Science.gov

Sample records for chemical pest management

  1. Prospects for managing turfgrass pests with reduced chemical inputs.

    PubMed

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings.

  2. Pest Management Specialist (AFSC 56650).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This eight-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for pest management specialists. Covered in the individual volumes are civil engineering; pest management (entomology, pest management planning and coordination, and safety and protective equipment); pest management chemicals and…

  3. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    NASA Astrophysics Data System (ADS)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  4. Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses.

    PubMed

    Antón, A; Castells, F; Montero, J I; Huijbregts, M

    2004-02-01

    The goal of this paper is to assess the relative impacts of pest-control methods in greenhouses, based on current LCA tools. As a case study, the relative impacts of two tomato production methods, chemical pest management (CPM) and integrated pest management (IPM), are assessed. The amount of the active ingredients applied, the fate of the ingredients in the various greenhouse and environmental compartments, the human exposure routes via the various compartments and the inherent toxicity of the ingredients were taken into account in the relative impact calculations. To assess the importance of model selection in the assessment, pesticide-specific fate and exposure factors for humans and aquatic and terrestrial ecosystems, used to aggregate pesticide emissions, were calculated with two different models: (1) the USES-LCA model, adapted in order to calculate the pesticide transfer from greenhouse air and soil to fruits, and (2) the empirical model critical surface time (CST). Impact scores have in general shown a higher level of potential contamination in greenhouses treated with CPM compared to IPM (a factor of 1.4 to 2.3). Relative impacts have been shown highly dependent on the selection of specific pesticides and crop stage development at the moment of pesticide application. This means that both CPM and IPM could be improved by a careful selection of pesticides. In order to improve the relative impact calculations, future research in pesticide transfer to food will be necessary.

  5. Integrated Pest Management.

    ERIC Educational Resources Information Center

    Council on Environmental Quality, Washington, DC.

    After a brief discussion of the problems of pesticide use and the status of current pest control practices, a definition of integrated pest management is given along with some examples of its successful application, and a description of some of the reasons why the concept has not been applied more widely. The major techniques which can be used as…

  6. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology.

    PubMed

    Khan, Zeyaur; Midega, Charles A O; Hooper, Antony; Pickett, John

    2016-07-01

    Lepidopterous stemborers, and parasitic striga weeds belonging to the family Orobanchaceae, attack cereal crops in sub-Saharan Africa causing severe yield losses. The smallholder farmers are resource constrained and unable to afford expensive chemicals for crop protection. The push-pull technology, a chemical ecology- based cropping system, is developed for integrated pest and weed management in cereal-livestock farming systems. Appropriate plants were selected that naturally emit signaling chemicals (semiochemicals). Plants highly attractive for stemborer egg laying were selected and employed as trap crops (pull), to draw pests away from the main crop. Plants that repelled stemborer females were selected as intercrops (push). The stemborers are attracted to the trap plant, and are repelled from the main cereal crop using a repellent intercrop (push). Root exudates of leguminous repellent intercrops also effectively control the parasitic striga weed through an allelopathic mechanism. Their root exudates contain flavonoid compounds some of which stimulate germination of Striga hermonthica seeds, such as Uncinanone B, and others that dramatically inhibit their attachment to host roots, such as Uncinanone C and a number of di-C-glycosylflavones (di-CGFs), resulting in suicidal germination. The intercrop also improves soil fertility through nitrogen fixation, natural mulching, improved biomass, and control of erosion. Both companion plants provide high value animal fodder, facilitating milk production and diversifying farmers' income sources. The technology is appropriate to smallholder mixed cropping systems in Africa. Adopted by about 125,000 farmers to date in eastern Africa, it effectively addresses major production constraints, significantly increases maize yields, and is economical as it is based on locally available plants, not expensive external inputs.

  7. Cotton insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton production is challenged worldwide by a diversity of arthropod pests that require management to prevent or reduce crop damage. Advances in arthropod control technologies and improved insect and crop management systems have dramatically reduced levels of arthropod damage and the need for inse...

  8. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control.

    PubMed

    Alyokhin, Andrei; Mota-Sanchez, David; Baker, Mitchell; Snyder, William E; Menasha, Sandra; Whalon, Mark; Dively, Galen; Moarsi, Wassem F

    2015-03-01

    Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems-based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the 'insecticide treadmill'. In evolutionary biology, a similar phenomenon is known as the Red Queen principle - continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones.

  9. Urban Pest Management. Selected Readings.

    ERIC Educational Resources Information Center

    Cowles, Kathleen Letcher, Comp.; And Others

    These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…

  10. Pest management with natural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2012 Philadelphia ACS Symposium on Natural Products for Pest Management introduced recent discoveries and applications of natural products from insect, terrestrial plant, microbial, and synthetic sources for the management of insects, weeds, plant pathogenic microbes, and nematodes. The symposiu...

  11. Towards integrated pest management in red clover seed production.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  12. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    PubMed Central

    Fernández-Marín, Hermógenes; Zimmerman, Jess K.; Nash, David R.; Boomsma, Jacobus J.; Wcislo, William T.

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites. PMID:19324734

  13. Hanford site integrated pest management plan

    SciTech Connect

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  14. Adopting Integrated Pest Management in Schools.

    ERIC Educational Resources Information Center

    Currie, William E.

    1991-01-01

    The development of an effective Integrated Pest Management program is discussed. Provided are the common goals and procedures involved in adopting an Integrated Pest Management program for schools. (CW)

  15. DoD Pest Management Program

    DTIC Science & Technology

    1983-10-24

    Pest Management Program,’ to revise policy and procedures for the...DoD Pest Management Program; authorizes the publication of DoD 4150.7-R, ’DoD Pest Management Program,’ and DoD 4150.7-M, ’Plan for Certification of...DoD directive 5025.1, ’Department of Defense Directives System,’ and cancels reference (c) Defense Environmental Quality Program Policy Memorandum (DEQPPM) 80-10, ’Department of Defense Pest Management

  16. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  17. Wildlife and integrated pest management

    NASA Astrophysics Data System (ADS)

    Giles, Robert H.

    1980-09-01

    A number of options are available to those professionals interested in pest management through an integrated approach. The components of this approach are manipulation of vegetation; manipulation of population structure, dynamics, and interaction; and manipulation of the values associated with animal and plant crop production. Each component has numerous methods, which when used alone or in combination, offer a nearly infinite number of alternatives to the successful use of pesticides.

  18. Insect Pathogenic Bacteria in Integrated Pest Management

    PubMed Central

    Ruiu, Luca

    2015-01-01

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed. PMID:26463190

  19. Insect Pathogenic Bacteria in Integrated Pest Management.

    PubMed

    Ruiu, Luca

    2015-04-14

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  20. Urban Pest Management of Ants in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...

  1. The Armed Forces Pest Management Board

    DTIC Science & Technology

    1985-03-15

    It is the policy of the Department of Defense to maintain safe, efficient, and environmentally sound integrated pest management programs to prevent or control pests that may adversely affect health or damage property.

  2. Integrated pest management: theoretical insights from a threshold policy.

    PubMed

    Costa, Michel I da Silveira; Faria, Lucas Del B

    2010-01-01

    An Integrated Pest Management is formulated as a threshold policy. It is shown that when this strategy is applied to a food web consisting of generalist, specialist predators and endemic and pest prey, the dynamics can be stable and useful from the pest control point of view, despite the dynamical complexities inherent to the application of biocontrol only. In addition, pesticide toxicity depends rather on the species intrinsic parameters than on the chemical agent concentration.

  3. Fungal allelochemicals in insect pest management.

    PubMed

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies.

  4. Integrated Management of Structural Pests in Schools.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  5. Before and after Silent Spring: from chemical pesticides to biological control and integrated pest management--Britain, 1945-1980.

    PubMed

    Gay, Hannah

    2012-07-01

    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.

  6. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  7. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  8. Coccinellids and the Modern Pest Management

    ERIC Educational Resources Information Center

    Hodek, Ivo

    1970-01-01

    Discusses the concept of integrated pest control combining chemical and biological methods. Describes many examples of the successful use of coccinellids beetles to control other insects. Cites ecological and physiological research studies related to predator prey relationships involving coccinellids. (EB)

  9. DoD Pest Management Program,

    DTIC Science & Technology

    1996-04-22

    Pest Management Program, as established under DoD Directive 4715.1, Section 125 of Title 10, United States Code, and the Joint Service Regulation, ’Joint Field Operating Agencies of the Office of The Surgeon General of the Army’ authorizes the publication of DoD 41 50.7-M, ’DoD Pest Management Training and Certification’ authorizes the publication of DoD 4150.7-P, ’DoD Plan for the Certification of Pesticide Applicators’ and designates the Secretary of the Army as the DoD Executive Agent for the Armed Forces Pest

  10. DoD Pest Management Program

    DTIC Science & Technology

    2008-05-29

    Commonwealths of Puerto Rico, the Northern Marianas, the Virgin Islands; and the Territories of Guam and American Samoa. ENCLOSURE 2 14 DoDI 4150.07, May...minor nuisance pest problems. Quarters and housing occupants are responsible for controlling pests, such as cockroaches , household infesting ants... cockroach and ant baits and/or traps, mouse traps, glue boards, and ready-to-use aerosol pesticides. The office designated to manage the

  11. Delivery of intrahemocoelic peptides for insect pest management.

    PubMed

    Bonning, Bryony C; Chougule, Nanasaheb P

    2014-02-01

    The extensive use of chemical insecticides for insect pest management has resulted in insecticide resistance now being recorded in >500 species of insects and mites. Although gut-active toxins such as those derived from Bacillus thuringiensis (Bt) have been successfully used for insect pest management, a diverse range of insect-specific insecticidal peptides remains an untapped resource for pest management efforts. These toxins act within the insect hemocoel (body cavity) and hence require a delivery system to access their target site. Here, we summarize recent developments for appropriate delivery of such intrahemocoelic insect toxins, via fusion to a second protein such as a plant lectin or a luteovirus coat protein for transcytosis across the gut epithelium, or via entomopathogenic fungi.

  12. Efficient Management of Fruit Pests by Pheromone Nanogels

    PubMed Central

    Bhagat, Deepa; Samanta, Suman K.; Bhattacharya, Santanu

    2013-01-01

    Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops. PMID:23416455

  13. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    PubMed Central

    Querner, Pascal

    2015-01-01

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them. PMID:26463205

  14. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    PubMed

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  15. A Practical Guide to Management of Common Pests in Schools. Integrated Pest Management.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    This 3-part manual is designed to assist school officials understand the principles of Integrated Pest Management and aid them in implementing those principles into a comprehensive pest control program in their facilities. Developed for Illinois, this guide can be applied in part or in total to other areas of the country. Part 1 explains what an…

  16. Demonstrating Integrated Pest Management of Hot Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  17. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  18. Integrated Pest Management. A Curriculum Report.

    ERIC Educational Resources Information Center

    McCabe, Robert H., Ed.; And Others

    This book consists of materials prepared for a conference aimed at developing courses of study in Integrated Pest Management appropriate for use at several levels: secondary schools, MDTA programs, community colleges and technical institutions, baccalaureate programs, and master's and doctoral level programs. The first section (Background Papers)…

  19. Pest Control in the School Environment: Adopting Integrated Pest Management.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    As the public becomes more aware of the health and environmental risks pesticides may pose, its interest in seeking the use of equally effective alternative pest control methods increases. School administrators and other persons who have pest control decision-making responsibilities for school buildings and grounds can use this guide to become…

  20. A quest for ecologically based pest management systems

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Martin, P. B.; Lewis, W. J.

    1983-01-01

    The article presents a holistic approach to studying and applying crop protection in agricultural systems A theoretical framework of integrated pest management (IPM) is presented that allows an understanding of pest population processes on a whole-agroecological-system basis The need for and emergence of holistic research on agroecosystems is discussed, as are the current trends in ecological theory and pest management

  1. Inspect, Detect, Correct: Structural Integrated Pest Management Strategies at School.

    ERIC Educational Resources Information Center

    Jochim, Jerry

    2003-01-01

    Describes a model integrated pest management (IPM) program for schools used in Monroe County, Indiana. Addresses how to implement an IPM program, specific school problem areas, specific pest problems and solutions, and common questions. (EV)

  2. Use of plant extracts for tea pest management in India.

    PubMed

    Roy, Somnath; Handique, Gautam; Muraleedharan, Narayanannair; Dashora, Kavya; Roy, Sudipta Mukhopadhyay; Mukhopadhyay, Ananda; Babu, Azariah

    2016-06-01

    India is the second largest producer of black tea in the world. The biggest challenge for tea growers of India nowadays is to combat pests and diseases. Tea crop in India is infested by not less than 720 insect and mite species. At least four sucking pests and six chewing pests have well established themselves as regular pests causing substantial damage to this foliage crop. Various synthetic pesticides are widely used for the management of tea pests in India. Applications of such large quantity of pesticides could cause various problems such as development of resistance, deleterious effects on non-target organisms such as insect predators and parasitoids, upsetting the ecological balance, and accumulation of pesticide residues on tea leaves. There is a growing demand for organic tea or at least pesticide residue free tea in the international market which affects the export price. There is also a higher emphasis of implementation of new regulations on internationally traded foods and implementation of Plant Protection Code (PPC) for tea by the Government of India. This necessitates a relook into the usage pattern of synthetic pesticides on this crop. There are various non-chemical interventions which are being worked out for their sustainability, compatibility, and eco-friendly properties which can gradually replace the use of toxic chemicals. The application of plant extracts with insecticidal properties provides an alternative to the synthetic pesticides. Botanical products, especially neem-based products, have made a relatively moderate impact in tea pest control. Research has also demonstrated the potential of 67 plant species as botanical insecticides against tea pests. The majority of plant products used in pest management of tea in India are in the form of crude extracts prepared locally in tea garden itself, and commercial standardized formulations are not available for most of the plants due to lack of scientific research in the area. Apart from systematic

  3. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  4. IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2005-03-01

    For years the pest Management Professional has relied on visual and manual inspections to locate insect pest infestations. As building materials have improved, the ability to locate pest problems has become more difficult since building materials are often able to mask the existence of pest infestation. Additionally, these improved building materials have contributed to the pest problem by providing a convenient food and nesting source. Within the past five years, the Pest Management Industry has become aware that IR thermography can aid in the detection of pest infestation by detecting evidence of latent moisture within structures. This paper discusses the use of thermal imaging to detect thermal patterns associated with insect infestation, verification of data and special challenges associated with the inspection process.

  5. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  6. Microbial Pest Control Agents: Are they a specific and safe tool for insect pest management?

    PubMed

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-03-14

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully bioinsecticide used in the world in the integrated pest management programs. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.

  7. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs.

    PubMed

    Guedes, R N C; Smagghe, G; Stark, J D; Desneux, N

    2016-01-01

    More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.

  8. Insecticide Resistance: Challenge to Pest Management and Basic Research

    NASA Astrophysics Data System (ADS)

    Brattsten, L. B.; Holyoke, C. W.; Leeper, J. R.; Raffa, K. F.

    1986-03-01

    The agricultural use of synthetic insecticides usually protects crops but imposes strong selection pressures that can result in the development of resistance. The most important resistance mechanisms are enhancement of the capacity to metabolically detoxify insecticides and alterations in target sites that prevent insecticides from binding to them. Insect control methods must incorporate strategies to minimize resistance development and preserve the utility of the insecticides. The most promising approach, integrated pest management, includes the use of chemical insecticides in combination with improved cultural and biologically based techniques.

  9. Pest Control in the School Environment:Adopting Integrated Pest Management

    EPA Pesticide Factsheets

    Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.

  10. Insect pest management decisions in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  11. Integrated pest management of "Golden Delicious" apples.

    PubMed

    Simončič, A; Stopar, M; Velikonja Bolta, Š; Bavčar, D; Leskovšek, R; Baša Česnik, H

    2015-01-01

    Monitoring of plant protection product (PPP) residues in "Golden Delicious" apples was performed in 2011-2013, where 216 active substances were analysed with three analytical methods. Integrated pest management (IPM) production and improved IPM production were compared. Results were in favour of improved IPM production. Some active compounds determined in IPM production (boscalid, pyraclostrobin, thiacloprid and thiametoxam) were not found in improved IPM production. Besides that, in 2011 and 2012, captan residues were lower in improved IPM production. Risk assessment was also performed. Chronic exposure of consumers was low in general, but showed no major differences for IPM and improved IPM production for active substances determined in both types of production. Analytical results were compared with the European Union report of 2010 where 1.3% of apple samples exceeded maximum residue levels (MRLs), while MRL exceedances were not observed in this survey.

  12. Integrated pest management in western flower thrips: past, present and future.

    PubMed

    Mouden, Sanae; Sarmiento, Kryss Facun; Klinkhamer, Peter Gl; Leiss, Kirsten A

    2017-01-27

    Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  13. The role of allelopathy in agricultural pest management.

    PubMed

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed.

  14. Economic Thresholds in Soybean-Integrated Pest Management: Old Concepts, Current Adoption, and Adequacy.

    PubMed

    Bueno, A F; Paula-Moraes, S V; Gazzoni, D L; Pomari, A F

    2013-10-01

    Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.

