand in a constructed lake in south-eastern Australia.

    PubMed

    Wallace, Todd A; Ganf, George G; Brookes, Justin D

    2016-10-01

    The occurrence of hypoxia and anoxia in aquatic environments is increasing, driven by changes in land use and alteration of flow regimes. Periods of low oxygen impact biodiversity and water quality for both recreational and consumptive users. We use the Torrens Lake as a case study to assess pelagic, benthic and resuspended sediment oxygen demand, and the release of sediment bound phosphorus to determine the relative role of internal and external loading on water quality in a lake within a heavily urbanised landscape. Our results indicate temporal shifts in the dominant oxygen demanding process in the lake. During periods of no-inflow, sediment oxygen demand is the dominant process; during periods of inflow resulting from wet weather conditions, pelagic rather than sediment derived oxygen demand becomes the governing process. The inlet end of the lake is a depositional zone for stormwater borne sediments. Resuspended sediments at the inlet end of the lake exert a higher oxygen demand than those from the outlet, and represent a larger pool of potentially mobile phosphorus compared to sediments at the outlet end of the lake. However, external rather than internal loading appears to be the dominant driver of water quality in this lake.

  18. Sediment oxygen demand in a constructed lake in south-eastern Australia.

    PubMed

    Wallace, Todd A; Ganf, George G; Brookes, Justin D

    2016-10-01

    The occurrence of hypoxia and anoxia in aquatic environments is increasing, driven by changes in land use and alteration of flow regimes. Periods of low oxygen impact biodiversity and water quality for both recreational and consumptive users. We use the Torrens Lake as a case study to assess pelagic, benthic and resuspended sediment oxygen demand, and the release of sediment bound phosphorus to determine the relative role of internal and external loading on water quality in a lake within a heavily urbanised landscape. Our results indicate temporal shifts in the dominant oxygen demanding process in the lake. During periods of no-inflow, sediment oxygen demand is the dominant process; during periods of inflow resulting from wet weather conditions, pelagic rather than sediment derived oxygen demand becomes the governing process. The inlet end of the lake is a depositional zone for stormwater borne sediments. Resuspended sediments at the inlet end of the lake exert a higher oxygen demand than those from the outlet, and represent a larger pool of potentially mobile phosphorus compared to sediments at the outlet end of the lake. However, external rather than internal loading appears to be the dominant driver of water quality in this lake. PMID:27420167

  19. Biofilm reactor based real-time analysis of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Jia, Jianbo; Dong, Shaojun

    2013-04-15

    We reported a biofilm reactor (BFR) based analytical system for real-time biochemical oxygen demand (BOD) monitoring. It does not need a blank solution and other chemical reagents to operate. The initial dissolved oxygen (DO) in sample solution was measured as blank, while DO in the BFR effluent was measured as response. The DO difference obtained before and after the sample solution flowed through the BFR was regarded as an indicator of real-time BOD. The analytical performance of this reagent-free BFR system was equal to the previous BFR system operated using phosphate buffer saline (PBS) and high purity deionized water in reproducibility, accuracy and long-term stability. Besides, this method embraces many notable advantages, such as no secondary pollution. Additionally, the sample solutions are free from temperature controlling and air-saturation before injection. Significantly, this is a real-time BOD analysis method. This method was successfully carried out in a simulated emergency, and the obtained results agreed well with conventional BOD₅. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD real-time warning. PMID:23228491

  20. The effect of mayfly (Hexagenia spp.) burrowing activity on sediment oxygen demand in western Lake Erie

    USGS Publications Warehouse

    Edwards, William J.; Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.

    2009-01-01

    Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph/mo for 23 mm nymphs at 13 °C. Sealed microcosm experiments demonstrated that mayflies increase the rate of oxygen depletion by 2-5 times that of controls, depending on size of nymph and water temperature, with colder waters having greater impact. At natural population densities, nymph pumping activity increased total sediment oxygen demand 0.3-2.5 times compared to sediments with no mayflies and accounted for 22-71% of the total sediment oxygen demand. Extrapolating laboratory results to the natural system suggest that Hexagenia spp. populations may exert a significant control on oxygen depletion during intermittent stratification. This finding may help explain some of the fluctuations in Hexagenia spp. population densities in western Lake Erie and suggests that mayflies, by causing their own population collapse irrespective of other environmental conditions, may need longer term averages when used as a bio-indicator of the success of pollution-abatement programs in western Lake Erie and possibly throughout the Great Lakes.

  1. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  2. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands.

    PubMed

    Lim, P E; Tay, M G; Mak, K Y; Mohamed, N

    2003-01-01

    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn

  3. In situ global method for measurement of oxygen demand and mass transfer

    SciTech Connect

    Klasson, K.T.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L.

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  4. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community.

  5. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  6. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates

    PubMed Central

    Hatay, M; Haas, AF; Robinett, NL; Barott, K; Vermeij, MJA; Marhaver, KL; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  7. The diluter-demand oxygen system used during the international Himalayan expedition to Mount Everest.

    NASA Technical Reports Server (NTRS)

    Blume, F. D.; Pace, N.

    1972-01-01

    The diluter-demand regulators are designed in such a way that as the individual inspires he simultaneously draws ambient air and pure oxygen from a tank into his mask. The size of the ambient air orifice is made directly proportional to the barometric pressure by use of a passive aneroid valve. As altitude increases the ambient air orifice is automatically made smaller and the individual inspires a greater proportion of oxygen.

  8. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  9. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  10. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell.

    PubMed

    Kim, Byung Hong; Chang, In Seop; Gil, Geun Cheol; Park, Hyung Soo; Kim, Hyung Joo

    2003-04-01

    A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors.

  11. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  12. A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Saltin, B

    2005-09-01

    We present a new model of the underlying dynamics of the oxygen uptake VO2(v,t) kinetics for various exercise intensities. This model is in the form of a set of nonlinear coupled vector fields for the VO2(v,t) and v, the derivative of the exercise intensity with respect to time. We also present a new and novel means for calculating the oxygen demand, D(v,t), and hence also the oxygen deficit and debt, given the time series of the VO2(v,t). This enables us to give better predictions for these values especially for when exercising at or close to maximal exercise intensities. Our model also allows us to predict the oxygen uptake time series given the time series for the exercise intensity as well as to investigate the oxygen uptake response to nonlinear exercise intensities. Neither of these features is possible using the currently used three-phase model. We also present a review of both the underlying physiology and the three-phase model. This includes for the first time a complete set of the analytical solutions of the three-phase model for the oxygen deficit and debt. PMID:15998492

  13. A Method for Generating Oxygen from Consumer Chemicals

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2003-10-01

    The rapidly accelerated combustion of wood, paper, carbon, a candle, and steel wool in oxygen gas is presented. The oxygen gas is generated as needed in the bottles used for the demonstration using chemicals readily available on the retail market: liquid chlorine bleach and 3% hydrogen peroxide.

  14. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  15. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart

  16. Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels

    SciTech Connect

    Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

    1999-10-28

    The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

  17. Temperature effects on tubificid worms and their relation to sediment oxygen demand.

    PubMed

    Otubu, John E; Hunter, Joseph V; Francisco, Kelly L; Uchrin, Christopher G

    2006-01-01

    Sediment samples were collected from the Dead River in New Jersey and tested in the laboratory under two temperature conditions, 4 degrees C and 20 degrees C. The study was conducted to determine the effect of worm density on the sediment oxygen demand (SOD) rate and if temperature affects the ability for tubificid worms to deplete dissolved oxygen (DO) from the overlying stream water. The study showed that the DO concentration was affected by tubificid worm density and that higher temperature increased the metabolic activity of the worms. PMID:16835114

  18. Rate of Biochemical oxygen demand during formation of hypoxia in Amur Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tishchenko, P. P.; Tishchenko, P. Ya.; Zvalinskii, V. I.; Semkin, P. Yu.

    2014-12-01

    In May 2011, a Water Quality Monitor (WQM) hydrological station was maintained in the hypoxia area of Amur Bay one meter above the bottom, at the depth of 19 m. The temperature, electric conductivity, pressure, and content of dissolved oxygen were registered every four hours for more than three months. On the basis of these data, it was found that the period of hypoxia at the observation point lasted 93 days and a model of calculation of the rate of biochemical oxygen demand and the velocity of ventilation of the bottom waters is suggested.

  19. Oxygen centered radicals in iodine chemical oscillators.

    PubMed

    Stanisavljev, Dragomir R; Milenković, Maja C; Mojović, Milos D; Popović-Bijelić, Ana D

    2011-07-14

    The existence of free radicals in iodine-based oscillatory systems has been debated for some time. Recently, we have reported the presence of reactive oxygen species (ROS) in the iodide-peroxide system in acidic medium, which is common to all iodine--based oscillatory systems ( J. Phys. Chem. A 2011 , 115 , 2247--2249 ). In this work, the goal was to identify the ROS produced in this system using an EPR spin trap which can distinguish between hydroxyl (HO(•)) and hydroperoxyl (HOO(•)) radicals. The formation of the hydroperoxyl radical was observed and a possible explanation for the low EPR signal of hydroxyl radical was proposed. PMID:21692499

  20. Myocardial Ischemia: Lack of Coronary Blood Flow or Myocardial Oxygen Supply/Demand Imbalance?

    PubMed

    Heusch, Gerd

    2016-07-01

    Regional myocardial blood flow and contractile function in ischemic myocardium are well matched, and there is no evidence for an oxygen supply/demand imbalance. Thus, myocardial ischemia is lack of coronary blood flow with electric, functional, metabolic, and structural consequences for the myocardium. All therapeutic interventions must aim to improve blood flow to ischemic myocardium as much and as quickly as possible. PMID:27390331

  1. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  2. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.

    PubMed

    Bianchini Jr, I; Cunha-Santino, M B; Peret, A M

    2008-02-01

    This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Guaçu river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction. PMID:18470379

  3. Chemical Sensors Based On Oxygen Detection By Optical Methods

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer W.; Cox, M. E.; Dunn, Bruce S.

    1986-08-01

    Fluorescence quenching is shown to be a viable method of measuring oxygen concentration. Two oxygen/optical transducers based on fluorescence quenching have been developed and characterized: one is hydrophobic and the other is hydrophilic. The development of both transducers provides great flexibility in the application of fluorescence to oxygen measurement. One transducer is produced by entrapping a fluorophor, 9,10-diphenyl anthracene, in poly(dimethyl siloxane) to yield a homogeneous composite polymer matrix. The resulting matrix is hydrophobic. This transducer is extremely sensitive to PO2 as a result of oxygen quenching the fluorescence of 9,10-diphenyl anthracene. This quenching is utilized in the novel method employed to measure the transport properties of oxygen within Ulf 2matrix. Results show large values for the diffusion coefficient at 25°C, D = 3.5 x 10-5 cm /s. The fluorescence intensity varies inversely with P02. The second oxygen transducer is fabricated by entrapping 9,10-diphenyl anthracene in poly(hydroxy ethyl methacrylate). Free radical, room temperature polymerization is employed. This transducer is hydrophilic, and contains 37% water. The transport properties of oxygen within this transducer are compared with those of the hydrophobic transducer. The feasibility of generalizing the oxygen transducers to a wider class of chemical sensors through coupling to other chemistries is proposed. An example of such coupling is given in a glucose/oxygen transducer. The glucose transducer is produced by entrapping an enzyme, glucose oxidase, in the composite matrix of the hydrophilic oxygen transducer. Glucose oxidase catalyzes a reaction between glucose and oxygen, thereby lowering the local oxygen concentration. This transducer yields a glucose modified optical oxygen signal. The operation of this transducer and preliminary results of its characterization are presented.

  4. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  5. Biochemical oxygen demand and algae: Fractionation of phytoplankton and nonphytoplankton respiration in a large river

    SciTech Connect

    Cohen, R.R.H. )

    1990-04-01

    Mass balance equations for dissolved oxygen in streams are formulated to account for, among other variables, algal respiration (R), and biochemical oxygen demand (BOD). The oxygen consumption measured in primary productivity-respiration analyses is not R but is total community oxygen consumption (TCOC), and BOD measurements are complicated by undefined algal components. Ultimate BOD was found to be 0.24 mg of O{sub 2} consumed per {mu}g chlorophyll a and carbonaceous BOD was 0.20 per {mu}g chlorophyll a in excess of background BOD. The results were similar for live and dead algae. Phytoplankton respiration was fractionated from nonphytoplankton oxygen consumption (NPOC) by the regression of respiration against chlorophyll a to obtain a y intercept of zero chlorophyll. The intercepts, NPOC, closely matched O{sub 2} consumption measured when phytoplankton biomass was very low. Phytoplankton respiration, calculated as the residual of the difference between TCOC and NPOC,ranged from 0.2 to 1.5 (mean = 0.88) mg O{sub 2} per mg chlorophyll a per hour, close to the literature value of 1 (in cultures). Depth-integrated (DI) phytoplankton respiration was 1/4 to 1/3 of DI gross primary productivity and 1-3% of maximum primary productivity. The separation of phytoplankton R and NPOC permitted the demonstration that R probably is not a simple function of productivity.

  6. Measurement and modeling of oxygen content in a demand constant mass ratio injection rebreather.

    PubMed

    Frånberg, Oskar; Gennser, Mikael

    2015-01-01

    Mechanical semi-closed rebreathers do not need oxygen sensors for their functions, thereby reducing the complexity of the system. However, testing and modeling are necessary in order to determine operational limits as well as the decompression obligation and to avoid hyperoxia and hypoxia. Two models for predicting the oxygen fraction in a demand constant mass ratio injection (DCMRI) rebreather for underwater use were compiled and compared. The model validity was tested with an IS-MIX, Interspiro AB rebreather using a metabolic simulator connected to a breathing machine inside a water-filled pressure chamber. The testing schedule ranged from 0.5-liter (L) to 3-liter tidal volumes, breathing frequencies from five to 25 breaths/minute and oxygen consumptions from 0.5 L/minute to 4 L/minute. Tests were carried out at surface and pressure profiles ranging to 920 kPa(a) (81 meters of sea water, 266 feet of sea water). The root mean squared error (RMSE) of the single-compartment model was 2.4 percent-units of oxygen for the surface test with the 30% dosage setting but was otherwise below 1% unit. For the multicompartment model the RMSE was below 1% unit of oxygen for all tests. It is believed that these models will aid divers in operational settings and may constitute a helpful tool when developing semi-closed rebreathing apparatuses.

  7. Measurement and modeling of oxygen content in a demand constant mass ratio injection rebreather.

    PubMed

    Frånberg, Oskar; Gennser, Mikael

    2015-01-01

    Mechanical semi-closed rebreathers do not need oxygen sensors for their functions, thereby reducing the complexity of the system. However, testing and modeling are necessary in order to determine operational limits as well as the decompression obligation and to avoid hyperoxia and hypoxia. Two models for predicting the oxygen fraction in a demand constant mass ratio injection (DCMRI) rebreather for underwater use were compiled and compared. The model validity was tested with an IS-MIX, Interspiro AB rebreather using a metabolic simulator connected to a breathing machine inside a water-filled pressure chamber. The testing schedule ranged from 0.5-liter (L) to 3-liter tidal volumes, breathing frequencies from five to 25 breaths/minute and oxygen consumptions from 0.5 L/minute to 4 L/minute. Tests were carried out at surface and pressure profiles ranging to 920 kPa(a) (81 meters of sea water, 266 feet of sea water). The root mean squared error (RMSE) of the single-compartment model was 2.4 percent-units of oxygen for the surface test with the 30% dosage setting but was otherwise below 1% unit. For the multicompartment model the RMSE was below 1% unit of oxygen for all tests. It is believed that these models will aid divers in operational settings and may constitute a helpful tool when developing semi-closed rebreathing apparatuses. PMID:26742257

  8. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand.

    PubMed

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G

    2013-01-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of "on demand" reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently "on demand".

  9. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater.

    PubMed

    Velling, Siiri; Mashirin, Alexey; Hellat, Karin; Tenno, Toomas

    2011-01-01

    A biochemical oxygen demand (BOD) biosensor for effective and expeditious BOD(7) estimations was constructed and the non-steady phase of the output signal was extensively studied. The modelling approach introduced allows response curve reconstruction and a curve fitting procedure of good quality, resulting in parameters indicating the relationship between response and organic substrate concentration and stability properties of the BOD biosensor. Also, the immobilization matrixes of different thicknesses were characterized to determine their suitability for bio-sensing measurements in non-stationary conditions, as well as for the determination of the mechanical durability of the BOD biosensor in time. The non-steady response of the experimental output of the BOD biosensor was fitted according to the developed model that enables to determine the stability of the biosensor output and dependency on biodegradable organic substrate concentration. The calibration range of the studied BOD biosensor in OECD synthetic wastewater was 15-110 mg O(2) L(-1). Repeatability tests showed relative standard deviation (RSD) values of 2.8% and 5.8% for the parameter τ(d), characterizing the transient output of the amperometric oxygen sensor in time, and τ(s), describing the dependency of the transient response of the BOD biosensor on organic substrate concentration, respectively. BOD biosensor experiments for the evaluation of the biochemical oxygen demand of easily degradable and refractory municipal wastewater showed good concurrence with traditional BOD(7) analysis.

  10. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    PubMed

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration. PMID:27026547

  11. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    PubMed

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  12. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  13. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand

    NASA Astrophysics Data System (ADS)

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G.

    2012-12-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''.Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that

  14. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  15. Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes.

    PubMed

    Ivandini, Tribidasari A; Harmesa; Saepudin, Endang; Einaga, Yasuaki

    2015-01-01

    A gold nanoparticle modified boron-doped diamond electrode was developed as a transducer for biochemical oxygen demand (BOD) measurements. Rhodotorula mucilaginosa UICC Y-181 was immobilized in a sodium alginate matrix, and used as a biosensing agent. Cyclic voltammetry was applied to study the oxygen reduction reaction at the electrode, while amperometry was employed to detect oxygen, which was not consumed by the microorganisms. The optimum waiting time of 25 min was observed using 1-mm thickness of yeast film. A comparison against the system with free yeast cells shows less sensitivity of the current responses with a linear dynamic range (R(2) = 0.99) of from 0.10 mM to 0.90 mM glucose (equivalent to 10 - 90 mg/L BOD) with an estimated limit of detection of 1.90 mg/L BOD. However, a better stability of the current responses could be achieved with an RSD of 3.35%. Moreover, less influence from the presence of copper ions was observed. The results indicate that the yeast-immobilized BOD sensors is more suitable to be applied in a real condition.

  16. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  17. The chemical effects of auroral oxygen precipitation at Jupiter

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Eisenhower, G. M.

    1992-01-01

    A numerical model of the auroral ionosphere and thermosphere of Jupiter, which includes odd oxygen species, is presented. Density profiles of neutral species O, OH, and H2O and the ion species H2(+), H3(+), H(+), H2O(+), H3O(+), O(+), and OH(+) are calculated. The total neutral odd oxygen density is found to be about 10 exp 5/cu cm near the auroral ionosphere peak. The major ionospheric ion, H(+) reacts rapidly with both O and H2O and the presence of these species in the model calculations significantly reduces the H(+) density and thus the electron density. The chemical lifetime against reaction of H(+) with odd oxygen is about 1000 s near the peak, whereas the radiative recombination lifetime is roughly 10,000 s.

  18. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  19. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes.

    PubMed

    Blakeman, Thomas C; Rodriquez, Dario; Britton, Tyler J; Johannigman, Jay A; Petro, Michael C; Branson, Richard D

    2016-05-01

    Oxygen cylinders are heavy and present a number of hazards, and liquid oxygen is too heavy and cumbersome to be used in far forward environments. Portable oxygen concentrators (POCs) and chemical oxygen generators (COGs) have been proposed as a solution. We evaluated 3 commercially available POCs and 3 COGs in a laboratory setting. Altitude testing was done at sea level and 8,000, 16,000, and 22,000 ft. Temperature extreme testing was performed after storing devices at 60°C and -35°C for 24 hours. Mean FIO2 decreased after storage at -35°C with Eclipse and iGo POCs and also at the higher volumes after storage at 60°C with the Eclipse. The iGo ceased to operate at 16,000 ft, but the Eclipse and Saros were unaffected by altitude. Oxygen flow, duration of operation, and total oxygen volume varied between COGs and within the same device type. Output decreased after storage at -35°C, but increased at each altitude as compared to sea level. This study showed significant differences in the performance of POCs and COGs after storage at temperature extremes and with the COGs at altitude. Clinicians must understand the performance characteristics of devices in all potential environments. PMID:27168568

  20. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  1. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor.

    PubMed

    Chang, In Seop; Jang, Jae Kyung; Gil, Geun Cheol; Kim, Mia; Kim, Hyung Joo; Cho, Byung Won; Kim, Byung Hong

    2004-01-15

    A mediator-less microbial fuel cell (MFC) was used as a biochemical oxygen demand (BOD) sensor in an amperometric mode for real-time wastewater monitoring. At a hydraulic retention time of 1.05 h, BOD values of up to 100 mg/l were measured based on a linear relationship, while higher BOD values were measured using a lower feeding rate. About 60 min was required to reach a new steady-state current after the MFCs had been fed with different strength artificial wastewaters (Aws). The current generated from the MFCs fed with AW with a BOD of 100 mg/l was compared to determine the repeatability, and the difference was less than 10%. When the MFC was starved, the original current value was regained with a varying recovery time depending on the length of the starvation. During starvation, the MFC generated a background level current, probably due to an endogenous metabolism.

  2. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River.

    PubMed

    Er, Li; Xiangying, Zeng

    2014-01-01

    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models. PMID:25026574

  3. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD.

  4. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. PMID:21645736

  5. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation.

  6. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation. PMID:25446719

  7. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand.

    PubMed

    Chee, Gab-Joo; Nomura, Yoko; Ikebukuro, Kazunori; Karube, Isao

    2005-07-15

    The photocatalytic biosensor of flow system using semiconductor TiO2 was developed to evaluate biochemical oxygen demand (BOD) levels in river water. Photocatalysis of sample was carried out in a photoreactor with TiO2 and a 6W black-light blue fluorescent tube as light source. Sample from a photoreactor outlet was measured by an oxygen electrode with a biofilm. The sensor response of photocatalytic biosensor was between 5 and 10 min depending on concentration of biochemical in the samples. At BOD of 1 mgl-1, the sensor response increased 1.33-fold in comparison with that without photocatalysis. The degradation of tannic acid and humic acid with photocatalysis were 51.8 and 38.4%, respectively. Gum arabic and linear alkylbenzene sulfonate (LAS) were degraded a little, but gave the responses of more than double to the sensor. Free radicals yielded by photocatalysis in a photoreactor did not affect the sensor response because their lifetime is extremely short. Fairly good correlation (r=0.983) between the sensor method and the conventional method was obtained for test samples. This biosensor using photocatalytic pretreatment improved the sensitivity.

  8. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  9. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.

    PubMed

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-02-19

    A study coupling sedimentcore incubation and microelectrode measurement was performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19-1.41 g/(m²·d) with an average of 0.62 g/(m²·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15-1.38 g/(m²·d) with an average of 0.51 g/(m²·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R² = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water.

  10. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  11. Influence of oxygen on the chemical stage of radiobiological mechanism

    NASA Astrophysics Data System (ADS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  12. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  13. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  14. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and

  15. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent.

    PubMed

    Huddleston, G M; Gillespie, W B; Rodgers, J H

    2000-02-01

    This study evaluated the effectiveness of constructed wetlands for tertiary treatment of a petroleum refinery effluent. Specific performance objectives were to decrease 5-day biochemical oxygen demand (BOD(5)) and ammonia by at least 50% and to reduce toxicity associated with this effluent. Two bench-scale wetlands (replicates) were constructed in a greenhouse to provide tertiary treatment of effluent samples shipped from the refinery to the study site. Integrated wetland features included Typha latifolia Linnaeus planted in low organic (0.2%), sandy sediment, 48-h nominal hydraulic retention time, and 15-cm overlying water depth. Targeted constituents and aqueous toxicity were monitored in wetland inflows and outflows for 3 months. Following a 2 to 3-week stabilization period, effective and consistent removal of BOD(5) and ammonia (as NH(3)-N) from the effluent was observed. Average BOD(5) removal was 80%, while NH(3)-N decreased by an average of 95%. Survival of Pimephales promelas Rafinesque and Ceriodaphnia dubia Richard (7-day, static, renewal exposures) increased by more than 50% and 20%, respectively. Reproduction of C. dubia increased from zero in undiluted wetland inflow to 50% of controls in undiluted wetland outflow. This study demonstrated the potential for constructed wetlands to decrease BOD(5), ammonia, and toxicity in this refinery effluent.

  16. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. PMID:24856922

  17. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand.

    PubMed

    Casey, Darren P; Joyner, Michael J

    2012-12-15

    Hypoxia can have profound influences on the circulation. In humans, acute exposure to moderate hypoxia has been demonstrated to result in vasodilatation in the coronary, cerebral, splanchnic and skeletal muscle vascular beds. The combination of submaximal exercise and hypoxia produces a 'compensatory' vasodilatation and augmented blood flow in contracting skeletal muscles relative to the same level of exercise under normoxic conditions. This augmented vasodilatation exceeds that predicted by a simple sum of the individual dilator responses to hypoxia alone and normoxic exercise. Additionally, this enhanced hypoxic exercise hyperaemia is proportional to the hypoxia-induced fall in arterial oxygen (O(2)) content, thus preserving muscle O(2) delivery and ensuring it is matched to demand. Several vasodilator pathways have been proposed and examined as likely regulators of skeletal muscle blood flow in response to changes in arterial O(2) content. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the compensatory vasodilatation observed during hypoxic exercise in humans. Along these lines, this review will highlight the interactions between various local metabolic and endothelial derived substances that influence vascular tone during hypoxic exercise.