  15. The role of climate-related information in pest management

    NASA Astrophysics Data System (ADS)

    Weiss, A.

    1990-03-01

    A distinction is made between climate information and climate-related information. The former pertains to any expression of climate data used for decision making. Climaterelated information for pest management results from quantifying relationships between host, environment, and pest and presenting the consequences of different actions, a decisionmaking format. It is suggested that in order to develop climate-related information for pest management, automated weather stations in climatological networks should be expanded from these site specific locations to crop specific locations. Combining physical and biological data can be the basis for developing or improving crop/pest interaction models and can also serve as a database for verifying existing models. These models can be run under different economic and climatic scenarios with different risk preferences to present end users with results from different pest management options.

  16. Impacts of Bt transgenic cotton on integrated pest management.

    PubMed

    Naranjo, Steven E

    2011-06-08

    Transgenic cotton that produced one or more insecticidal proteins of Bacillus thuringiensis (Bt) was planted on over 15 million hectares in 11 countries in 2009 and has contributed to a reduction of over 140 million kilograms of insecticide active ingredient between 1996 and 2008. As a highly selective form of host plant resistance, Bt cotton effectively controls a number of key lepidopteran pests and has become a cornerstone in overall integrated pest management (IPM). Bt cotton has led to large reductions in the abundance of targeted pests and benefited non-Bt cotton adopters and even producers of other crops affected by polyphagous target pests. Reductions in insecticide use have enhanced biological control, which has contributed to significant suppression of other key and sporadic pests in cotton. Although reductions in insecticide use in some regions have elevated the importance of several pest groups, most of these emerging problems can be effectively solved through an IPM approach.

  17. An Integrated Pest Management Tool for Evaluating Schools

    ERIC Educational Resources Information Center

    Bennett, Blake; Hurley, Janet; Merchant, Mike

    2016-01-01

    Having the ability to assess pest problems in schools is essential for a successful integrated pest management (IPM) program. However, such expertise can be costly and is not available to all school districts across the United States. The web-based IPM Calculator was developed to address this problem. By answering questions about the condition of…

  18. Climate change, carbon dioxide, and pest biology: Monitor, mitigate, manage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising concentrations of atmospheric carbon dioxide [CO2] and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a re...

  19. Study on Integrated Pest Management for Libraries and Archives.

    ERIC Educational Resources Information Center

    Parker, Thomas A.

    This study addresses the problems caused by the major insect and rodent pests and molds and mildews in libraries and archives; the damage they do to collections; and techniques for their prevention and control. Guidelines are also provided for the development and initiation of an Integrated Pest Management program for facilities housing library…

  20. SPUR: Moving San Diego, California Schools toward Integrated Pest Management.

    ERIC Educational Resources Information Center

    Taylor, Sharon

    1991-01-01

    The preparation of a report, slide show, and brochure to promote awareness of the hazards of toxic pest control for school pest management personnel in the San Diego Unified School District is discussed. The future plans of the coalition are proposed. (CW)

  1. Pest Private Eye: Using an Interactive Role-Playing Video Game to Teach about Pests and Integrated Pest Management

    ERIC Educational Resources Information Center

    Bauer, Erin; Ogg, Clyde

    2011-01-01

    The trend toward encouraging adoption of Integrated Pest Management (IPM) in schools has increased in the last decade. Because IPM helps reduce risk of human pesticide exposure, reduce allergens and asthma triggers, save energy, and protect the environment, it's essential that IPM awareness continue not only with current school administrators,…

  2. Role of nanotechnology in agriculture with special reference to management of insect pests.

    PubMed

    Rai, Mahendra; Ingle, Avinash

    2012-04-01

    Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.

  3. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    PubMed Central

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies. PMID:26466733

  4. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    PubMed

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  5. Information for Child Care Providers about Pesticides/Integrated Pest Management

    EPA Pesticide Factsheets

    Learn about pesticides/integrated pest management, the health effects associated with exposure to pests and pesticides, and the steps that can be taken to use integrated pest management strategies in childcare facilities.

  6. Habitat Management to Suppress Pest Populations: Progress and Prospects.

    PubMed

    Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng

    2017-01-31

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

  7. Comparing conventional and biotechnology-based pest management.

    PubMed

    Duke, Stephen O

    2011-06-08

    Pest management has changed dramatically during the past 15 years by the introduction of transgenes into crops for the purpose of pest management. Transgenes for herbicide resistance or for production of one or more Bt toxins are the predominant pest management traits currently available. These two traits have been rapidly adopted where available because of their superior efficacy and simplification of pest management for the farmer. Furthermore, they have substantially reduced the use of environmentally and toxicologically suspect pesticides while reducing the carbon footprint of pest management as reduced tillage became more common, along with fewer trips across the field to spray pesticides. The most successful of these products have been glyphosate-resistant crops, which cover approximately 85% of all land occupied by transgenic crops. Over-reliance on glyphosate with continual use of these crops has resulted in the evolution of highly problematic glyphosate-resistant weeds. This situation has resulted in some farmers using weed management methods similar to those used with conventional crops. Evolution of resistance has not been a significant problem with Bt crops, perhaps because of a mandated resistance management strategy. Transgenic crops with multiple genes for resistance to different herbicides and resistance to additional insects will be available in the next few years. These products will offer opportunities for the kind of pest management diversity that is more sustainable than that provided by the first generation of transgenic crops.

  8. Integrated Pest Management in Schools Program Brochure

    EPA Pesticide Factsheets

    Our Nation's children spend a considerable amount of their time in schools, as do teachers and school support staff. EPA is working to reduce the risk that both children and employees experience from pests and pesticides in and around schools.

  9. Hiring a Pest Management Professional for Bed Bugs

    EPA Pesticide Factsheets

    If you hire someone to treat your bed bug infestation, make sure they use Integrated Pest Management (IPM) techniques, check credentials, and know they may need multiple visits, to take apart furniture, and to use vacuums, heat, and pesticides.

  10. Previous Webinars about Integrated Pest Management in Schools

    EPA Pesticide Factsheets

    The EPA Center of Expertise for School IPM hosts a webinar series featuring national experts from across the country relaying educational and practical strategies for establishing and improving integrated pest management programs in schools.

  11. Information for Participants Implementing Integrated Pest Management in Schools

    EPA Pesticide Factsheets

    Parents, school faculty and staff, school administrators, and pest management professionals all have important roles in planning and implementing school IPM. Find out about these roles and resources available to help.

  12. Integrated pest management for certified organic production in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated pest management (IPM) and sustainable agriculture are basic precepts within the organic crop production philosophy. The establishment of federal guidelines for organic certification in 2002 provided a structure for producers and processors to market certified organic foods. The guidelin...

  13. Crop pest management with an aerial imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  14. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  15. Insecticide-induced hormesis and arthropod pest management.

    PubMed

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas.

  16. Social and cultural dimensions of rodent pest management.

    PubMed

    Palis, Florencia G; Singleton, Grant; Sumalde, Zenaida; Hossain, Mahabub

    2007-09-01

    Rice production in Vietnam is threatened by rodent pests, with a significant increase in impact reported from 1990 through to the early 21st century. Pre-harvest rice losses are typically 5-10%, with losses of >20% occurring in some years in some regions. Farmers' rodent control practices are generally reactive and rely essentially on chemical and physical methods. Ecologically-based rodent pest management (EBRM) was developed in the late 1990s to manage rodents in rice-based farming systems in Vietnam and other parts of South-East Asia. EBRM combines both cultural and physical rodent management practices such as synchrony of cropping, short 2-week rat campaigns at key periods in key habitats, increasing general hygiene around villages, and use of a community trap-barrier system. Although EBRM has been reported to be economically profitable, the successful adoption of this set of technologies requires community participation. In this paper we address issues relating to the adoption and sustainability of EBRM in lowland irrigated rice fields in the Mekong Delta in Vietnam. We particularly explore the social and cultural mechanisms involved in maintaining community participation to further understand the conditions under which EBRM works and does not work. Positive indications of sustained use of community-based EBRM include: a policy pronouncement from the prime minister directing the use of integrated rodent management; the use of existing cooperatives for developing community actions; budgetary allocation from provincial and local governments; diffusion of EBRM to provinces in the south and north that are not involved in farmer participatory field trials; and the adoption of EBRM by a non-governmental organization, World Vision Vietnam, in their area-development programs.

  17. Pest management update on sunflower midge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sunflower midge (Contarinia schulzi) is a serious insect pest of sunflower, causing bud and head deformation that lead to poor seed development, and in many cases no seed development. This presentation describes the life cycle of the sunflower midge and shows images of infested sunflower heads. ...

  18. Nonchemical management of soilborne pests in fresh market vegetable production systems.

    PubMed

    Chellemi, D O

    2002-12-01

    ABSTRACT Nonchemical methods including host resistance, organic amendments, crop rotation, soil solarization, and cultural practices have been used to control soilborne pests in fresh market vegetable production systems. Their suitability as alternatives to methyl bromide will depend on the approach to pest management used by the grower. Traditionally, methyl bromide is used in production systems that rely on the single application of a broad-spectrum biocide to disinfest soils prior to planting. Non-chemical methods are not suitable for a single tactic approach to pest management because they do not provide the same broad spectrum of activity or consistency as fumigation with methyl bromide. Nonchemical methods are compatible with an integrated pest management (IPM) approach, where multiple tactics are used to maintain damage from pests below an economic threshold while minimizing the impact to beneficial organisms. However, adoption of IPM is hindered by the paucity of economically feasible sampling programs and thresholds for soilborne pests and by a reluctance of growers to commit additional resources to the collection and management of biological information. A novel approach to the management of soilborne pests is to design the crop production system to avoid pest outbreaks. Using this "proactive" approach, a tomato production system was developed using strip-tillage into existing bahia-grass pasture. By minimizing inputs and disruption to the pasture, growers were able to reap the rotational benefits of bahiagrass without cultivating the rotational crop. While minimizing the need for interventive procedures, a proactive approach is difficult to integrate into existing crop production systems and will require several years of testing and validation.

  19. Integrated Pest Management: A Curriculum for Early Care and Education Programs

    ERIC Educational Resources Information Center

    California Childcare Health Program, 2011

    2011-01-01

    This "Integrated Pest Management Toolkit for Early Care and Education Programs" presents practical information about using integrated pest management (IPM) to prevent and manage pest problems in early care and education programs. This curriculum will help people in early care and education programs learn how to keep pests out of early…

  20. The development, regulation and use of biopesticides for integrated pest management

    PubMed Central

    Chandler, David; Bailey, Alastair S.; Tatchell, G. Mark; Davidson, Gill; Greaves, Justin; Grant, Wyn P.

    2011-01-01

    Over the past 50 years, crop protection has relied heavily on synthetic chemical pesticides, but their availability is now declining as a result of new legislation and the evolution of resistance in pest populations. Therefore, alternative pest management tactics are needed. Biopesticides are pest management agents based on living micro-organisms or natural products. They have proven potential for pest management and they are being used across the world. However, they are regulated by systems designed originally for chemical pesticides that have created market entry barriers by imposing burdensome costs on the biopesticide industry. There are also significant technical barriers to making biopesticides more effective. In the European Union, a greater emphasis on Integrated Pest Management (IPM) as part of agricultural policy may lead to innovations in the way that biopesticides are regulated. There are also new opportunities for developing biopesticides in IPM by combining ecological science with post-genomics technologies. The new biopesticide products that will result from this research will bring with them new regulatory and economic challenges that must be addressed through joint working between social and natural scientists, policy makers and industry. PMID:21624919

  1. The development, regulation and use of biopesticides for integrated pest management.

    PubMed

    Chandler, David; Bailey, Alastair S; Tatchell, G Mark; Davidson, Gill; Greaves, Justin; Grant, Wyn P

    2011-07-12

    Over the past 50 years, crop protection has relied heavily on synthetic chemical pesticides, but their availability is now declining as a result of new legislation and the evolution of resistance in pest populations. Therefore, alternative pest management tactics are needed. Biopesticides are pest management agents based on living micro-organisms or natural products. They have proven potential for pest management and they are being used across the world. However, they are regulated by systems designed originally for chemical pesticides that have created market entry barriers by imposing burdensome costs on the biopesticide industry. There are also significant technical barriers to making biopesticides more effective. In the European Union, a greater emphasis on Integrated Pest Management (IPM) as part of agricultural policy may lead to innovations in the way that biopesticides are regulated. There are also new opportunities for developing biopesticides in IPM by combining ecological science with post-genomics technologies. The new biopesticide products that will result from this research will bring with them new regulatory and economic challenges that must be addressed through joint working between social and natural scientists, policy makers and industry.

  2. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    PubMed

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  3. Building Blocks for School IPM: A Least-Toxic Pest Management Manual.

    ERIC Educational Resources Information Center

    Crouse, Becky, Ed.; Owens, Kagan, Ed.

    This publication is a compilation of original and republished materials from numerous individuals and organizations working on pesticide reform and integrated pest management (IPM)--using alternatives to prevailing chemical-intensive practices. The manual provides comprehensive information on implementing school IPM, including a practical guide to…

  4. Safer Schools: Achieving a Healthy Learning Environment through Integrated Pest Management.

    ERIC Educational Resources Information Center

    2003

    Integrated pest management (IPM) is a program of prevention, monitoring, and control that offers the opportunity to eliminate or drastically reduce hazardous pesticide use. IPM is intended to establish a program that uses cultural, mechanical, biological, and other non-toxic practices, and only introduces least-hazardous chemicals as a last…

  5. The Adoption of Integrated Pest Management Practices among Texas Cotton Growers.

    ERIC Educational Resources Information Center

    Thomas, John K.; And Others

    1990-01-01

    Describes integrated pest management (IPM), a more advanced approach than chemical pesticide. Applies diffusion and farming-systems theories to create analytical model to explain IPM's adoption, use, and implications for agricultural change. Telephone surveys of Texas cotton growers on IPM practices found different sources of IPM information…

  6. he land manager’s handbook on integrated pest management of Melaleuca quinquenervia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adventive Australian tree Melaleuca quinquenervia (Cav.) S.T. Blake is an invasive pest plant in the greater Everglades region of Florida. Public agencies and organizations responsible for natural areas management have developed effective chemical and mechanical strategies for treating infestati...

  7. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives.

    PubMed

    Khandelwal, Neha; Barbole, Ranjit S; Banerjee, Shashwat S; Chate, Govind P; Biradar, Ankush V; Khandare, Jayant J; Giri, Ashok P

    2016-12-15

    One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.

  8. Cockroach Clean-Up Tour . Urban Pest Management. Teaching Environmental Living Skills to Elementary Students.

    ERIC Educational Resources Information Center

    Cowles, Kathleen Letcher

    Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy/mix of tatics to use. IPM combines a variety of approaches with which to manage pests, including human…

  9. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects.

    PubMed

    Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N

    2017-03-01

    Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.

  10. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    PubMed

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  11. Forest insect pest management and forest management in China: an overview.

    PubMed

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  12. Forest Insect Pest Management and Forest Management in China: An Overview

    NASA Astrophysics Data System (ADS)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  13. The Ohio Schools Pest Management Survey: A Final Report.

    ERIC Educational Resources Information Center

    2001

    In 2001, the Environmental Studies Senior Capstone Seminar class at Denison University helped the state of Ohio work to prevent harmful pesticide use in schools. In cooperation with Ohio State University's Integrated Pest Management (IPM) in Schools Program, Denison conducted a statewide survey of school districts to determine current pest…

  14. Analytical models integrated with satellite images for optimized pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interf...

  15. Broadening the application of evolutionarily based genetic pest management.

    PubMed

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  16. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic... habitat, food sources, and breeding areas; (2) Prevention of access to handling facilities; and...

  17. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic... habitat, food sources, and breeding areas; (2) Prevention of access to handling facilities; and...

  18. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic... habitat, food sources, and breeding areas; (2) Prevention of access to handling facilities; and...

  19. Forest Stewardship Council (FSC) pesticide policy and integrated pest management in certified tropical plantations.

    PubMed

    Lemes, Pedro Guilherme; Zanuncio, José Cola; Serrão, José Eduardo; Lawson, Simon A

    2017-01-01

    The Forest Stewardship Council (FSC) was the first non-governmental organization composed of multi-stakeholders to ensure the social, environmental, and economic sustainability of forest resources. FSC prohibits certain chemicals and active ingredients in certified forest plantations. A company seeking certification must discontinue use of products so listed and many face problems to comply with these constraints. The aim of this study was to assess the impacts of certification on pest management from the perspective of Brazilian private forestry sector. Ninety-three percent of Brazilian FSC-certified forest companies rated leaf-cutting ants as "very important" pests. Chemical control was the most important management technique used and considered very important by 82 % of respondents. The main chemical used to control leaf-cutting ants, sulfluramid, is in the derogation process and was classified as very important by 96.5 % of the certified companies. Certified companies were generally satisfied in relation to FSC certification and the integrated management of forest pests, but 27.6 % agreed that the prohibitions of pesticides for leaf-cutting ant and termite control could be considered as a non-tariff barrier on high-productivity Brazilian forest plantations. FSC forest certification has encouraged the implementation of more sustainable techniques and decisions in pest management in forest plantations in Brazil. The prohibition on pesticides like sulfluramid and the use of alternatives without the same efficiency will result in pest mismanagement, production losses, and higher costs. This work has shown that the application of global rules for sustainable forest management needs to adapt to each local reality.