  18. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications.

  19. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement.

    PubMed

    Liu, Changyu; Ma, Chao; Yu, Dengbin; Jia, Jianbo; Liu, Ling; Zhang, Bailin; Dong, Shaojun

    2011-01-15

    To improve the practicability of rapid biochemical oxygen demand (BOD) method, we proposed a stable BOD sensor based on immobilizing multi-species BODseed for wastewater monitoring in the flow system. The activation time of the biofilm was greatly shortened for the biofilm prepared by BODseed in the organic-inorganic hybrid material. Some influence factors such as temperature, pH, and concentration of phosphate buffer solution (PBS) were investigated in detail in which high tolerance to environment was validated for the BOD sensor permitted a wide pH and PBS concentration ranges. The minimum detectable BOD was around 0.5 mg/l BOD under the optimized 1.0 mg/ml BODseed immobilized concentration. The as-prepared BOD sensor exhibited excellent stability and reproducibility for different samples. Furthermore, the as-prepared BOD biosensor displayed a notable advantage in indiscriminate biodegradation to different organic compounds and their mixture, similar to the character of conventional BOD(5) results. The results of the BOD sensor method are well agreed with those obtained from conventional BOD(5) method for wastewater samples. The proposed rapid BOD sensor method should be promising in practical application of wastewater monitoring.

  20. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers.

    PubMed

    Chee, Gab-Joo

    2013-12-15

    Five microorganisms were used to construct a biosensor for the evaluation of low biochemical oxygen demand (BOD) in rivers. Characterization and comparison of BOD biosensors were performed using two standard solutions: glucose and glutamic acid (GGA) and artificial wastewater (AWW). Pseudomonas putida SG10 demonstrated the best response when using AWW. Trichosporon cutaneum IFO10466, however, had an extremely poor response. When evaluating the biosensor response to each component of AWW, all of the microorganisms except T. cutaneum displayed the highest response to tannic acid. In a comparison of the two standard solutions for all the microorganisms, the biosensor responses of GGA were approximately three times higher than those of AWW were. In the BOD determination of environmental samples, the biosensor BOD values evaluated using AWW were slightly lower or equivalent to BOD5 values, whereas the biosensor BOD values evaluated using GGA were considerably lower. These results suggest that GGA is suitable for the detection of high BOD in industrial wastewaters and factory effluents, while AWW is suitable for the detection of low BOD in rivers.

  1. Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor.

    PubMed

    Kim, Mia; Hyun, Moon Sik; Gadd, Geoffrey M; Kim, Gwang Tae; Lee, Sang-Joon; Kim, Hyung Joo

    2009-04-01

    A membrane-electrode assembly (MEA) was applied to a microbial fuel cell (MFC) type biological oxygen demand (BOD) sensor and the performance of the sensor was assessed. To establish the optimal conditions for MEA fabrication, platinum-catalysed carbon cloth cathodic electrodes were assembled with cation exchange membranes under various temperatures and pressures. By analysing coulombs from the MFCs, it could be determined that the optimal hot-pressing conditions were 120 degrees C and 150 kg cm(-2) for 30 s. When the MEA fabricated under optimal conditions and an air cathode were utilized for the construction of the MFC type BOD sensor, coulombs increased to 4.65 C from 0.52 C and power increased to 69,080 mW m(-3) from 880 mW m(-3) (at a BOD concentration of 200 mg L(-1)), respectively, compared with the conventional MFC lacking a MEA. The increased power improved the performance of the MFC type BOD sensor: sensitivity increased from 1.2 x 10(-3) to 1.8 x 10(-2) C per mg L(-1) of BOD, with good linearity (r2 = 0.97) and over 97% repeatability. We conclude that the MEA can be successfully applied to MFCs to make them highly sensitive BOD sensors.

  2. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Eaton, R.; Zhang, B.; Bergthorson, J. M.; Ng, H. D.

    2012-03-01

    In this study, detonation cell sizes of methanol-oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol-oxygen mixtures, the results are compared with those of hydrogen-oxygen and methane-oxygen mixtures. Based on the cell size comparison, it is shown that methanol-oxygen is more detonation sensitive than methane-oxygen but less sensitive than hydrogen-oxygen.

  3. Quantitative determination of oxygen yield in a chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Kendrick, Kip R.; Helms, Charles A.; Quillen, Brian; Copland, R. J.

    1998-05-01

    With the advent of the Airborne Laser program, the emphasis of chemical oxygen-iodine laser (COIL) research has shifted toward improving the overall efficiency. A key component of COIL is the singlet-oxygen generator (SOG). To asses the efficiency of the SOG an accurate method of determining the yield of O2((alpha) 1(Delta) g),[O2((alpha) 1(Delta) g)]/[O2(total)] where [O2(total)]equals[O2((alpha) 1(Delta) g)]+[O2(X3(Sigma) g-)], has been developed. Absorption measurements of ground-state oxygen utilizing the magnetic-dipole transition, O2(X3(Sigma) g-) at 763 nm, have been obtained using a diode laser in conjunction with a multiple-pass Herriot-cell on a 10 kW class supersonic SOIL (RADICL). When RADICL is configured with a 0.35' throat, 15' diskpack, and a medium volume transition duct, with a diluent ratio (He:O2) of 3:1, the yield of O2((alpha) 1(Delta) g) in the diagnostic duct is 0.41 +/- 0.02.

  4. XPS chemical analysis of tholins: the oxygen contamination

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Jomard, F.; Vigneron, J.; Cernogora, G.

    2013-12-01

    In Titan's atmosphere, solid organic aerosols are initiated in the upper atmosphere by the photo-dissociation and photo-ionization of N2 and CH4. In order to simulate this complex chemistry several experimental setups have been built, among them plasma experiments. The aerosol analogues produced in such plasma discharges contain oxygen, as a few percents of the elemental composition, despite the absence of oxygen source in the reactive medium [1]. The present study aims at studying the origin of such systematic oxygen incorporation in tholins. A low pressure (0.9mbar) RF CCP discharge is used described in [2]. Gas mixtures of N2 and CH4 (from 1 to 10% of CH4) are injected continuously. The plasma discharge leads to the production of analogues of Titan's atmospheric aerosols: both as grains in the volume [1] and as thin films on the surface of the reactor [3]. SiO2 substrates of 1cm diameter and 1mm thickness are placed on the grounded electrode of the discharge. Organic films are deposited during 2 hours in order to have films thickness less than 1μm. After the two hours, samples are recovered at ambient air for ex-situ analysis. Two complementary analyses are performed to analyse the thin film chemical composition: XPS and SIMS, in order to probe both the surface and depth profile. References [1] Sciamma-O'brien E., Carrasco N., Szopa C., Buch A., Cernogora G. Icarus 209, 2 (2010) 704-714 [2] Alcouffe G., Cavarroc M., Cernogora G., Ouni F., Jolly A., Boufendi L., Szopa C. Plasma Sources Science and Technology 19, 1 (2010) 015008 (11pp) [3] Mahjoub A., Carrasco N., Dahoo P.-R., Gautier T., Szopa C., Cernogora G. Icarus 221, 2 (2012) 670-677.

  5. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  6. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  7. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  8. ENHANCED EXTERNAL COUNTERPULSATION REDUCES INDICES OF CENTRAL BLOOD PRESSURE AND MYOCARDIAL OXYGEN DEMAND IN PATIENTS WITH LEFT VENTRICULAR DYSFUNCTION

    PubMed Central

    Beck, Darren T.; Casey, Darren P.; Martin, Jeffrey S.; Sardina, Paloma D.; Braith, Randy W.

    2015-01-01

    Enhanced external counterpulsation (EECP) therapy decreases angina episodes and improves quality of life in patients with left ventricular dysfunction (LVD). However, the underlying mechanisms relative to the benefits of EECP therapy in patients with LVD have not been fully elucidated. The purpose of this study was to investigate the effects of EECP on indices of central hemodynamics, aortic pressure wave reflection characteristics and estimates of LV load and myocardial oxygen demand in patients with LVD. Patients with chronic stable angina and left ventricular ejection fraction (LVEF) <40%, but > 30%, were randomized to either an EECP (LVEF=35.1±4.6%; n=10) or sham-EECP (LVEF=34.3±4.2%; n=7) group. Pulse wave analysis (PWA) of the central aortic pressure waveform (AoPW) and LV function were evaluated by applanation tonometry before and after 35 1-hr sessions of EECP or Sham EECP. EECP therapy was effective in reducing indices of left ventricular wasted energy (LVEw) and myocardial oxygen demand (TTI) by 25% and 19%, respectively. In addition, indices of coronary perfusion pressure (DTI) and subendocardial perfusion (SEVR) were increased by 9% and 30% after EECP, respectively. Our data indicate that EECP may be useful as adjuvant therapy for improving functional classification in heart failure patients through reductions in central blood pressure, aortic pulse pressure, wasted left ventricular energy, and myocardial oxygen demand which suggests improvements in ventricular-vascular interactions. PMID:25676084

  9. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    PubMed

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  10. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  11. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  12. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  13. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models

    PubMed Central

    Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K.

    2016-01-01

    The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement. PMID:27219067

  14. Chemical oxygen iodine laser (COIL) technology and development

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Truesdell, Keith A.

    2004-09-01

    In the late 1960's researchers realized that producing a population inversion in a moving medium could be used to generate high-energy laser beams. The first lasers to scale to the 10 kW size with good beam quality were supersonic flows of N2 - CO2, emitting radiation from the CO2 at 10.6 microns. In the 1970's gas dynamic CO2 lasers were scaled to hundreds of kilowatts and engineered into a KC-135 aircraft. This aircraft (The Airborne Laser Laboratory) was used to shoot down Sidewinder AIM-9B missiles in the early 1980"s. During this same time period (1970-1990) hydrogen fluoride and deuterium fluoride lasers were scaled to the MW scale in ground-based facilities. In 1978, the Iodine laser was invented at the Air Force Research Laboratory and scaled to the 100 kW level by the early 1990"s. Since the 60s, the DOD Chemical Laser development efforts have included CO2, CO, DF, HF, and Iodine. Currently, the DOD is developing DF, HF, and Iodine lasers, since CO2 and CO have wavelengths and diffraction limitations which make them less attractive for high energy weapons applications. The current military vision is to use chemical lasers to prove the principles and field ground and air mounted laser systems while attempting to develop weight efficient solid-state lasers at the high power levels for use in future Strategic and Tactical situations. This paper describes the evolution of Chemical Oxygen Iodine Lasers, their selection for use in the Airborne Laser (ABL), and the Advanced Tactical Laser (ATL). COIL was selected for these early applications because of its power scalability, its short wavelength, its atmospheric transmittance, and its excellent beam quality. The advantages and challenges are described, as well as some of the activities to improve magazine depth and logistics supportability. COIL lasers are also potentially applicable to mobile ground based applications, and future space based applications, but challenges exist. In addition, COIL is being

  15. Drag reducing chemical enables increased sea water injection without increasing the oxygen corrosion rate

    SciTech Connect

    McMahon, A.J.; Smith, P.S.; Lee, Y.

    1997-08-01

    Water soluble drag reducer chemicals have enabled significant increases in flow rates in many oilfield water injection systems. In some cases there is concern that this could lead to increased oxygen corrosion whenever the dissolved oxygen concentration strays above a typical injection target such as 20 ppb O{sub 2}. The effect of a chemical drag reducer on oxygen corrosion of carbon steel was examined in a large scale flow loop simulating a sea water injection line. Drag reduction (up to 48%) matched corrosion reduction (up to 39%). This means that drag reducer has a self compensating effect on oxygen corrosion: it permits higher flow rates without increasing the oxygen corrosion rate.

  16. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  17. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Federal Aviation Administration 14 CFR Part 25 RIN 2120-AK14 Requirements for Chemical Oxygen Generators... requirements for chemical oxygen generators installed on transport category airplanes so the generators are... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well...

  18. 76 FR 12556 - Airworthiness Directives; Various Transport Category Airplanes Equipped With Chemical Oxygen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034... Category Airplanes Equipped With Chemical Oxygen Generators Installed in a Lavatory AGENCY: Federal... affected airplanes identified above. This AD requires modifying the chemical oxygen generators in...

  19. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  20. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    PubMed

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  1. On a new method for chemical production of iodine atoms in a chemical oxygen-iodine laser

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, A I; Sorokin, Vadim N

    2004-11-30

    A new method is proposed for generating iodine atoms in a chemical oxygen-iodine laser. The method is based on a branched chain reaction of dissociation of the alkyl iodide CH{sub 3}I in a medium of singlet oxygen and chlorine. (active media)

  2. Using electrochemistry - total internal refection imaging ellipsometry to monitor biochemical oxygen demand on the surface tethered polyelectrolyte modified electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Meng; Lv, Bei'er; Chen, YanYan; Ma, Hongwei; Jin, Gang

    2015-03-01

    Our previous work has proposed an electrochemistry - total internal reflection imaging ellipsometry (EC-TIRIE) technique to observe the dissolved oxygen (DO) reduction on Clark electrode since high interface sensitivity makes TIRIE a useful tool to study redox reactions on the electrode surface. To amplify the optical signal noise ratio (OSNR), a surface tethered weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random- 2-hydroxyethylmethacrylate) (abbreviated as carboxylated poly(OEGMA-r-HEMA)), has been introduced on the electrode surface. Since Clark electrode is widely used in biochemical oxygen demand (BOD) detection, we use this technique to measure BOD in the sample. The dynamic range of the system is from 0 ˜ 25 mg/L. Two samples have been measured. Compared with the conventional method, the deviation of both optical and electrical signals are less than 10%.

  3. Effect of weaning on oxygen consumption and cardiovascular function. A comparison of continuous flow and demand valve systems.

    PubMed

    Ip Yam, P C; Appadurai, I R; Kox, W J

    1994-05-01

    This study compared the continuous positive airways pressure mode of the demand valve system of the Engstrom Erica ventilator with a custom-made continuous flow continuous positive airways pressure system in terms of the oxygen cost of breathing during weaning from mechanical ventilation. Ten consecutive patients in our intensive care unit, with thermodilution pulmonary artery flotation catheters in situ, were studied. Measurements were carried out under steady-state conditions, initially when breathing spontaneously with continuous positive airways pressure via the Erica and then when transition to the continuous flow system was achieved. There were no significant differences between the two methods of providing continuous positive airways pressure in terms of the measured and derived physiological variables studied, with the exception of oxygen consumption. Oxygen consumption with the continuous flow system was significantly less than with the Erica (142.8 (SEM 31.4) ml.min-1.m-2 compared with 165.8 (SEM 30.5) ml.min-1.m-2, p < 0.05). This difference reflects the reduced oxygen cost of breathing when the custom-made continuous flow system was used during weaning.

  4. MICREDOX--development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent.

    PubMed

    Pasco, Neil; Baronian, Keith; Jeffries, Cy; Webber, Judith; Hay, Joanne

    2004-10-15

    Biochemical oxygen demand (BOD) is an international regulatory environmental index for monitoring organic pollutants in wastewater and the current legislated standard test for BOD monitoring requires 5 days to complete (BOD5 test). We are developing a rapid microbial technique, MICREDOX, for measuring BOD by eliminating oxygen and, instead, quantifying an equivalent biochemical co-substrate demand, the co-substrate being a redox mediator. Elevated concentrations of Proteus vulgaris, either as free cells or immobilised in Lentikat disks, were incubated with an excess of redox mediator (potassium hexacyanoferrate(III)) and organic substrate for 1h at 37 degrees C without oxygen. The addition of substrate increased the catabolic activity of the microorganisms and the accumulation of reduced mediator, which was subsequently re-oxidised at a working electrode generating a current quantifiable by a coulometric transducer. The recorded currents were converted to their BOD5 equivalent with the only assumption being a fixed conversion of substrate and known stoichiometry. Measurements are reported both for the BOD5 calibration standard solution (150 mg l(-1) glucose, 150 mg l(-1) glutamic acid) and for filtered effluent sampled from a wastewater treatment plant. The inclusion of a highly soluble mediator in place of oxygen facilitated a high ferricyanide concentration in the incubation, which in turn permitted increased concentrations of microorganisms to be used. This substantially reduced the incubation time, from 5 days to 1h, for the biological oxidation of substrates equivalent to those observed using the standard BOD5 test. Stoichiometric conversion efficiencies for the oxidation of the standard substrate by P. vulgaris were typically 60% for free cells and 35-50% for immobilised cells.

  5. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  6. Oxygenated Organic Chemicals in the Pacific Troposphere: Sources and Chemical Consequences

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Singh, H. B.; Fried, A.; Evans, M. J.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R. W.; Sachse, G. W.

    2002-12-01

    Airborne measurements of a large number of oxygenated organics were carried out in the Pacific troposphere (to 12 km) in the Spring of 2001 (Feb. 24-April 10). Gas chromatography measurements include acetaldehyde, propionaldehyde, acetone, methylethyl ketone, methanol, ethanol, PANs, and organic nitrates. Independent measurements of formaldehyde, peroxides, and tracers were simultaneously recorded. Highly polluted as well as surprisingly clean air masses were sampled. Oxygenated organics were abundant in the clean troposphere and were also greatly enhanced in the outflow regions from Asia. Carbonyls sequester NOx throughout the troposphere and are a reactive intermediate responsible for a large amount of formaldehyde. It is difficult to explain the large abundances of aldehydes in the background troposphere, and we examine the chemical repercussions of these high concentrations. In clean air, the reaction pathways from acetaldehyde to formaldehyde take more time, and this is reflected in a smaller sampled correlation of their concentrations. The atmospheric behavior of acetone, methylethyl ketone, and methanol is generally indicative of their common terrestrial sources. Including these observed high concentrations of aldehydes somewhats improve simulated HOx chemistry. These data are being analyzed statistically and with photochemical models and results will be presented, particularly as they describe source of the ubiquitous acetaldehyde.

  7. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  8. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    PubMed

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. PMID:27381169

  9. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    PubMed

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology.

  10. Chemical treatment makes aromatic polyamide fabric fireproof in oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Cardwell, R. O.; Holsten, J. R.; Rives, J. W.

    1970-01-01

    Organic fabric is reacted first with vapors of a phosphorus oxychloride, phosphorus oxybromide solution and then with bromine vapor, after neutralization it is flameproof in pure oxygen atmosphere. Soaking the fabric with mixture of ammonium polyphosphates increases flame resistance, but the polyphosphates are leached out during laundering.

  11. Control of voluntary feed intake in fish: a role for dietary oxygen demand in Nile tilapia (Oreochromis niloticus) fed diets with different macronutrient profiles.

    PubMed

    Saravanan, S; Geurden, I; Figueiredo-Silva, A C; Kaushik, S J; Haidar, M N; Verreth, J A J; Schrama, J W

    2012-10-28

    It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed intake (FI) in fish is limited by the maximal physiological capacity of oxygen use (i.e. an 'oxystatic control of FI in fish'). This implies that fish will adjust FI when fed diets differing in oxygen demand, resulting in identical oxygen consumption. Therefore, FI, digestible energy (DE) intake, energy balance and oxygen consumption were monitored at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting macronutrient composition. Diets were formulated in a 2 × 2 factorial design in order to create contrasts in oxygen demand: two ratios of digestible protein (DP):DE ('high' v. 'low'); and a contrast in the type of non-protein energy source ('starch' v. 'fat'). Triplicate groups of tilapia were fed each diet twice daily to satiation for 48 d. FI (g DM/kg(0·8) per d) was significantly lower (9·5%) in tilapia fed the starch diets relative to the fat diets. The DP:DE ratio affected DE intakes (P < 0·05), being 11% lower with 'high' than with 'low' DP:DE ratio diets, which was in line with the 11·9% higher oxygen demand of these diets. Indeed, DE intakes of fish showed an inverse linear relationship with dietary oxygen demand (DOD; R 2 0·81, P < 0·001). As hypothesised ('oxystatic' theory), oxygen consumption of fish was identical among three out of the four diets. Altogether, these results demonstrate the involvement of metabolic oxygen use and DOD in the control of FI in tilapia.

  12. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    SciTech Connect

    Kasinski, Slawomir Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  13. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips

    PubMed Central

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin “CJ”; van Dam, R. Michael

    2015-01-01

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of < 90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [18F]FDG reliably. PMID:22825699

  14. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips.

    PubMed

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin C J; van Dam, R Michael

    2012-09-21

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of <90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [(18)F]FDG reliably.

  15. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors.

    PubMed

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-02-01

    Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m(3)/h. Using Darcy's equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7-2.88-fold. PMID:24268917

  16. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax)

    PubMed Central

    Ozolina, Karlina; Shiels, Holly A.; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  17. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    PubMed

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  18. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. PMID:27233761

  19. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases.

  20. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom

  1. Limited influence of oxygen on the evolution of chemical diversity in metabolic networks.

    PubMed

    Takemoto, Kazuhiro; Yoshitake, Ikumi

    2013-01-01

    Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example). However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity) between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods. PMID:24958261

  2. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve asmore » guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  3. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  4. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  5. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    SciTech Connect

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  6. Realization of an advanced nozzle concept for compact chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Singhal, Gaurav; Subbarao, P. M. V.; Rajesh, R.; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2007-04-01

    Conventional supersonic chemical oxygen-iodine lasers (SCOIL) are not only low-pressure systems, with cavity pressure of 2-3 Torr and Mach number of approximately 1.5, but also are high-throughput systems with a typical laser power per unit evacuation capacity of nearly 1 J/l, thus demanding high capacity vacuum systems which mainly determine the compactness of the system. These conventional nozzle-based systems usually require a minimum of a two-stage ejector system for realization of atmospheric pressure recovery in a SCOIL. Typically for a 500 W class SCOIL, a first stage requires a motive gas flow (air) of 120 gm/s to entrain a laser gas flow of 3 g/s and is capable of achieving the pressure recovery in the range of 60-80 Torr. On the other hand, the second stage ejector requires 4.5 kg/s of motive gas (air) to achieve atmospheric pressure recovery. An advanced nozzle, also known as ejector nozzle, suitable for a 500 W-class SCOIL employing an active medium flow of nearly 12 g/s, has been developed and used instead of a conventional slit nozzle. The nozzle has been tested in both cold as well as hot run conditions of SCOIL, achieving a typical cavity pressure of nearly 10 Torr, stagnation pressure of approximately 85 Torr and a cavity Mach number of 2.5. The present study details the gas dynamic aspects of this ejector nozzle and highlights its potential as a SCOIL pressure recovery device. This nozzle in conjunction with a diffuser is capable of achieving pressure recovery equivalent to a more cumbersome first stage of the pressure recovery system used in the case of a conventional slit nozzle-based system. Thus, use of this nozzle in place of a conventional slit nozzle can achieve atmospheric discharge using a single stage ejector system, thereby making the pressure recovery system quite compact.

  7. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  8. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    PubMed

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  9. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.

    PubMed

    Hsieh, Min-Chi; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) have attracted considerable attention as potential biosensors. A MFC biosensor for rapid measurement of biochemical oxygen demand (BOD) has been recently studied. However, a standardized bacterial mixture inoculated in the MFC biosensor for BOD measurement is unavailable. Thus, the commercial application of a MFC biosensor is limited. In this study, a mediator-less MFC biosensor inoculated with known mixed cultures to quickly determine BOD concentration was tested. Optimal external resistance, operating temperature and measurement time for the MFC biosensor were determined to be 5000 omega, 35 degrees C and 12h, respectively. A good relationship between BOD concentration and voltage output, high reproducibility and long-term stability for the MFC biosensor was observed. The newly developed MFC biosensor was inoculated with a mixture of six bacterial strains (Thermincola carboxydiphila, Pseudomonas aeruginosa, Ochrobactrum intermedium, Shewanella frigidimarina, Citrobacter freundii and Clostridium acetobutylicum) capable of degrading complex organic compounds and surviving toxic conditions. The described MFC biosensor was able to successfully measure BOD concentrations below 240 mg L(-1) in real wastewater samples. PMID:25145173

  10. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor

    PubMed Central

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN− in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  11. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  12. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system

    NASA Astrophysics Data System (ADS)

    Xin, Lingling; Wang, Xudong; Guo, Guangmei; Wang, Xiaoru; Chen, Xi

    2007-09-01

    An on-line roboticized apparatus, including an optical biosensing film with an automatic flow sampling system, has been developed for biochemical oxygen demand (BOD) determination of seawater. The sensing film employed in the apparatus consisted of an organically modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate. Three species of microorganism cultivated from seawater were immobilized in an ORMOSIL-polyvinyl alcohol matrix. Possible factors affecting BOD determination were studied, including sampling frequency, temperature, pH and sodium chloride concentration. Based on measurements of the linear fluctuant coefficients and the reproducibility of its response to seawater, the BOD apparatus showed the advantages of high veracity and short response time. Generally, the linear fluctuant coefficient (R2) in the BOD range 0.2-40 mg l-1 was 0.9945 when using a glucose/glutamate (GGA) BOD standard solution. A reproducible response for the BOD sensing film of within ±2.8% could be obtained in the 2 mg l-1 GGA solution. The BOD apparatus was applied to the BOD determination of seawater, and the values estimated by this biosensing apparatus correlated well with those determined by the conventional 5 day BOD (BOD5) test.

  13. Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measurements in dairy wastewater.

    PubMed

    Kibena, Elo; Raud, Merlin; Jõgi, Eerik; Kikas, Timo

    2013-04-01

    Although the long incubation time of biochemical oxygen demand (BOD7) measurements has been addressed by the use of microbial biosensors, the resulting sensor-BOD values gained from the measurements with specific industrial wastewaters still underestimates the BOD value of such samples. This research aims to provide fast and more accurate BOD measurements in the dairy wastewater samples. Unlike municipal wastewater, wastewater from the dairy industry contains many substrates that are not easily accessible to a majority of microorganisms. Therefore, a bacterial culture, Microbacterium phyllosphaerae, isolated from dairy wastewater was used to construct a semi-specific microbial biosensor. A universal microbial biosensor based on Pseudomonas fluorescens, which has a wide substrate spectrum but is nonspecific to dairy wastewater, was used as a comparison. BOD biosensors were calibrated with OECD synthetic wastewater, and experiments with different synthetic and actual wastewater samples were carried out. Results show that the semi-specific M. phyllosphaerae-based microbial biosensor is more sensitive towards wastewaters that contain milk derivates and butter whey than the P. fluorescens-based biosensor. Although the M. phyllosphaerae biosensor underestimates the BOD7 value of actual dairy wastewaters by 25-32%, this bacterial culture is more suitable for BOD monitoring in dairy wastewater than P. fluorescens, which underestimated the same samples by 46-61%.

  14. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.

    PubMed

    Hsieh, Min-Chi; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) have attracted considerable attention as potential biosensors. A MFC biosensor for rapid measurement of biochemical oxygen demand (BOD) has been recently studied. However, a standardized bacterial mixture inoculated in the MFC biosensor for BOD measurement is unavailable. Thus, the commercial application of a MFC biosensor is limited. In this study, a mediator-less MFC biosensor inoculated with known mixed cultures to quickly determine BOD concentration was tested. Optimal external resistance, operating temperature and measurement time for the MFC biosensor were determined to be 5000 omega, 35 degrees C and 12h, respectively. A good relationship between BOD concentration and voltage output, high reproducibility and long-term stability for the MFC biosensor was observed. The newly developed MFC biosensor was inoculated with a mixture of six bacterial strains (Thermincola carboxydiphila, Pseudomonas aeruginosa, Ochrobactrum intermedium, Shewanella frigidimarina, Citrobacter freundii and Clostridium acetobutylicum) capable of degrading complex organic compounds and surviving toxic conditions. The described MFC biosensor was able to successfully measure BOD concentrations below 240 mg L(-1) in real wastewater samples.

  15. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen.

    PubMed

    Johns, James E; Alaboson, Justice M P; Patwardhan, Sameer; Ryder, Christopher R; Schatz, George C; Hersam, Mark C

    2013-12-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxidized graphene to diethyl zinc abstracts oxygen, creating mobile species that diffuse on the surface to form metal oxide clusters. This mechanism is corroborated with a combination of scanning probe microscopy, Raman spectroscopy, and density functional theory and can likely be generalized to a wide variety of related surface reactions on graphene.

  16. Test bed for a high throughput supersonic chemical oxygen - iodine laser

    SciTech Connect

    Singhal, Gaurav; Mainuddin; Rajesh, R; Varshney, A K; Dohare, R K; Kumar, Sanjeev; Singh, V K; Kumar, Ashwani; Verma, Avinash C; Arora, B S; Chaturvedi, M K; Tyagi, R K; Dawar, A L

    2011-05-31

    The paper reports the development of a test bed for a chemical oxygen - iodine laser based on a high throughput jet flow singlet oxygen generator (JSOG). The system provides vertical singlet oxygen extraction followed by horizontal orientation of subsequent subsystems. This design enables the study of flow complexities and engineering aspects of a distributed weight system as an input for mobile and other platform-mounted systems developed for large scale power levels. The system under consideration is modular and consists of twin SOGs, plenum and supersonic nozzle modules, with the active medium produced in the laser cavity. The maximal chlorine flow rate for the laser is {approx}1.5 mole s{sup -1} achieving a typical chemical efficiency of about 18%. (lasers)

  17. [Studying the influence of some reactive oxygen species on physical and chemical parameters of blood].

    PubMed

    Martusevich, A K; Martusevich, A A; Solov'eva, A G; Peretyagin, S P

    2014-01-01

    The aim of this work was to estimate the dynamics of blood physical and chemical parameters when blood specimens were processed by singlet oxygen in vitro. Our experiments were executed with whole blood specimens of healthy people (n=10). Each specimen was divided into five separate portions of 5 ml. The first portion was a control (without any exposures). The second one was processed by an oxygen-ozone mixture (at ozone concentration of 500 mcg/l, the third portion--by oxygen, and the fourth and fifth ones were processed by a gas mixture with singlet oxygen (50 and 100% of generator power). In blood samples after processing we studied the activity of lactate dehydrogenase, aldehyde dehydrogenase and superoxide dismutase, erythrocyte and plasma levels of glucose and lactate, acid-base balance and the partial pressure of gases in blood. It was found out, that blood processing by singlet oxygen leads to optimization of energy, detoxication and antioxidant enzymes functioning with changes in plasma and erythrocyte level of glucose and lactate, normalization of blood gases level and acid-base balance. Our results show, that the effect of singlet oxygen on enzyme activity is more pronounced than exposure to an oxygen-ozone gas mixture.

  18. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  19. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic Proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year and while the overall concentrations of DOC were several times higher in the southern two catchments, annual loading of DOC was on the same order for all three catchments, due to differences in discharge. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume älv was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply will be more stable throughout the year, and potentially have a lower bioavailability.

  20. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-06-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability.

  1. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.

  2. Oxygen and hydrogen effects on the chemical vapor deposition of aluminum nitride films

    SciTech Connect

    Aspar, B.; Armas, B.; Combescure, C. ); Figueras, A.; Rodriguez-Clemente, R. ); Mazel, A.; Kihn, Y.; Sevely, J. )

    1993-06-01

    Aluminum nitride has been obtained by chemical vapor deposition using AlCl[sub 3] and NH[sub 3] as precursors. Progressive introduction of N[sub 2]0 in the gas mixture has shown the possibility of inserting oxygen in the AlN lattice. This involves strong changes of surface morphology of the deposit and the formation of less-crystallized materials. When hydrogen is added to the gas mixture, these effects are reduced, Electron energy loss spectroscopy has shown that, in this case, oxygen is mainly concentrated on the external parts of AlN crystals, the structure of which has been found consistent with the wurtzite structure.

  3. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters.

    PubMed

    Rastogi, Shikha; Kumar, Anil; Mehra, N K; Makhijani, S D; Manoharan, A; Gangal, V; Kumar, Rita

    2003-01-01

    The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor. PMID:12445441

  4. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  5. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  6. Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response

    PubMed Central

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-01-01

    Determining the transient chemical properties of the intracellular environment can elucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms that enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier transform infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bond structures in their cellular water. We observed a sequence of well orchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses. PMID:19541631

  7. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  8. Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen.

    PubMed

    Müller-Breitkreutz, K; Mohr, H; Briviba, K; Sies, H

    1995-09-01

    Inactivation of viruses in blood plasma can be achieved by photodynamic procedures using methylene blue (MB) or other photoactive dyes. Singlet molecular oxygen (1O2) probably contributes to the virucidal effects of photosensitization. We report the inactivation of herpes simplex virus type 1 (HSV-1) and suid herpes virus type 1 (SHV-1) by chemically generated singlet oxygen, produced by thermal decomposition of the endoperoxide of 3,3'-(1,4-naphthylidene)dipropionate (NDPO2). We demonstrate that viruses can be inactivated by 1O2 generated by chemiexcitation in a reaction in the dark, even in the presence of human plasma. Virus inactivation in phosphate-buffered saline (PBS) was enhanced when water was replaced by deuterium oxide (D2O) and diminished when human plasma or quenchers (imidazole or histidine) were added. The singlet oxygen quenching activities of plasma, imidazole and histidine correlated with their inhibitory effects on virus inactivation. The production of 1O2 was assessed by an indicator reaction: the bleaching of p-nitrosodimethylaniline (RNO) with imidazole as 1O2 acceptor. Virus inactivation and singlet oxygen generation of NDPO2 were compared with those of MB/light-mediated photosensitization. Based on similar amounts of 1O2 generated by either procedure, virus inactivation by MB/light was more effective. Virus inactivation by MB/light was not affected by type I quenchers (e.g. mannitol), but was inhibited by human plasma or singlet oxygen quenchers. Furthermore, in D2O-based PBS, virus inactivation was more effective than that in H2O. These observations confirm that singlet oxygen is involved in virus inactivation by MB/light. Taken together, the results demonstrate that singlet oxygen produced by either procedure is virucidal. The enhanced effect of the photochemical procedure suggests that, in addition to type II, type I reactions and/or the binding affinity of the dye for the virus contribute to virus killing by MB/light.

  9. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    NASA Astrophysics Data System (ADS)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  10. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.

    PubMed

    Huang, H B; Aisyah, L; Ashman, P J; Leung, Y C; Kwong, C W

    2013-07-01

    Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800°C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800°C. A reaction temperature of 950°C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

  11. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning.

    PubMed

    Wang, Qiming; Gossweiler, Gregory R; Craig, Stephen L; Zhao, Xuanhe

    2014-09-16

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores--pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  12. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe

    2014-09-01

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  13. Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.

    2016-05-01

    Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.

  14. Chemical oxygen-iodine laser power generation with an off-axis hybrid resonator.

    PubMed

    Handke, Jürgen; Schall, Wolfgang O; Hall, Thomas; Duschek, Frank; Grünewald, Karin M

    2006-06-01

    A rectangular negative branch off-axis hybrid resonator was coupled to a 10 kW class chemical oxygen-iodine laser. Resonator setup and alignment turned out to be straightforward. The extracted power was 6.6 kW and reached approximately 70% of the power for an optimized stable resonator. The divergence of the emitted laser beam in the unstable direction was lower than two times the diffraction limit. Experimentally measured margins for mirror misalignment were found in close agreement with numerical calculations. PMID:16724146

  15. Unstable resonators of high-power chemical oxygen-iodine lasers

    SciTech Connect

    Savin, A V; Strakhov, S Yu; Druzhinin, S L

    2006-09-30

    Configurations of unstable resonators are considered depending on the basic parameters of a high-power chemical oxygen-iodine laser and the design of an unstable resonator is proposed which provides the compensation of the inhomogeneity of the small-signal gain downstream of the active medium, a high energy efficiency, and stability to intracavity aberrations. The optical scheme of this resonator is presented and its properties are analysed by simulating numerically the kinetics of the active medium and resonator itself in the diffraction approximation. (laser beams and resonators)

  16. Active-medium inhomogeneities and optical quality of radiation of supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Boreysho, A S; Druzhinin, S L; Lobachev, V V; Savin, A V; Strakhov, S Yu; Trilis, A V

    2007-09-30

    Optical inhomogeneities of the active medium of a supersonic chemical oxygen-iodine laser (COIL) and their effect on the radiation parameters are studied in the case when an unstable resonator is used. Classification of optical inhomogeneities and the main factors affecting the quality of COIL radiation are considered. The results of numerical simulation of a three-dimensional gas-dynamic active medium and an unstable optical resonator in the diffraction approximation are presented. The constraints in the fabrication of large-scale COILs associated with a deterioration of the optical quality of radiation are determined. (lasers)

  17. Adjustments of the oxygen diffusing capacity to energetic demands during the development of the quail (Coturnix coturnix japonica).

    PubMed

    Canals, M; Martinez, B B; Figueroa, D; Sabat, P

    2011-07-01

    One of the hypotheses that attempt to explain physiological limitations of energy budgets is the symmorphosis hypothesis, which proposes that if matching structures to functional needs were combined with the strict economy of energy and materials, the result would be an optimal organ design for the specific function it serves. Evidence in favor of symmorphosis in adults is as abundant as evidence against it, but the plasticity of some morphological traits may be dependent on the ontogenetic stage at which acclimation acts. Thus, here we studied the adjustment of structure and function in lungs at different stages of development in the quail Coturnix coturnix japonica under two thermal regimes. Our main results show that i) resting metabolic rate, maximum thermogenic oxygen consumption and oxygen diffusion capacity did not exhibit developmental plasticity for two thermal environments; and ii) oxygen diffusion capacity fully adjusted to resting metabolic rate and maximum oxygen consumption during development. C. coturnix has a low safety factor close to 1 which is consistent with the symmorphosis hypothesis.

  18. Renal Doppler Resistive Index as a Marker of Oxygen Supply and Demand Mismatch in Postoperative Cardiac Surgery Patients

    PubMed Central

    Corradi, Francesco; Brusasco, Claudia; Paparo, Francesco; Manca, Tullio; Santori, Gregorio; Benassi, Filippo; Molardi, Alberto; Gallingani, Alan; Ramelli, Andrea; Gherli, Tiziano; Vezzani, Antonella

    2015-01-01

    Background and Objective. Renal Doppler resistive index (RDRI) is a noninvasive index considered to reflect renal vascular perfusion. The aim of this study was to identify the independent hemodynamic determinants of RDRI in mechanically ventilated patients after cardiac surgery. Methods. RDRI was determined in 61 patients by color and pulse Doppler ultrasonography of the interlobar renal arteries. Intermittent thermodilution cardiac output measurements were obtained and blood samples taken from the tip of pulmonary artery catheter to measure hemodynamics and mixed venous oxygen saturation (SvO2). Results. By univariate analysis, RDRI was significantly correlated with SvO2, oxygen extraction ratio, left ventricular stroke work index, and cardiac index, but not heart rate, central venous pressure, mean artery pressure, pulmonary capillary wedge pressure, systemic vascular resistance index, oxygen delivery index, oxygen consumption index, arterial lactate concentration, and age. However, by multivariate analysis RDRI was significantly correlated with SvO2 only. Conclusions. The present data suggests that, in mechanically ventilated patients after cardiac surgery, RDRI increases proportionally to the decrease in SvO2, thus reflecting an early vascular response to tissue hypoxia. PMID:26605339

  19. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.

    PubMed

    Chang, Chia-Wen; Cheng, Yung-Ju; Tu, Melissa; Chen, Ying-Hua; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2014-10-01

    This paper reports a polydimethylsiloxane-polycarbonate (PDMS-PC) hybrid microfluidic device capable of performing cell culture under combinations of chemical and oxygen gradients. The microfluidic device is constructed of two PDMS layers with microfluidic channel patterns separated by a thin PDMS membrane. The top layer contains an embedded PC film and a serpentine channel for a spatially confined oxygen scavenging chemical reaction to generate an oxygen gradient in the bottom layer for cell culture. Using the chemical reaction method, the device can be operated with a small amount of chemicals, without bulky gas cylinders and sophisticated flow control schemes. Furthermore, it can be directly used in conventional incubators with syringe pumps to simplify the system setup. The bottom layer contains arrangements of serpentine channels for chemical gradient generation and a cell culture chamber in the downstream. The generated chemical and oxygen gradients are experimentally characterized using a fluorescein solution and an oxygen-sensitive fluorescent dye, respectively. For demonstration, a 48 hour cell-based drug test and a cell migration assay using human lung adenocarcinoma epithelial cells (A549) are conducted under various combinations of the chemical and oxygen gradients in the experiments. The drug testing results show an increase in A549 cell apoptosis due to the hypoxia-activated cytotoxicity of tirapazamine (TPZ) and also suggest great cell compatibility and gradient controllability of the device. In addition, the A549 cell migration assay results demonstrate an aerotactic behavior of the A549 cells and suggest that the oxygen gradient plays an essential role in guiding cell migration. The migration results, under combinations of chemokine and oxygen gradients, cannot be simply superposed with single gradient results. The device is promising to advance the control of in vitro microenvironments, to better study cellular responses under various

  20. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.

    PubMed

    Chang, Chia-Wen; Cheng, Yung-Ju; Tu, Melissa; Chen, Ying-Hua; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2014-10-01

    This paper reports a polydimethylsiloxane-polycarbonate (PDMS-PC) hybrid microfluidic device capable of performing cell culture under combinations of chemical and oxygen gradients. The microfluidic device is constructed of two PDMS layers with microfluidic channel patterns separated by a thin PDMS membrane. The top layer contains an embedded PC film and a serpentine channel for a spatially confined oxygen scavenging chemical reaction to generate an oxygen gradient in the bottom layer for cell culture. Using the chemical reaction method, the device can be operated with a small amount of chemicals, without bulky gas cylinders and sophisticated flow control schemes. Furthermore, it can be directly used in conventional incubators with syringe pumps to simplify the system setup. The bottom layer contains arrangements of serpentine channels for chemical gradient generation and a cell culture chamber in the downstream. The generated chemical and oxygen gradients are experimentally characterized using a fluorescein solution and an oxygen-sensitive fluorescent dye, respectively. For demonstration, a 48 hour cell-based drug test and a cell migration assay using human lung adenocarcinoma epithelial cells (A549) are conducted under various combinations of the chemical and oxygen gradients in the experiments. The drug testing results show an increase in A549 cell apoptosis due to the hypoxia-activated cytotoxicity of tirapazamine (TPZ) and also suggest great cell compatibility and gradient controllability of the device. In addition, the A549 cell migration assay results demonstrate an aerotactic behavior of the A549 cells and suggest that the oxygen gradient plays an essential role in guiding cell migration. The migration results, under combinations of chemokine and oxygen gradients, cannot be simply superposed with single gradient results. The device is promising to advance the control of in vitro microenvironments, to better study cellular responses under various

  1. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol.

    PubMed

    Lee, Jun Hyun; Jung, Mun Yhung

    2010-08-01

    Singlet oxygen quenching by synthetic antioxidants (BHA, BHT, and TBHQ) was directly observed by spectroscopic monitoring of luminescence at 1268 nm. The luminescence data showed unambiguous evidence of singlet oxygen quenching by synthetic phenolic antioxidants with the highest activity for TBHQ, followed by BHA and BHT. The protective activities of these synthetic antioxidants on alpha-terpinene oxidation with chemically-induced singlet oxygen under dark further confirmed their singlet oxygen quenching abilities. Total singlet oxygen quenching rate constants (k(r) + k(q)) of BHA, BHT, and TBHQ were determined in a system containing alpha-terpinene (as a singlet oxygen trap) and methylene blue (as a sensitizer) during light irradiation, and the values were 5.14 x 10(7), 3.41 x 10(6), and 1.99 x 10(8) M(-1)s(-1), respectively. After the k(r) value of alpha-terpinene was first determined, the k(r) values of the synthetic antioxidants were calculated by measuring their relative reaction rates with singlet oxygen to that of alpha-terpinene under the identical conditions. The k(r) values of the BHA, BHT, and TBHQ were 3.90 x 10(5), 1.23 x 10(5), and 2.93 x 10(6), M(-1)s(-1). The percent partition of chemical quenching over total singlet oxygen quenching (k(r) x 100)/(k(r) + k(q)) for BHA, BHT, and TBHQ were 0.76%, 3.61%, and 1.47%, respectively. The results showed that the synthetic antioxidants quench singlet oxygen almost exclusively through the mechanism of physical quenching. This represents the first report on the singlet oxygen quenching mechanism of these synthetic antioxidants. Practical Application: The synthetic antioxidants, especially TBHQ, have been found to have a strong singlet oxygen quenching ability. This article also clearly showed that singlet oxygen quenching by synthetic antioxidants was mainly by the physical quenching mechanism. The results suggested that these synthetic antioxidants, especially TBHQ, could be used practically for the protection

  2. The effect of oxygen on time-dependent bifurcations in the Belousov-Zhabotinsky oscillating chemical reaction in a batch.

    PubMed

    Kalishyn, Yevhen Yu; Rachwalska, Małgorzata; Khavrus, Vyacheslav O; Strizhak, Peter E

    2005-04-21

    We have studied the effect of oxygen on the time-dependent bifurcations of transient oscillations in the Belousov-Zhabotinsky oscillating chemical reaction in a closed system. Experiments show that oscillations disappear through different bifurcations depending on the oxygen concentration in gas phase above the reaction solution. Oscillations disappear through the time-delayed Hopf bifurcation at low oxygen concentrations, whereas at high oxygen concentrations they disappear through the time-dependent SNIPER (saddle-node infinite period) bifurcation. We propose a kinetic scheme that describes the effects observed in experiments. Good agreement between the experimental data and simulations is obtained.

  3. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    SciTech Connect

    Rahul D. Solunke; Goetz Veser

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  4. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.

    PubMed

    Ma, Xuedan; Adamska, Lyudmyla; Yamaguchi, Hisato; Yalcin, Sibel Ebru; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2014-10-28

    We performed low temperature photoluminescence (PL) studies on individual oxygen-doped single-walled carbon nanotubes (SWCNTs) and correlated our observations to electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the E11 bright exciton peak. Our simulation suggests an association of these peaks with deep trap states tied to different specific chemical adducts. In addition, oxygen doping is also observed to split the E11 exciton into two or more states with an energy splitting <40 meV. We attribute these states to dark states that are brightened through defect-induced symmetry breaking. While the wave functions of these brightened states are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with our experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from interaction between pinned excitons and one-dimensional phonons. Exciton pinning also increases the sensitivity of the deep traps to the local dielectric environment, leading to a large inhomogeneous broadening. Observations of multiple spectral features on single nanotubes indicate the possibility of different chemical adducts coexisting on a given nanotube. PMID:25265272

  5. ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Amorin, Ricardo O.; Perez-Montero, Enrique; Vilchez, J. M. E-mail: epm@iaa.e

    2010-06-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies (SFGs) with redshifts between {approx}0.11 and 0.35, popularly referred to as 'green peas'. Direct and strong-line methods sensitive to the N/O ratio applied to their Sloan Digital Sky Survey (SDSS) spectra reveal that these systems are genuine metal-poor galaxies, with mean oxygen abundances {approx}20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local SFGs in the SDSS, we find that the mass-metallicity relation of the 'green peas' is offset {approx_gt}0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The 'green pea' galaxy properties seem to be uncommon in the nearby universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.

  6. Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects

    NASA Astrophysics Data System (ADS)

    Klentzman, Jill; Tumin, Anatoli

    2013-11-01

    The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.

  7. LIFE Chamber Chemical Equilibrium Simulations with Additive Hydrogen, Oxygen, and Nitrogen

    SciTech Connect

    DeMuth, J A; Simon, A J

    2009-09-03

    In order to enable continuous operation of a Laser Inertial confinement Fusion Energy (LIFE) engine, the material (fill-gas and debris) in the fusion chamber must be carefully managed. The chamber chemical equilibrium compositions for post-shot mixtures are evaluated to determine what compounds will be formed at temperatures 300-5000K. It is desired to know if carbon and or lead will deposit on the walls of the chamber, and if so: at what temperature, and what elements can be added to prevent this from happening. The simulation was conducted using the chemical equilibrium solver Cantera with a Matlab front-end. Solutions were obtained by running equilibrations at constant temperature and constant specific volume over the specified range of temperatures. It was found that if nothing is done, carbon will deposit on the walls once it cools to below 2138K, and lead below 838K. Three solutions to capture the carbon were found: adding pure oxygen, hydrogen/nitrogen combo, and adding pure nitrogen. The best of these was the addition of oxygen which would readily form CO at around 4000K. To determine the temperature at which carbon would deposit on the walls, temperature solutions to evaporation rate equations needed to be found. To determine how much carbon or any species was in the chamber at a given time, chamber flushing equations needed to be developed. Major concerns are deposition of carbon and/or oxygen on the tungsten walls forming tungsten oxides or tungsten carbide which could cause embrittlement and cause failure of the first wall. Further research is needed.

  8. Metallurgical, chemical, and stress corrosion cracking characterization of high oxygen alpha+beta titanium-15Molybdenum

    NASA Astrophysics Data System (ADS)

    Williamson, Randall Scott

    Titanium and its alloys are used as biomaterials due to their excellent corrosion resistance, mechanical properties, superior biocompatibility, metallurgical properties and fatigue characteristics. Titanium implants, like all biomaterials, can have failures in-vivo during their service life. The predominant mechanism observed for titanium implant/device failures is corrosion fatigue. However, other failure mechanisms can be observed. One such failure mechanism is stress corrosion cracking. Stress corrosion cracking and its presence or absence in in-vivo failures of titanium and titanium alloys has historically been debated. Several researchers have stated that titanium and titanium alloys can fail due to stress corrosion cracking under physiological conditions when the oxygen weight percent exceeds 0.20. The purpose of this research was to evaluate and to compare metallurgical, chemical, and stress corrosion cracking (SCC) properties of two heats of alpha+beta Ti-15Mo with oxygen weight concentrations of approximately 0.18% (Heat UC30) and 0.73% (Heat UC32B). The results were compared to previous findings for beta Ti-15Mo, Grade 4 CP Ti, Ti-6A1-4V ELI and another low oxygen weight percent alpha+beta Ti-15Mo. Metallurgical evaluations showed that Heat UC30 had an inhomogeneous distribution of alpha and beta phases while Heat UC32B exhibited a homogenous microstructure. Heat treatment processes (annealing and aging) were completed on both heats to homogenize and to optimize the microstructures. Smooth and notched tensile test results showed that both heats had equal or superior tensile properties compared to CPTi and other Ti alloys. Corrosion resistance testing showed a variance in Heat UC30 samples while little variance was shown in Heat UC32B samples. Chemical composition results found that both alloys were within specification and internal melt limits. Smooth and notched samples for both Heat UC30 and Heat UC32B showed no evidence of SCC failure mechanisms in

  9. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.