  20. On impulsive integrated pest management models with stochastic effects

    PubMed Central

    Akman, Olcay; Comar, Timothy D.; Hrozencik, Daniel

    2015-01-01

    We extend existing impulsive differential equation models for integrated pest management (IPM) by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. Based on our model, we propose an approach that incorporates various competing stochastic components. This approach enables us to select a model with optimally determined weights for maximum accuracy and precision in parameter estimation. This is significant in the case of IPM because the proposed model accommodates varying unknown environmental and climatic conditions, which affect the resources needed for pest eradication. PMID:25954144

  1. On impulsive integrated pest management models with stochastic effects.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2015-01-01

    We extend existing impulsive differential equation models for integrated pest management (IPM) by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. Based on our model, we propose an approach that incorporates various competing stochastic components. This approach enables us to select a model with optimally determined weights for maximum accuracy and precision in parameter estimation. This is significant in the case of IPM because the proposed model accommodates varying unknown environmental and climatic conditions, which affect the resources needed for pest eradication.

  2. Airborne multispectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and engineers in areawide pest management programs have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with global positioning systems, geographic information system...

  3. Optimizing pyramided transgenic Bt crops for sustainable pest management.

    PubMed

    Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E

    2015-02-01

    Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

  4. Threshold conditions for integrated pest management models with pesticides that have residual effects.

    PubMed

    Tang, Sanyi; Liang, Juhua; Tan, Yuanshun; Cheke, Robert A

    2013-01-01

    Impulsive differential equations (hybrid dynamical systems) can provide a natural description of pulse-like actions such as when a pesticide kills a pest instantly. However, pesticides may have long-term residual effects, with some remaining active against pests for several weeks, months or years. Therefore, a more realistic method for modelling chemical control in such cases is to use continuous or piecewise-continuous periodic functions which affect growth rates. How to evaluate the effects of the duration of the pesticide residual effectiveness on successful pest control is key to the implementation of integrated pest management (IPM) in practice. To address these questions in detail, we have modelled IPM including residual effects of pesticides in terms of fixed pulse-type actions. The stability threshold conditions for pest eradication are given. Moreover, effects of the killing efficiency rate and the decay rate of the pesticide on the pest and on its natural enemies, the duration of residual effectiveness, the number of pesticide applications and the number of natural enemy releases on the threshold conditions are investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications and predator releases. Latin Hypercube Sampling/Partial Rank Correlation uncertainty and sensitivity analysis techniques are employed to investigate the key control parameters which are most significantly related to threshold values. The findings combined with Volterra's principle confirm that when the pesticide has a strong effect on the natural enemies, repeated use of the same pesticide can result in target pest resurgence. The results also indicate that there exists an optimal number of pesticide applications which can suppress the pest most effectively, and this may help in the design of an optimal control strategy.

  5. Are Schools Making the Grade? School Districts Nationwide Adopt Safer Pest Management Policies.

    ERIC Educational Resources Information Center

    Piper, Cortney; Owens, Kagan

    2002-01-01

    This report documents school districts that have adopted safer pest management policies, such as integrated pest management (IPM), in response to state requirements or as a voluntary measure that exceeds state law. It also documents the state of local school pest management policies and illustrates the opportunities that exist for better…

  6. Natural Toxins for Use in Pest Management

    PubMed Central

    Duke, Stephen O.; Cantrell, Charles L.; Meepagala, Kumudini M.; Wedge, David E.; Tabanca, Nurhayat; Schrader, Kevin K.

    2010-01-01

    Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed. PMID:22069667

  7. Strategic and tactical use of movement information in pest management

    NASA Technical Reports Server (NTRS)

    Knipling, E. F.

    1979-01-01

    Several insect movement problems are discussed. Much more information is needed to make a better appraisal of the practical significance of the insect dispersal problem. Data on the time, rate, and extent of movement of insects are provided. Better techniques for measuring insect movement are developed. A better understanding of the importance of insect movement in the development and implementation of more effective and ecologically acceptable pest management strategies and tactics was proved.

  8. Managing Risk of Pest Introduction, Establishment and Spread in a Changing World

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter by Neil Heather and Guy Hallman, in “Pest Management and Phytosanitary Trade Barriers,” CABI Press, covers the topics of pest risk analysis, risk management, and host status, including the nonhost concept. Pest-free status and production areas as phytosanitary measures are also di...

  9. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applicat...

  10. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population.

    PubMed

    Gordillo, Luis F

    2014-06-01

    To determine optimal sterile insect release policies in area-wide integrated pest management is a challenge that users of this pest control method inevitably confront. In this note we provide approximations to best policies of release through the use of simulated annealing. The discrete time model for the population dynamics includes the effects of sterile insect release and density dependence in the pest population. Spatial movement is introduced through integrodifference equations, which allow the use of the stochastic search in cases where movement is described through arbitrary dispersal kernels. As a byproduct of the computations, an assessment of appropriate control zone sizes is possible.

  11. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  12. Developing Soil Microbial Inoculants for Pest Management: Can One Have Too Much of a Good Thing?

    PubMed

    Gadhave, Kiran R; Hourston, James E; Gange, Alan C

    2016-04-01

    Soil microbes present a novel and cost-effective method of increasing plant resistance to insect pests and thus create a sustainable opportunity to reduce current pesticide application. However, the use of microbes in integrated pest management programs is still in its infancy. This can be attributed primarily to the variations in microbial inoculum performance under laboratory and field conditions. Soil inoculants containing single, indigenous microbial species have shown promising results in increasing chemical defenses of plants against foliar feeding insects. Conversely, commercial inoculants containing multiple species tend to show no effects on herbivore infestation in the field. We present here a simple model that endeavours to explain how single and multiple species in microbial inoculants differentially govern insect population dynamics via changes in plant chemical profiles. We discuss further how this knowledge can be applied to manipulate soil microbial species and develop 'tailored' microbial inoculants that could be used in plant protection against antagonists.

  13. Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci

    PubMed Central

    Denholm, I.

    1998-01-01

    For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high-value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance-management strategies implemented on cotton in Israel, and subsequently in south-western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest-management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.

  14. Oviposition Deterrents in Herbivorous Insects and their potential use in Integrated Pest Management.

    PubMed

    Kumari, Archana; Kaushik, Nutan

    2016-03-01

    In the life cycle of insects, oviposition is an important phenomenon, and it is influenced by many intrinsic and extrinsic factors, especially in relation to suitable hosts for completion of their life-cycle. Oviposition deterrents which deter an insect from laying eggs are important in the management of insect pests. Proper understanding of these deterrents shall provide necessary insight into new vistas for Insect Pest Management. Chemicals from plants and insects play an important role in attracting phytophagous insects for selecting host for oviposition. Considerable research has been done on oviposition deterrents and their mode of actions. In the present review, we have consolidated the updated information on this important aspect of insect behavior.

  15. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  16. Bug Off: A Guide for Integrated Pest Management in Granville Schools.

    ERIC Educational Resources Information Center

    2001

    This guide describes options for the Granville schools when dealing with pests. It is based on Integrated Pest Management (IPM), a philosophy that employs safe and practical pest control methods. The guide can be used to incorporate IPM philosophy into the school systems. The first section provides the environmental context for an interest in…

  17. IPM: Integrated Pest Management Kit for Building Managers. How To Implement an Integrated Pest Management Program in Your Building(s).

    ERIC Educational Resources Information Center

    Mitchell, Brad

    This management kit introduces building managers to the concept of Integrated Pest Management (IPM), and provides the knowledge and tools needed to implement an IPM program in their buildings. It discusses the barriers to implementing an IPM program, why such a program should be used, and the general guidelines for its implementation. Managerial…

  18. Should I fight or should I flight? How studying insect aggression can help integrated pest management.

    PubMed

    Benelli, Giovanni

    2015-07-01

    Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions).

  19. Bacterial endophytic communities in the grapevine depend on pest management.

    PubMed

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.

  20. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... 7 Agriculture 3 2010-01-01 2010-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must...

  1. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... 7 Agriculture 3 2013-01-01 2013-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must...

  2. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... 7 Agriculture 3 2014-01-01 2014-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must...

  3. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... 7 Agriculture 3 2012-01-01 2012-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must...

  4. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... 7 Agriculture 3 2011-01-01 2011-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must...

  5. The Case of the Wild House Mouse. Urban Pest Management. Teaching Environmental Living Skills to Elementary Students.

    ERIC Educational Resources Information Center

    Cowles, Kathleen Letcher

    Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy and mix of tactics to use. IPM combines a variety of approaches with which to manage pests. These include…

  6. Pest management programmes in vineyards using male mating disruption.

    PubMed

    Harari, Ally R; Zahavi, Tirtza; Gordon, Dvora; Anshelevich, Leonid; Harel, Miriam; Ovadia, Shmulik; Dunkelblum, Ezra

    2007-08-01

    Israeli vine growers have been reluctant to adopt the mating disruption technique for control of the European vine moth, Lobesia botrana Den. & Schiff. Since the chemically controlled honeydew moth, Cryptoblabes gnidiella Mill., coexists with the European vine moth, growers have maintained that the use of mating disruption would fail to bring about a significant reduction in pesticide use. In this study, the efficacy of mating disruption techniques against C. gnidiella was tested, as well as the effect of these methods on pesticide use and damage to clusters when the method was employed against both of the pests in wine grapes. Comparisons were made between plots treated with (1) L. botrana mating disruption pheromone, (2) L. botrana and C. gnidiella mating disruption pheromones and (3) control plots. A significant difference in the number of clusters infested with the developmental stages of the moths was seen between pheromone-treated plots and controls, while no such difference was observed between plots treated with one versus two pheromones. A similar pattern was observed in the number of insecticide applications; the greatest number of applications was used in control plots, followed by plots treated with L. botrana mating disruption pheromone and by plots treated with pheromones against both pests, in which no pesticides were applied.

  7. Anystis baccarum: An Important Generalist Predatory Mite to be Considered in Apple Orchard Pest Management Strategies.

    PubMed

    Cuthbertson, Andrew G S; Qiu, Bao-Li; Murchie, Archie K

    2014-07-24

    The increasing concern over the continued use of pesticides is pressurising apple growers to look for alternatives to chemical pest control. The re-discovery, and subsequent conservation, of the beneficial predatory mite, Anystis baccarum (Linnaeus) (Acari: Anystidae), in Bramley apple orchards in Northern Ireland offers a potential alternative control component for incorporation into integrated pest management strategies. Anystis baccarum readily feeds upon economically important invertebrate pest species including European fruit tree red spider mite, Panonychus ulmi (Koch) (Acari: Tetranychidae) and show a level of compatibility with chemical pesticides. Recent mis-identification by apple growers of this beneficial mite species had resulted in unnecessary pesticide applications being applied within Northern Irish apple orchards. However, dissemination of information to the apple growers and promotion of the benefits this mite offers in apple orchards has helped to conserve its populations. Apple growers, across the United Kingdom, must be encouraged to be aware of A. baccarum, and indeed all predatory fauna, within their orchards and seek to conserve populations. In doing so, it will ensure that the British apple market remains an environmentally sustainable production system.

  8. Coupled information diffusion--pest dynamics models predict delayed benefits of farmer cooperation in pest management programs.

    PubMed

    Rebaudo, François; Dangles, Olivier

    2011-10-01

    Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.

  9. Development and Evaluation of an Integrated Pest Management Toolkit for Child Care Providers

    ERIC Educational Resources Information Center

    Alkon, Abbey; Kalmar, Evie; Leonard, Victoria; Flint, Mary Louise; Kuo, Devina; Davidson, Nita; Bradman, Asa

    2012-01-01

    Young children and early care and education (ECE) staff are exposed to pesticides used to manage pests in ECE facilities in the United States and elsewhere. The objective of this pilot study was to encourage child care programs to reduce pesticide use and child exposures by developing and evaluating an Integrated Pest Management (IPM) Toolkit for…

  10. Pest Management Career Ladder. AFSC 566XO and Occupational Series 5026.

    DTIC Science & Technology

    1986-12-01

    This is a report of an occupational survey of the Pest Management specialty and related civilian occupational series completed by the USAF...Primarily, the request was prompted to assess the impact of revisions to Pest Management regulating publications and directives; such as, AFR 91-21

  11. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  12. Economic value of biological control in integrated pest management of managed plant systems.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  13. Assessing integrated pest management adoption: measurement problems and policy implications.

    PubMed

    Puente, Molly; Darnall, Nicole; Forkner, Rebecca E

    2011-11-01

    For more than a decade, the U.S. government has promoted integrated pest management (IPM) to advance sustainable agriculture. However, the usefulness of this practice has been questioned because of lagging implementation. There are at least two plausible rationales for the slow implementation: (1) growers are not adopting IPM-for whatever reason-and (2) current assessment methods are inadequate at assessing IPM implementation. Our research addresses the second plausibility. We suggest that the traditional approach to measuring IPM implementation on its own fails to assess the distinct, biologically hierarchical components of IPM, and instead aggregates growers' management practices into an overall adoption score. Knowledge of these distinct components and the extent to which they are implemented can inform government officials as to how they should develop targeted assistance programs to encourage broader IPM use. We address these concerns by assessing the components of IPM adoption and comparing our method to the traditional approach alone. Our results indicate that there are four distinct components of adoption-weed, insect, general, and ecosystem management-and that growers implement the first two components significantly more often than the latter two. These findings suggest that using a more nuanced measure to assess IPM adoption that expands on the traditional approach, allows for a better understanding of the degree of IPM implementation.

  14. Use of anticoagulant rodenticides by pest management professionals in Massachusetts, USA.

    PubMed

    Memmott, Kristin; Murray, Maureen; Rutberg, Allen

    2017-01-01

    Secondary exposure to chemical rodenticides, specifically second-generation anticoagulant rodenticides (SGARs), poses a threat to non-target wildlife including birds of prey. Federal regulations in the United States currently limit homeowner access to SGARs as a way of minimizing this threat. With legal access to SGARs, pest management professionals (PMPs) represent a potential linkage to non-target exposure. There is limited research focused on rodent control practices, chemical rodenticide preferences, level of concern and awareness, or opinions on rodenticide regulations as they relate to PMPs. An online survey was sent to PMP companies across Massachusetts, USA, between October and November 2015. Thirty-five responses were obtained, a 20 % response rate. The preferred rodent control method among responding PMP companies was chemical rodenticides, specifically the SGAR bromadiolone. Respondents varied in their level of concern regarding the impact of chemical rodenticides on non-target species and showed a low level of awareness regarding SGAR potency and half-life. All responding companies reported using integrated pest management (IPM) strategies, with nearly all utilizing chemical rodenticides at some point. Enhanced education focused on SGAR potency, bioaccumulation potential, exposure routes, and negative impacts on non-target wildlife may improve efforts made by PMPs to minimize risk to wildlife and decrease dependence on chemical rodenticide use. Future studies evaluating use of anticoagulant rodenticide (ARs) by PMPs and the association with AR residues found in non-target wildlife is necessary to determine if current EPA regulations need to be modified to effectively reduce the risk of SGARs to non-target wildlife.

  15. Seeds of change: corn seed mixtures for resistance management and integrated pest management.

    PubMed

    Onstad, David W; Mitchell, Paul D; Hurley, Terrance M; Lundgren, Jonathan G; Porter, R Patrick; Krupke, Christian H; Spencer, Joseph L; DiFonzo, Christine D; Baute, Tracey S; Hellmich, Richard L; Buschman, Lawrent L; Hutchison, William D; Tooker, John F

    2011-04-01

    The use of mixtures of transgenic insecticidal seed and nontransgenic seed to provide an in-field refuge for susceptible insects in insect-resistance-management (IRM) plans has been considered for at least two decades. However, the U.S. Environmental Protection Agency has only recently authorized the practice. This commentary explores issues that regulators, industry, and other stakeholders should consider as the use of biotechnology increases and seed mixtures are implemented as a major tactic for IRM. We discuss how block refuges and seed mixtures in transgenic insecticidal corn, Zea mays L., production will influence integrated pest management (IPM) and the evolution of pest resistance. We conclude that seed mixtures will make pest monitoring more difficult and that seed mixtures may make IRM riskier because of larval behavior and greater adoption of insecticidal corn. Conversely, block refuges present a different suite of risks because of adult pest behavior and the lower compliance with IRM rules expected from farmers. It is likely that secondary pests not targeted by the insecticidal corn as well as natural enemies will respond differently to block refuges and seed mixtures.