    PubMed

    Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2013-10-01

    As more and more nanomaterials with novel physicochemical properties or new functions are created and used in different research fields and industrial sectors, the scientific and public concerns about their toxic effects on human health and the environment are also growing quickly. In the past decade, the study of the toxicological properties of nanomaterials/nanoparticles has formed a new research field: nanotoxicology. However, most of the data published relate to toxicological phenomena and there is less understanding of the underlying mechanism for nanomaterial-induced toxicity. Nanomaterial-induced reactive oxygen species (ROS) play a key role in cellular and tissue toxicity. Herein, we classify the pathways for intracellular ROS production by nanomaterials into 1) the direct generation of ROS through nanomaterial-catalyzed free-radical reactions in cells, and 2) the indirect generation of ROS through disturbing the inherent biochemical equilibria in cells. We also discuss the chemical mechanisms associated with above pathways of intracellular ROS generation, from the viewpoint of the high reactivity of atoms on the nanosurface. We hope to aid in the understanding of the chemical origin of nanotoxicity to provide new insights for chemical and material scientists for the rational design and creation of safer and greener nanomaterials.

  10. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective.

    PubMed

    Yadegari, Hossein; Sun, Qian; Sun, Xueliang

    2016-09-01

    Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed.

  11. Maternal Hypoxia Decreases Capillary Supply and Increases Metabolic Inefficiency Leading to Divergence in Myocardial Oxygen Supply and Demand

    PubMed Central

    Hauton, David; Al-Shammari, Abdullah; Gaffney, Eamonn A.; Egginton, Stuart

    2015-01-01

    Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve

  12. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  13. Simple Chemical Solution Deposition of Co₃O₄ Thin Film Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Jeon, Hyo Sang; Jee, Michael Shincheon; Kim, Haeri; Ahn, Su Jin; Hwang, Yun Jeong; Min, Byoung Koun

    2015-11-11

    Oxygen evolution reaction (OER) is the key reaction in electrochemical processes, such as water splitting, metal-air batteries, and solar fuel production. Herein, we developed a facile chemical solution deposition method to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential of 377 mV at 10 mA/cm(2) with good stability. An optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity. Our results also show that the distribution of Co3O4 nanoparticle catalysts on the substrate is crucial in enhancing the inherent OER catalytic performance.

  14. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    PubMed

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. PMID:23648034

  15. COIL--Chemical Oxygen Iodine Laser: advances in development and applications

    NASA Astrophysics Data System (ADS)

    Kodymova, Jarmila

    2005-09-01

    Advantageous features of Chemical Oxygen-Iodine Laser (COIL) for laser technologies have increased considerably activities of international COIL communities during past ten years. They have been focused on the advanced concepts of hardware designs of the COIL subsystems, and testing and scaling-up of existing laser facilities. Prospective special applications of COIL technology, both civil and military, have received a significant attention and gained concrete aims. The paper is introduced by a brief description of the COIL operation mechanism and key device subsystems. It deals then with presentation of some investigated advanced concepts of singlet oxygen generators, alternative methods for atomic iodine generation, a mixing and ejector nozzle design to downsize a pressure recovery system, and optical resonators for high power COIL systems. The advanced diagnostics and computational modeling are also mentioned as very useful tools for critical insight into the laser kinetics and fluid dynamics, supporting thus the COIL research. The recent progress in the COIL development moves this laser closer to the application projects that are also briefly presented.

  16. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  17. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures.

  18. Gill morphometrics of the thresher sharks (Genus Alopias): Correlation of gill dimensions with aerobic demand and environmental oxygen.

    PubMed

    Wootton, Thomas P; Sepulveda, Chugey A; Wegner, Nicholas C

    2015-05-01

    Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water-blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm-water epi-pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water-blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well-oxygenated habitat relative to the two other Alopias species. In fast-swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia-dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills.

  19. Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide

    NASA Astrophysics Data System (ADS)

    Matsui, Tsuneo; Naito, Keiji

    1985-10-01

    The chemical diffusion coefficients of oxygen ( D˜) in sintered samples of ( Th1- yUy) O2+ x ( y = 0.2 and 0.4) were measured by means of thermogravimetry in the temperature range 1282 ⩽ T ⩽ 1373 K. The defect diffusion coefficients ( Dd) were also calculated from the chemical diffusion coefficients obtained in this study. The activation energies of D˜ or Dd for the two samples ( Th1- yUy) O2+ xwithy = 0.2 and 0.4 were observed to be nearly the same, irrespective of the y value. These activation energies also nearly coincided with those of UO 2+x reported previously, suggesting the presence of a similar diffusion mechanism to that found in UO 2+x. The magnitude of both diffusion coefficients D˜ and Dd of ( Th1- yUy) O2+ x increased with increasing uranium content and approached that of UO 2+x. The increase of Dd of ( Th1- yUy) O2+ x with y value was considered to be due to the increase of both the vibrational frequency of lattice and the entropy change of migration produced by the substitution of a U ion for a Th ion.

  20. Upgrading oxygenated Fischer-Tropsch derivatives and one-step direct synthesis of ethyl acetate from ethanol - examples of the desirability of research on simple chemical compounds transformations.

    PubMed

    Klimkiewicz, Roman

    2014-01-01

    Oxygenates formed as by-products of Fischer-Tropsch syntheses can be transformed into other Fischer-Tropsch derived oxygenates instead of treating them as unwanted chemicals. One-step direct synthesis of ethyl acetate from ethanol is feasible with the use of some heterogeneous catalysts. Despite their apparent simplicity, both transformations are discussed as targeted fields of research. Furthermore, the two concepts are justified due to the environmental protection. Arguments regarding the Fischer-Tropsch process are focused on the opportunities of the utilization of undesirable by-products. The effective striving for their utilization can make the oxygenates the targeted products of this process. Arguments regarding the one-step direct synthesis of ethyl acetate underline the environmental protection and sustainability as a less waste-generating method but, above all, highlight the possibility of reducing the glycerol overproduction problem. The production of ethyl acetate from bioethanol and then transesterification of fats and oils with the use of ethyl acetate allows managing all the renewable raw materials. Thus, the process enables the biosynthesis of biodiesel without glycerine by-product and potentially would result in the increase in the demand for ethyl acetate. Graphical Abstract.

  1. Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Milanese, E.

    2009-09-01

    This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, -1.5<[Fe/H]<0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation (Ramirez et al. in Astron. Astrophys. 465:271, 2007); and (ii) N=64 SN thick disk, SN thin disk, and bulge K-giant stars within the range, -1.7<[Fe/H]<0.5, for which the oxygen abundance has been determined (Melendez et al. in Astron. Astrophys. 484:L21, 2008). A comparison is made with previous results implying use of [O/H]-[Fe/H] empirical relations (Caimmi in Astron. Nachr. 322:241, 2001b; New Astron. 12:289, 2007) related to (iii) 372 SN halo subdwarfs (Ryan and Norris in Astron. J. 101:1865, 1991); and (iv) 268 K-giant bulge stars (Sadler et al. in Astron. J. 112:171, 1996). The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1-0.9. In the second part, inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts with the exception of the thin or thick + thin disk, where two additional restrictions are needed: (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from

  2. Seasonal variation in biological oxygen demand levels in the main stem of the Fraser River, British Columbia and an agriculturally impacted tributary

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Fraser, H.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B. M.; Marcotte, D.; Fanslau, J.; Epp, A.; Bennett, M.; Hanson-Carson, J.; Luymes, R.

    2012-12-01

    The Fraser River basin is one of British Columbia's most diverse and valuable ecosystems. Water levels and temperatures along the Fraser are seasonally variable, with high flow during the spring freshet and low flow during winter months. In the Fraser River, dissolved oxygen (DO) concentrations impact many aquatic species. Biological oxygen demand (BOD) measures the amount of oxygen consumed by bacteria during the decomposition of organic matter and is an indicator of water quality in freshwater environments. We compared BOD, DO, and pH during winter (November 2011) and summer (July 2012) in the main stem of the Fraser River at Fort Langley and a tributary in an agricultural area of the Fraser Valley, Nathan Creek. In November the BOD of the main stem of the Fraser River was 2.36 mg/L, pH 7.26, and DO 9.13 mg/L. BOD and DO of Nathan Creek was not significantly lower at 1.68 mg/L and DO 8.28 mg/L, however, the pH was significantly lower (p=0.001) at 6.75. In July, the Fraser River had significantly higher BOD levels than in winter at 4.43 mg/L, but no significant change in pH and DO. Nathan Creek BOD was significantly higher than it was in winter and higher than the main stem at 7.34 mg/L, with no significant change in pH and DO. There were strong seasonal differences in BOD in the Fraser River and Nathan Creek, with the highest levels seen in July. The higher BOD seen in Nathan Creek in July may be an indication of agricultural impact. Although all BOD values fell in the range of 1-8 mg/L and are considered to be relatively unpolluted.

  3. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    SciTech Connect

    Lugaro, Maria; Liffman, Kurt; Maddison, Sarah T.

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  4. Physico-Chemical Conditions in Circumstellar Shells of Evolved Oxygen-Rich M Stars.

    NASA Astrophysics Data System (ADS)

    Slavsky, David Bruce

    1984-12-01

    The physical and chemical conditions in circumstellar shells of evolved oxygen-rich stars have been studied. Time dependent non-equilibrium chemical calculations for several gas phase species (45 in most models) have been performed to determine their radially dependent abundances. The species are formed from the eight elements H, C, N, O, S, Si, Al, and Cl; 135 chemical reactions are included in the reaction set. Since many reaction rates are temperature dependent, the set of chemical rate equations was solved self-consistently with the radially dependent energy equation. The energy equation included contributions from the cooling of the gas due to expansion, heating from gas-grain collisions, and molecular cooling from H(,2), CO, and H(,2)O. The circumstellar chemistry is also affected by ultraviolet radiation. All models include the effects of the ambient interstellar field, and the contributions of chromospheric radiation are included in models employing a restricted set of 17 species. It was found that the total column density through the shell determines two important shell characteristics. Higher densities result in large non-adiabatic contributions to the energy equation, and this work shows that for the highest densities studied, the temperature profile is determined by the non-adiabatic terms. Further, the total column density determines the optical depth through the shell in the UV, which controls the position in the shell where photo-induced chemistry can begin. Certain potentially observable molecules can act as diagnostic probes of certain important properties. Radial abundances of species such as OH, SiO, and SO, which can be formed as a result of H(,2)O dissociation, are diagnostic of the total column density of gas through the shell. Large abundances of hydrogen bearing species such as H(,2)S and NH(,3) are diagnostic of small atomic to molecular hydrogen ratios in the shell. In addition, observations of H(,2)O and other molecules in shells of stars

  5. Experimental investigation of an unstable ring resonator with 90-deg beam rotation for a chemical oxygen iodine laser.

    PubMed

    Jin, Y; Yang, B; Sang, F; Zhou, D; Duo, L; Zhuang, Q

    1999-05-20

    We report the experimental results of an unstable ring resonator with 90-deg beam rotation for a kilowatt class chemical oxygen iodine laser (COIL). The distributions of near-field phase and far-field intensity were measured. A beam quality of 1.6 was achieved when the COIL average output power was approximately 5 kW. PMID:18319916

  6. [Relation between oxygen uptake rate and biosorption of activated sludge against chemical substance].

    PubMed

    Mihara, Yuichi; Inoue, Tatsuaki; Yokota, Katsushi

    2005-02-01

    In this study, the elucidation of the toxicity mechanism was undertaken regarding the IC(50) of the oxygen uptake rate (OUR) with relevance to the biosorption as a toxicity evaluation of chemical substances for activated sludge (AS). At the IC(50) of<100 mg/l, malachite green (MG) and crystal violet (CV) were confirmed in the group showing relatively strong OUR inhibition. These dyes were markedly biosorbed by AS in a short time. The biosorption for AS showed a weak tendency in linear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfonate (AES), alpha-olefine sulfonate (AOS), sodium dodecyl sulfate (SDS), formaldehyde (FA), benzalkonium chloride (BZaC), benzethonium chloride (BZeC), rhodamine 6G (R-6G) and fuchsine (Fuc) in which the IC(50) belonged to the 100-1000 mg/l group, when it was compared with CV and MG. In ethanol (EtOH), isopropanol (PrOH), nile blue (NB), evans blue (EB), methylene blue (MB), methyl orange (MO), paraquat (PQ), chlorophyllin (Chl) and auramine (Aur), the IC(50) was large, and the biosorption of AS was weak at 0-15%. The biosorption of MG for AS followed the adsorption isotherm equation Y=0.002X(0.511) of Freundrich. The correlation coefficient was gamma=0.998 (n=8), and a very high correlation was obtained. In the qualitative OUR curve by AS pretreated with MG or CV which belonged to the IC(50) small group, the inhibition of remarkable OUR was observed. Therefore, the findings of the present investigation suggest that the inhibition of the OUR for AS by the tested chemical substances was markedly affected by the biosorption.

  7. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.

    PubMed

    Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Deng, Rongxuan; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-08-24

    Oxygen can passivate Cu surface active sites when graphene nucleates. Thus, the nucleation density is decreased. The CuO/Cu substrate was chosen for graphene domain synthesis in our study. The results indicate that the CuO/Cu substrate is beneficial for large-scale, single-crystal graphene domain synthesis. Graphene grown on the CuO/Cu substrate exhibits fewer nucleation sites than on Cu foils, suggesting that graphene follows an oxygen-dominating growth. Hydrogen treatment via a heating process could weaken the surface oxygen's role in limiting graphene nucleation under the competition of hydrogen and oxygen and could transfer the synthesis of graphene into a hydrogen-dominating growth. However, the competition only exists during the chemical vapor deposition heating process. For non-hydrogen heated samples, oxygen-dominating growth is experienced even though the samples are annealed in hydrogen for a long time after the heating process. With the temperature increases, the role of hydrogen gradually decreases. The balance of hydrogen and oxygen is adjusted by introducing hydrogen gas at a different heating temperatures. The oxygen concentration on the substrate surface is believed to determine the reactions mechanisms based on the secondary ion mass spectrometry test results. This study provides a new method for the controllable synthesis of graphene nucleation during a heating process. PMID:27506467

  8. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  9. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-01

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  10. Chemical oxygen-iodine laser for decommissioning and dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Tei, Kazuyoku; Sugimoto, Daichi; Endo, Masamori; Takeda, Shuzaburo; Fujioka, Tomoo

    2000-01-01

    Conceptual designs of a chemical oxygen-iodine laser (COIL) facility for decommissioning and dismantlement (DD) of nuclear facility is proposed. The requisite output power and beam quality was determined base don our preliminary experiments of nonmetal material processing. Assuming the laser power of 30kW, it is derived that the beam quality of M2 equals 36 required to cut a biological shield wall of a nuclear power plant at a cutting speed of 10mm/min. Then the requisite specification of an optical fiber to deliver the laser is calculated. It turned to be quite extreme, core diameter of 1.7mm and NA equals 0.018. The mass flow and heat balance of proposed facility is calculated based on our recent COIL studies. With the high-pressure subsonic mode, the vacuum pump size is minimized compared to the supersonic operation. Finally, the size of the facility is estimated assuming tow-hour continuous operation. It is revealed that such a system can be packed in five railway containers.

  11. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2014-05-01

    Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities. PMID:24338099

  12. Electrochemical methods for autonomous chemical (phosphate and oxygen) monitoring in the ocean in the Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Jonca, J.; Thouron, D.; Comtat, C.; Revsbech, N. P.; Garçon, V.

    2012-04-01

    Oxygen Minimum Zones (OMZ), mainly localized in the EBUS, are known to play a crucial role on climate evolution via greenhouse gases budgets and on marine ecosystems (respiratory barrier, modifications of the nitrogen cycle). Deoxygenation will have widespread consequences due to the role oxygen plays in the biogeochemical cycling of carbon, nitrogen, phosphorus and other important elements such as Fe, S. Developing new sensors for improving our understanding of the coupled biogeochemical cycles (P-O-C-N) in these regions constitutes an immense challenge. Electrochemistry provides promising liquid reagentless methods by going further in miniaturization, decreasing the response time and energy requirements and thus increasing our observing capacities in the ocean. We present an electrochemical method for phosphate determination in seawater based on the anodic oxidation of molybdenum in seawater in order to create molybdophosphate complexes amperometrically detected on a gold electrode by means of amperometry or square-wave voltammetry. We propose a solution to address the silicate interference issue based on an appropriate ratio of proton/molybdate within an electrochemical cell using specialized membrane technology. The detection limit can be as low as 180 nM. An application of this method is presented in the OMZ offshore Peru. The results show excellent agreement when compared to colorimetry with an average deviation of 5.1%. This work is a first step to develop an autonomous in situ sensor for electrochemical detection of phosphate in seawater. The STOX sensor for the measurements of ultra-low oxygen concentrations was improved by decreasing the distance between the sensing and guard cathodes. The modification of the sensor tip was done by development of a method for gold plating on the front silicone rubber membrane in order to form a guard cathode. Then, the traditional and modified STOX sensors were compared and the preliminary studies showed a great potential

  13. Sulfur behavior in chemical looping combustion with NiO/Al{sub 2}O{sub 3} oxygen carrier

    SciTech Connect

    Shen, Laihong; Gao, Zhengping; Wu, Jiahua; Xiao, Jun

    2010-05-15

    Chemical looping combustion (CLC) is a novel technology where CO{sub 2} is inherently separated during combustion. Due to the existence of sulfur contaminants in the fossil fuels, the gaseous products of sulfur species and the interaction of sulfur contaminants with oxygen carrier are a big concern in the CLC practice. The reactivity of NiO/Al{sub 2}O{sub 3} oxygen carrier reduction with a gas mixture of CO/H{sub 2} and H{sub 2}S is investigated by means of a thermogravimetric analyzer (TGA) and Fourier Transform Infrared spectrum analyzer in this study. An X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to evaluate the phase characterization of reacted oxygen carrier, and the formation mechanisms of the gaseous products of sulfur species are elucidated in the process of chemical looping combustion with a gaseous fuel containing hydrogen sulfide. The results show that the rate of NiO reduction with H{sub 2}S is higher than the one with CO. There are only Ni and Ni{sub 3}S{sub 2} phases of nickel species in the fully reduced oxygen carrier, and no evidence for the existence of NiS or NiS{sub 2}. The formation of Ni{sub 3}S{sub 2} is completely reversible during the process of oxygen carrier redox. A liquid phase sintering on the external surface of reduced oxygen carriers is mainly attributed to the production of the low melting of Ni{sub 3}S{sub 2} in the nickel-based oxygen carrier reduction with a gaseous fuel containing H{sub 2}S. Due to the sintering of metallic nickel grains on the external surface of the reduced oxygen carrier, further reaction of the oxygen carrier with H{sub 2}S is constrained, and there is no increase of the sulfidation index of the reduced oxygen carrier with the cyclical reduction number. Also, a continuous operation with a syngas of carbon monoxide and hydrogen containing H{sub 2}S is carried out in a 1 kW{sub th} CLC prototype based on the nickel-based oxygen carrier, and

  14. A new method for determination of chemical oxygen demand values in livestock wastewater by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan; Bao, Yidan; He, Yong

    2006-09-01

    The objective of this research was to analyze NIR spectroscopy potential to estimate COD in livestock wastewater. A total of 20 wastewater samples were taken from the Animal Institution of Zhejiang Agricultural Science Organization. We selected two kinds of containers with the sizes of l000mL and 2000mL for samples, because of the high absorption peaks in the near-infrared region (350-11OOnm) around 635nm. 14 samples spectra were used during the calibration and cross-validation stage. Five samples spectra were used to predict COD concentration in wastewater. NW spectra and constituents were related using partial least square (PLS) technique. The r2 between measured and predicted values of COD of wastewater with l000mL and 2000mL, 0.9895 and 0.9985, as well as SEP showed table l, 22 and 32, respectively, demonstrated that NIR method have potential to predict COD in wastewater. While SEP and SEC is high, because the magnitude of COD value in livestock wastewater is high. In other words, higher magnitudes will result in high standard error values. However, the result also shows that NIR could be a good tool to be combined with environmental monitoring of water quality.

  15. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    PubMed

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1). PMID:18515004

  16. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    PubMed

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  17. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  18. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  19. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed. PMID:26320879

  20. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.

    PubMed

    Jang, J D; Barford, J P; Lindawati; Renneberg, R

    2004-03-15

    A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.

  1. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  2. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to

  3. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  4. OVOC (Oxygenated Volatile Organic Chemicals) in the Global Atmosphere: Atmospheric Budgets, Oceanic Concentrations, and Uncertainties

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.

    2004-01-01

    Airborne measurements of oxygenated volatile organic chemicals (OVOC), OH free radicals, and tracers of pollution were performed over the Pacific during Winter/Spring of 2001. Large concentrations of OVOC are present in the global troposphere and are expected to play an important role in atmospheric chemistry. Their total abundance (SIGMAOVOC) was nearly twice that of non-methane hydrocarbons (SIGMAC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NHMC. A comparison of these data with western Pacific observations collected some seven years earlier (Feb.-March, 1994) did not reveal significant differences. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in twelve plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. These data are combined with other observations and interpreted with the help of a global 3-D model to assess OVOC global sources and sinks. We further interpret atmospheric observations with the help of an air-sea exchange model io show that oceans can be both net sorces and sinks. An extremely large oceanic reservoir of OVOC, that exceeds the atmospheric reservoir by more than an order of magnitude, can be inferred to be present. We conclude that OVOC sources are extremely large (150-500 TgC y-1) but remain poorly quantified. In many cases, measured concentrations are uncertain and incompatible with our present knowledge of atmospheric chemistry. Results based on observations from several field studies and critical gaps will be discussed.

  5. Oxygenated organic chemicals in the Pacific troposphere: Distribution, sources and chemistr

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Team

    2003-04-01

    Airborne measurements of a large number of oxygenated organic chemicals (Ox-orgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measurements included acetone, methylethyl ketone (MEK), methanol, ethanol, acetaldehyde, propionaldehyde, PANs, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were also available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined towards the upper troposphere and the lowermost stratosphere. Their total abundance (_Ox-orgs) significantly exceeded that of NMHC (_C2-C8 NMHC). A comparison of these data with observations collected some seven years earlier (Feb.-March, 1994), did not reveal any significant changes. Throughout the troposphere mixing ratios of Ox-orgs were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected Ox-orgs with respect to CH3Cl and CO in twelve sampled plumes, originating from fires, is used to assess their primary and secondary sources from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. The Harvard 3-D photochemical model, that uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1-D model is used to explore the chemistry of aldehydes. These results will be presented.

  6. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  7. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen

    NASA Astrophysics Data System (ADS)

    Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.

    2016-08-01

    A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.

  8. Mechanism of dark decomposition of iodine donor in the active medium of a pulsed chemical oxygen - iodine laser

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, A I; Sorokin, Vadim N

    2002-06-30

    A scheme is proposed that describes the dark decomposition of iodide - the donor of iodine - and the relaxation of singlet oxygen in the chlorine-containing active medium of a pulsed chemical oxygen - iodine laser (COIL). For typical compositions of the active media of pulsed COILs utilising CH{sub 3}I molecules as iodine donors, a branching chain reaction of the CH{sub 3}I decomposition accompanied by the efficient dissipation of singlet oxygen is shown to develop even at the stage of filling the active volume. In the active media with CF{sub 3}I as the donor, a similar chain reaction is retarded due to the decay of CF{sub 3} radicals upon recombination with oxygen. The validity of this mechanism is confirmed by a rather good agreement between the results of calculations and the available experimental data. The chain decomposition of alkyliodides accompanied by an avalanche production of iodine atoms represents a new way of efficient chemical production of iodine for a COIL. (active media)

  9. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    PubMed

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  10. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  11. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  12. Influence of chemically produced singlet delta oxygen molecules on thermal ignition of O2-H2 mixtures

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Kochetov, I. V.; Napartovich, A. P.; Yuryshev, N. N.

    2016-02-01

    Thermal ignition of the H2-O2 mixture with O2(a 1Δ g ) addition is studied experimentally and theoretically. The singlet delta oxygen was produced in a chemical generator. In this way, the competing chemical processes involving plasma produced chemically active O atoms and ozone (O3) were excluded. A satisfactory agreement is achieved between experimentally observed and numerically predicted values of the ignition time at the initial gas temperature (900-950) K and gas pressure (9-10) Torr. The percentage of the reactive channel in the binary collisions O2(a 1Δg) H is evaluated on the level (10-20)% for the H2-O2 mixture.

  13. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  14. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-08

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  15. High-pressure gravity-independent singlet oxygen generator, laser nozzle, and iodine injection system for the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    2004-09-01

    A novel approach is outlined for a singlet oxygen generator (SOG), a laser minimum length nozzle (MLN), and an iodine injector system for a chemical oxygen-iodine laser (COIL). A unified approach, referred to as a SOG/MLN/I2 system, is partly based on past experimental work. For instance, the SOG concept stems from sparger technology and a KSY fesibility experiment. A MLN with a curved sonic line is used for the laser nozzle, and slender struts are used for the injection, in the downstream direction, of iodine/helium vapor. The heated struts are located downstream of the nozzle's throat. The engineering logic behind the approach is discussed; it has a diversity of potential system benefits relative to current technology. These include a compact, scalable laser that can operate in space. The SOG operates at a significantly higher pressure with a high O2(1Δ) yield. In addition, basic hydrogen peroxide reconditioning is not required, a water vapor removal system is not required, and diluent may be unnecessary, although useful for pressure recovery. The impact on a COIL system in terms of power, efficiency, and pressure recovery is briefly assessed.

  16. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    PubMed

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  17. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media

    PubMed Central

    Meunier, Sarah M.; Todorovic, Biljana; Dare, Emma V.; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J. Larry; Sasges, Michael; Aucoin, Marc G.