  16. Potential of mass trapping for long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Wearing, C H; Byers, J A

    2006-10-01

    Semiochemical-based pest management programs comprise three major approaches that are being used to provide environmentally friendly control methods of insect pests: mass trapping, "lure and kill," and mating disruption. In this article, we review the potential of mass trapping in long-term pest management as well as in the eradication of invasive species. We discuss similarities and differences between mass trapping and other two main approaches of semiochemical-based pest management programs. We highlight several study cases where mass trapping has been used either in long-term pest management [e.g., codling moth, Cydia pomonella (L.); pink bollworm, Pectinophora gossypiella (Saunders); bark beetles, palm weevils, corn rootworms (Diabrotica spp.); and fruit flies] or in eradication of invasive species [e.g., gypsy moth, Lymantria dispar (L.); and boll weevil, Anthonomus grandis grandis Boheman). We list the critical issues that affect the efficacy of mass trapping and compare these with previously published models developed to investigate mass trapping efficacy in pest control. We conclude that mass trapping has good potential to suppress or eradicate low-density, isolated pest populations; however, its full potential in pest management has not been adequately realized and therefore encourages further research and development of this technology.

  17. Economic value of biological control in integrated pest management of managed plant systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protectio...

  18. Integrated pest management in the U.S.: progress and promise.

    PubMed Central

    Huffaker, C B; Croft, B A

    1976-01-01

    In the U.S., where heavy use of insecticides has been commonplace for years, the development of proper integrated insect pest control cannot get underway unless there is a changed use pattern for such chemicals. A changed use pattern, however, cannot be accomplished without much study to establish the requirements for integrated control for each major crop situation. In this paper recent developments in a number of crop areas in the U.S. in which the necessary study has been begun are reviewed. Important phases in the development of integrated control programs include: the single tactics phase, the multitactic phase, phase, the biological monitoring phase, the modeling phase, the management and optimization phase, and the implementation phase. Several crops are discussed in relation to how far along we are in the development of practical programs of insect pest control. These are cotton, apples, alfalfa, soybeans, citrus, corn, cereal grains, tobacco and pine forests. Several of these programs have already made substantial headway, e.g., those for cotton, alfalfa, apples, tobacco, and soybeans, although the accomplishments have not been even or parellel with respect to the phases of development where progress has been good. The review of developments in these crops suggests that programs of control for individual crops and perhaps for complexes of associated crops will be developed according to specific needs of the crop, the geographic area and the pests, the technologies available and the socioeconomic and political factors of relevance. The tendency will be toward greater use of science in pest control decision-making, with extensive use of biological monitoring to establish realistic levels of threatened damage to the crop, and greater concern given to possible profit reductions and environmental disturbances of applying an insecticide, as well as the possible gain from doing so. PMID:789064

  19. Assessing Integrated Pest Management Adoption: Measurement Problems and Policy Implications

    NASA Astrophysics Data System (ADS)

    Puente, Molly; Darnall, Nicole; Forkner, Rebecca E.

    2011-11-01

    For more than a decade, the U.S. government has promoted integrated pest management (IPM) to advance sustainable agriculture. However, the usefulness of this practice has been questioned because of lagging implementation. There are at least two plausible rationales for the slow implementation: (1) growers are not adopting IPM—for whatever reason—and (2) current assessment methods are inadequate at assessing IPM implementation. Our research addresses the second plausibility. We suggest that the traditional approach to measuring IPM implementation on its own fails to assess the distinct, biologically hierarchical components of IPM, and instead aggregates growers' management practices into an overall adoption score. Knowledge of these distinct components and the extent to which they are implemented can inform government officials as to how they should develop targeted assistance programs to encourage broader IPM use. We address these concerns by assessing the components of IPM adoption and comparing our method to the traditional approach alone. Our results indicate that there are four distinct components of adoption—weed, insect, general, and ecosystem management—and that growers implement the first two components significantly more often than the latter two. These findings suggest that using a more nuanced measure to assess IPM adoption that expands on the traditional approach, allows for a better understanding of the degree of IPM implementation.

  20. Possible impact of radar on pest management operations

    NASA Technical Reports Server (NTRS)

    Rainey, R. C.

    1979-01-01

    Radar in making and maintaining contact with the most important populations of major pests in different stages of flight is presented. The desert locust and the African armyworm are discussed in understanding problems and developing a more effective control of pests.

  1. Integrated pest management of the banded sunflower moth in cultivated sunflower in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a key insect pest of cultivated sunflowers in North Dakota. We investigated pest management strategies to reduce feeding injury caused by the banded sunflower moth in commercial oilseed and confection sunflower fields l...

  2. Bird cherry-oat aphid (Hemiptera: Sternorrhyncha, Aphidinae): Biology, pest status, and management in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a worldwide pest of wheat and other small grains. This paper provides an overview of BCOA life history, reviews its pest status in wheat, synthesizes and integrates information on different management strategies, and gives up-to-date inf...

  3. Integrating augmentative biocontrol and inherited sterility for management of lepidopteran pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pest management can benefit from the integration of biological control agents and the release of sterile insect pests (hosts). Released sterile or semi-sterile insects and their sterile progeny may augment natural enemies by serving as hosts for build-up of the natural enemies prior to the t...

  4. Pest Management and Environmental Quality. Course 181. Correspondence Courses in Agriculture, Family Living and Community Development.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.; And Others

    This publication is the course book for a correspondence course in pest control with the Pennsylvania State University. It contains basic information for agricultural producers on pest management and the proper and safe use of pesticides. The course consists of eleven lessons which can be completed at one's leisure. The first nine lessons contain…

  5. Pheromone-based pest management in china: past, present and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...

  6. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  7. Methyl bromide: effective pest management tool and environmental threat.

    PubMed

    Thomas, W B

    1996-12-01

    Methyl bromide is used extensively on a global basis as a pesticide against nematodes, weeds, insects, fungi, bacteria, and rodents. As a soil fumigant, it is used in significant quantities in the production of strawberry and tomato, as well as other agriculture commodities. Grain, fresh fruit, forestry products, and other materials are fumigated with methyl bromide to control pest infestations during transport and storage. Structures also are treated with this chemical to control wood-destroying insects and rodents. However, methyl bromide has been identified as a significant ozone-depleting substance, resulting in regulatory actions being taken by the U.S. Environmental Protection Agency and the United Nations Environment Program (Montreal Protocol). The science linking methyl bromide to ozone depletion is strong and was reinforced by the 1994 UNEP Montreal Protocol Science Assessment on Ozone Depletion, which states, "Methyl bromide continues to be viewed as a significant ozone-depleting compound." Identifying efficacious and viable alternatives in the near term is critical.

  8. Methyl Bromide: Effective Pest Management Tool and Environmental Threat

    PubMed Central

    Thomas, W. B.

    1996-01-01

    Methyl bromide is used extensively on a global basis as a pesticide against nematodes, weeds, insects, fungi, bacteria, and rodents. As a soil fumigant, it is used in significant quantities in the production of strawberry and tomato, as well as other agriculture commodities. Grain, fresh fruit, forestry products, and other materials are fumigated with methyl bromide to control pest infestations during transport and storage. Structures also are treated with this chemical to control wood-destroying insects and rodents. However, methyl bromide has been identified as a significant ozone-depleting substance, resulting in regulatory actions being taken by the U.S. Environmental Protection Agency and the United Nations Environment Program (Montreal Protocol). The science linking methyl bromide to ozone depletion is strong and was reinforced by the 1994 UNEP Montreal Protocol Science Assessment on Ozone Depletion, which states, "Methyl bromide continues to be viewed as a significant ozone-depleting compound." Identifying efficacious and viable alternatives in the near term is critical. PMID:19277178

  9. Obstacles to integrated pest management adoption in developing countries.

    PubMed

    Parsa, Soroush; Morse, Stephen; Bonifacio, Alejandro; Chancellor, Timothy C B; Condori, Bruno; Crespo-Pérez, Verónica; Hobbs, Shaun L A; Kroschel, Jürgen; Ba, Malick N; Rebaudo, François; Sherwood, Stephen G; Vanek, Steven J; Faye, Emile; Herrera, Mario A; Dangles, Olivier

    2014-03-11

    Despite its theoretical prominence and sound principles, integrated pest management (IPM) continues to suffer from anemic adoption rates in developing countries. To shed light on the reasons, we surveyed the opinions of a large and diverse pool of IPM professionals and practitioners from 96 countries by using structured concept mapping. The first phase of this method elicited 413 open-ended responses on perceived obstacles to IPM. Analysis of responses revealed 51 unique statements on obstacles, the most frequent of which was "insufficient training and technical support to farmers." Cluster analyses, based on participant opinions, grouped these unique statements into six themes: research weaknesses, outreach weaknesses, IPM weaknesses, farmer weaknesses, pesticide industry interference, and weak adoption incentives. Subsequently, 163 participants rated the obstacles expressed in the 51 unique statements according to importance and remediation difficulty. Respondents from developing countries and high-income countries rated the obstacles differently. As a group, developing-country respondents rated "IPM requires collective action within a farming community" as their top obstacle to IPM adoption. Respondents from high-income countries prioritized instead the "shortage of well-qualified IPM experts and extensionists." Differential prioritization was also evident among developing-country regions, and when obstacle statements were grouped into themes. Results highlighted the need to improve the participation of stakeholders from developing countries in the IPM adoption debate, and also to situate the debate within specific regional contexts.

  10. Obstacles to integrated pest management adoption in developing countries

    PubMed Central

    Parsa, Soroush; Morse, Stephen; Bonifacio, Alejandro; Chancellor, Timothy C. B.; Condori, Bruno; Crespo-Pérez, Verónica; Hobbs, Shaun L. A.; Kroschel, Jürgen; Ba, Malick N.; Rebaudo, François; Sherwood, Stephen G.; Vanek, Steven J.; Faye, Emile; Herrera, Mario A.; Dangles, Olivier

    2014-01-01

    Despite its theoretical prominence and sound principles, integrated pest management (IPM) continues to suffer from anemic adoption rates in developing countries. To shed light on the reasons, we surveyed the opinions of a large and diverse pool of IPM professionals and practitioners from 96 countries by using structured concept mapping. The first phase of this method elicited 413 open-ended responses on perceived obstacles to IPM. Analysis of responses revealed 51 unique statements on obstacles, the most frequent of which was “insufficient training and technical support to farmers.” Cluster analyses, based on participant opinions, grouped these unique statements into six themes: research weaknesses, outreach weaknesses, IPM weaknesses, farmer weaknesses, pesticide industry interference, and weak adoption incentives. Subsequently, 163 participants rated the obstacles expressed in the 51 unique statements according to importance and remediation difficulty. Respondents from developing countries and high-income countries rated the obstacles differently. As a group, developing-country respondents rated “IPM requires collective action within a farming community” as their top obstacle to IPM adoption. Respondents from high-income countries prioritized instead the “shortage of well-qualified IPM experts and extensionists.” Differential prioritization was also evident among developing-country regions, and when obstacle statements were grouped into themes. Results highlighted the need to improve the participation of stakeholders from developing countries in the IPM adoption debate, and also to situate the debate within specific regional contexts. PMID:24567400

  11. Who Wants To Be an IPM Super Sleuth? Integrated Pest Management Educational Activities & Resources for Kids of All Ages.

    ERIC Educational Resources Information Center

    Walejko, Gina K.; Colon, Joseph L.

    This guide presents games and activities on integrated pest management (IPM) for home targeting grades 1-7. The activities and games use a problem-solving approach based on pest knowledge to develop an understanding of pest management. Three cases are presented: (1) "Inspection is the Key to IPM Success" includes two…

  12. Integrated pest management is the lucrative bridge connecting the ever emerging knowledge islands of genetics and ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated pest management has long been considered a profit- and product (or technology)-driven multidisciplinary research field that maximizes crop yield and minimizes pest-inflicted economic losses. The introduction of transgenic crops has revolutionized crop protection and pest management by com...

  13. Health Benefits of Integrated Pest Management in Schools

    EPA Pesticide Factsheets

    The following documents describe the health case for School IPM.They describe what IPM is, and then summarize currently available research pointing to how pest control via IPM makes for a healthier school environment.

  14. Harnessing insect-microbe chemical communications to control insect pest of agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests have long been known to impose serious yield, economic, and food safety problems to managed crops worldwide, and are known to vector microbes, many of which are pathogenic or toxigenic. At the heart of many of these studies has been the vital understanding of the plant-insect interactio...

  15. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  16. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance.

    PubMed

    Trapero, Carlos; Wilson, Iain W; Stiller, Warwick N; Wilson, Lewis J

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars.

  17. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    PubMed

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-04

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.

  18. Airborne multi-spectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  19. Use of Airborne Multi-Spectral Imagery in Pest Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  20. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  1. Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases.

    PubMed

    Tang, Sanyi; Tang, Guangyao; Cheke, Robert A

    2010-05-21

    Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest-natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics.

  2. Integrated Pest Management, Preliminary. Curriculum Guide and Instructional Materials for a Secondary School Vo-Ag Program.

    ERIC Educational Resources Information Center

    Grady County Board of Education, Cairo, GA.

    This curriculum guide presents methods to disseminate information to students interested in dealing with pests, or who have concerns about the environmental impacts of modern pest control methods. Options are encouraged for pest control methods using a combination of natural, biological, cultural, and chemical means of control. Specifically…

  3. Pest management of a prey-predator model with sexual favoritism.

    PubMed

    Pei, Yongzhen; Yang, Yong; Li, Changguo; Chen, Lansun

    2009-06-01

    Although sex of prey is an important factor for the risk of predating, few articles consider the consequences of sexual favoritism and the corresponding effects on the impulsive predator-prey dynamics and its utility in biological control. This paper investigates the pest management strategy of a prey-predator system model with sexual favoritism. An impulsive differential equation which models the process of periodically releasing natural enemies and spraying pesticides at different fixed time for pest control is proposed and investigated. It is proved that the pest-eradication periodic solution is globally asymptotically stable under the assumption that the release amount of the predator is greater than some critical value. Permanent conditions are established under the assumption that the release amount of the predator is less than another critical value. In particular, two single control strategies are proposed. Furthermore, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that targeted to a specific pest's life cycle to kill the pest, then the combined strategy is preferable. Finally, the corresponding system with no sexual favoritism is investigated. The results indicate that we can release fewer amount of the predators to eliminate the preys with sexual favoritism than without and any strong sexual favoritism will drive the pest towards extinction. In view of the biological meaning, the sexual favoritism plays a more active role in suppressing insect pests.

  4. Three years monitoring survey of pesticide residues in Sardinia wines following integrated pest management strategies.

    PubMed

    Angioni, Alberto; Dedola, Fabrizio

    2013-05-01

    This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008-2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV < 20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (

  5. Intensive olive orchards on sloping land: good water and pest management are essential.

    PubMed

    Metzidakis, I; Martinez-Vilela, A; Castro Nieto, G; Basso, B

    2008-11-01

    There is intensive cultivation of olives on sloping land in Jaen-Granada (Spain), Basilicata (Italy) and Western Crete (Greece). The intensive olive groves here are characterised by a tree density of about 250treesha(-1), yearly fertilisation and pruning, several chemical sprays for pest control, soil tillage once to thrice per year and irrigation up to 2700m3ha(-1)yr(-1). Intensive management results in high yields of 3600-6500kgha(-1) but also higher labour costs of 1154-1590euroha(-1)yr(-1), varying per area. The major environmental concerns in this system are related to chemical residues in the fruit, the extinction of useful insects, the depletion of groundwater resources, the pollution of soil and water and the erosion of soil. This paper describes the impact of intensive orchard management on natural resources and gives recommendations for soil and water conservation, reduction of chemicals use and biodiversity enhancement. The specific recommendations for the relevant stakeholders--farmers, technicians, agricultural services and policy makers--are based on the experimental evaluation of different agricultural practices and a socio-economic analysis of local and global production and markets.

  6. Advances in organic insect pest management in pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecans are economically the most important native nut crop in the USA. The market for organic pecans has been growing. However, in the Southeastern USA, there are a number of insect pests and plant diseases that challenge the ability of growers to produce organic pecans in an economically sound ma...

  7. Mendel’s legacy lives through management of sugarcane pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomology and classical Mendelian genetics have had a long association and Mendel’s legacy continues to live through sugarcane pests. In this paper, we discuss examples of that legacy as applied to conventional and molecular approaches to breeding for insect resistance. We also discuss the applicat...

  8. Assessing the efficacy of spray-delivered 'eco-friendly' chemicals for the control and eradication of marine fouling pests.

    PubMed

    Piola, Richard F; Dunmore, Robyn A; Forrest, Barrie M

    2010-01-01

    Despite its frequent use in terrestrial and freshwater systems, there is a lack of published experimental research examining the effectiveness of spray-delivered chemicals for the management of non-indigenous and/or unwanted pests in marine habitats. This study tested the efficacy of spraying acetic acid, hydrated lime and sodium hypochlorite for the control of marine fouling assemblages. The chemicals are considered relatively 'eco-friendly' due to their low toxicity and reduced environmental persistence compared to synthetic biocides, and they were effective in controlling a wide range of organisms. Pilot trials highlighted acetic acid as the most effective chemical at removing fouling cover, therefore it was selected for more comprehensive full-scale trials. A single spray of 5% acetic acid with an exposure time of 1 min effectively removed up to 55% of the invertebrate species present and 65% of the cover on fouled experimental plates, while one application of 10% acetic acid over 30 min removed up to 78% of species present and 95% of cover. Single-spray treatments of 5% acetic acid reduced cover of the tunicate pest species Didemnum vexillum by up to 100% depending on the exposure duration, while repeat-spraying ensured that even short exposure times (1 min) achieved approximately 99% mortality. Both 5 and 10% acetic acid solutions appeared equally effective at removing the majority of algal species. This technique could be used for controlling the introduction of unwanted species or preventing the spread of pests, and is applicable to use on a variety of natural and artificial substrata, or for the treatment of structures that can be removed from the water.