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  18. Characterization of chemical looping combustion of coal in a 1 kW{sub th} reactor with a nickel-based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2010-05-15

    Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO{sub 2} emission. To improve CO{sub 2} capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al{sub 2}O{sub 3} oxygen carrier in a 1 kW{sub th} prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO{sub 2} capture efficiency at a fuel reactor temperature of 985 C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO{sub 2} formation, and H{sub 2}S abatement in the fuel reactor. The increase of SO{sub 2} in the fuel reactor accelerates the reaction of SO{sub 2} with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO{sub 2} in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the

  19. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    PubMed Central

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10−22 atm. PMID:26725369

  20. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  1. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure.

    PubMed

    Grate, Jay W; Kelly, Ryan T; Suter, Jonathan; Anheier, Norm C

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water-wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen-sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges of oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain defined spatial structure in the sensor image.

  2. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  3. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  4. Three Dimensional P-doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions.

    PubMed

    Li, Xiaoguang; Qiu, Yunfeng; Hu, Ping An

    2016-06-01

    Heteroatom doping provides possibilities for changing the electronic properties of graphene. Three Dimensional P-doped graphene (3DPG) was fabricated via chemical vapor deposition (CVD) using nickel foam as template and triphenylphosphine (TPP) as C and P sources simultaneously without using toxic organic solvent as carrier liquid. The invasion of P atoms into graphene networks make them non-electroneutral and consequently favor the adsorption of oxygen and O-O bond cleavage due to the charge polarization increase of the P-C bond. Thus, the as-prepared 3DPG served as an efficient electrocatalyst for oxygen reduction reaction (ORR). Additionally, the 3D porous structure is favorable for the mass transfer of electrolytes ions, hence 3DPG exhibit better electrocatalytic activity, long-term stability, and tolerance to crossover effect of methanol than pristine 3D graphene and Pt/C for ORR.

  5. Enhancement of the efficiency and control of emission parameters of an unstable-resonator chemical oxygen-iodine laser

    SciTech Connect

    Boreisho, A S; Lobachev, V V; Savin, A V; Strakhov, S Yu; Trilis, A V

    2007-07-31

    The outlook is considered for the development of a high-power supersonic flowing chemical oxygen-iodine laser operating as an amplifier and controlled by radiation from a master oscillator by using an unstable resonator with a hole-coupled mirror. The influence of the seed radiation intensity, the coupling-hole diameter, the active-medium length, and the magnification factor on the parameters of laser radiation is analysed. It is shown that the use of such resonators is most advisable in medium-power oxygen-iodine lasers for which classical unstable resonators are inefficient because of their low magnification factors. The use of unstable resonators with a hole-coupled mirror and injection provides the control of radiation parameters and a considerable increase in the output power and brightness of laser radiation. (control of laser radiation parameters)

  6. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.

    PubMed

    Carrascon, Vanesa; Fernandez-Zurbano, Purificación; Bueno, Mónica; Ferreira, Vicente

    2015-12-30

    Chemical changes caused by oxidation of red wines during 5 consecutive air-saturation cycles have been assessed. In order to investigate the existing relationship between the effects caused by O2 and the levels and consumption rates of wine SO2, the total oxygen consumed by the wines (16-25 mg/L) was subdivided into different nonmutually exclusive categories. The ones found most influential on chemical changes were the O2 consumed in the first saturation without equivalent SO2 consumption (O2preSO2) and the O2 consumed when levels of free SO2 were below 5 mg/L (radical forming O2). Chromatic changes were strongly related to both O2 categories, even though anthocyanidin degradation was not related to any O2 category. Radical forming O2 prevented both formation of red pigments and reduction of epigallocatechin and other proanthocyanidins, induced accumulation of phenolic acids, and caused losses of β-damascenone and whiskylactone without evidence of acetaldehyde formation. O2preSO2 seemed to play a key role in the formation of blue pigments and in the decrease of Folin index and of many important aroma compounds. PMID:26646423

  7. Safety in the Chemical Laboratory: Handling of Oxygen in Research Experiments.

    ERIC Educational Resources Information Center

    Burnett, R. J.; Cole, J. E., Jr.

    1985-01-01

    Examines some of the considerations involved in setting up a typical oxygen/organic reaction. These considerations (including protection for personnel/equipment, adequate ventilation, reactor design, maximum reactor charge, operating procedures, and others) influence how the reaction is to be conducted and what compromises the scientist must…

  8. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  9. Analysis of lasing in chemical oxygen-iodine lasers with unstable resonators using a geometric-optics model.

    PubMed

    Barmashenko, Boris D

    2009-05-01

    A simple geometric-optics model is developed that describes the power extraction in chemical oxygen-iodine lasers (COILs) with unstable resonators. The positive and negative branch unstable resonators with cylindrical mirrors that were recently used in COILs are studied theoretically. The optical extraction efficiency, spatial distributions of the intracavity radiation intensity in the flow direction, and the intensity in the far field are calculated for both kinds of resonator as a function of both the resonator and the COIL parameters. The optimal resonator magnifications that correspond to the maximum intensity in the far field are found. PMID:19412214

  10. Influence of the chemical bond on the K emission spectrum of oxygen and fluorine.

    NASA Technical Reports Server (NTRS)

    Koster, A. S.

    1971-01-01

    The K emission spectrum of oxygen and fluorine from a number of simple oxides and fluorides is divided into three to six sub-peaks. The spectra of many of these oxides and fluorides resemble one another owing to their basically ionic bonding. Certain sub-peaks, however, are ascribed to cross-over transitions and partially covalent energy levels. The different fluorine spectrum of Teflon is due to the hybrid nature of its covalent bonds.

  11. Pulsed oxygen-iodine chemical laser initiated by an electrical discharge

    SciTech Connect

    Zhang Rongyao; Chen Fang; Song Xueqin; Xu Qingzhou; Huan Changqing; Zhuang Qi; Zhang Cunhao

    1988-08-01

    This paper demonstrates for the first time the feasibility of an electrically initiated, pulsed oxygen-iodine laser which can be initiated efficiently by low energy electrons. By electrical initiation, an O/sub 2/(/sup 1/..delta..)--CH/sub 3/I--N/sub 2/ mixture has been made to lase with an output energy of 130 mJ. The efficiency of the electrical initiation is 350 times higher than that obtained with photo-initiation.

  12. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth: Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers.

    PubMed

    Wollrab, Eva; Scherer, Sabrina; Aubriet, Frédéric; Carré, Vincent; Carlomagno, Teresa; Codutti, Luca; Ott, Albrecht

    2016-06-01

    In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Oró Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.

  13. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth. Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers

    NASA Astrophysics Data System (ADS)

    Wollrab, Eva; Scherer, Sabrina; Aubriet, Frédéric; Carré, Vincent; Carlomagno, Teresa; Codutti, Luca; Ott, Albrecht

    2016-06-01

    In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Oró Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.

  14. Intra-/inter-laboratory validation study on reactive oxygen species assay for chemical photosafety evaluation using two different solar simulators.

    PubMed

    Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime

    2014-06-01

    A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. PMID:24384453

  15. The Effects of Oxygen Plasma on the Chemical Composition and Morphology of the Ru Capping Layer of the Extreme Ultraviolet (EUV) Mask Blanks

    SciTech Connect

    Belau, Leonid; Park, Jeong Y.; Liang, Ted; Somorjai, Gabor A.

    2008-06-07

    Contamination removal from extreme ultraviolet (EUV) mask surfaces is one of the most important aspects to improve reliability for the next generation of EUV lithography. We report chemical and morphological changes of the ruthenium (Ru) mask surface after oxygen plasma treatment using surface sensitive analytical methods: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Chemical analysis of the EUV masks shows an increase in the subsurface oxygen concentration, Ru oxidation and surface roughness. XPS spectra at various photoelectron takeoff angles suggest that the EUV mask surface was covered with chemisorbed oxygen after oxygen plasma treatment. It is proposed that the Kirkendall effect is the most plausible mechanism that explains the Ru surface oxidation. The etching rate of the Ru capping layer by oxygen plasma was estimated to be 1.5 {+-} 0.2 {angstrom}/min, based on TEM cross sectional analysis.

  16. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  17. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change.

  18. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  19. Effects of commonly used oilfield chemicals on the rate of oxygen scavenging by sulfite/bisulfite

    SciTech Connect

    Braga, T.G.

    1987-05-01

    The effect of common oilfield biocides, corrosion inhibitors, scale preventives, and alcohols on the rate of O/sub 2/ scavenging by sulfite/bisulfite is described. Emphasis is placed on the effect of the functional group of each of the chemical types. An attempt is made to explain the results in terms of the free-radical mechanism.

  20. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  1. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    SciTech Connect

    Dutta, Indrajit; Carpenter, Michael K.; Balogh, Michael P.; Ziegelbauer, Joseph M.; Moylan, Thomas E.; Atwan, Mohammed H.; Irish, Nicholas P.

    2010-10-22

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multistep synthetic procedure. Material produced at each step was characterized using high-angle annular dark-field scanning transmission electron microscopy, electron energy loss spectroscopy mapping, X-ray absorption spectroscopy, X-ray diffraction, and cyclic voltammetry, and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode technique. The initial synthetic step, a coreduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. Transmission electron microscopy shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12-25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete core-shell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a 'Swiss cheese' type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report.

  2. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    PubMed Central

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2013-01-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  3. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  4. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  5. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  6. Practical use of chemical probes for reactive oxygen species produced in biological systems by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Kang-Soo; Cho, Jae-Young; Kim, Jin-Hong

    2009-05-01

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during γ-irradiation. The ethanol/α-(4-pyridyl-1-oxide)- N- tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect rad OH and H 2O 2, increasingly generated by γ-irradiation up to 1000 Gy. Interestingly, the production rate of H 2O 2, but not rad OH, during γ-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify rad OH and H 2O 2, produced by γ-irradiation up to 1000 Gy.

  7. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  8. Analytical chemical kinetic investigation of the effects of oxygen, hydrogen, and hydroxyl radicals on hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.

    1974-01-01

    Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.

  9. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    PubMed

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  10. Chemical role of oxygen plasma in wafer bonding using borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hansen, D. M.; Albaugh, C. E.; Moran, P. D.; Kuech, T. F.

    2001-11-01

    Plasma-treated oxide layers are commonly used in wafer bonding applications. Borosilicate glass (BSG) layers deposited by low-pressure chemical vapor deposition treated with an O2 plasma in reactive ion etching mode for 5 min at 0.6 W/cm2 and rinsed with DI H2O readily bond to GaAs and Si. The chemical role of this prebonding treatment was investigated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The peak intensities for both the Si-O and B-O absorbance bands decreased in intensity as a result of the plasma treatment is consistent with the uniform sputtering of 9.8 nm±0.8 nm of BSG. Polarization dependent ATR-FTIR revealed that the H2O/OH absorbance bands decreased in peak intensity with the OH groups being preferentially oriented perpendicular to the sample surface after the plasma treatment. The subsequent DI H2O rinse restores the water to the surface while removing B2O3 from the BSG layer. This prebonding treatment, therefore, results in a hydrophilic bond, but alters the composition of the BSG film at the bonded interface.

  11. Chemical equilibria involved in the oxygen-releasing step of manganese ferrite water-splitting thermochemical cycle

    SciTech Connect

    Seralessandri, L.; Bellusci, M.; Alvani, C.; La Barbera, A.; Padella, F.; Varsano, F.

    2008-08-15

    Sodium ferrimanganite carbonatation reaction was investigated at different temperatures/carbon dioxide partial pressures to evaluate the feasibility of the thermochemical water-splitting cycle based on the MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3}/Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} system. After thermal treatments in selected experimental conditions, the obtained powder samples were investigated by using the X-ray diffraction (XRD) technique and Rietveld analysis. Two different lamellar Na{sub 1-x}Mn{sub 1/3}Fe{sub 2/3}O{sub 2-{delta}} phases were observed together with the expected MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3} mixture. Different equilibrium regions among sodium-depleted lamellar phases, manganese ferrite and sodium carbonate were found as a function of the different reaction conditions. A hypothesis concerning the regeneration mechanism of the initial compounds is proposed. Chemical equilibrium between stoichiometric and sub-stoichiometric forms of sodium ferrimanganite and sodium carbonate formation/dissociation appears to be essential factors governing the oxygen-releasing step of the manganese ferrite thermochemical cycle. - Graphical abstract: Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} disproportion reaction in the presence of CO{sub 2} was studied. Chemical equilibria among Na{sub 1-x}(Mn{sub 1/3}Fe{sub 2/3})O{sub 2}, MnFe{sub 2}O{sub 4} and Na{sub 2}CO{sub 3} compounds were evidenced and studied by means of Rietveld analysis performed on XRD patterns. Two different sodium-depleted lamellar structures were identified. The role of sodium carbonate formation/dissociation equilibrium in the oxygen-releasing step of the manganese ferrite thermochemical cycle has been highlighted.

  12. Chemical compatibility of a TiAl-Nb melt with oxygen-free crucible ceramics made of aluminum nitride

    NASA Astrophysics Data System (ADS)

    Kartavykh, A. V.; Cherdyntsev, V. V.

    2008-12-01

    The problem of uncontrolled oxygen contamination of intermetallic TiAl ingots is considered for the application of crucibles and molds based on traditional oxide ceramics. A synthesized Ti-45.9Al-8Nb (at %) alloy is solidified in alternative oxygen-free crucibles made of high-purity aluminum nitride (99.99% AlN) upon holding at 1670°C for 5, 12, and 25 min and subsequent quenching in a high-purity argon atmosphere. The initial material and the solidified ingots are studied by scanning electron microscopy, optical microscopy, X-ray diffraction, electron-probe microanalysis, and gas-content chemical analysis. The key features of the interaction of the TiAl-Nb melt with AlN ceramics are revealed. Partial thermal dissociation of the crucible material according to the reaction AlN → Al + N and the reaction of atomic nitrogen with the melt lead to the formation of a solid 6.4-μm-thick TiN coating on the ingot surface and provide perfect wettability of the crucible by the melt and easy removal of solidified casting items from the mold. The TiN coating serves as a diffusion barrier that hinders the diffusion of nitrogen and residual oxygen from the pores in the crucible toward the melt. As a result, no oxide particles are detected in the ingots. However, few single microprecipitates of two nitride phases ((Ti,Al) x N y , NbN) are detected in the near-bottom region, 300 μm thick, in the alloy after holding at 1670°C for 25 min. The total oxygen contamination in a two-phase α2 + γ ingot does not exceed 1100 wt ppm, which is 1.5-2 times lower than that obtained in the experiments performed with modern advanced oxide crucibles made of yttrium ceramics Y2O3. AlN is shown to be a promising crucible material that can be considered as an alternative to oxide ceramics in the metallurgy of TiAl intermetallics.

  13. Theory of chemical bonds in metalloenzymes - Manganese oxides clusters in the oxygen evolution center -

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K.; Shoji, M.; Saito, T.; Isobe, H.; Yamada, S.; Nishihara, S.; Kawakami, T.; Kitagawa, Y.; Yamanaka, S.; Okumura, M.

    2012-12-01

    In early 1980 we have initiated broken-symmetry (BS) MO theoretical calculations of transition-metal oxo species M = O (M = Ti,V,Cr,Mn,Fe,Ni,Cu) to elucidate the nature of dσ-pσ and dπ-pπ bonds. It has been concluded that high-valent M = O species such as [Mn(IV) = O]2+ and [Fe(IV) = O]2+ exhibit electrophilic property in a sharp contrast with nucleophilic character of low-valent M = O bonds: [M(II)O2-]0, and closed-shell dπ-pπ bonds of high-valent M = O species often suffer the triplet-instability, giving rise to open-shell (BS) configurations with significant metal-diradical (MDR) character: •M-O•: note that these bonds are therefore regarded as typical examples of strongly correlated electron systems. Because of the MDR character, 1,4-metal diradical mechanism was indeed preferable to four-centered mechanism in the case of addition reaction of naked Mn(IV) = O to ethylene. Recently the manganese-oxo species have been receiving renewed interest in relation to catalytic cycle of oxygen evolution from water molecules in the photosynthesis II (PSII) system. Accumulated experimental results indicate that this process is catalyzed with four manganese oxide clusters coordinated with calcium ion (CaMn4O4). Past decade we have performed BS MO theoretical investigations of manganese oxide clusters related to CaMn4O4. These calculations have elucidated that high-valent Mn(X) = O (X = IV,V) bonds exhibit intermediate MDR character (y=40-60%) in the case of total low-spin (LS) configuration but the MDR character decreases with coordination of Ca2+ and water molecules. While the MDR character of the Mn-oxo bonds becomes very high at the high-spin (HS) configuration. Our computational results enabled us to propose two possible mechanisms on the theoretical ground: (A) electrophilic (EP) mechanism and (B) radical coupling (RC) mechanism. The theoretical results indicate that the EP mechanism is preferable for the low-spin (LS) state in polar media like in the protein

  14. Controlling Heteroepitaxy by Oxygen Chemical Potential: Exclusive Growth of (100) Oriented Ceria Nanostructures on Cu(111)

    DOE PAGES

    Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina; Matolín, Vladimír; Falta, Jens; Senanayake, Sanjaya D.; Flege, J. Ingo

    2016-01-06

    We present a novel and simple method for the preparation of a well-defined CeO2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO2(100) (100% Ce4+) to c-Ce2O3(100) (100% Ce3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discovery of the highly stable CeOx(100) phase onmore » a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less

  15. Thermo-chemical fuel removal from porous materials by oxygen and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Möller, S.; Alegre, D.; Kreter, A.; Petersson, P.; Esser, H. G.; Samm, U.

    2014-04-01

    Thermo-chemical removal (TCR), or baking in reactive gases, is a candidate method to control the co-deposit related tritium inventory in fusion devices. TCR can be understood as reaction-diffusion processes in a porous material. O2-TCR was applied to 150-550 nm thick a-C:D layers with similar textures. A linear relation between the integral TCR rate and the layer thickness, as predicted by the understanding, was observed in the experiment, i.e. the time to remove the hydrogen inventory is independent of its initial amount. TCR with nitrogen dioxide (NO2) at temperatures of 200-350 °C was conducted with a set of a-C:D and W-C-H layers. At 350 °C NO2 removed ˜ 15% porosity a-C:D within 3 min. The O retention in remaining a-C:D was ≈ 1017 O cm-2. An activation energy of ≈ 0.78 eV for reactions of NO2 with D and C was determined. The results were applied for predictions of the TCR effectivity in ITER. The treatment of W-C-H led to O uptake (O/W ≈ 2-3), while W and C contents remained unchanged.

  16. The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition

    PubMed Central

    Paul, Rajat K.; Badhulika, Sushmee; Niyogi, Sandip; Haddon, Robert C.; Boddu, Veera M.; Costales-Nieves, Carmen; Bozhilov, Krassimir N.; Mulchandani, Ashok

    2012-01-01

    Large-area mono- and bilayer graphene films were synthesized on Cu foil (~ 1 inch2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000°C. X-ray photoelectron spectroscopy investigations showed about 3 atomic% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (Lc=10 μm; Wc=50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ~35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices. PMID:22408276

  17. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Cheng, Yu; Zhao, Dongchen; Yin, Kun; Zhang, Xuewei; Song, Meng; Yin, Shaoqian; Song, Yenan; Wang, Peng; Wang, Miao; Xia, Yang; Wang, Hongtao

    2016-03-01

    Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD process. Results show that GSCs have different first layer growth behaviors on the inside and outside surfaces of a Cu enclosure when the H2 environment is varied, and these behaviors will consequently and strongly influence the adlayer formation in these GSCs, leading to two entirely different growth modes. Low H2 partial pressure (PH2) tends to result in fast growth of dendritically shaped GSCs with multiple small adlayers, but high PH2 can modify the GSC shape into hexagons with single large adlayer nuclei. This difference of adlayers is attributed to the different C diffusion paths determined by the shapes of their host GSCs. On the basis of these observations, we developed an isothermal two-step method to obtain GSCs with significantly improved growth rate and sample quality, in which low PH2 is first set to accelerate the growth rate followed by high PH2 to restrict the adlayer nuclei. Our results prove that the growth of GSCs can reach a reasonable optimization between their growth rates and sample quality by simply adjusting the CVD H2 environment, which we believe will lead to more improvements in graphene synthesis and fundamental insight into the related growth mechanisms.Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD

  18. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals.

    PubMed

    Zhao, Pei; Cheng, Yu; Zhao, Dongchen; Yin, Kun; Zhang, Xuewei; Song, Meng; Yin, Shaoqian; Song, Yenan; Wang, Peng; Wang, Miao; Xia, Yang; Wang, Hongtao

    2016-04-14

    Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD process. Results show that GSCs have different first layer growth behaviors on the inside and outside surfaces of a Cu enclosure when the H2 environment is varied, and these behaviors will consequently and strongly influence the adlayer formation in these GSCs, leading to two entirely different growth modes. Low H2 partial pressure (PH2) tends to result in fast growth of dendritically shaped GSCs with multiple small adlayers, but high PH2 can modify the GSC shape into hexagons with single large adlayer nuclei. This difference of adlayers is attributed to the different C diffusion paths determined by the shapes of their host GSCs. On the basis of these observations, we developed an isothermal two-step method to obtain GSCs with significantly improved growth rate and sample quality, in which low PH2 is first set to accelerate the growth rate followed by high PH2 to restrict the adlayer nuclei. Our results prove that the growth of GSCs can reach a reasonable optimization between their growth rates and sample quality by simply adjusting the CVD H2 environment, which we believe will lead to more improvements in graphene synthesis and fundamental insight into the related growth mechanisms.

  19. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    PubMed

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.

  20. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals.

    PubMed

    Zhao, Pei; Cheng, Yu; Zhao, Dongchen; Yin, Kun; Zhang, Xuewei; Song, Meng; Yin, Shaoqian; Song, Yenan; Wang, Peng; Wang, Miao; Xia, Yang; Wang, Hongtao

    2016-04-14

    Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD process. Results show that GSCs have different first layer growth behaviors on the inside and outside surfaces of a Cu enclosure when the H2 environment is varied, and these behaviors will consequently and strongly influence the adlayer formation in these GSCs, leading to two entirely different growth modes. Low H2 partial pressure (PH2) tends to result in fast growth of dendritically shaped GSCs with multiple small adlayers, but high PH2 can modify the GSC shape into hexagons with single large adlayer nuclei. This difference of adlayers is attributed to the different C diffusion paths determined by the shapes of their host GSCs. On the basis of these observations, we developed an isothermal two-step method to obtain GSCs with significantly improved growth rate and sample quality, in which low PH2 is first set to accelerate the growth rate followed by high PH2 to restrict the adlayer nuclei. Our results prove that the growth of GSCs can reach a reasonable optimization between their growth rates and sample quality by simply adjusting the CVD H2 environment, which we believe will lead to more improvements in graphene synthesis and fundamental insight into the related growth mechanisms. PMID:26987665

  1. Extended Hartree-Fock theory of chemical reactions. IX. Diradical and perepoxide mechanisms for oxygenations of ethylene with molecular oxygen and iron-oxo species are revisited

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kizashi; Yamanaka, Syusuke; Shimada, Jiro; Isobe, Hiroshi; Saito, Toru; Shoji, Mitsuo; Kitagawa, Yasutaka; Okumura, Mitsutaka

    Symmetry and broken symmetry (BS) in molecular orbital description of transition structures and intermediates in oxygenation reactions have been revisited to elucidate states correlation diagrams and mechanisms for addition reactions of molecular oxygen and metal-oxo M=O (M = Mn(II) and Fe(II)) species to C=C double bonds. Relative stabilities between diradical (DR) and perepoxide (PE) intermediates were thoroughly investigated by several BS hybrid DFT (HDFT) methods and BS CCSD(T) method with and without spin projection. It has been found that recovery of spin symmetry, namely eliminating spin contamination error from the BS solutions, is crucial for the elucidation of reasonable state correlation diagrams and energy differences of the key structures in the oxygenation reactions because the singlet-triplet energy gap for molecular oxygen is large (22 kcal/mol). The BS HDFT followed by spin correction reproduced activation barriers for transition structures along both PE and DR reaction pathways by the use of the CASPT2 method. Basis set dependence on the relative stability between PE and DR intermediates were also examined thoroughly. Solvation effect for DR and PE intermediates was further examined with self-consistent reaction field (SCRF) and SCIPCM methods. Both BS HDFT and CASPT2 have concluded that the DR mechanism is favorable for the addition reaction of singlet oxygen to ethylene, supporting our previous conclusions. The BS HDFT with spin correction was concluded to be useful enough for theoretical investigations of mechanisms of oxygenation reactions. Implications of the computational results were discussed in relation to the theoretical framework (four configuration model) for elucidation of possible mechanisms of epoxidation reactions with Fe(IV)=O cores in metalloenzymes on the basis of isolobal analogies among O, O=O, and Fe(IV)=O. Correspondence between magnetic coupling mode and radical pathway in oxygenations with these species was clarified based

  2. Ventilatory accommodation of oxygen demand and respiratory water loss in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus).

    PubMed

    Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K

    2000-01-01

    We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.

  3. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials.

    PubMed

    Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand

    2016-07-01

    Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li(+) and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. PMID:27325096

  4. Film Characteristics of Low-Temperature Plasma-Enhanced Chemical Vapor Deposition Silicon Dioxide Using Tetraisocyanatesilane and Oxygen

    NASA Astrophysics Data System (ADS)

    Idris, Irman; Sugiura, Osamu

    1998-12-01

    Silicon dioxide films were deposited in a parallel-plate electrode RF plasma-enhanced chemical vapor deposition (PECVD) system using hydrogen-free tetraisocyanatesilane (TICS) and oxygen. The deposition parameters were varied systematically, and the films were characterized by measuring infrared spectra, density, etch rate, refractive index, and current-voltage (I V) and capacitance-voltage (C V) characteristics, as well as by examining their annealing behavior. At 300°C and a TICS partial pressure ratio of 20%, a water-free and hydroxyl-group-free SiO2 film was obtained. The film density, BHF etch rate, refractive index, resistivity, and dielectric constant were 2.3 g/cm3, 330 nm/min, 1.46, 7×1015 Ω·cm, and 3.6, respectively. The film quality degraded and, simultaneously, the film absorbed moisture from the atmosphere with decreasing deposition temperature; however, the quality can be improved by reducing TICS partial pressure. SiO2 films could be deposited even at 15°C, and had a resistivity of about 1013Ω·cm. Infrared measurements showed that SiO2 films deposited from TICS/O2 contained less absorbed water than those deposited from hydrogen-containing source materials at the same deposition temperature.

  5. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.

    PubMed

    Kim, So Hyun; Cui, Yidan; Lee, Min Jung; Nam, Seong-Won; Oh, Doori; Kang, Seong Ho; Kim, Youn Sang; Park, Sungsu

    2011-01-21

    This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching λ-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications.

  6. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  7. New demands on desalter operations

    SciTech Connect

    Witzig, W.L.

    1987-01-01

    Increased demands for improved desalter performance focus primarily on salt content and BS and W (basic sediment and water) content of the desalted crude. Recent demands target removal of other inorganic impurities which deactivate catalysts and contaminate finish products. The specific demand or performance need is usually apparent and easily quantified. This paper focuses on methods to achieve these demands through process optimization, chemical treatment, and employing an integrated process approach to desalting.

  8. Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences.

    PubMed

    Pokrovsky, O S; Pokrovski, G S; Shirokova, L S; Gonzalez, A G; Emnova, E E; Feurtet-Mazel, A

    2012-03-01

    Copper adsorption on the surface and intracellular uptake inside the cells of four representative taxons of soil and aquatic micro-organisms: aerobic rhizospheric heterotrophs (Pseudomonas aureofaciens), anoxygenic (Rhodovulum steppense) and oxygenic (cyanobacteria Gloeocapsa sp. and freshwater diatoms Navicula minima) phototrophs were studied in a wide range of pH, copper concentration, and time of exposure. Chemical status of adsorbed and assimilated Cu was investigated using in situ X-ray absorption spectroscopy. In case of adsorbed copper, XANES spectra demonstrated significant fractions of Cu(I) likely in the form of tri-coordinate complexes with O/N and/or S ligands. Upon short-term reversible adsorption at all four studied micro-organisms' cell surface, Cu(II) is coordinated by 4.0 ± 0.5 planar oxygens at an average distance of 1.97 ± 0.02 Å, which is tentatively assigned to the carboxylate groups. The atomic environment of copper incorporated into diatoms and cyanobacteria during long-term growth is similar to that of the adsorbed metal with slightly shorter distances to the first O/N neighbor (1.95 Å). In contrast to the common view of Cu status in phototrophic micro-organisms, XAFS failed to detect sulfur in the nearest atomic environment of Cu assimilated by freshwater plankton (cyanobacteria) and periphyton (diatoms). The appearance of S in Cu 1st coordination shell at 2.27-2.32 Å was revealed only after long-term interaction of Cu with anoxygenic phototrophs (and Cu uptake by soil heterotrophs), suggesting Cu scavenging in the form of sulfhydryl, histidine/carboxyl or a mixture of carboxylate and sulfhydryl complexes. These new structural constraints suggest that adsorbed Cu(II) is partially reduced to Cu(I) already at the cell surface, where as intracellular Cu uptake and storage occur in the form of both Cu(I)-S linked proteins and Cu(II) carboxylates. Obtained results allow to better understand how, in the course of biological evolution, micro

  9. Municipal waste treatment by supracell flotation, chemical oxidation and STAR (sludge thickening and alum recovery) system. Technical research report 1985-86

    SciTech Connect

    Krofta, M.; Wang, L.K.

    1986-10-22

    This report documents effectiveness of a Krofta Supracell Type 4 Clarifier installed at the Bangor, Maine, Pollution Abatement Facility for the treatment of primary effluent. It includes detailed theory, principles, and test results on the permanganate oxidation-reduction system and the sludge thickening and alum recovery system. Reductions of total suspended solids, chemical oxygen demand, and 5-day biological oxygen demand are presented.

  10. Kinetic-fluid dynamics modeling of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Waichman, K.; Barmashenko, B. D.; Rosenwaks, S.

    2009-09-15

    The mechanism of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers (COILs) is studied applying kinetic-fluid dynamics modeling, where pathways involving the excited species I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},10<=v<25), I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},25<=v<=47), I{sub 2}(A{sup '} {sup 3}PI{sub 2u}), I{sub 2}(A {sup 3}PI{sub 1u}), O{sub 2}(X {sup 3}SIGMA{sub g}{sup -},v), O{sub 2}(a {sup 1}DELTA{sub g},v), O{sub 2}(b {sup 1}SIGMA{sub g}{sup +},v), and I({sup 2}P{sub 1/2}) as intermediate reactants are included. The gist of the model is adding the first reactant and reducing the contribution of the second as compared to previous models. These changes, recently suggested by Azyazov, et al. [J. Chem. Phys. 130, 104306 (2009)], significantly improve the agreement with the measurements of the gain in a low pressure supersonic COIL for all I{sub 2} flow rates that have been tested in the experiments. In particular, the lack of agreement for high I{sub 2} flow rates, which was encountered in previous models, has been eliminated in the present model. It is suggested that future modeling of the COIL operation should take into account the proposed contribution of the above mentioned reactants.

  11. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  12. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  13. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations.

    PubMed

    Jain, Alok; Krishna Deepak, R N V; Sankararamakrishnan, Ramasubbu

    2014-07-01

    Three-dimensional structures of biomolecules are stabilized by a large number of non-covalent interactions and some of them such as van der Waals, electrostatic and hydrogen bond interactions are well characterized. Delocalized π-electron clouds of aromatic residues are known to be involved in cation-π, CH-π, OH-π and π-π interactions. In proteins, many examples have been found in which the backbone carbonyl oxygen of one residue makes close contact with the aromatic center of aromatic residues. Quantum chemical calculations suggest that such contacts may provide stability to the protein secondary structures. In this study, we have systematically analyzed the experimentally determined high-resolution DNA crystal structures and identified 91 examples in which the aromatic center of one base is in close contact (<3.5Ǻ) with the oxygen atom of preceding (Group-I) or succeeding base (Group-II). Examples from Group-I are overwhelmingly observed and cytosine or thymine is the preferred base contributing oxygen atom in Group-I base pairs. A similar analysis of high-resolution RNA structures surprisingly did not yield many examples of oxygen-aromatic contact of similar type between bases. Ab initio quantum chemical calculations on compounds based on DNA crystal structures and model compounds show that interactions between the bases in base pairs with oxygen-aromatic contacts are energetically favorable. Decomposition of interaction energies indicates that dispersion forces are the major cause for energetically stable interaction in these base pairs. We speculate that oxygen-aromatic contacts in intra-strand base pairs in a DNA structure may have biological significance.

  14. Evaluation and use of a diffusion-controlled sampler for determining chemical and dissolved oxygen gradients at the sediment-water interface

    USGS Publications Warehouse

    Simon, N.S.; Kennedy, M.M.; Massoni, C.S.

    1985-01-01

    Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.

  15. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  16. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds. PMID:26898203

  17. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw.

    PubMed

    Geng, Wenhui; Huang, Ting; Jin, Yongcan; Song, Junlong; Chang, Hou-Min; Jameel, Hasan

    2014-06-01

    Pretreatment of wheat straw with a combination of sodium carbonate (Na2CO3) or sodium hydroxide (NaOH) with oxygen (O2) 0.5MPa was evaluated for its delignification ability at relatively low temperature 110°C and for its effect on enzymatic hydrolysis efficiency. In the pretreatment, the increase of alkali charge (as Na2O) up to 12% for Na2CO3 and 6% for NaOH, respectively, resulted in enhancement of lignin removal, but did not significantly degrade cellulose and hemicellulose. When the pretreated solid was hydrolyzed with a mixture of cellulases and hemicellulases, the sugar yield increased rapidly with the lignin removal during the pretreatment. A total sugar yield based on dry matter of raw material, 63.8% for Na2CO3-O2 and 71.9% for NaOH-O2 was achieved under a cellulase loading of 20FPU/g-cellulose. The delignification efficiency and total sugar yield from enzymatic hydrolysis were comparable to the previously reported results at much higher temperature without oxygen.

  18. Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential.

    PubMed

    Mitra, Chandrima; Meyer, Tricia; Lee, Ho Nyung; Reboredo, Fernando A

    2014-08-28

    To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.

  19. Demanding Satisfaction

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    It was the kind of crisis most universities dread. In November 2006, a group of minority student leaders at Indiana University-Purdue University Indianapolis (IUPUI) threatened to sue the university if administrators did not heed demands that included providing more funding for multicultural student groups. This article discusses how this threat…

  20. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  1. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  2. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    PubMed

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  3. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750+/-250 mg L(-1), and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L(-1), less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L(-1) for Reactor I and 151.6 mg L(-1) for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L(-1) for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L(-1) quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L(-1) gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.

  4. Perfluorocarbon-filled poly(lactide-co-gylcolide) nano- and microcapsules as artificial oxygen carriers for blood substitutes: a physico-chemical assessment.

    PubMed

    Bauer, J; Zähres, M; Zellermann, A; Kirsch, M; Petrat, F; de Groot, H; Mayer, C

    2010-01-01

    The physico-chemical suitability of perfluorocarbon-filled capsules as artificial oxygen carriers for blood substitutes is assessed on the example of biodegradable poly(lactide-co-gylcolide) micro- and nanocapsules with a liquid content of perfluorodecalin. The morphology of the capsules is studied by confocal laser scanning microscopy using Nile red as a fluorescent marker. The mechanical stability and the wall flexibility of the capsules are examined by atomic force microscopy. The permeability of the capsule walls in connection with the oxygen uptake is detected by nuclear magnetic resonance. It is shown that the preparation in fact leads to nanocapsules with a mechanical stability which compares well with the one of red blood cells. The capsule walls exhibit sufficient permeability to allow for the exchange of oxygen in aqueous environment. In the fully saturated state, the amount of oxygen dissolved within the encapsulated perfluorodecalin in aqueous dispersion is as large as for bulk perfluorodecalin. Simple kinetic studies are presently restricted to the time scale of minutes, but so far indicate that the permeability of the capsule walls could be sufficient to allow for rapid gas exchange.

  5. Role of preferential weak hybridization between the surface-state of a metal and the oxygen atom in the chemical adsorption mechanism.

    PubMed

    Kim, Yong Su; Jeon, Sang Ho; Bostwick, Aaron; Rotenberg, Eli; Ross, Philip N; Walter, Andrew L; Chang, Young Jun; Stamenkovic, Vojislav R; Markovic, Nenad M; Noh, Tae Won; Han, Seungwu; Mun, Bongjin Simon

    2013-11-21

    We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz(2) orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer. PMID:24097254

  6. Chemical structure and oxygen dynamics in Ba[sub 2]In[sub 2]O[sub 5

    SciTech Connect

    Adler, S.B.; Reimer, J.A.; Baltisberger, J.; Werner, U. )

    1994-01-26

    Oxygen-17 magnetic resonance, in conjunction with high-temperature X-ray diffraction (XRD) and differential thermal analysis (DTA), were used to investigate the structure of Ba[sub 2]In[sub 2]O[sub 5] and the dynamics of oxygen ion motion between room temperature and 1200[degrees]C. NMR and thermal analysis demonstrate that at 925[degrees]C there is an order-disorder transition which involves oxygen atoms between layers of octahedrally coordinated indium atoms. Both NMR and X-ray diffraction show that the material retains an orthorhombic (layered) structure until approximately 1075[degrees]C, at which point the material becomes cubic. The number of mobile oxygen atoms in the structure increases continuously between 925 and 1075[degrees]C, and only above 1075[degrees]C does the full population of anions become mobile. These results imply that vacancies contribute to transport two-dimensionally within the tetrahedral layers at the order-disorder transition. 26 refs., 13 figs.

  7. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  8. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.; Coles, C. E.

    1986-01-01

    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethlsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed deploymerization of the fluid molecule.

  9. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the Liquid Droplet Radiator

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Coles, Carolyn E.

    1987-01-01

    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethylsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed depolymerization of the fluid molecule.

  10. Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered LiMO2.

    PubMed

    Augustyn, Veronica; Manthiram, Arumugam

    2015-10-01

    Nickel-rich layered LiMO2 (M = transition metal) oxides doped with iron exhibit high oxygen evolution reaction (OER) activity in alkaline electrolytes. The LiMO2 oxides offer the possibility of investigating the influence of the number of d electrons on OER by tuning the oxidation state of M via chemical or electrochemical delithiation. Accordingly, we investigate here the electrocatalytic behavior of LiNi0.7Co0.3O2 and LiNi0.7Co0.2Fe0.1O2 before and after chemical delithiation. In addition to varying the oxidation state of the transition-metal ions, we find that chemical delithiation also affects the local chemical environment and morphology. The electrochemical response differs depending on whether the delithiation occurred ex situ chemically or in situ during the electrocatalysis. The results point to the important role of in situ transformation in LiMO2 in alkaline electrolytes during electrocatalytic cycling.

  11. Rocket-borne instrumentation for the measurement of atomic oxygen based on chemical release in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Vanhemelrijk, E.; Vanransbeek, E.

    Rocket-borne instrumentation, which determines atomic oxygen density as a function of altitude, was tested. A technique where NO gas is ejected in the backward direction of the flight is outlined. A 6.8 g explosive charge punches a 40 mm hole in the gas bottles. At 80 to 105 km altitude 99% of the gas is ejected within 0.07 sec over a 60 m release interval, assuming rocket velocity = 100 m/sec. The initial Gaussian radius of the cloud is 60 to 70 m, satisfying the point release principle. Cloud altitudes, and wind speeds are derived from ground based photographs. Oxygen concentration is determined by analyzing the chemiluminescence of the point releases. Rocket flights confirm the usefulness of the system.

  12. Brain Oxygenation Monitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  13. Radiochemical ageing of EPDM elastomers.. 2. Identification and quantification of chemical changes in EPDM and EPR films γ-irradiated under oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Rivaton, A.; Cambon, S.; Gardette, J.-L.

    2005-01-01

    This paper is devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing under oxygen atmosphere of ethylene-propylene-diene monomer (EPDM) and ethylene-propylene rubber (EPR) films containing the same molar ratio of ethylene/propylene. IR and UV-Vis analysis showed that radiooxidation produces a complex mixture of different products and provokes the consumption of the diene double bond. The radiochemical yields of formation of ketones, carboxylic acids, hydroperoxides and alcohols were determined by combining IR analysis with derivatisation reactions and chemical titration. The contributions of secondary and tertiary structures of these two types of -OH groups were separated. Esters and γ-lactones were formed in low concentration. The oxidation products distribution in irradiated films was determined by micro-FTIR spectroscopy. Crosslinking was evaluated by gel fraction methods. In complement, the gas phase composition was analysed by mass spectrometry.

  14. Growth mechanism of thin films of yttria-stabilized zirconia by chemical vapor infiltration using NiO-ceria substrate as oxygen source

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji; Okada, Koji; Mineshige, Atsushi

    The deposition of yttria-stabilized zirconia films on a NiO-ceria substrate by chemical vapor infiltration (CVI) using ZrCl 4 and YCl 3 as metal sources and NiO-ceria as oxygen source was studied. The resultant films were cubic YSZ with a Y 2O 3 content of 3.7-4.2 mol%, and were transparent and strong. A NiO content of NiO-ceria above 60 mol% increases the growth rate of the YSZ film from about 5 to 25 μm over 2 h, indicating that chemical vapor deposition (CVD) occurred in addition to electrochemical vapor deposition (EVD), whereas NiO contents below 60 mol% does not affect the growth rate, indicating that only electrochemical vapor deposition occurred. The growth mechanism of the YSZ film is determined and a YSZ thin film is successfully fabricated on NiO-ceria to improve mechanical strength.

  15. The Interconversion of Electrical and Chemical Energy: The Electrolysis of Water and the Hydrogen-Oxygen Fuel Cell.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Discusses some of the drawbacks of using a demonstration of the electrolysis of water to illustrate the interconversion between electrical and chemical energy. Illustrates a simple apparatus allowing demonstration of this concept while overcoming these drawbacks. (CW)

  16. Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2.

    PubMed

    Chen, Wei; Zhao, Jing; Zhang, Jing; Gu, Lin; Yang, Zhenzhong; Li, Xiaomin; Yu, Hua; Zhu, Xuetao; Yang, Rong; Shi, Dongxia; Lin, Xuechun; Guo, Jiandong; Bai, Xuedong; Zhang, Guangyu

    2015-12-23

    Monolayer molybdenum disulfide (MoS2) has attracted great interest due to its potential applications in electronics and optoelectronics. Ideally, single-crystal growth over a large area is necessary to preserve its intrinsic figure of merit but is very challenging to achieve. Here, we report an oxygen-assisted chemical vapor deposition method for growth of single-crystal monolayer MoS2. We found that the growth of MoS2 domains can be greatly improved by introducing a small amount of oxygen into the growth environment. Triangular monolayer MoS2 domains can be achieved with sizes up to ∼350 μm and a room-temperature mobility up to ∼90 cm(2)/(V·s) on SiO2. The role of oxygen is not only to effectively prevent the poisoning of precursors but also to eliminate defects during the growth. Our work provides an advanced method for high-quality single-crystal monolayer MoS2 growth.

  17. Oxygen nonstoichiometry and thermo-chemical stability of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}

    SciTech Connect

    Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J.

    2013-01-15

    The oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO{sub 2}, and/or elevated temperatures. For applications of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}, such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO{sub 2} is crucial, as localized low pO{sub 2} could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} was measured at high and intermediate pO{sub 2} until the material decomposed (at log(pO{sub 2}/bar) Almost-Equal-To -4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} forms a 'super-reduced' solid solution before decomposing. When the sample underwent alternate reduction-oxidation, a hysteresis-like pO{sub 2} dependence of the oxygen content in the decomposition pO{sub 2} range was attributed to the reversible formation of ABO{sub 3} and A{sub 2}BO{sub 4} phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3-{delta}) of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} as a function of pO{sub 2} at 773-1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a 'two-step-forward one-step-back' reduction-oxidation (CT2) procedure). D1 and D2 denote the decomposition pO{sub 2}. The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: Black

  18. H2S Reactivity on Oxygen-Deficient Heterotrimetallic Cores: Cluster Fluxionality Simulates Dynamic Aspects of Surface Chemical Reactions.

    PubMed

    Adhikari, Debashis; Raghavachari, Krishnan

    2016-01-28

    Understanding the mechanistic aspects of heterogeneous reactions on supported metal catalysts is challenging due to several disparate factors, among which the dynamic nature of the surface is a major contributor. In this study, the dynamic aspect of a surface has been probed by choosing small metal clusters as illustrative models. Two anionic hetero-trimetallic clusters, namely, W2TcO6(-) and W2OsO6(-), were reacted with H2S gas to exhibit splitting of the gas molecule and complete oxygen-sulfur exchange in the metal core. During this atom-exchange process, the core exhibits remarkable fluxionality to augment a thiol proton migration from one metal center to another, as well as a rapid interchange of the terminal and bridging oxygens. The fluxional nature of the core is further evidenced by two oppositely oriented oxo groups working in concert to accomplish the proton transfer, upon introduction of sulfur inside the core. These fluxional processes in the small hetero-trimetallic cores closely resemble the dynamic nature of the surface in a heterogeneous reaction. Throughout the fluxional processes investigated in this study, two-state reactivity and multiple instances of spin crossover are observed in our computational studies. Interestingly, the neutral hetero-trimetallic cores can also undergo complete oxygen-sulfur exchange reaction with H2S. The investigated metal clusters are promising materials, since they not only can liberate dihydrogen from water (reported in J. Phys. Chem. A, 2014, 118, 11047) but also can completely strip the sulfur from environmentally hazardous H2S gas.

  19. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  20. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention.

    PubMed

    Deng, Shuang; Shu, Yun; Li, Songgeng; Tian, Gang; Huang, Jiayu; Zhang, Fan

    2016-01-15

    Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon-oxygen functional groups indicate that the C=O, OH/C-O and (O-C=O)-O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed. PMID:26410268

  1. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae.

    PubMed

    Abargues, M R; Ferrer, J; Bouzas, A; Seco, A

    2013-12-01

    The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each micropollutant. The results showed that under aerated conditions removal ratios higher than 91% were achieved, whereas for non-aerated conditions the removal ratios were between 50% and 80%, except for 4-NP which achieved removal ratios close to 100%. Besides, mass balance showed that the degradation processes were more important than the sorption processes. PMID:24096281

  2. Parameters of an electric-discharge generator of iodine atoms for a chemical oxygen-iodine laser

    SciTech Connect

    Azyazov, V N; Vorob'ev, M V; Voronov, A I; Kupryaev, Nikolai V; Mikheev, P A; Ufimtsev, N I

    2009-01-31

    Laser-induced fluorescence is used for measuring the concentration of iodine molecules at the output of an electric-discharge generator of atomic iodine. Methyl iodide CH{sub 3}I is used as the donor of atomic iodine. The fraction of iodine extracted from CH{sub 3}I in the generator is {approx}50%. The optimal operation regimes are found in which 80%-90% of iodine contained in the output flow of the generator was in the atomic state. This fraction decreased during the iodine transport due to recombination and was 20%-30% at the place where iodine was injected into the oxygen flow. The fraction of the discharge power spent for dissociation was {approx}3%. (elements of laser setups)

  3. Low-Temperature Chemical Vapor Deposition Synthesis of Pt-Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis.

    PubMed

    Choi, Dong Sung; Robertson, Alex W; Warner, Jamie H; Kim, Sang Ouk; Kim, Heeyeon

    2016-09-01

    Novel Pt-Co alloyed nanocatalysts are generated via chemical vapor deposition-assisted facile one-pot synthesis. The method guarantees highly monodisperse Pt-Co alloy nanoparticles with precise control of metallic compositions within 1 at%. A significant features is that a perfectly alloyed single-crystal structure is obtained at temperatures as low as 500 °C, which is much lower than conventional alloying temperatures.

  4. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  5. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems.

    PubMed

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2(-)), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  6. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  7. Oxygen safety margins set thermal limits in an insect model system.

    PubMed

    Boardman, Leigh; Terblanche, John S

    2015-06-01

    A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53°C vs 50°C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5 kPa) decreasing CTmax significantly from 53 to 51°C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date.

  8. Oxygen safety margins set thermal limits in an insect model system.

    PubMed

    Boardman, Leigh; Terblanche, John S

    2015-06-01

    A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53°C vs 50°C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5 kPa) decreasing CTmax significantly from 53 to 51°C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date. PMID:26041031

  9. Experimental verification of the Einstein A-coefficient used for evaluation of O2(1Δg) concentration in the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Spalek, O.; Kodymová, J.; Stopka, P.; Micek, I.

    1999-04-01

    This paper is a contribution to the current discussion on the Einstein coefficient for spontaneous emission (A-coefficient) of singlet delta oxygen, O2(1Δg), that is often used for an evaluation of O2(1Δg) concentration in a chemical oxygen-iodine laser (COIL). The published values of the A-coefficient vary in a wide range, corresponding to a radiative lifetime of O2(1Δg), τ_Δ^rad, from ~53 to ~151 min. This could make an evaluation of COIL operation questionable. In this paper, the Einstein A-coefficient is estimated, based on the comparison of O2(1Δg) concentrations determined by two independent methods: electron paramagnetic resonance and emission spectroscopy. Within the accuracy of the experimental techniques used, the value of the A-coefficient resulting from our investigation is (2.24±0.40) × 10-4 s-1, corresponding to τ_Δ^rad of ~74 min. This result is more consistent with the value of 2.58 × 10-4 s-1 of Badger et al [1] than with the value of 1.47 × 10-4 s-1 reported recently by Mlynczak and Nesbitt [2], who raised doubt about the Badger et al value.

  10. Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy.

    PubMed

    Sammut, M L; Rose, J; Masion, A; Fiani, E; Depoux, M; Ziebel, A; Hazemann, J L; Proux, O; Borschneck, D; Noack, Y

    2008-02-01

    There is a growing concern regarding the environmental and public health risks associated with airborne particulate matter (PM). The basic oxygen furnace is one of the most important atmospheric dust sources of the steel manufacturing process. It emits dust enriched in heavy metal such as Zn, which is assumed to contribute to the toxic potential of atmospheric PM. Dust collected before and after the filtration system was analyzed to determine Zn speciation. To this end, a variety of analytical tools were used and a sequential extraction protocol has been specifically developed for iron and steel dust. The Zn speciation results obtained by EXAFS and sequential extraction were in excellent agreement. Before filtration, the speciation of Zn in BOF was 43% ZnFe(2)O(4), 23% ZnCO(3) and 16% ZnO. The same species were detected after filtration with different proportions. BOF dust after filtration contains more soluble Zn phases which may play a role in the toxic effects of the emissions.

  11. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D; Hocart, Charles H

    2010-06-01

    Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained.