  9. Integrated pest management policies in America's schools: is federal legislation needed?

    PubMed

    Taylor, Andrea Kidd; Esdaille, Kyle

    2010-01-01

    America's school children are at risk of developing asthma and other respiratory illnesses as a result of exposure to hazardous pesticides. Integrated pest management (IPM) policies are being implemented in states and school districts across the country; however, the content and regulation of these policies vary. The need for standardization of such policies and a federal IPM law is the only way to ensure that children in America's schools are adequately protected from exposure to hazardous pesticides used to control pests.

  10. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results.

  11. Integrated pest management with stochastic birth rate for prey species

    PubMed Central

    Akman, Olcay; Comar, Timothy D.; Hrozencik, Daniel

    2013-01-01

    Song and Xiang (2006) developed an impulsive differential equations model for a two-prey one-predator model with stage structure for the predator. They demonstrate the conditions on the impulsive period for which a globally asymptotically stable pest-eradication periodic solution exists, as well as conditions on the impulsive period for which the prey species is permanently maintained under an economically acceptable threshold. We extend their model by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. As in Song and Xiang (2006), we find the conditions under which a globally asymptotically stable pest eradication periodic solution exists. In addition, we numerically show the relationship between the stochastically varying birth rate of the prey and the necessary efficacy of the pesticide for which the probability of eradication of the prey species is above 90%. This is significant because the model recognizes varying environmental and climatic conditions which affect the resources needed for pest eradication. PMID:23964194

  12. Integrated pest management with stochastic birth rate for prey species.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2013-01-01

    Song and Xiang (2006) developed an impulsive differential equations model for a two-prey one-predator model with stage structure for the predator. They demonstrate the conditions on the impulsive period for which a globally asymptotically stable pest-eradication periodic solution exists, as well as conditions on the impulsive period for which the prey species is permanently maintained under an economically acceptable threshold. We extend their model by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. As in Song and Xiang (2006), we find the conditions under which a globally asymptotically stable pest eradication periodic solution exists. In addition, we numerically show the relationship between the stochastically varying birth rate of the prey and the necessary efficacy of the pesticide for which the probability of eradication of the prey species is above 90%. This is significant because the model recognizes varying environmental and climatic conditions which affect the resources needed for pest eradication.

  13. Integrated Pest Management of Coffee Berry Borer: Strategies from Latin America that Could Be Useful for Coffee Farmers in Hawaii

    PubMed Central

    Aristizábal, Luis F.; Bustillo, Alex E.; Arthurs, Steven P.

    2016-01-01

    The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers’ conditions. PMID:26848690

  14. Integrated Pest Management of Coffee Berry Borer: Strategies from Latin America that Could Be Useful for Coffee Farmers in Hawaii.

    PubMed

    Aristizábal, Luis F; Bustillo, Alex E; Arthurs, Steven P

    2016-02-03

    The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers' conditions.

  15. Natural history of crop-related wild species: Uses in pest habitat management

    NASA Astrophysics Data System (ADS)

    Salick, Jan

    1983-01-01

    The natural histories of crop-related wild species in their native habitats can be used to develop novel pest management strategies. Traditionally, such information has provided insights for biological control, plant breeding, crop management, and applied ecology Further insights can be garnered.

  16. Concepts of sustainability, motivations for pest management approaches, and implications for communicating change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective communication with farmers is an essential component of impacting their decision processes and encouraging changes in pest management practices, but requires a system of research and extension management that differs from that to which most biological scientists are accustomed. We present...

  17. Pheromone-Based Pest Management in China: Past, Present, and Future Prospects.

    PubMed

    Cui, Gen Zhong; Zhu, Junwei Jerry

    2016-07-01

    Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologies for the integrated pest management. However, in China, similar research lagged 15 to 20 years and was not initiated until the late 1980s. In this review, we present the early history of pheromone research that has led to the current practical applications in China, particularly in the development of pheromone-based pest management products. We also provide information regarding the current status of pheromone-based product manufacturing, marketing, and regulatory issues related to local semiochemical industries, which may be useful to other international companies interested in pursuing business in China. In addition, we share some research topics that represent new directions of the present pheromone research to explore novel tools for advancing semiochemical-based pest management in China.

  18. Insect pest densities across site-specific management zones of irrigated corn in northeastern Colorado.

    PubMed

    Davidson, Silas A; Peairs, Frank B; Khosla, Rajiv

    2007-06-01

    The ability to manage insect pests in a site-specific manner is hindered by the costs and time required to describe pest densities and distributions. The purpose of this study was to determine whether insect pest distributions are related to site-specific management zones (SSMZs). Site-specific management zones, as described in this study, delineate fields into three zones of similar yield potential: high, medium, and low productivity. If insect densities vary across SSMZs, it is possible that management decisions could be made at the SSMZ level instead of treating the whole field. This research was conducted during summers 2001 and 2002 on cooperators' farms in northeastern Colorado. Surveys were conducted within corn, Zea mays L., fields, so that densities of three common insect pests of Colorado corn could be compared across SSMZ. The three insect pests were western corn rootworm, Diabrotica virgifera virgifera LeConte; European corn borer, Ostrinia nubilalis (HiAbner); and western bean cutworm, Richia albicosta (Smith). D. v. virgifera larvae and adults were most common in the high-productivity SSMZ. O. nubilalis larval abundance was similar at three fields, whereas in a fourth field the larvae were most common in the high-productivity SSMZ. In one field that contained substantial numbers of R. albicosta, egg abundance was similar across SSMZs, whereas larvae were most common in the high-productivity SSMZ. Site-specific management zones seemed to correlate well with the abundance of some insect pests and might prove useful for managing insects in a site-specific manner.

  19. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  20. The ABCs of Non-Toxic Pest Control.

    ERIC Educational Resources Information Center

    Cooper, Susan

    1990-01-01

    Although chemical-intensive pest control methods have proven reasonably effective, a growing awareness of health and environmental risks associated with pesticides has sharpened public interest in safer alternatives. An integrated pest management approach reduces risks from pests while minimizing human exposure and reducing the toxicity of applied…

  1. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  2. The Rise and Demise of Integrated Pest Management in Rice in Indonesia

    PubMed Central

    Thorburn, Craig

    2015-01-01

    Indonesia’s 11-year (1989–1999) National Integrated Pest Management Program was a spectacularly successful example of wide-scale adoption of integrated pest management (IPM) principles and practice in a developing country. This program introduced the innovative Farmer Field School model of agro-ecosystem-based experiential learning, subsequently adapted to different crops and agricultural systems in countries throughout the world. Since the termination of the program in 1999, Indonesia has undergone profound changes as the country enters a new era of democratic reform. Government support for the national IPM program has wavered during this period, and pesticide producers and traders have taken advantage of the policy vacuum to mount an aggressive marketing campaign in the countryside. These factors have contributed to a reappearance of the pesticide-induced resurgent pest problems that led to the establishment of the National IPM Program in the first place.

  3. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    PubMed

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.

  4. 76 FR 12959 - Promoting Community Integrated Pest Management To Prevent Tick-Borne Diseases; Notice of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... AGENCY Promoting Community Integrated Pest Management To Prevent Tick- Borne Diseases; Notice of Public... Community Integrated Pest Management (IPM) for Preventing Tick-Borne Diseases Conference on March 30 and 31.... II. Background Tick-borne diseases, including Lyme, Rocky Mountain spotted fever, and...

  5. Integrated pest management and weed management in the United States and Canada.

    PubMed

    Owen, Micheal D K; Beckie, Hugh J; Leeson, Julia Y; Norsworthy, Jason K; Steckel, Larry E

    2015-03-01

    There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate-tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short-lived at best. More diversity of tactics for weed management must be incorporated in crop systems.

  6. Report on Tick-Borne Disease and Integrated Pest Management Conference

    EPA Pesticide Factsheets

    The US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) co-hosted a conference on Tick-Borne Disease Integrated Pest Management on March 5-6, 2013, in Arlington, VA. This document summarizes this meeting.

  7. Social Capital and Geography of Learning: Roles in Accelerating the Spread of Integrated Pest Management

    ERIC Educational Resources Information Center

    Palis, Florencia G.; Morin, Stephen; Hossain, Mahabub

    2005-01-01

    This paper aims to show the relevance of spatial proximity and social capital in accelerating the spread of agricultural technologies such as integrated pest management (IPM). The research was done in response to the problem of slow diffusion of agricultural technologies. Both quantitative and qualitative methods were used in investigating the…

  8. Effect of pest management system on 'Empire' apple leaf phyllosphere populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phyllosphere of plant tissues is varied and dynamic. Pest management, time of sampling, proximity to immigration sources, tissue and tissue status such as leaf/fruit age and location within the canopy, and other environmental and biological factors interact to influence the composition and abun...

  9. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.

  10. Can Pesticide Delivery Methods Play a Role in Sustainable Pest Management?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional insecticides continue to play an important role in greenhouse pest management programs. Penetrating a dense plant canopy can be difficult with a handgun, and there is some evidence that boom sprayers or broadcast applications result in a more uniform deposition than handguns. A large-...

  11. Low Energy Technology. A Unit of Instruction in Florida Agriculture. Crop Protection with Integrated Pest Management.

    ERIC Educational Resources Information Center

    Florida Univ., Gainesville. Inst. of Food and Agricultural Sciences.

    This unit of instruction on integrated pest management was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and…

  12. Emerging issues in Integrated Pest Management implementation and adoption in the North Central USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a long tradition of integrated pest management (IPM) in the North Central region of the U.S. IPM is difficult to define, and it means different things to different people. But in general it is a philosophy based on multiple tactics to prevent a population from building up to unacceptable da...

  13. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management.

    PubMed

    Silva-Brandão, Karina L; Santos, Thiago V; Cônsoli, Fernando L; Omoto, Celso

    2015-02-01

    The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.

  14. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application

    PubMed Central

    Farkas, Timothy E

    2015-01-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038

  15. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application.

    PubMed

    Farkas, Timothy E

    2015-10-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.

  16. Pest management systems affect composition but not abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards.

    PubMed

    Szabó, Árpád; Pénzes, Béla; Sipos, Péter; Hegyi, Tamás; Hajdú, Zsuzsanna; Markó, Viktor

    2014-04-01

    We examined the faunal composition and abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards under different pest management systems in Hungary. A total of 30 apple orchards were surveyed, including abandoned and organic orchards and orchards where integrated pest management (IPM) or broad spectrum insecticides (conventional pest management) were applied. A total of 18 phytoseiid species were found in the canopy of apple trees. Species richness was greatest in the organic orchards (mean: 3.3 species/400 leaves) and the least in the conventional orchards (1.4), with IPM (2.1) and abandoned (2.7) orchards showing intermediate values. The phytoseiid community's Rényi diversity displayed a similar pattern. However, the total phytoseiid abundance in the orchards with different pest management systems did not differ, with abundance varying between 1.8 and 2.6 phytoseiids/10 leaves. Amblyseius andersoni, Euseius finlandicus, and Typhlodromus pyri were the three most common species. The relative abundance of A. andersoni increased with the pesticide load of the orchards whereas the relative abundance of E. finlandicus decreased. The abundance of T. pyri did not change in the apple orchards under different pest management strategies; regardless of the type of applied treatment, they only displayed greater abundance in five of the orchards. The remaining 15 phytoseiid species only occurred in small numbers, mostly from the abandoned and organic orchards. We identified a negative correlation between the abundance of T. pyri and the other phytoseiids in the abandoned and organic orchards. However, we did not find any similar link between the abundance of A. andersoni and E. finlandicus.

  17. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  18. An impulsive predator-prey model with disease in the prey for integrated pest management

    NASA Astrophysics Data System (ADS)

    Shi, Ruiqing; Chen, Lansun

    2010-02-01

    In this paper, an impulsive predator-prey model with disease in the prey is investigated for the purpose of integrated pest management. In the first part of the main results, we get the sufficient condition for the global stability of the susceptible pest-eradication periodic solution. This means if the release amount of infective prey and predator satisfy the condition, then the pest will be doomed. In the second part of the main results, we also get the sufficient condition for the permanence of the system. This means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. In the last section, we interpret our mathematical results. We also point out some possible future work.

  19. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Management of environmental factors, such as temperature, light, humidity, atmosphere, and air circulation... controls including but not limited to traps, light, or sound; or (2) Lures and repellents...

  20. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Management of environmental factors, such as temperature, light, humidity, atmosphere, and air circulation... controls including but not limited to traps, light, or sound; or (2) Lures and repellents...

  1. Controlling Bed Bugs Using Integrated Pest Management (IPM)

    EPA Pesticide Factsheets

    Several non-chemical methods can help control an infestation, such as heat treatment or freezing, or mattress and box spring encasements. When using a pesticide, follow label directions carefully and check for EPA registration.

  2. Strawberries from integrated pest management and organic farming: phenolic composition and antioxidant properties.

    PubMed

    Fernandes, Virgínia C; Domingues, Valentina F; de Freitas, Victor; Delerue-Matos, Cristina; Mateus, Nuno

    2012-10-15

    Consumer awareness, pesticide and fertilizer contaminations and environmental concerns have resulted in significant demand for organically grown farm produce. Consumption of berries has become popular among health-conscious consumers due to the high levels of valuable antioxidants, such as anthocyanins and other phenolic compounds. The present study evaluated the influence that organic farming (OF) and integrated pest management (IPM) practise exert on the total phenolic content in 22 strawberry samples from four varieties. Postharvest performance of OF and IPM strawberries grown in the same area in the centre of Portugal and harvested at the same maturity stage were compared. Chemical profiles (phenolic compounds) were determined with the aid of HPLC-DAD/MS. Total phenolic content was higher for OF strawberry extracts. This study showed that the main differences in bioactive phytochemicals between organically and IPM grown strawberries concerned their anthocyanin levels. Organically grown strawberries were significantly higher in antioxidant activity than were the IPM strawberries, as measured by DPPH and FRAP assays.

  3. The case and opportunity for public-supported financial incentives to implement integrated pest management.

    PubMed

    Brewer, Michael J; Hoard, Robert J; Landis, Joy N; Elworth, Lawrence E

    2004-12-01

    Food, water, and worker protection regulations have driven availability, and loss, of pesticides for use in pest management programs. In response, public-supported research and extension projects have targeted investigation and demonstration of reduced-risk integrated pest management (IPM) techniques. But these new techniques often result in higher financial burden to the grower, which is counter to the IPM principle that economic competitiveness is critical to have IPM adopted. As authorized by the 2002 Farm Bill and administered by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), conservation programs exist for delivering public-supported financial incentives to growers to increase environmental stewardship on lands in production. NRCS conservation programs are described, and the case for providing financial incentives to growers for implementing IPM is presented. We also explored the opportunity and challenge to use one key program, the Environmental Quality Incentives Program (EQIP), to aid grower adoption of IPM. The EQIP fund distribution to growers from 1997 to 2002 during the last Farm Bill cycle totaled approximately 1.05 billion dollars with a portion of funds supporting an NRCS-designed pest management practice. The average percentage of allocation of EQIP funds to this pest management practice among states was 0.77 +/- 0.009% (mean +/- SD). Using Michigan as an example, vegetable and fruit grower recognition of the program's use to implement IPM was modest (25% of growers surveyed), and their recognition of its use in aiding implementation of IPM was improved after educational efforts (74%). Proposals designed to enhance program usefulness in implementing IPM were delivered through the NRCS advisory process in Michigan. Modifications for using the NRCS pest management practice to address resource concerns were adopted, incentive rates for pest management were adjusted, and an expanded incentive structure for IPM

  4. Returns to integrated pest management research and outreach for soybean aphid.

    PubMed

    Song, Feng; Swinton, Scott M

    2009-12-01

    Soybean aphid, Aphis glycines Matsumura, is a major invasive pest that has caused substantial yield loss and increased insecticide use in the United States since its discovery in 2000. Using the economic surplus approach, we estimate the economic benefits of U.S. research and outreach for integrated pest management (IPM) of soybean aphid. We calculate ex ante net benefits from adoption of an IPM economic threshold (ET). The ET triggers insecticide application only if the value of predicted yield damage from pest scouting is expected to exceed the cost of pest control. Our research finds that gradual adoption of an ET for soybean aphid management will generate a projected economic net benefit of $1.3 billion, for an internal rate of return of 124%, over the 15 yr since soybean aphid IPM research began in 2003. Lower and upper bound sensitivity analysis brackets the estimated net benefit to U.S. consumers and soybean, Glycine max (L.) Merr., growers in the range of $0.6 to $2.6 billion in 2005 dollars. If a 10% rate of return is attributed to IPM applied research and outreach on soybean aphid, that would leave nearly $800 million to compensate prior activities that contribute to the development and adoption of IPM.