  12. On the mechanism of the chemical and enzymic oxygenations of alpha-oxyprotohemin IX to Fe.biliverdin IX alpha.

    PubMed Central

    Sano, S; Sano, T; Morishima, I; Shiro, Y; Maeda, Y

    1986-01-01

    alpha-Oxyprotohemin IX, an early intermediate in heme catabolism, was synthesized and its autoxidation to biliverdin IX alpha was studied. In anaerobic aqueous pyridine, alpha-oxyprotohemin (hexacoordinated) underwent autoreduction to yield an Fe(II) alpha-oxyprotoporphyrin pi-neutral radical bis(pyridine) complex, which reacted with an equimolar amount of dioxygen to give pyridine.verdohemochrome IX alpha and CO in 75-80% yield via an intermediate with an absorption maximum at 893 nm. Verdohemochrome IX alpha did not react with further dioxygen. Reconstituted apomyoglobin.alpha-oxyprotohemin IX complex (pentacoordinated) reacted with an equimolar amount of dioxygen to form an Fe(II) oxyporphyrin pi-neutral radical intermediate, which rearranged to a green compound (lambda max 660 and 704 nm) with elision of CO. The green product, which is probably an apomyoglobin.verdoheme pi-radical complex, reacted with another equimolar amount of dioxygen to give Fe(III).biliverdin IX alpha. Demetallation of this gave biliverdin IX alpha in overall yield of 70-75%. These results indicate that the sequence of oxyheme autoxidation in the presence of apomyoglobin is alpha-oxyprotoheme IX O2----CO----verdohemochrome IX alpha pi-radical O2----Fe(III).biliverdin IX alpha. A similar mechanism may prevail in vivo. The hexa- and pentacoordinated Fe(II) pi-radical form of the oxyporphyrin is crucial in triggering the autoxidation of the complex to verdohemochrome IX alpha. Further oxygenation of verdohemochrome IX alpha to Fe(III).biliverdin IX alpha occurred only in the pentacoordinated apomyoglobin.verdoheme Fe(II) complex. PMID:3456152

  13. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García-Rojas, J.; Carigi, L.; Peimbert, M.; Bresolin, F.; López-Sánchez, A. R.; Mesa-Delgado, A.

    2014-09-01

    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mrk 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the H II region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 Å range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C2+ and/or O2+ from faint pure recombination lines in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O versus O/H, C/O versus N/O and C/N versus O/H relations for Galactic and extragalactic H II regions and comparing with results for Galactic halo stars and damped Lyα systems. We find that H II regions in star-forming dwarf galaxies occupy a different locus in the C/O versus O/H diagram than those belonging to the inner discs of spiral galaxies, indicating their different chemical evolution histories, and that the bulk of C in the most metal-poor extragalactic H II regions should have the same origin than in halo stars. The comparison between the C/O ratios in H II regions and in stars of the Galactic thick and thin discs seems to give arguments to support the merging scenario for the origin of the Galactic thick disc. Finally, we find an apparent coupling between C and N enrichment at the usual metallicities determined for H II regions and that this coupling breaks in very low metallicity objects.

  14. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor.

    PubMed

    Yücel, Mustafa; Beaton, Alexander D; Dengler, Marcus; Mowlem, Matthew C; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1 μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  15. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

    PubMed Central

    Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  16. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Fok, Shierly; Verma, Vishal; Tagle Rodriguez, Marlen S.; Grosberg, Anna; Champion, Julie A.; Ng, Nga L.

    2016-11-01

    Elevated particulate matter (PM) concentrations have been associated with cardiopulmonary risks. In this study, alveolar macrophages and ventricular myocytes were exposed to PM extracts from 104 ambient filters collected in multiple rural and urban sites in the greater Atlanta area. PM-induced reactive oxygen/nitrogen species (ROS/RNS) were measured to investigate the effect of chemical composition and determine whether chemical assays are representative of cellular responses. For summer samples, the area under the ROS/RNS dose-response curve per volume of air (AUCvolume) was significantly correlated with dithiothreitol (DTT) activity, water-soluble organic carbon (WSOC), brown carbon, titanium, and iron, while a relatively flat response was observed for winter samples. EC50 was also correlated with max response for all filters investigated, which suggests that certain PM constituents may be involved in cellular protective pathways. Although few metal correlations were observed, exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating that a lack of correlation does not necessarily translate to a lack of response. Collectively, these results suggest that complex interactions may occur between PM species. Furthermore, the strong correlation between organic species and ROS/RNS response highlights a need to understand the contribution of organic aerosols, especially photochemically driven secondary organic aerosols (SOA), to PM-induced health effects.

  17. Effect of chemical composition on the elastic and electrical properties of the boron-oxygen-yttrium system studied by ab initio and experimental means

    NASA Astrophysics Data System (ADS)

    Music, Denis; Chirita, Valeriu; Schneider, Jochen M.; Helmersson, Ulf

    2004-03-01

    The effect of chemical composition on the elastic and electrical properties is studied for the BOxYz system with 0.27⩽x⩽1.14 and 0.36⩽z⩽0.08. We use ab initio calculations to obtain the elastic constants and density of states for BO1.5 and the BOY phase (yttrium substituting for oxygen in the boron suboxide structure). For decreasing x values, the elastic modulus is predicted to increase from 11 to 340 GPa, while electronic structure calculations suggest a shift in electrical properties from insulating to metallic. Thin films in the B-O-Y system are grown by reactive rf magnetron sputtering. As x decreases from 1.14 to 0.27, the elastic modulus increases from 12 to 282 GPa, which is a factor of 24, while resistivity decreases from 7.6±0.4 to (3.8±0.1)×10-2 Ωm. The observed shifts in elasticity and resistivity are shown to be induced by the associated changes in chemical bonding from van der Waals type in BO1.5 to icosahedral type in the BOY phase.

  18. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  19. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  20. Chemical composition, aroma evaluation, and oxygen radical absorbance capacity of volatile oil extracted from Brassica rapa cv. "yukina" used in Japanese traditional food.

    PubMed

    Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2014-01-01

    The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.

  1. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT. PMID:21728653

  2. Low thermal budget in situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Sanganeria, Mahesh K.; Öztürk, Mehmet C.; Violette, Katherine E.; Harris, Gari; Lee, C. Archie; Maher, Dennis M.

    1995-03-01

    In this letter, we present experimental evidence on desorption of O and C from a Si surface resulting in impurity levels below the detection levels of secondary ion mass spectroscopy. We then propose a surface preperation method for silicon epitaxy that consists of an ex situ clean and an in situ low thermal budget prebake in an ultrahigh vacuum rapid thermal chemical vapor deposition (UHV-RTCVD) reactor. The ex situ clean consists of a standard RCA clean followed by a dilute HF dip and rinse in de-ionized water. The in situ clean is either carried out in vacuum or in a low partial pressure of 10% Si2H6 in H2. The experiments were conducted in an UHV-RTCVD reactor equipped with oil-free vacuum pumps. We propose that the responsible mechanism is desorption of oxygen and hydrocarbons from the Si surface due to the low partial pressures of these contaminants in the growth chamber. If Si2H6 is used during the prebake, a sufficiently low growth rate is required in order to provide sufficient time for desorption and avoid Si overgrowth on the O and C sites.

  3. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

  4. The Multistep, Eight-Electron Oxidation Catalyzed by the Cofactorless Oxidase, PqqC: Identification of Chemical Intermediates and their Dependence on Molecular Oxygen

    PubMed Central

    Bonnot, Florence; Iavarone, Anthony T.; Klinman, Judith P.

    2013-01-01

    The final step of the biosynthesis of the prokaryotic cofactor, PQQ, is catalyzed by PqqC, a cofactorless oxidase that brings about a ring closure and overall eight-electron oxidation of its substrate. Time-dependent acid quenching and subsequent HPLC separation and mass spectrometric analyses of reaction mixtures were performed in order to correlate the structures of intermediates with previously observed UV/Vis signatures. The reaction is composed of four stepwise oxidations: three steps use O2 as the two-electron acceptor and the fourth uses hydrogen peroxide (H2O2). The chemical nature of the intermediates, the stoichiometry of the reaction and their dependence on the oxygen concentration indicate that the third oxidation uses the product H2O2 from the preceding step to produce water. The last oxidation step can also be studied separately and is a reaction between O2 and PQQH2 trapped in the active site. This oxidation is approximately 10 times slower than the reoxidation of PQQH2 in solution. From the order of the four oxidation steps and their sensitivity to O2 concentration, we propose a progressive closure of the active site as the enzyme proceeds through its catalytic cycle. PMID:23718207

  5. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  6. Numerical study of He/CF{sub 3}I pulsed discharge used to produce iodine atom in chemical oxygen-iodine laser

    SciTech Connect

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Duo Liping; Li Guofu

    2013-04-15

    The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The results show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.

  7. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    SciTech Connect

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  8. Chemical composition, aroma evaluation, and oxygen radical absorbance capacity of volatile oil extracted from Brassica rapa cv. "yukina" used in Japanese traditional food.

    PubMed

    Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2014-01-01

    The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants. PMID:24919480

  9. Work function variation of MoS{sub 2} atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules

    SciTech Connect

    Kim, Jong Hun; Kim, Jae Hyeon; Park, Jeong Young E-mail: jeongypark@kaist.ac.kr; Lee, Jinhwan; Hwang, C. C.; Lee, Changgu E-mail: jeongypark@kaist.ac.kr

    2015-06-22

    The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS{sub 2} films prepared with chemical vapor deposition (CVD) on SiO{sub 2} substrates with the number of film layers. Wafer-scale CVD MoS{sub 2} films with 2, 4, and 12 layers were fabricated on SiO{sub 2}, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS{sub 2} films increases by ∼0.15 eV when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ∼0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function.

  10. Chemical Characterization and Formation of Reactive Oxygen Species by PM2.5 during Summer in North China Plain of China

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Li, X.; Kuang, X.; Yan, C.; Guo, X.; Paulson, S. E.

    2015-12-01

    Ambient particulate matter (PM) could cause adverse health effects by generating reactive oxygen species (ROS) including superoxide (·O2-), hydrogen peroxide (HOOH), and hydroxyl radical (·OH). A number of studies have shown that transition metals, quinones, as well as other unknown organics in particles, may contribute to ROS formation. North China Plain (NCP) is one of the most populated and polluted areas in the world, where Beijing, the capital of China, is located. NCP have been suffering from severe air pollution, and health effects of fine PM have drawn great attentions of both the government and the public. To study the chemical characterization and ROS generation of PM, airborne PM2.5 was collected at two sites, with one urban site on the campus of Peking University in Beijing and one suburban site in Wangdu, Hebei Province, which is located in the south of Beijing and was significantly influenced by biomass burning during the study period. Previous studies have shown that Beijing can be more influenced by regional transport when the prevailing wind is from the south. PM2.5 samples were collected on 47 mm Teflon filter and Quartz filter using the four-channel low-volume sampler, and organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), soluble ions and trace metals have been analyzed. The formation of ·OH induced by PM2.5 was also measured to characterize the chemical generation of ROS from ambient particles in a cell-free solution. Preliminary analysis showed that during biomass burning periods, OC and EC concentrations in Wangdu were significantly higher than that in Beijing. The average concentration of WSOC in Beijing was comparable to that in Wangdu, while during biomass burning period, that in Wangdu was much higher than that in Beijing. Positive matrix factorization (PMF) was applied to identify the major contributing sources of PM2.5. More detailed information about chemical compositions, sources and ROS generation of

  11. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  12. A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2ice from clouds to discs

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Furuya, K.; Walsh, C.; van Dishoeck, E. F.

    2016-11-01

    Molecular oxygen has been confirmed as the fourth most abundant molecule in cometary material O$_2$/H$_2$O $\\sim 4$ %) and is thought to have a primordial nature, i.e., coming from the interstellar cloud from which our solar system was formed. However, interstellar O$_2$ gas is notoriously difficult to detect and has only been observed in one potential precursor of a solar-like system. Here, the chemical and physical origin of O$_2$ in comets is investigated using sophisticated astrochemical models. Three origins are considered: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The dark cloud models show that reproduction of the observed abundance of O$_2$ and related species in comet 67P/C-G requires a low H/O ratio facilitated by a high total density ($\\geq 10^5$ cm$^{-3}$), and a moderate cosmic ray ionisation rate ($\\leq 10^{-16}$ s$^{-1}$) while a temperature of 20 K, slightly higher than the typical temperatures found in dark clouds, also enhances the production of O$_2$. Disk models show that O$_2$ can only be formed in the gas phase in intermediate disk layers, and cannot explain the strong correlation between O$_2$ and H$_2$O in comet 67P/C-G together with the weak correlation between other volatiles and H$_2$O. However, primordial O$_2$ ice can survive transport into the comet-forming regions of disks. Taken together, these models favour a dark cloud (or "primordial") origin for O$_2$ in comets, albeit for dark clouds which are warmer and denser than those usually considered as solar system progenitors.

  13. A primordial origin for molecular oxygen in comets: A chemical kinetics study of the formation and survival of O2 ice from clouds to disks

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Furuya, K.; Walsh, C.; van Dishoeck, E. F.

    2016-09-01

    Molecular oxygen has been confirmed as the fourth most abundant molecule in cometary material (O2/H2O ˜4 %) and is thought to have a primordial nature, i.e., coming from the interstellar cloud from which our solar system was formed. However, interstellar O2 gas is notoriously difficult to detect and has only been observed in one potential precursor of a solar-like system. Here, the chemical and physical origin of O2 in comets is investigated using sophisticated astrochemical models. Three origins are considered: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The dark cloud models show that reproduction of the observed abundance of O2 and related species in comet 67P/C-G requires a low H/O ratio facilitated by a high total density (≥105 cm-3), and a moderate cosmic ray ionisation rate (≤10-16 s-1) while a temperature of 20 K, slightly higher than the typical temperatures found in dark clouds, also enhances the production of O2. Disk models show that O2 can only be formed in the gas phase in intermediate disk layers, and cannot explain the strong correlation between O2 and H2O in comet 67P/C-G together with the weak correlation between other volatiles and H2O. However, primordial O2 ice can survive transport into the comet-forming regions of disks. Taken together, these models favour a dark cloud (or "primordial") origin for O2 in comets, albeit for dark clouds which are warmer and denser than those usually considered as solar system progenitors.

  14. Physical demands during folk dancing.

    PubMed

    Wigaeus, E; Kilbom, A

    1980-01-01

    This investigation was undertaken to evaluate the aerobic demands during one of the most popular and demanding Swedish folk dances the "hambo". Six men and six women, ranging in age from 22 to 32, participated. Their physical work capacity was investigated on a bicycle ergometer and a treadmill, using two to three submaximal and one maximal loads. All subjects were moderately well-trained and their average maximal oxygen uptake on the treadmill were 2.5 and 3.7 l/min (42.8 and 53.2 ml/kg . min-1) for women and men, respectively. When dancing the "hambo" the heart rate was telemetered, and the Douglas bag technique was used for measurements of pulmonary ventilation and oxygen uptake. The physical demand during "hambo" dancing was high in all subjects. Oxygen uptake was 38.5 and 37.3 ml/kg . min-1 and heart rate 179 and 172 in women and men, respectively. Women used 90% and men 70% of their maximal aerobic power obtained on the treadmill. The pulmonary ventilation and respiratory quotient of the female subjects were lower when dancing as compared to running, possibly because of voluntary restriction of the movements of the thoracic cage. Some popular Scandinavian folk dances are performed at a speed and with an activity pattern resembling the "hambo", while others are performed at a slower pace. The exercise intensity used in "hambo" is more than sufficient to induce training effects in the average individual provided that the dancing is performed at the frequency and for length of time usually recommended for physical training. For older or less fit people dances with a slow pace can be used for training purposes.

  15. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  16. Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source.

    PubMed

    DeVaull, George E

    2007-05-01

    Development and results are presented for a subsurface soil to indoor air chemical vapor intrusion model that includes oxygen-limited biodegradation. The algebraic model incorporates a steady-state subsurface gasoline vapor source, diffusion-dominated soil vapor transport in a homogeneous subsurface soil layer, and mixing within a building enclosure. The soil is divided into a shallow aerobic layer including biodegradation and a deeper anaerobic layer in which biodegradation is neglected. Biodegradation of multiple chemicals is included, with aerobic first-order reaction kinetics estimated from measured data. Oxygen is supplied at the soil surface below the building foundation. Oxygen demand is attributed to a sum of multiple biodegrading chemicals and to baseline respiration of native soil organic matter. The model is solved by iteratively varying the aerobic depth to match oxygen demand to oxygen supply. Model results are calculated for ranges of source concentrations, unsaturated soil characteristics, and building parameters. Results indicate vapor intrusion of petroleum hydrocarbons can be significantly less than indicated by estimates that neglect biodegradation.

  17. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Salas, L. J.; Chatfield, R. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H.

    2004-08-01

    Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (CnH2n+1COO2NO2), and organic nitrates (CnH2n+1ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (ΣOVOC) was nearly twice that of nonmethane hydrocarbons (ΣC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than

  18. Analysis of the Atmospheric Distribution, Sources, and Sinks of Oxygenated Volatile Organic Chemicals Based on Measurements over the Pacific during TRACE-P

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L. J.; Chatfield, r. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H.

    2004-01-01

    Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (C(sub n)H(sub 2n+1)COO2NO2), and organic nitrates (C(sub n)H(sub 2n+1)ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (Summation of OVOC) was nearly twice that of nonmethane hydrocarbons (Summation of C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde

  19. Demand Response Analysis Tool

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  20. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances.

    PubMed

    Guerra-García, J M; García-Gómez, J C

    2005-05-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the "quantity" of species whereas pollutants control the "quality" of them. PMID:15734588

  1. The effect of central chemical sympathectomy on the oxygen uptake; anaerobic glycolysis and lactic acid dehydrogenase activity in the retina of white rats.

    PubMed

    Pojda, S M; Brus, R

    1976-01-01

    Male Wistar rats were injected intraventricularly with two doses of 250 mcg of 6-hydroxydopamine (6-OHDA) in two consecutive days. Two weeks later the oxygen uptake, anaerobic glycolysis and lactic acid dehydrogenase (LDH) activity in the retina were determined. The decrease of oxygen uptake (-28%), anaerobic glycolysis (-31%) and LDH activity (-12%) in rats treated with 6-OHDA in comparison to control animals was found. The possible role of the adrenergic system in regulation of the metabolism of the retina is discussed.

  2. Oxygen storage properties of La1-xSrxFeO3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE PAGES

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; Xu, Wenqian; Rodriguez, Efrain E.; Whitfield, Pamela S.

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La1–xSrxFeO3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La1–xSrxFeO3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2, 2/3, and 1, we discover anmore » envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La2/3Sr1/3FeO3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  3. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  4. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  5. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  7. Effect of dissolved oxygen concentration on sludge settleability.

    PubMed

    Martins, A M P; Heijnen, J J; van Loosdrecht, M C M

    2003-10-01

    This laboratory study presents a detailed evaluation of the effects of dissolved oxygen concentration and accumulation of storage polymers on sludge settleability in activated sludge systems with an aerobic selector. The oxygen and substrate availability regime were simulated in laboratory sequencing batch reactor systems. The experiments showed that low dissolved oxygen concentration (< or =1.1 mg O2 l(-1)) had a strong negative effect on sludge settleability, leading to the proliferation of filamentous bacteria (Thiothrix spp., Type 021N and Type 1851). This negative effect was stronger at high chemical oxygen demand loading rate. This indicates that a compartmentalised (plug flow) aerobic contact tank, designed at short hydraulic residence time to guarantee a strong substrate gradient, with low dissolved oxygen concentration, might be worse for sludge settleability than an "overdesigned" completely mixed contact tank. Contrary to the general hypothesis, the maximum specific acetate uptake rate, poly-beta-hydroxybutyrate production rate, and resistance to short starvation periods are similar in both poor- and well-settling sludge. The results of this study support our previous hypothesis on the importance of substrate gradients for the development of filamentous structures in biological flocs, from soluble organic substrate gradients to dissolved oxygen gradients in sludge flocs.

  8. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  9. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  10. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-02-28

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  11. Effect of plasma-chemical and thermal treatment in oxygen on the activity of Na3ZrM(PO4)3 phosphates (M = Zn, Co, Cu) in the transformation of butanol-2

    NASA Astrophysics Data System (ADS)

    Pylinina, A. I.; Povarova, E. I.; Mikhalenko, I. I.; Yagodovskaya, T. V.

    2013-06-01

    The catalytic properties of plasma-chemically and thermally treated triple zirconium orthophosphates Na3ZrM(PO4)3 (M = Zn, Co, Cu) in the transformation of butanol-2 are studied. X-ray photoelectron spectroscopy data indicate that the surface composition of the samples differs from the stoichiometry, especially in the case of M = Cu. The partial reduction of copper ions occurs during plasma-chemical treatment (PCT), while the amount of Cu on the surface of Na3ZrCu(PO4)3 diminishes. Treatment in an oxygen glow discharge results in a 3-8 times greater yield of the alcohol dehydrogenation product, methyl ethyl ketone. The energy of the alcohol's bonds with the surface is reduced and the dehydration active sites become fully inactivated. In contrast, thermal treatment (TT) results in an increase in the activity of Na3ZrM(PO4)3 in the dehydration of butanol-2.

  12. Evaluation of oxygen utilization as an indicator of municipal solid-waste compost stability

    SciTech Connect

    Zimmerman, R.A.

    1991-01-01

    This research evaluated oxygen utilization parameters as indicators of MSW compost stability. Parameters evaluated were the oxygen utilization rate (OUR), specific oxygen uptake rate (SOUR), five-day biochemical oxygen demand, and chemical oxygen demand. In addition, other suggested indicators of stability were investigated including percent volatile solids, volatile solids reduction, nitrogen content, carbon: nitrogen ratio, and reheating potential (RP). OUR is a measure of the rate of oxygen utilization by the microorganisms in the decomposition of organic matter in compost. OUR was observed to be sensitive to the degree of stabilization and decreased with increasing compost age and stability. OUR values near zero indicate that the compost microorganisms are in a state of endogenous respiration, which is characteristic of a stable compost. Therefore, OUR is an excellent indicator of stability. A number of disadvantages are associated with OUR for practical application. Therefore, other parameters were evaluated as indicators of stability based on their statistical correlation to OUR. RP exhibited the strongest correlation to OUR. In combination, RP and SOUR were the two parameters which exhibited the strongest correlation to OUR. OUR, RP, and SOUR are all measures of microbial activity which reflect the degree of organic decomposition, and therefore, stability. Based on the results of this research; OUR, RP, and SOUR are useful parameters in assessing compost stability.

  13. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films

    NASA Astrophysics Data System (ADS)

    Hu, S.; Seidel, J.

    2016-08-01

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  14. Quantum-chemical study of the effect of oxygen on the formation of active sites of silver clusters during the selective adsorption of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Polynskaya, Yu. G.; Pichugina, D. A.; Nguen, V.; Beletskaya, A. V.; Kuz'menko, N. E.; Shestakov, A. F.

    2013-09-01

    Density functional theory (PBE with a modified Dirac-Coulomb-Breit Hamiltonian) is used to simulate the adsorption of hydrocarbons (C2H2, C2H4, C2H6) on the surface of a sorbent containing Ag0, Agδ+, and AgO sites. The dynamics of change in the structural characteristics of Ag n ( n ≤ 10) is analyzed and the adsorption of oxygen on Ag8 and Ag10 is studied to select the adsorption site model. Studying the interaction of hydrocarbons with Ag8, Ag10, Ag{10/+}, Ag10O, and Ag10O2 clusters reveals that the presence of oxygen leads to an increase in the activation of unsaturated hydrocarbons, and the adsorption energy of C2H2 increases tenfold. It is found that the role of adsorbed oxygen is not only to form adsorption sites of hydrocarbons (Agδ+) but also to bind C2H2 and C2H4 directly to the sorbent's surface.

  15. Physiological demands of competitive basketball.

    PubMed

    Narazaki, K; Berg, K; Stergiou, N; Chen, B

    2009-06-01

    The aim of this study was to assess physiological demands of competitive basketball by measuring oxygen consumption (VO2) and other variables during practice games. Each of 12 players (20.4 +/- 1.1 years) was monitored in a 20-min practice game, which was conducted in the same way as actual games with the presence of referees and coaches. VO2 was measured by a portable system during the game and blood lactate concentration (LA) was measured in brief breaks. Subjects were also videotaped for time-motion analysis. Female and male players demonstrated respective VO2 of 33.4 +/- 4.0 and 36.9 +/- 2.6 mL/kg/min and LA of 3.2 +/- 0.9 and 4.2 +/- 1.3 mmol/L in the practice games (P>0.05). They spent 34.1% of play time running and jumping, 56.8% walking, and 9.0% standing. Pre-obtained VO(2max) was correlated to VO(2) during play (r=0.673) and to percent of duration for running and jumping (r=0.935 and 0.962 for females and males, respectively). This study demonstrated a greater oxygen uptake for competitive basketball than that estimated based on a previous compendium. The correlation between aerobic capacity and activity level suggests the potential benefit of aerobic conditioning in basketball.

  16. Latin American demand

    SciTech Connect

    1994-12-01

    From Mexico to Argentina, independent power companies are finding great demand for their services in Latin America. But while legal and economic conditions are increasingly favorable, political and financial uncertainties make power development challenging.

  17. Impact of Energy Demands

    ERIC Educational Resources Information Center

    Cambel, Ali B.

    1970-01-01

    The types of pollutants associated with the process of power production are identified. A nine-point proposal is presented on the ways the increase in power demands might be achieved with the minimum threat to the environment. (PR)

  18. Supply and Demand

    MedlinePlus

    ... a good breastfeeding rhythm with your baby. In reality, the efficient supply-and-demand rhythm of normal ... is one reason it’s a good idea to alternate which breast you use to begin nursing. A ...