  5. History and contemporary perspectives of the integrated pest management of soybean in Brazil.

    PubMed

    Panizzi, A R

    2013-04-01

    The integrated pest management (IPM) of soybean developed and implemented in Brazil was one of the most successful programs of pest management in the world. Established during the 1970s, it showed a tremendous level of adoption by growers, decreasing the amount of insecticide use by over 50%. It included outstanding approaches of field scouting and decision making, considering the economic injury levels (EILs) for the major pests. Two main biological control programs were highly important to support the soybean IPM program in Brazil, i.e., the use of a NPVAg to control the major defoliator, the velvet bean caterpillar, Anticarsia gemmatalis Hübner, and the use of egg parasitoids against the seed-sucking stink bugs, in particular, the southern green stink bug, Nezara viridula (L.). These two biological control programs plus pests scouting, and the use of more selective insecticides considering the EILs supported the IPM program through the 1980s and 1990s. With the change in the landscape, with the adoption of the no-tillage cultivation system and the introduction of more intense multiple cropping, and with the lower input to divulge and adapt the IPM program to this new reality, the program started to decline during the years 2000s. Nowadays, soybean IPM is almost a forgotten control technology. In this mini-review article, suggestions are made to possibly revive and adapt the soybean IPM to contemporary time.

  6. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    PubMed Central

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  7. Intercropping for management of insect pests of castor, Ricinus communis, in the semi-arid tropics of India.

    PubMed

    Rao, M Srinivasa; Rama Rao, C A; Srinivas, K; Pratibha, G; Vidya Sekhar, S M; Sree Vani, G; Venkateswarlu, B

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On-farm experiments were conducted in villages of semi-arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop.

  8. Safe Cockroach Control: A Guide to Setting Up an Integrated Pest Management Program within a School System.

    ERIC Educational Resources Information Center

    Cowles, Kathleen Letcher; And Others

    Integrated Pest Management (IPM) is a decision-making approach to pest control that has been used successfully on farms, city parks, offices, homes, and schools. IPM programs help individuals decide when treatments are necessary, where treatment would be most helpful, and what combinations of tactics would be most effective, safe, and inexpensive…

  9. Origin and phylogeography of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera : Cephidae): implications for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    he wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage by this species has recently expanded southward. Current pest management practices are not very effective and uncertainties regarding its origin and i...

  10. Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model

    NASA Astrophysics Data System (ADS)

    Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.

    Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.

  11. Driving pest populations: Agricultural chemicals lead to an adaptive syndrome in Nilaparvata lugens Stal (Hemiptera: Delphacidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the effects of contemporary climate change and agricultural practices include increased pest ranges and thermotolerances and phonological mismatches between pest insects and their natural enemies. The brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a serious pest ...

  12. Evaluating environmental and economic consequences of alternative pest management strategies: results of modeling workshops

    USGS Publications Warehouse

    Johnson, Richard L.; Andrews, Austin K.; Auble, Gregor T.L.; Ellison, Richard A.; Hamilton, David B.; Roelle, James E.; McNamee, Peter J.

    1983-01-01

    The model conceptualized at the first workshop simulates the effect of corn agrecosystem decisions on crop production, economic returns, and environmental indicators. The model is composed of five interacting submodels: 1) a Production Strategies submodel which makes decisions concerning tillage, planting, fertilizer and pesticide applications, and harvest; 2) a Hydrology/Chemical Transport submodel which represents soil hydrology, erosion, and concentrations of fertilizers and pesticides in the soil, runoff, surface waters, and percolation; 3) a Vegetation submodel which simulates growth of agricultural crops (corns and soybeans) and weeds; 4) a Pests submodel which calculates pest population levels and resulting crop damage; and 5) an Environmental Effects submodel which calculates indicators of potential fish kills, human health effects, and wildlife habitat. The most persistent data gaps encountered in quantifying the model were coefficients to relate environmental consequences to alternative pest management strategies. While the model developed in the project is not yet accurate enough to be used for real-world decisions about the use of pesticides on corn, it does contain the basic structure upon which such a model could be built. More importantly at this stage of development, the project has shown that very complex systems can be modeled in short periods of time and that the process of building such models increases understanding among disciplinary specialists and between diverse institutional interests. This process can be useful to EPA as the agency cooperates with other institutions to meet its responsibilities in less costly ways. Activities at the second 2 1/2-day workshop included a review of the model, incorporation of necessary corrections, simulation of policy scenarios, and examination of techniques to address remaining institutional conflicts. Participants were divided into three groups representing environmental, production or industry, and

  13. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  14. The role of databases in areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A database is a comprehensive collection of related data organized for convenient access, generally in a computer. The evolution of computer software and the need to distinguish the specialized computer systems for storing and manipulating data, stimulated development of database management systems...

  15. Anaerobic soil disinfestation and soil borne pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD; also referred to as Biological Soil Disinfestation (BSD)) is a pre-plant soil treatment method developed to control plant disease and manage yield decline in many crop production systems. The practice involves induction of anaerobic soil conditions by increasing m...

  16. Bridging Disciplines, Knowledge Systems and Cultures in Pest Management

    NASA Astrophysics Data System (ADS)

    Allen, Will; Ogilvie, Shaun; Blackie, Helen; Smith, Des; Sam, Shona; Doherty, James; McKenzie, Don; Ataria, James; Shapiro, Lee; MacKay, Jamie; Murphy, Elaine; Jacobson, Chris; Eason, Charles

    2014-02-01

    The success of research in integrated environmental and natural resource management relies on the participation and involvement of different disciplines and stakeholders. This can be difficult to achieve in practice because many initiatives fail to address the underlying social processes required for successful engagement and social learning. We used an action research approach to support a research-based group with a range of disciplinary and stakeholder expertise to critically reflect on their engagement practice and identify lessons around how to collaborate more effectively. This approach is provided here as a guide that can be used to support reflective research practice for engagement in other integration-based initiatives. This paper is set in the context of an integrated wildlife management research case study in New Zealand. We illustrate how multi-, inter- and trans-disciplinary approaches can provide a framework for considering the different conversations that need to occur in an integrated research program. We then outline rubrics that list the criteria required in inter- and trans-disciplinary collaborations, along with examples of effective engagement processes that directly support integration through such efforts. Finally, we discuss the implications of these experiences for other researchers and managers seeking to improve engagement and collaboration in integrated science, management and policy initiatives. Our experiences reaffirm the need for those involved in integrative initiatives to attend to the processes of engagement in both formal and informal settings, to provide opportunities for critical reflective practice, and to look for measures of success that acknowledge the importance of effective social process.

  17. Potential of "lure and kill" in long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Byers, J A; Jang, E B; Wearing, C H

    2009-06-01

    "Lure and kill" technology has been used for several decades in pest management and eradication of invasive species. In lure and kill, the insect pest attracted by a semiochemical lure is not "entrapped" at the source of the attractant as in mass trapping, but instead the insect is subjected to a killing agent, which eliminates affected individuals from the population after a short period. In past decades, a growing scientific literature has been published on this concept. This article provides the first review on the potential of lure and kill in long-term pest management and eradication of invasive species. We present a summary of lure and kill, either when used as a stand-alone control method or in combination with other methods. We discuss its efficacy in comparison with other control methods. Several case studies in which lure and kill has been used with the aims of long-term pest management (e.g., pink bollworm, Egyptian cotton leafworm, codling moth, apple maggot, biting flies, and bark beetles) or the eradication of invasive species (e.g., tephritid fruit flies and boll weevils) are provided. Subsequently, we identify essential knowledge required for successful lure and kill programs that include lure competitiveness with natural odor source; lure density; lure formulation and release rate; pest population density and risk of immigration; and biology and ecology of the target species. The risks associated with lure and kill, especially when used in the eradication programs, are highlighted. We comment on the cost-effectiveness of this technology and its strengths and weaknesses, and list key reasons for success and failure. We conclude that lure and kill can be highly effective in controlling small, low-density, isolated populations, and thus it has the potential to add value to long-term pest management. In the eradication of invasive species, lure and kill offers a major advantage in effectiveness by its being inverse density dependent and it provides

  18. Ecoinformatics for integrated pest management: expanding the applied insect ecologist's tool-kit.

    PubMed

    Rosenheim, Jay A; Parsa, Soroush; Forbes, Andrew A; Krimmel, William A; Law, Yao Hua; Segoli, Michal; Segoli, Moran; Sivakoff, Frances S; Zaviezo, Tania; Gross, Kevin

    2011-04-01

    Experimentation has been the cornerstone of much of integrated pest management (IPM) research. Here, we aim to open a discussion on the possible merits of expanding the use of observational studies, and in particular the use of data from farmers or private pest management consultants in "ecoinformatics" studies, as tools that might complement traditional, experimental research. The manifold advantages of experimentation are widely appreciated: experiments provide definitive inferences regarding causal relationships between key variables, can produce uniform and high-quality data sets, and are highly flexible in the treatments that can be evaluated. Perhaps less widely considered, however, are the possible disadvantages of experimental research. Using the yield-impact study to focus the discussion, we address some reasons why observational or ecoinformatics approaches might be attractive as complements to experimentation. A survey of the literature suggests that many contemporary yield-impact studies lack sufficient statistical power to resolve the small, but economically important, effects on crop yield that shape pest management decision-making by farmers. Ecoinformatics-based data sets can be substantially larger than experimental data sets and therefore hold out the promise of enhanced power. Ecoinformatics approaches also address problems at the spatial and temporal scales at which farming is conducted, can achieve higher levels of "external validity," and can allow researchers to efficiently screen many variables during the initial, exploratory phases of research projects. Experimental, observational, and ecoinformatics-based approaches may, if used together, provide more efficient solutions to problems in pest management than can any single approach, used in isolation.

  19. Toxins for transgenic resistance to hemipteran pests.

    PubMed

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  20. General Biology and Current Management Approaches of Soft Scale Pests (Hemiptera: Coccidae).

    PubMed

    Camacho, Ernesto Robayo; Chong, Juang-Horng

    We summarize the economic importance, biology, and management of soft scales, focusing on pests of agricultural, horticultural, and silvicultural crops in outdoor production systems and urban landscapes. We also provide summaries on voltinism, crawler emergence timing, and predictive models for crawler emergence to assist in developing soft scale management programs. Phloem-feeding soft scale pests cause direct (e.g., injuries to plant tissues and removal of nutrients) and indirect damage (e.g., reduction in photosynthesis and aesthetic value by honeydew and sooty mold). Variations in life cycle, reproduction, fecundity, and behavior exist among congenerics due to host, environmental, climatic, and geographical variations. Sampling of soft scale pests involves sighting the insects or their damage, and assessing their abundance. Crawlers of most univoltine species emerge in the spring and the summer. Degree-day models and plant phenological indicators help determine the initiation of sampling and treatment against crawlers (the life stage most vulnerable to contact insecticides). The efficacy of cultural management tactics, such as fertilization, pruning, and irrigation, in reducing soft scale abundance is poorly documented. A large number of parasitoids and predators attack soft scale populations in the field; therefore, natural enemy conservation by using selective insecticides is important. Systemic insecticides provide greater flexibility in application method and timing, and have longer residual longevity than contact insecticides. Application timing of contact insecticides that coincides with crawler emergence is most effective in reducing soft scale abundance.

  1. General Biology and Current Management Approaches of Soft Scale Pests (Hemiptera: Coccidae)

    PubMed Central

    Camacho, Ernesto Robayo; Chong, Juang-Horng

    2015-01-01

    We summarize the economic importance, biology, and management of soft scales, focusing on pests of agricultural, horticultural, and silvicultural crops in outdoor production systems and urban landscapes. We also provide summaries on voltinism, crawler emergence timing, and predictive models for crawler emergence to assist in developing soft scale management programs. Phloem-feeding soft scale pests cause direct (e.g., injuries to plant tissues and removal of nutrients) and indirect damage (e.g., reduction in photosynthesis and aesthetic value by honeydew and sooty mold). Variations in life cycle, reproduction, fecundity, and behavior exist among congenerics due to host, environmental, climatic, and geographical variations. Sampling of soft scale pests involves sighting the insects or their damage, and assessing their abundance. Crawlers of most univoltine species emerge in the spring and the summer. Degree-day models and plant phenological indicators help determine the initiation of sampling and treatment against crawlers (the life stage most vulnerable to contact insecticides). The efficacy of cultural management tactics, such as fertilization, pruning, and irrigation, in reducing soft scale abundance is poorly documented. A large number of parasitoids and predators attack soft scale populations in the field; therefore, natural enemy conservation by using selective insecticides is important. Systemic insecticides provide greater flexibility in application method and timing, and have longer residual longevity than contact insecticides. Application timing of contact insecticides that coincides with crawler emergence is most effective in reducing soft scale abundance. PMID:26823990

  2. Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in west Africa.

    PubMed

    Agunbiade, Tolulope A; Sun, Weilin; Coates, Brad S; Djouaka, Rousseau; Tamò, Manuele; Ba, Malick N; Binso-Dabire, Clementine; Baoua, Ibrahim; Olds, Brett P; Pittendrigh, Barry R

    2013-01-01

    Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa.

  3. Exploitation of insect vibrational signals reveals a new method of pest management.

    PubMed

    Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio

    2012-01-01

    Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.

  4. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    PubMed

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry.

  5. Pest and Disease Management: Why We Shouldn't Go against the Grain

    PubMed Central

    Skelsey, Peter; With, Kimberly A.; Garrett, Karen A.

    2013-01-01

    Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal (‘humpbacked’) relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. PMID:24098739

  6. Phylogeography of the Wheat Stem Sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae): Implications for Pest Management

    PubMed Central

    Lesieur, Vincent; Martin, Jean-François; Weaver, David K.; Hoelmer, Kim A.; Smith, David R.; Morrill, Wendell L.; Kadiri, Nassera; Peairs, Frank B.; Cockrell, Darren M.; Randolph, Terri L.; Waters, Debra K.; Bon, Marie-Claude

    2016-01-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management. PMID:27959958

  7. Pest and disease management: why we shouldn't go against the grain.

    PubMed

    Skelsey, Peter; With, Kimberly A; Garrett, Karen A

    2013-01-01

    Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.

  8. Phylogeography of the Wheat Stem Sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae): Implications for Pest Management.

    PubMed

    Lesieur, Vincent; Martin, Jean-François; Weaver, David K; Hoelmer, Kim A; Smith, David R; Morrill, Wendell L; Kadiri, Nassera; Peairs, Frank B; Cockrell, Darren M; Randolph, Terri L; Waters, Debra K; Bon, Marie-Claude

    2016-01-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management.

  9. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops

    PubMed Central

    Bashir, Oumar; Lemoyne, Pierre

    2016-01-01

    Bacillus thuringiensis (B. t.) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops. PMID:27761325

  10. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops.

    PubMed

    Bashir, Oumar; Claverie, Jerome P; Lemoyne, Pierre; Vincent, Charles

    2016-01-01

    Bacillus thuringiensis (B. t.) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.

  11. Farmers' perceptions, knowledge, and management of coffee pests and diseases and their natural enemies in Chiapas, Mexico.

    PubMed

    Segura, H R; Barrera, J F; Morales, H; Nazar, A

    2004-10-01

    Small farmers' perceptions of coffee Coffea arabica L. herbivores and their natural enemies, how those perceptions relate to field infestation levels, and pest management practices being implemented by members from two organic and nonorganic coffee grower organizations in the Soconusco region, southeastern Mexico, were analyzed through an interview survey, diagnostic workshops, and field sampling. The terms pest, disease, and damage were commonly used as synonyms. The major phytophagous species, as perceived by the interviewees, were Hypothenemus hampei (Ferrari), and to a lesser extent the fungi Corticium koleroga Cooke (Höhnel) and Hemileia vastatrix Berkeley & Broome. Among the nonorganic farmers, other nonpest-related constraints were regarded as more important. Awareness of the existence of natural enemies was low, despite more organic farmers have used the ectoparasitoid bethylid Cephalonomia stephanoderis Betrem against H. hampei. Labor supplied by household members was most frequent for pest control; only organic farmers exchanged labor for this purpose. The levels of infestation by H. hampei, Leucoptera coffeella Guérin-Méneville, and C. koleroga were lower within the organic coffee stands. However, a low effectiveness for pest control was commonly perceived, probably due to a feeling, among the organic farmers, of a low impact of their pest management extension service, whereas a lack of motivation was prevalent among the nonorganic farmers, shown by a concern with their low coffee yields and the emigration of youth. The importance of understanding farmers' perceptions and knowledge of pests and their natural enemies and the need for participatory pest management approaches, are discussed.

  12. Impact of combining planting date and chemical control to reduce larval densities of stem-infesting pests of sunflower in the central plains.

    PubMed

    Charlet, Laurence D; Aiken, Robert M; Meyer, Ron F; Gebre-Amlak, Assefa

    2007-08-01

    The guild of stem-infesting insect pests of sunflower, Helianthus annuus L., within the central Plains is a concern to producers chiefly due to losses caused by plant lodging from the sunflower stem weevil, Cylindrocopturus adspersus (LeConte) (Coleoptera: Curculionidae), and Dectes texanus texanus LeConte (Coleoptera: Cerambycidae). The incidence of a root boring moth, Pelochrista womonana (Kearfott) (Lepidoptera: Tortricidae), also has increased. Experiments were conducted in three locations in Colorado and Kansas during 2001-2003 to investigate the potential of combining planting date and foliar and seed treatment insecticide applications to lower insect stalk densities of these three pests. The impact of these strategies on weevil larval parasitoids also was studied. Eight sunflower stem weevil larval parasitoid species were identified. All were Hymenoptera and included the following (relative composition in parentheses): Nealiolus curculionis (Fitch) (42.6%), Nealiolus collaris (Brues) (3.2%) (Braconidae), Quadrastichus ainsliei Gahan (4.2%) (Eulophidae), Eurytoma tylodermatis Ashmead (13.1%) (Eurytomidae), Neocatolaccus tylodermae (Ashmead) (33.7%), Chlorocytus sp. (1.6%), Pteromalus sp. (0.5%) (Pteromalidae), and Eupelmus sp. (1.0%) (Eupelmidae). The results from this 3-yr study revealed that chemical control was often reliable in protecting the sunflower crop from stem pests and was relatively insensitive to application timing. Although results in some cases were mixed, overall, delayed planting can be a reliable and effective management tool for growers in the central Plains to use in reducing stem-infesting pest densities in sunflower stalks. Chemical control and planting date were compatible with natural mortality contributed by C. adspersus larval parasitoids.

  13. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Drees, Bastiaan M; Calixto, Alejandro A; Nester, Paul R

    2013-08-01

    Management of imported fire ant species has evolved since their accidental introduction into the United States and currently uses integrated pest management concepts to design, implement, and evaluate suppression programs. Although eradication is the management goal in certain isolated infestation sites, localized goals vary dramatically in larger infestations where reinvasion of treated areas is likely. These goals are influenced by regulatory policies, medical liabilities, ecological impact, and/or economic considerations. Tactics employed in fire ant management programs presented here include cultural and biological control options along with judicious use of site-specific insecticide products. In addition, program design considerations that include management goal(s), action level(s), ant form (monogyne or polygyne), presence of nontarget ant species, size of treatment area, seasonality, implementation cost, and environmental impact are also presented. Optimally, elegant IPM programs are target specific, threshold driven, environmentally friendly and cost-effective.

  14. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  15. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  16. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests.

    PubMed

    Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K

    2014-06-01

    We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.

  17. Wildlife as valuable natural resources vs. intolerable pests: A suburban wildlife management model

    USGS Publications Warehouse

    DeStefano, S.; Deblinger, R.D.

    2005-01-01

    Management of wildlife in suburban environments involves a complex set of interactions between both human and wildlife populations. Managers need additional tools, such as models, that can help them assess the status of wildlife populations, devise and apply management programs, and convey this information to other professionals and the public. We present a model that conceptualizes how some wildlife populations can fluctuate between extremely low (rare, threatened, or endangered status) and extremely high (overabundant) numbers over time. Changes in wildlife abundance can induce changes in human perceptions, which continually redefine species as a valuable resource to be protected versus a pest to be controlled. Management programs thatincorporate a number of approaches and promote more stable populations of wildlife avoid the problems of the resource versus pest transformation, are less costly to society, and encourage more positive and less negative interactions between humans and wildlife. We presenta case example of the beaver Castor canadensis in Massachusetts to illustrate how this model functions and can be applied. ?? 2005 Springer Science + Business Media, Inc.

  18. A three-year field validation study to improve the integrated pest management of hot pepper.

    PubMed

    Kim, Ji-Hoon; Yun, Sung-Chul

    2013-09-01

    To improve the integrated pest management (IPM) of hot pepper, field study was conducted in Hwasung from 2010 to 2012 and an IPM system was developed to help growers decide when to apply pesticides to control anthracnose, tobacco budworm, Phytophthora blight, bacterial wilt, and bacterial leaf spot. The three field treatments consisted of IPM sprays following the forecast model advisory, a periodic spray at 7-to-10-day intervals, and no spray (control). The number of annual pesticide applications for the IPM treatment ranged from six to eight, whereas the plots subjected to the periodic treatment received pesticide 11 or 12 times annually for three years. Compared to the former strategy, our improved IPM strategy features more intense pest management, with frequent spraying for anthracnose and mixed spraying for tobacco budworm or Phytophthora blight. The incidences for no pesticide control in 2010, 2011, and 2012 were 91, 97.6, and 41.4%, respectively. Conversely, the incidences for the IPM treatment for those years were 7.6, 62.6, and 2%, and the yields from IPM-treated plots were 48.6 kg, 12.1 kg, and 48.8 kg. The incidence and yield in the IPM-treated plots were almost the same as those of the periodic treatment except in 2011, in which no unnecessary sprays were given, meaning that the IPM control was quite successful. From reviewing eight years of field work, sophisticated forecasts that optimize pesticide spray timing reveal that reliance on pesticides can be reduced without compromising yield. Eco-friendly strategies can be implemented in the pest management of hot pepper.

  19. A Three-Year Field Validation Study to Improve the Integrated Pest Management of Hot Pepper

    PubMed Central

    Kim, Ji-Hoon; Yun, Sung-Chul

    2013-01-01

    To improve the integrated pest management (IPM) of hot pepper, field study was conducted in Hwasung from 2010 to 2012 and an IPM system was developed to help growers decide when to apply pesticides to control anthracnose, tobacco budworm, Phytophthora blight, bacterial wilt, and bacterial leaf spot. The three field treatments consisted of IPM sprays following the forecast model advisory, a periodic spray at 7-to-10-day intervals, and no spray (control). The number of annual pesticide applications for the IPM treatment ranged from six to eight, whereas the plots subjected to the periodic treatment received pesticide 11 or 12 times annually for three years. Compared to the former strategy, our improved IPM strategy features more intense pest management, with frequent spraying for anthracnose and mixed spraying for tobacco budworm or Phytophthora blight. The incidences for no pesticide control in 2010, 2011, and 2012 were 91, 97.6, and 41.4%, respectively. Conversely, the incidences for the IPM treatment for those years were 7.6, 62.6, and 2%, and the yields from IPM-treated plots were 48.6 kg, 12.1 kg, and 48.8 kg. The incidence and yield in the IPM-treated plots were almost the same as those of the periodic treatment except in 2011, in which no unnecessary sprays were given, meaning that the IPM control was quite successful. From reviewing eight years of field work, sophisticated forecasts that optimize pesticide spray timing reveal that reliance on pesticides can be reduced without compromising yield. Eco-friendly strategies can be implemented in the pest management of hot pepper. PMID:25288956

  20. A stage structure pest management model with impulsive state feedback control

    NASA Astrophysics Data System (ADS)

    Pang, Guoping; Chen, Lansun; Xu, Weijian; Fu, Gang

    2015-06-01

    A stage structure pest management model with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.

  1. Meeting people where they are: engaging public housing residents for integrated pest management.

    PubMed

    Scammell, Madeleine K; Duro, Laurie; Litonjua, Emily; Berry, Lilly; Reid, Margaret

    2011-01-01

    In a unique partnership, the Boston Public Health Commission, the Boston Housing Authority (BHA), Boston University School of Public Health, the Committee for Boston Public Housing, and the West Broadway Task Force (WBTF) led an Integrated Pest Management (IPM) intervention in Boston's public housing developments. Key to the success of the program was recruiting residents to participate. Residents who were trained as Community Health Advocates (CHAs) at the West Broadway Development in South Boston, Massachusetts, recruited over 300 homes to participate in the IPM intervention (out of 484 living units). This article describes the recruitment strategy and success from the perspective of CHAs at the West Broadway development.

  2. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs.

    PubMed

    Graziosi, Ignazio; Minato, Nami; Alvarez, Elizabeth; Ngo, Dung Tien; Hoat, Trinh Xuan; Aye, Tin Maung; Pardo, Juan Manuel; Wongtiem, Prapit; Wyckhuys, Kris Ag

    2016-06-01

    Cassava is a major staple, bio-energy and industrial crop in many parts of the developing world. In Southeast Asia, cassava is grown on >4 million ha by nearly 8 million (small-scale) farming households, under (climatic, biophysical) conditions that often prove unsuitable for many other crops. While SE Asian cassava has been virtually free of phytosanitary constraints for most of its history, a complex of invasive arthropod pests and plant diseases has recently come to affect local crops. We describe results from a region-wide monitoring effort in the 2014 dry season, covering 429 fields across five countries. We present geographic distribution and field-level incidence of the most prominent pest and disease invaders, introduce readily-available management options and research needs. Monitoring work reveals that several exotic mealybug and (red) mite species have effectively colonised SE Asia's main cassava-growing areas, occurring in respectively 70% and 54% of fields, at average field-level incidence of 27 ± 2% and 16 ± 2%. Cassava witches broom (CWB), a systemic phytoplasma disease, was reported from 64% of plots, at incidence levels of 32 ± 2%. Although all main pests and diseases are non-natives, we hypothesise that accelerating intensification of cropping systems, increased climate change and variability, and deficient crop husbandry are aggravating both organism activity and crop susceptibility. Future efforts need to consolidate local capacity to tackle current (and future) pest invaders, boost detection capacity, devise locally-appropriate integrated pest management (IPM) tactics, and transfer key concepts and technologies to SE Asia's cassava growers. Urgent action is needed to mobilise regional as well as international scientific support, to effectively tackle this phytosanitary emergency and thus safeguard the sustainability and profitability of one of Asia's key agricultural commodities. © 2016 Society of Chemical Industry.

  3. Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams

    PubMed Central

    Hasan, Md. Mahbub; Aikins, Michael J.; Schilling, Wes; Phillips, Thomas W.

    2016-01-01

    Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O2) achieved with low pressure under a vacuum, high carbon dioxide (CO2), and ozone (O3). Results showed that both low O2 and high CO2 levels required exposures up to 144 h to kill 100% of all stages of red-legged ham beetle, Necrobia rufipes (De Geer) (Coleoptera: Cleridae) and ham mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) at 23 °C. In addition, both low O2 and high CO2 had no significant mortality against the ham beetle and ham mites at short exposures ranging from 12 to 48 h. Ham beetles were more tolerant than ham mites to an atmosphere of 75.1% CO2 and low pressure of 25 mm Hg, which imposed an atmosphere estimated at 0.9% O2. Both low O2 and high CO2 trials indicated that the egg stages of both species were more tolerant than other stages tested, but N. rufipes eggs and pupae were more susceptible than larvae and adults to high concentration ozone treatments. The results indicate that O3 has potential to control ham beetles and ham mites, particularly at ≈166 ppm in just a 24 h exposure period, but O3 is known from other work to have poor penetration ability, thus it may be more difficult to apply effectively than low O2 or high CO2. would be. CA treatment for arthropod pests of dry-cured hams show promise as components of integrated pest management programs after methyl bromide is no longer available for use. PMID:27598209

  4. Combining pest control and resistance management: synergy of engineered insects with Bt crops.

    PubMed

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2009-04-01

    Transgenic crops producing insecticidal toxins are widely used to control insect pests. Their benefits would be lost if resistance to the toxins became widespread in pest populations. The most widely used resistance management method is the high-dose/refuge strategy. This requires toxin-free host plants as refuges near insecticidal crops, and toxin doses intended to be sufficiently high to kill insects heterozygous for a resistant allele, thereby rendering resistance functionally recessive. We have previously shown by mathematical modeling that mass-release of harmless susceptible (toxin-sensitive) insects engineered with repressible female-specific lethality using release of insects carrying a dominant lethal ([RIDL] Oxitec Limited, United Kingdom) technology could substantially delay or reverse the spread of resistance and reduce refuge sizes. Here, we explore this proposal in depth, studying a wide range of scenarios, considering impacts on population dynamics as well as evolution of allele frequencies, comparing with releases of natural fertile susceptible insects, and examining the effect of seasonality. We investigate the outcome for pest control for which the plant-incorporated toxins are not necessarily at a high dose (i.e., they might not kill all homozygous susceptible and all heterozygous insects). We demonstrate that a RIDL-based approach could form an effective component of a resistance management strategy in a wide range of genetic and ecological circumstances. Because there are significant threshold effects for several variables, we expect that a margin of error would be advisable in setting release ratios and refuge sizes, especially as the frequency and properties of resistant alleles may be difficult to measure accurately in the field.

  5. Comparative study of integrated pest management and baiting for German cockroach management in public housing.

    PubMed

    Wang, Changlu; Bennett, Gary W

    2006-06-01

    This study assessed the cost and effectiveness of a building-wide cockroach integrated pest management (IPM) program compared with bait alone treatment in public housing. In total, 12 buildings (66 apartments) were treated and monitored for cockroach infestations over 7 mo. The buildings were divided into two groups: bait treatment and IPM. Apartments in the bait alone group were treated with Maxforce FC Select (0.01% fipronil) during the first 12 wk and Maxforce Roach Killer Bait Gel (2.15% hydramethylnon) from 16 wk when necessary. For the IPM group, cockroaches were flushed and vacuumed at the beginning of the study; sticky traps were placed in all apartments to monitor and reduce cockroach numbers; educational materials were delivered to the residents; and Maxforce FC Select and Maxforce Roach Killer Bait Gel were applied to kill cockroaches. Two seminars were presented to the manger, and Community Service Program staff of the Gary Housing Authority to help gain tenant cooperation in the program. Effects of the treatments were monitored using sticky traps (six per apartment) at 2, 4, 8, 12, 16, and 29 wk after treatment. More treatments were applied during each monitoring visit when necessary. Those apartments with high levels of infestations (> or =12 cockroaches in six traps) before treatment were used to compare the IPM and bait only treatments. IPM resulted in significantly greater trap catch reduction than the bait treatment. The IPM (n=12) and bait only treatment (n=11) resulted in 100.0 and 94.6%, respectively, reduction in trap catch after 16 wk. At 29 wk, only one apartment in the IPM group had a high level (>12 cockroaches) of cockroach infestation. In contrast, five apartments in the bait treatment group had high level infestations at 29 wk based on overnight trapping counts; thus, IPM is a more sustainable method of population reduction. Sanitation levels in the IPM group significantly improved at 29 wk (n=11) compared with that at the beginning of

  6. Benefits of collaborative learning for environmental management: applying the integrated systems for knowledge management approach to support animal pest control.

    PubMed

    Allen, W; Bosch, O; Kilvington, M; Oliver, J; Gilbert, M

    2001-02-01

    Resource management issues continually change over time in response to coevolving social, economic, and ecological systems. Under these conditions adaptive management, or "learning by doing," offers an opportunity for more proactive and collaborative approaches to resolving environmental problems. In turn, this will require the implementation of learning-based extension approaches alongside more traditional linear technology transfer approaches within the area of environmental extension. In this paper the Integrated Systems for Knowledge Management (ISKM) approach is presented to illustrate how such learning-based approaches can be used to help communities develop, apply, and refine technical information within a larger context of shared understanding. To outline how this works in practice, we use a case study involving pest management. Particular attention is paid to the issues that emerge as a result of multiple stakeholder involvement within environmental problem situations. Finally, the potential role of the Internet in supporting and disseminating the experience gained through ongoing adaptive management processes is examined.

  7. A systematic review of the literature reveals trends and gaps in integrated pest management studies conducted in the USA.

    PubMed

    Young, Stephen L

    2017-03-20

    Integrated pest management (IPM) is a broad-based approach for addressing pests that negatively affect human and environmental health and economic profitability. Weeds, insects, and disease-causing pathogens (diseases) are the pests most often associated with IPM. A systematic review, widely used in other scientific disciplines, was employed to determine the most commonly studied IPM topics and summarize the reasons for these trends and the gaps. In a field synopsis of the literature, 1,679 relevant published papers were identified and categorized into one of the following five broad areas: IPM and organic (organic), climate change and pests (climate), rural and urban IPM (rural and urban), next generation education (education), and advanced production systems (technology). Papers were examined in greater detail for at least one of the three main pests in a systematic review. A majority (85%) of IPM papers have been in the area of rural and urban IPM, primarily addressing agriculture (78%). Professionals, land owners, and the general public were the focus of a majority (95%) of IPM papers on education. Technology is an increasing area of focus in the literature. Over the past 40 years, IPM papers have primarily (75%) addressed insects and been limited mostly to rural and urban settings. Climate change, technology, and education specific to pest management studies are increasingly being published and will help broaden the focus that could result in increased adoption and development of IPM.

  8. “Push-pull” strategies against vegetable insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull “strategies can be used as components of sustainable or cultural pest management. Dr. Jesusa C. Legaspi (USDA-ARS) and collaborators conducted field studies using mustard pla...

  9. Tea: Biological control of insect and mite pests in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tea is one of the most economically important crops in China. To secure its production and quality conservation biological control within the context of integrated pest management (IPM) has been widely popularized for better control of arthropod pests on tea with less chemical insecticide usage and ...