  19. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  20. Persulfate activation during exertion of total oxidant demand.

    PubMed

    Teel, Amy L; Elloy, Farah C; Watts, Richard J

    2016-09-01

    Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter. PMID:27269993

  1. Surface control of epitaxial manganite films via oxygen pressure

    DOE PAGES

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; Qiao, Liang; Ganesh, Panchapakesan; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leadsmore » to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less

  2. Surface control of epitaxial manganite films via oxygen pressure

    SciTech Connect

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; Qiao, Liang; Ganesh, Panchapakesan; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leads to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.

  3. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.

    PubMed

    Kao, C M; Chen, S C; Su, M C

    2001-08-01

    The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system containing oxygen-organic releasing material to enhance the aerobic cometabolism of TCE in situ. The oxygen-organic material, which contains calcium peroxide and peat, is able to release oxygen and primary substrates continuously upon contact with water. Batch experiments were conducted to design and identify the components of the oxygen-organic releasing material, and evaluate the oxygen and organic substrate (presented as COD equivalent) release from the designed oxygen-organic material. The observed oxygen and chemical oxygen demand (COD) release rates were approximately 0.0246 and 0.052 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of TCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an oxygen-organic material column, followed by two consecutive soil columns. Aerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for TCE biodegradation. Simulated TCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for TCE and other indicating parameters (e.g., pH, dissolved oxygen). Results show that the decreases in TCE concentrations were observed over a 4-month operating period. Up to 99% of TCE removal efficiency was obtained in this passive system. Results indicate that the continuously released oxygen and organic substrates from the oxygen-organic materials enhanced TCE biotransformation. Thus, the biobarrier treatment scheme has the potential to be developed into an environmentally and economically acceptable remediation technology.

  4. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.

    PubMed

    Kao, C M; Chen, S C; Su, M C

    2001-08-01

    The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system containing oxygen-organic releasing material to enhance the aerobic cometabolism of TCE in situ. The oxygen-organic material, which contains calcium peroxide and peat, is able to release oxygen and primary substrates continuously upon contact with water. Batch experiments were conducted to design and identify the components of the oxygen-organic releasing material, and evaluate the oxygen and organic substrate (presented as COD equivalent) release from the designed oxygen-organic material. The observed oxygen and chemical oxygen demand (COD) release rates were approximately 0.0246 and 0.052 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of TCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an oxygen-organic material column, followed by two consecutive soil columns. Aerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for TCE biodegradation. Simulated TCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for TCE and other indicating parameters (e.g., pH, dissolved oxygen). Results show that the decreases in TCE concentrations were observed over a 4-month operating period. Up to 99% of TCE removal efficiency was obtained in this passive system. Results indicate that the continuously released oxygen and organic substrates from the oxygen-organic materials enhanced TCE biotransformation. Thus, the biobarrier treatment scheme has the potential to be developed into an environmentally and economically acceptable remediation technology. PMID:11513425

  5. Oxygen transfer in membrane bioreactors treating synthetic greywater.

    PubMed

    Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

    2009-04-01

    Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT).

  6. Lesson on Demand. Lesson Plan.

    ERIC Educational Resources Information Center

    Weaver, Sue

    This lesson plan helps students understand the role consumer demand plays in the market system, i.e., how interactions in the marketplace help determine pricing. Students will participate in an activity that demonstrates the concepts of demand, demand schedule, demand curve, and the law of demand. The lesson plan provides student objectives;…

  7. Travel Demand Modeling

    SciTech Connect

    Southworth, Frank; Garrow, Dr. Laurie

    2011-01-01

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  8. Demand Response Dispatch Tool

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  9. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply.

  10. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  11. Distribution of Childrearing Demands.

    ERIC Educational Resources Information Center

    Zimmerman, Judith D.; And Others

    The tools of economic analysis were applied to demographic data in order to develop a social indicator measuring the extent of inequality in the distribution of childrearing responsibility in households from 1940 to 1980. With data drawn from the Current Population Survey of the Bureau of the Census, a "demand intensity" measure was developed.…

  12. Demanding Divestment from Sudan

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    Bowing to student demands to "stop supporting genocide," the University of California regents voted earlier this year to divest millions of dollars from companies working in the war-torn African nation of Sudan, the first major public university in the nation to take such action. Since student protests on the subject began at Harvard University in…

  13. Quantum dots as a possible oxygen sensor

    NASA Astrophysics Data System (ADS)

    Ziółczyk, Paulina; Kur-Kowalska, Katarzyna; Przybyt, Małgorzata; Miller, Ewa

    Results of studies on optical properties of low toxicity quantum dots (QDs) obtained from copper doped zinc sulfate are discussed in the paper. The effect of copper admixture concentration and solution pH on the fluorescence emission intensity of QDs was investigated. Quenching of QDs fluorescence by oxygen was reported and removal of the oxygen from the environment by two methods was described. In the chemical method oxygen was eliminated by adding sodium sulfite, in the other method oxygen was removed from the solution using nitrogen gas. For elimination of oxygen by purging the solution with nitrogen the increase of fluorescence intensity with decreasing oxygen concentration obeyed Stern-Volmer equation indicating quenching. For the chemical method Stern-Volmer equation was not fulfilled. The fluorescence decays lifetimes were determined and the increase of mean lifetimes at the absence of oxygen support hypothesis that QDs fluorescence is quenched by oxygen.

  14. Chemical and structural changes in Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature

    SciTech Connect

    Flura, Aurélien; Dru, Sophie; Nicollet, Clément; Vibhu, Vaibhav; Fourcade, Sébastien; Lebraud, Eric; Rougier, Aline; Bassat, Jean-Marc; Grenier, Jean-Claude

    2015-08-15

    The chemical stability of lanthanide nickelates Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) has been studied in the temperature range 25–1300 °C, either in air or at low pO{sub 2} (down to 10{sup −4} atm). Thermal gravimetry analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterization have shown that all compounds retain their K{sub 2}NiF{sub 4}-type structure in these conditions, while remaining over-stoichiometric in oxygen up to 1000 °C. Only Nd{sub 2}NiO{sub 4+δ} starts to decompose into Nd{sub 2}O{sub 3} and NiO above 1000 °C, at pO{sub 2}=10{sup −4} atm. In addition, a careful analysis of the lanthanide nickelates structural features has been performed by in situ XRD, as a function of temperature and pO{sub 2}. For all compounds, a structural transition has been always observed in the temperature range 200–400 °C, in air or at pO{sub 2}=10{sup −4} atm. In addition, their cell volume did not vary upon the variation of the oxygen partial pressure. Therefore, these materials do not exhibit a chemical expansion in these conditions, which is beneficial for a fuel cell application as cathode layers. Additional dilatometry measurements have revealed that a temperature as high as 950 °C for Pr{sub 2}NiO{sub 4+δ} or 1100 °C for La{sub 2}NiO{sub 4+δ} and Nd{sub 2}NiO{sub 4+δ} has to be reached in order to begin the sintering of the material particles, which is of primary importance to obtain an efficient electronic/ionic conduction in the corresponding designed cathode layers. Besides, excellent matching was found between the thermal expansion coefficients of lanthanide nickelates and SOFC electrolytes such as 8wt% yttria stabilized zirconia (8YSZ) or Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} (GDC), at least from 400 °C up to 1400 °C in air or up to 1200 °C at pO{sub 2}=10{sup −4} atm. - Graphical abstract: This study reports the good chemical stability of oxygen overstoichiometric Ln2NiO4+δ(Ln = La, Pr or Nd) at high temperatures

  15. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  16. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries

    PubMed Central

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-01-01

    With the demand for high-energy-storage devices, the rechargeable metal–oxygen battery has attracted attention recently. Sodium–oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium–oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium–oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium–oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium–oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium–oxygen batteries to achieve high efficiency and rechargeability. PMID:26892931

  17. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-01

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2.2H2O). On the formation of Na2O2.2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  18. Rhenium-Oxygen Interactions at High Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald

    2000-01-01

    The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.

  19. In situ reactive oxygen species production for tertiary wastewater treatment.

    PubMed

    Guitaya, Léa; Drogui, Patrick; Blais, Jean François

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05 × 10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45 × 10(-5) M after 20 min of electrolysis to a concentration of 2.87 × 10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent.

  20. Chemical simulation of greywater.

    PubMed

    Abed, Suhail Najem; Scholz, Miklas

    2016-01-01

    Sustainable water resources management attracts considerable attention in today's world. Recycling and reuse of both wastewater and greywater are becoming more attractive. The strategy is to protect ecosystem services by balancing the withdrawal of water and the disposal of wastewater. In the present study, a timely and novel synthetic greywater composition has been proposed with respect to the composition of heavy metals, nutrients and organic matter. The change in water quality of the synthetic greywater due to increasing storage time was monitored to evaluate the stability of the proposed chemical formula. The new greywater is prepared artificially using analytical-grade chemicals to simulate either low (LC) or high (HC) pollutant concentrations. The characteristics of the synthetic greywater were tested (just before starting the experiment, after two days and a week of storage under real weather conditions) and compared to those reported for real greywater. Test results for both synthetic greywater types showed great similarities with the physiochemical properties of published findings concerning real greywater. Furthermore, the synthetic greywater is relatively stable in terms of its characteristics for different storage periods. However, there was a significant (p < .05) reduction in 5-day biochemical oxygen demand (BOD5) for both low (LC) and high (HC) concentrations of greywater after two days of storage with reductions of 62% and 55%, respectively. A significant (p < .05) change was also noted for the reduction (70%) of nitrate-nitrogen (NO3-N) concerning HC greywater after seven days of storage. PMID:26745659

  1. Chemical simulation of greywater.

    PubMed

    Abed, Suhail Najem; Scholz, Miklas

    2016-01-01

    Sustainable water resources management attracts considerable attention in today's world. Recycling and reuse of both wastewater and greywater are becoming more attractive. The strategy is to protect ecosystem services by balancing the withdrawal of water and the disposal of wastewater. In the present study, a timely and novel synthetic greywater composition has been proposed with respect to the composition of heavy metals, nutrients and organic matter. The change in water quality of the synthetic greywater due to increasing storage time was monitored to evaluate the stability of the proposed chemical formula. The new greywater is prepared artificially using analytical-grade chemicals to simulate either low (LC) or high (HC) pollutant concentrations. The characteristics of the synthetic greywater were tested (just before starting the experiment, after two days and a week of storage under real weather conditions) and compared to those reported for real greywater. Test results for both synthetic greywater types showed great similarities with the physiochemical properties of published findings concerning real greywater. Furthermore, the synthetic greywater is relatively stable in terms of its characteristics for different storage periods. However, there was a significant (p < .05) reduction in 5-day biochemical oxygen demand (BOD5) for both low (LC) and high (HC) concentrations of greywater after two days of storage with reductions of 62% and 55%, respectively. A significant (p < .05) change was also noted for the reduction (70%) of nitrate-nitrogen (NO3-N) concerning HC greywater after seven days of storage.

  2. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  3. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.

    PubMed

    el Khames Saad, Mouhamed; Moussaoui, Younes; Zaghbani, Asma; Mosrati, Imen; Elaloui, Elimame; Ben Salem, Ridha

    2012-01-01

    The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies. PMID:22678221

  4. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  5. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  6. Effects of rainfalls variability and physical-chemical parameters on enteroviruses in sewage and lagoon in Yopougon, Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Momou, Kouassi Julien; Akoua-Koffi, Chantal; Traoré, Karim Sory; Akré, Djako Sosthène; Dosso, Mireille

    2016-02-01

    The aim of this study was to assess the variability of the content of nutrients, oxidizable organic and particulate matters in raw sewage and the lagoon on the effect of rainfall. Then evaluate the impact of these changes in the concentration of enteroviruses (EVs) in waters. The sewage samples were collected at nine sampling points along the channel, which flows, into a tropical lagoon in Yopougon. Physical-chemical parameters (5-day Biochemical Oxygen Demand, Chemical Oxygen Demand, Suspended Particulate Matter, Total Phosphorus, Orthophosphate, Total Kjeldahl Nitrogen and Nitrate) as well as the concentration of EV in these waters were determined. The average numbers of EV isolated from the outlet of the channel were 9.06 × 104 PFU 100 ml-1. Consequently, EV was present in 55.55 and 33.33 % of the samples in the 2 brackish lagoon collection sites. The effect of rainfall on viral load at the both sewage and brackish lagoon environments is significant correlate (two-way ANOVA, P < 0.05). Furthermore, in lagoon environment, nutrients (Orthophosphate, Total Phosphorus), 5-day Biochemical Oxygen Demand, Chemical Oxygen Demand and Suspended Particulate Matter were significant correlated with EVs loads (P < 0.05 by Pearson test). The overall results highlight the problem of sewage discharge into the lagoon and correlation between viral loads and water quality parameters in sewage and lagoon.

  7. Technical aspects of oxygen saving devices.

    PubMed

    Brambilla, I; Arlati, S; Chiusa, I; Micallef, E

    1990-01-01

    Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise. PMID:2117198

  8. Dividends with Demand Response

    SciTech Connect

    Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

    2003-10-31

    To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

  9. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    PubMed

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  10. Physiological demands of downhill mountain biking.

    PubMed

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  11. Options for home oxygen therapy equipment: storage and metering of oxygen in the home.

    PubMed

    McCoy, Robert W

    2013-01-01

    Home oxygen therapy equipment options have increased over the past several decades, in response to innovations in technology, economic pressure from third-party payers, and patient demands. The delivery of oxygen in the home has evolved from packaged gas systems containing 99% United States Pharmacopeia oxygen provided by continuous-flow delivery to intermittent-flow delivery, with oxygen concentrators delivering < 99% oxygen purity. The majority of published papers indicating the value of long-term oxygen therapy have been based on continuous-flow delivery of 99% United States Pharmacopeia oxygen. The lack of research on new home oxygen therapy devices requires more clinical involvement from physician and respiratory therapist to evaluate the performance of oxygen devices used in the home to ensure the patient is provided adequate oxygenation at all activity levels. New standards of care are required to address the need to have consistent titration of long-term oxygen therapy to meet the patient's home needs at all activity levels. Consistent labeling of metering devices on home oxygen equipment will need to be developed by professional medical societies to be implemented by standards organizations that direct industrial manufacturers. Home oxygen therapy will need professionally trained respiratory therapists reimbursed for skills and service to ensure that patients receive optimal benefits from home oxygen equipment to improve patient outcomes and prevent complications and associated costs.

  12. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS.

    PubMed

    Albinet, A; Nalin, F; Tomaz, S; Beaumont, J; Lestremau, F

    2014-05-01

    An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC-NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, <10 μm)). For numerous NPAH and OPAH, this is the first report of their quantification in both SRMs. Compared with other extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound. PMID:24705956

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  14. Demand Response Quick Assessment Tool

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  16. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  17. Physical demands in worklife.

    PubMed

    Astrand, I

    1988-01-01

    Industrial occupations which are physically strenuous in the traditional sense of the word have decreased in number. They have partly been replaced by "light," repetitive, monotonous work tasks performed in a sitting position. The number of heavy work tasks within the service sector has increased. Specialization has been intensified. The individual's capacity for strenuous work is still of importance to successful work performance. Many studies show that an optional choice of work pace in physically demanding occupational work results in an adaptation of pace or intensity until the worker is utilizing 40-50% of her or his capacity. When the work rate is constrained, the relative strain of the individual varies inversely with the physical work capacity. The frequency of musculoskeletal disorders has concurrently increased with the implementation of industrial mechanization. New, wise, ergonomic moves are needed to stop this development.

  18. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  19. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  20. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  1. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  2. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  3. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  4. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  5. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  6. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  7. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  8. An oxygen pumping anode for electrowinning aluminium.

    PubMed

    Liu, Changqing; Ji, Xiaobo; Zhang, Pingmin; Chen, Qiyuan; Banks, Craig E

    2013-05-01

    The chemical potential of oxygen ions at the novel oxygen pumping anode for electrowinning aluminum was manipulated by the electromotive forces to create thermodynamic stability. It is our anticipation that this newly designed anode can be applied to electrochemical metallurgy of other metals, such as the direct electrochemical reduction of TiO2 in the FFC process. PMID:23519386

  9. Physiological demands of a simulated BMX competition.

    PubMed

    Louis, J; Billaut, F; Bernad, T; Vettoretti, F; Hausswirth, C; Brisswalter, J

    2013-06-01

    The aim of this study was to investigate the physiological demands of Supercross BMX in elite athletes. Firstly athletes underwent an incremental cycling test to determine maximal oxygen uptake (VO2max) and power at ventilatory thresholds. In a second phase, athletes performed alone a simulated competition, consisting of 6 cycling races separated by 30 min of passive recovery on an actual BMX track. Oxygen uptake, blood lactate, anion gap and base excess (BE) were measured. Results indicated that a simulated BMX performed by elite athletes induces a high solicitation of both aerobic (mean peak VO2 (VO2peak): 94.3±1.2% VO2max) and anaerobic glycolysis (mean blood lactate: 14.5±4. 5 mmol x L(-1) during every race. Furthermore, the repetition of the 6 cycling races separated by 30 min of recovery led to a significant impairment of the acid-base balance from the third to the sixth race (mean decrease in BE: -18.8±7.5%, p<0.05). A significant relationship was found between the decrease in BE and VO2peak (r = - 0.73, p<0.05), indicating that VO2peak could explain for 54% of the variation in BMX performance. These results suggest that both oxygen-dependent and -independent fuel substrate pathways are important determinants of BMX performance. PMID:23143703

  10. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  11. Influence of source characteristics, chemicals, and flocculation on chemically enhanced primary treatment.

    PubMed

    Neupane, Dilli R; Riffat, Rumana; Murthy, Sudhir N; Peric, Marija R; Wilson, Thomas E

    2008-04-01

    The overall objective of this research was to investigate various methods and parameters to increase the efficiency of chemically enhanced primary treatment (CEPT). The performance of CEPT was evaluated based on its efficiency of removal of nonsettleable solids (NSS). Some of the source characteristics that influenced NSS concentration included influent total suspended solids, influent turbidity, and influent total chemical oxygen demand. A higher concentration of the influent constituents led to a higher NSS concentration, suggesting that NSS represented a somewhat fixed fraction or percent of these influent constituents. The specific particle surface area (SPSA) was found to correlate with percent NSS in the effluent. A higher SPSA is a result of smaller-sized nonsettleable colloidal particles, thus leading to an increase in percent NSS. In summary, there are several parameters that affect NSS, which could be used to control NSS to improve CEPT, as demonstrated by this study.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  13. Effects of oxygen on fracturing fluids

    SciTech Connect

    Walker, M.L.; Shuchart, C.E.; Yaritz, J.G.; Norman, L.R.

    1995-11-01

    The stability of polysaccharide gels at high temperature is limited by such factors as pH, mechanical degradation, and oxidants. Oxygen is unavoidably placed in fracturing fluids through dissolution of air. To prevent premature degradation of the fracturing fluid by this oxidant, oxygen scavengers are commonly used. In this paper, the effects of oxygen and various oxygen scavengers on gel stability will be presented. Mechanical removal of oxygen resulted in surprisingly stable fracturing gels at 275 F. However, chemical removal of oxygen gave mixed results. Test data from sodium thiosulfate, sodium sulfite, and sodium erythorbate used as oxygen scavengers/gel stabilizers showed that the efficiency of oxygen removal from gels did not directly coincide with the viscosity retention of the gel, and large excesses of additives were necessary to provide optimum gel stabilization. The inability of some oxygen scavengers to stabilize the gel was the result of products created from the interaction of oxygen with the oxygen scavenger, which in turn, produced species that degraded the gel. The ideal oxygen scavenger should provide superior gel stabilization without creating detrimental side reaction products. Of the materials tested, sodium thiosulfate appeared to be the most beneficial.

  14. An integrated communications demand model

    NASA Astrophysics Data System (ADS)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  15. Physiological Demands of Flat Horse Racing Jockeys.

    PubMed

    Cullen, SarahJane; OʼLoughlin, Gillian; McGoldrick, Adrian; Smyth, Barry; May, Gregory; Warrington, Giles D

    2015-11-01

    The physiological demands of jockeys during competition remain largely unknown, thereby creating challenges when attempting to prescribe sport-specific nutrition and training guidelines. The purpose of this study was to evaluate the physiological demands and energy requirements of jockeys during flat racing. Oxygen uptake (V[Combining Dot Above]O2) and heart rate (HR) were assessed in 18 male trainee jockeys during a race simulation trial on a mechanical horse racing simulator for the typical time duration to cover a common flat race distance of 1,400 m. In addition, 8 male apprentice jockeys participated in a competitive race, over distances ranging from 1,200 to 1,600 m, during which HR and respiratory rate (RR) were assessed. All participants performed a maximal incremental cycle ergometer test. During the simulated race, peak V[Combining Dot Above]O2 was 42.74 ± 5.6 ml·kg·min (75 ± 11% of V[Combining Dot Above]O2peak) and below the mean ventilatory threshold (81 ± 5% of V[Combining Dot Above]O2peak) reported in the maximal incremental cycle test. Peak HR was 161 ± 16 b·min (86 ± 7% of HRpeak). Energy expenditure was estimated as 92.5 ± 18.8 kJ with an associated value of 9.4 metabolic equivalents. During the competitive race trial, peak HR reached 189 ± 5 b·min (103 ± 4% of HRpeak) and peak RR was 50 ± 7 breaths per minute. Results suggest that horse racing is a physically demanding sport, requiring jockeys to perform close to their physiological limit to be successful. These findings may provide a useful insight when developing sport-specific nutrition and training strategies to optimally equip and prepare jockeys physically for the physiological demands of horse racing. PMID:25932980

  16. Octacoordinated Dioxo-Molybdenum Complex via Formal Oxidative Addition of Molecular Oxygen. Studies of Chemical Reactions Between M(CO)6 (M = Cr, Mo) and 2,4-Di-tert-butyl-6-(pyridin-2-ylazo)-phenol.

    PubMed

    Chatterjee, Ipsita; Saha Chowdhury, Nabanita; Ghosh, Pradip; Goswami, Sreebrata

    2015-06-01

    Reactions of M(CO)6 (M = Mo, Cr) and 2 mol of 2,4-di-tert-butyl-6-(pyridin-2-ylazo)-phenol ligand (HL) in air yielded [Mo(VI)O2(L(1)¯)2], 1, and [Cr(III)(L(1)¯)(L(•2)¯)], 2, respectively, in high yields. Formation of the Cr-complex is a substitution reaction, which is associated with electron transfer, while that of Mo is an example of molecular oxygen activation. Isolated monoradical chromium complex 2 is susceptible to oxidation. Accordingly the reaction of 2 with the oxidant, I2 produces a cationic nonradical complex of chemical composition [Cr(III)(L(1)¯)2]I3, [2]I3 in almost quantitative yield. All the isolated complexes are primarily characterized by various spectroscopic techniques and magnetic measurements. While the molybdenum complex is diamagnetic, the two chromium complexes behave as simple paramagnets: μeff (295 K), 2.81 μB and 3.79 μB for 2 and [2]I3, respectively. Single-crystal three-dimensional X-ray structures of 1, 2, [2]I3 are reported. The geometry of the Mo-complex is square antiprism (octacoordination), and that of the Cr-complexes is distorted octahedral. Redox properties of the complexes are studied by cyclic voltammetry and constant potential coulometry. The data are analyzed based on density functional theoretical calculations of molecular orbitals of redox isomers of the Cr complexes. The results indicated that the redox events in the complexes occur at the ligand center. The oxidation state of Cr in 2 is further assessed by XPS measurements and compared with the reported systems.

  17. Integrated chemical-biological treatment of benzo[a]pyrene

    SciTech Connect

    Zeng, Yu; Hong, P.K.A.; Wavrek, D.A.

    2000-03-01

    Benzo[a]pyrene of natural and anthropogenic sources is one of the toxic, mutagenic, polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants. This study focuses on an integrated treatment of benzo[a]pyrene involving sequential chemical oxidation and biological degradation. The objectives are to (1) provide mechanistic details in the ozone-mediated degradation of benzo[a]pyrene in the aqueous phase, (2) test the biodegradability of resultant intermediates, and (3) test the feasibility for the coupled chemical-biological treatment of the five-ring PAH. Batch and packed column reactors were used to examine the degradation pathways of benzo[a]pyrene subject to ozonation in the aqueous phase. After different ozonation times, samples containing reaction intermediates and byproducts from both reactors were collected, identified for organic contents, and further biologically inoculated to determine their biodegradability. The O{sub 3}-pretreated samples were incubated for 5, 10, 15, and 20 days; afterward biochemical oxygen demand (BOD), chemical oxygen demand (COD), and E. coli toxicity tests were conducted along with qualitative and quantitative determinations of benzo[a]pyrene, intermediates, and reaction products by GC/FID and GC/MS methods. Prevalent intermediates identified at different stages included ring-opened aldehydes, phthalic derivatives, and aliphatics. The degradation of benzo[a]pyrene is primarily initiated via O{sub 3}-mediated ring-opening, followed by O{sub 3} and hydroxyl radical fragmentation, and ultimately brought to complete mineralization primarily via hydroxyl radicals. Intermediates formed during chemical oxidation were biodegradable with a measured first-order rate constant (k{sub 0}) of 0.18 day{sup {minus}1}. The integrated chemical-biological system seems feasible for treating recalcitrant compounds, while pretreatment by chemical oxidation appears useful in promoting soluble intermediates from otherwise highly insoluble

  18. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts

  19. Harnessing the power of demand

    SciTech Connect

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  20. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…