  10. Efficacy of Silk Channel Injections with Insecticides for Management of Lepidoptera Pests of Sweet Corn.

    PubMed

    Sparks, A N; Gadal, L; Ni, X

    2015-08-01

    The primary Lepidoptera pests of sweet corn (Zea mays L. convar. saccharata) in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). Management of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers frequently spraying daily. This level of insecticide use presents problems for small growers, particularly for "pick-your-own" operations. Injection of oil into the corn ear silk channel 5-8 days after silking initiation has been used to suppress damage by these insects. Initial work with this technique in Georgia provided poor results. Subsequently, a series of experiments was conducted to evaluate the efficacy of silk channel injections as an application methodology for insecticides. A single application of synthetic insecticide, at greatly reduced per acre rates compared with common foliar applications, provided excellent control of Lepidoptera insects attacking the ear tip and suppressed damage by sap beetles (Nitidulidae). While this methodology is labor-intensive, it requires a single application of insecticide at reduced rates applied ∼2 wk prior to harvest, compared with potential daily applications at full rates up to the day of harvest with foliar insecticide applications. This methodology is not likely to eliminate the need for foliar applications because of other insect pests which do not enter through the silk channel or are not affected by the specific selective insecticide used in the silk channel injection, but would greatly reduce the number of applications required. This methodology may prove particularly useful for small acreage growers.

  11. Role of two insect growth regulators in integrated pest management of citrus scales.

    PubMed

    Grafton-Cardwell, E E; Lee, J E; Stewart, J R; Olsen, K D

    2006-06-01

    Portions of two commercial citrus orchards were treated for two consecutive years with buprofezin or three consecutive years with pyriproxyfen in a replicated plot design to determine the long-term impact of these insect growth regulators (IGRs) on the San Joaquin Valley California integrated pest management program. Pyriproxyfen reduced the target pest, California red scale, Aonidiella aurantii Maskell, to nondetectable levels on leaf samples approximately 4 mo after treatment. Pyriproxyfen treatments reduced the California red scale parasitoid Aphytis melinus DeBach to a greater extent than the parasitoid Comperiella bifasciata Howard collected on sticky cards. Treatments of lemons Citrus limon (L.) Burm. f. infested with scale parasitized by A. melinus showed only 33% direct mortality of the parasitoid, suggesting the population reduction observed on sticky cards was due to low host density. Three years of pyriproxyfen treatments did not maintain citricola scale, Coccus pseudomagnoliarum (Kuwana), below the treatment threshold and cottony cushion scale, Icerya purchasi Maskell, was slowly but incompletely controlled. Buprofezin reduced California red scale to very low but detectable levels approximately 5 mo after treatment. Buprofezin treatments resulted in similar levels of reduction of the two parasitoids A. melinus and C. bifasciata collected on sticky cards. Treatments of lemons infested with scale parasitized by A. melinus showed only 7% mortality of the parasitoids, suggesting the population reduction observed on sticky cards was due to low host density. Citricola scale was not present in this orchard, and cottony cushion scale was slowly and incompletely controlled by buprofezin. These field plots demonstrated that IGRs can act as organophosphate insecticide replacements for California red scale control; however, their narrower spectrum of activity and disruption of coccinellid beetles can allow other scale species to attain primary pest status.

  12. Reduced Population Control of an Insect Pest in Managed Willow Monocultures

    PubMed Central

    Dalin, Peter; Kindvall, Oskar; Björkman, Christer

    2009-01-01

    predict insect pest outbreaks and could facilitate the development of sustainable pest control in managed systems. PMID:19424439

  13. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  14. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept?

    PubMed

    Damos, Petros; Colomar, Lucía-Adriana Escudero; Ioriatti, Claudio

    2015-06-26

    This review focuses on the process of adapting the original concept of Integrated Pest Management (IPM) to the wider conception of the Integrated Fruit Production (IFP) implemented in Europe. Even though most of the pest management strategies still rely on the use of synthetic pesticides, a wide array of innovative and environmentally friendly tools are now available as possible alternative to the pesticides within the modern apple production system. We also highlight how recent pest management strategies and tools have created an opening for research towards IPM improvement, including the use of biorational pesticides, semiochemicals and biological control. Forecasting models, new tree training systems and innovative spray equipment have also been developed to improve treatment coverage, to mitigate pesticide drift and to reduce chemical residues on fruits. The possible threats that jeopardize the effective implementation of IPM and particularly the risks related to the development of the pesticide resistance and the introduction of new invasive pests are also reviewed. With the directive 128/09, the European legislation recognizes IPM as a strategic approach for the sustainable use of pesticides. Within this context, IPM and related guidelines is called to meet different areas of concern in relation to the worker and bystander safety. Beside the traditional economic criteria of the market-oriented agriculture, sustainable agriculture includes the assessment of the environmental impact of the agronomic practices within the societal context where they take place. As a consequence of the raising consumer concerns about environmental impacts generated by the fruit production, IFP certification over product standards, including process aspects, are frequently required by consumers and supermarket chains.

  15. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept?

    PubMed Central

    Damos, Petros; Escudero Colomar, Lucía-Adriana; Ioriatti, Claudio

    2015-01-01

    This review focuses on the process of adapting the original concept of Integrated Pest Management (IPM) to the wider conception of the Integrated Fruit Production (IFP) implemented in Europe. Even though most of the pest management strategies still rely on the use of synthetic pesticides, a wide array of innovative and environmentally friendly tools are now available as possible alternative to the pesticides within the modern apple production system. We also highlight how recent pest management strategies and tools have created an opening for research towards IPM improvement, including the use of biorational pesticides, semiochemicals and biological control. Forecasting models, new tree training systems and innovative spray equipment have also been developed to improve treatment coverage, to mitigate pesticide drift and to reduce chemical residues on fruits. The possible threats that jeopardize the effective implementation of IPM and particularly the risks related to the development of the pesticide resistance and the introduction of new invasive pests are also reviewed. With the directive 128/09, the European legislation recognizes IPM as a strategic approach for the sustainable use of pesticides. Within this context, IPM and related guidelines is called to meet different areas of concern in relation to the worker and bystander safety. Beside the traditional economic criteria of the market-oriented agriculture, sustainable agriculture includes the assessment of the environmental impact of the agronomic practices within the societal context where they take place. As a consequence of the raising consumer concerns about environmental impacts generated by the fruit production, IFP certification over product standards, including process aspects, are frequently required by consumers and supermarket chains. PMID:26463407

  16. Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms.

    PubMed

    Robinson, A S; Vreysen, M J B; Hendrichs, J; Feldmann, U

    2009-06-01

    The economic devastation caused in the past by the New World screwworm fly Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) to the livestock industry in the U.S.A., Mexico and the rest of Central America was staggering. The eradication of this major livestock pest from North and Central America using the sterile insect technique (SIT) as part of an area-wide integrated pest management (AW-IPM) programme was a phenomenal technical and managerial accomplishment with enormous economic implications. The area is maintained screwworm-free by the weekly release of 40 million sterile flies in the Darien Gap in Panama, which prevents migration from screwworm-infested areas in Columbia. However, the species is still a major pest in many areas of the Caribbean and South America and there is considerable interest in extending the eradication programme to these countries. Understanding New World screwworm fly populations in the Caribbean and South America, which represent a continuous threat to the screwworm-free areas of Central America and the U.S.A., is a prerequisite to any future eradication campaigns. The Old World screwworm fly Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) has a very wide distribution ranging from Southern Africa to Papua New Guinea and, although its economic importance is assumed to be less than that of its New World counterpart, it is a serious pest in extensive livestock production and a constant threat to pest-free areas such as Australia. In the 1980s repeated introductions and an expansion of Old World screwworm populations were reported in the Middle East; in the 1990s it invaded Iraq and since late 2007 it has been reported in Yemen, where a severe outbreak of myiasis occurred in 2008. Small-scale field trials have shown the potential of integrating the SIT in the control of this pest and various international organizations are considering using the release of sterile insects as part of an AW-IPM approach on a much wider scale

  17. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa

    PubMed Central

    Pretty, Jules; Pervez Bharucha, Zareen

    2015-01-01

    Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global market worth $45 billion. The external costs of pesticides are $4–$19 (€3–15) per kg of active ingredient applied, suggesting that IPM approaches that result in lower pesticide use will benefit, not only farmers, but also wider environments and human health. Evidence for IPM’s impacts on pesticide use and yields remains patchy. We contribute an evaluation using data from 85 IPM projects from 24 countries of Asia and Africa implemented over the past twenty years. Analysing outcomes on productivity and reliance on pesticides, we find a mean yield increase across projects and crops of 40.9% (SD 72.3), combined with a decline in pesticide use to 30.7% (SD 34.9) compared with baseline. A total of 35 of 115 (30%) crop combinations resulted in a transition to zero pesticide use. We assess successes in four types of IPM projects, and find that at least 50% of pesticide use is not needed in most agroecosystems. Nonetheless, policy support for IPM is relatively rare, counter-interventions from pesticide industry common, and the IPM challenge never done as pests, diseases and weeds evolve and move. PMID:26463073

  18. Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management.

    PubMed

    Karsten, Minette; van Vuuren, Bettine Jansen; Barnaud, Adeline; Terblanche, John S

    2013-01-01

    The invasive Mediterranean fruit fly (medfly), Ceratitis capitata, is one of the major agricultural and economical pests globally. Understanding invasion risk and mitigation of medfly in agricultural landscapes requires knowledge of its population structure and dispersal patterns. Here, estimates of dispersal ability are provided in medfly from South Africa at three spatial scales using molecular approaches. Individuals were genotyped at 11 polymorphic microsatellite loci and a subset of individuals were also sequenced for the mitochondrial cytochrome oxidase subunit I gene. Our results show that South African medfly populations are generally characterized by high levels of genetic diversity and limited population differentiation at all spatial scales. This suggests high levels of gene flow among sampling locations. However, natural dispersal in C. capitata has been shown to rarely exceed 10 km. Therefore, documented levels of high gene flow in the present study, even between distant populations (>1600 km), are likely the result of human-mediated dispersal or at least some form of long-distance jump dispersal. These findings may have broad applicability to other global fruit production areas and have significant implications for ongoing pest management practices, such as the sterile insect technique.

  19. Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak.

    PubMed

    Tang, Sanyi; Xiao, Yanni; Cheke, Robert A

    2008-03-01

    Host-parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were analyzed with regard to host-eradication, host-parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed moments is globally stable if the host's intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic.

  20. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa.

    PubMed

    Pretty, Jules; Bharucha, Zareen Pervez

    2015-03-05

    Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global market worth $45 billion. The external costs of pesticides are $4-$19 (€3-15) per kg of active ingredient applied, suggesting that IPM approaches that result in lower pesticide use will benefit, not only farmers, but also wider environments and human health. Evidence for IPM's impacts on pesticide use and yields remains patchy. We contribute an evaluation using data from 85 IPM projects from 24 countries of Asia and Africa implemented over the past twenty years. Analysing outcomes on productivity and reliance on pesticides, we find a mean yield increase across projects and crops of 40.9% (SD 72.3), combined with a decline in pesticide use to 30.7% (SD 34.9) compared with baseline. A total of 35 of 115 (30%) crop combinations resulted in a transition to zero pesticide use. We assess successes in four types of IPM projects, and find that at least 50% of pesticide use is not needed in most agroecosystems. Nonetheless, policy support for IPM is relatively rare, counter-interventions from pesticide industry common, and the IPM challenge never done as pests, diseases and weeds evolve and move.

  1. Pesticide residues in Portuguese strawberries grown in 2009-2010 using integrated pest management and organic farming.

    PubMed

    Fernandes, Virgínia C; Domingues, Valentina F; Mateus, Nuno; Delerue-Matos, Cristina

    2012-11-01

    Pesticides are among the most widely used chemicals in the world. Because of the widespread use of agricultural chemicals in food production, people are exposed to low levels of pesticide residues through their diets. Scientists do not yet have a total understanding of the health effects of these pesticide residues. This work aims to determine differences in terms of pesticide residue content in Portuguese strawberries grown using different agriculture practices. The Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method was conducted and shown to have good performance for multiclass pesticides extraction in strawberries. The screening of 25 pesticides residue was performed by gas chromatography-tandem mass spectrometry. In quantitative validation, acceptable performances were achieved with recoveries of 70-120 and <12 % residual standard deviation for 25 pesticides. Good linearity was obtained for all the target compounds, with highly satisfactory repeatability. The limits of detection were in the range of 0.1-28 μg/kg. The method was applied to analyze strawberry samples from organic and integrated pest management (IPM) practices harvested in 2009-2010. The results showed the presence of fludioxonil, bifenthrin, mepanipyrim, tolylfluanid, cyprodinil, tetraconazole, and malathion when using IPM below the maximum residue levels.

  2. Waste management and chemical inventories

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  3. Teacher Characteristics and Perceptions of Pest Management Curricula: Clues to Adoption and Continuation.

    PubMed

    Mason, Makena; Aihara-Sasaki, Maria; Grace, J Kenneth

    2013-04-15

    Educate to Eradicate is a K-12 curriculum project using termite biology and control as the basis for science education that has been implemented in over 350 Hawaii public school classrooms. To encourage sustained implementation of the project, we aimed to identify factors that influence the adoption and continuation of pest management curricula in public school classrooms. Regression analysis of teacher survey data were used to create predictive models of teacher continuation. Teachers motivated by "exciting students about science", who perceived increases in "student understanding and comprehension of major termite knowledge concepts" and/or students as "more interested in termites after participating in this project" were more likely to continue curriculum. Teachers who had worked at their current school over 21 years at the time of curriculum adoption, and/or who identified having subject specialties not listed on the survey were less likely to continue curriculum. Additionally, teachers servicing lower socioeconomic level students were less likely to continue the curricula.

  4. Aggression in Tephritidae Flies: Where, When, Why? Future Directions for Research in Integrated Pest Management.

    PubMed

    Benelli, Giovanni

    2014-12-30

    True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested.

  5. Pregnancy outcomes among farming households of Nueva Ecija with conventional pesticide use versus integrated pest management.

    PubMed

    Crisostomo, Lenore; Molina, Victorio V

    2002-01-01

    A retrospective cohort study was conducted to compare pregnancy outcomes in farming households that used pesticides conventionally with those that practiced integrated pest management (IPM) in Nueva Ecija, Philippines, in the period 1998-1999. Conventional pesticide users (CPUs) were defined as pesticide appliers who used pesticides routinely and regularly, whereas users of IPM were those who used pesticides as necessary, and on economically injured crop areas only. The data sets were subjected to the chi-square test of association, Fisher's exact probability test, and logistic regression analysis. At a significance level at 0.05, spontaneous abortion occurred significantly more often among the 345 CPU households than among the 331 IPM households (adjusted risk ratio 6.17). Likewise, birth defects were significantly more common in the CPU group (adjusted risk ratio 4.56). Thus, people of reproductive age who plan to have children should avoid any use of pesticides.

  6. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management.

    PubMed

    Schrader, Kevin K; Andolfi, Anna; Cantrell, Charles L; Cimmino, Alessio; Duke, Stephen O; Osbrink, Weste; Wedge, David E; Evidente, Antonio

    2010-09-01

    Phytotoxic microbial metabolites produced by certain phytopathogenic fungi and bacteria, and a group of phytotoxic plant metabolites including Amaryllidacea alkaloids and some derivatives of these compounds were evaluated for algicide, bactericide, insecticide, fungicide, and herbicide activities in order to discover natural compounds for potential use in the management and control of several important agricultural and household structural pests. Among the various compounds evaluated: i) ophiobolin A was found to be the most promising for potential use as a selective algicide; ii) ungeremine was discovered to be bactericidal against certain species of fish pathogenic bacteria; iii) cycasin caused significant mortality in termites; iv) cavoxin, ophiobolin A, and sphaeropsidin A were most active towards species of plant pathogenic fungi; and v) lycorine and some of its analogues (1-O-acetyllycorine and lycorine chlorohydrate) were highly phytotoxic in the herbicide bioassay. Our results further demonstrated that plants and microbes can provide a diverse and natural source of compounds with potential use as pesticides.

  7. Principles and practices of integrated pest management on cotton in the lower Rio Grande Valley of Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable agriculture is ecologically sound, economically viable, socially just, and humane. These four goals for sustainability can be applied to all aspects of any agricultural system, from production and marketing, to processing and consumption. Integrated Pest Management (IPM) may be conside...

  8. Use of an Integrated Pest Management Assessment Administered through Turningpoint as an Educational, Needs Assessment, and Evaluation Tool

    ERIC Educational Resources Information Center

    Stahl, Lizabeth A. B.; Behnken, Lisa M.; Breitenbach, Fritz R.; Miller, Ryan P.; Nicolai, David; Gunsolus, Jeffrey L.

    2016-01-01

    University of Minnesota educators use an integrated pest management (IPM) survey conducted during private pesticide applicator training as an educational, needs assessment, and evaluation tool. By incorporating the IPM Assessment, as the survey is called, into a widely attended program and using TurningPoint audience response devices, Extension…

  9. The IUPAC International Congresses of Pesticide Chemistry (1963-2014) and Pest Management Science: a half-century of progress.

    PubMed

    Brooks, Gerald T

    2014-08-01

    As we approach the 2014 San Francisco IUPAC Pesticide Chemistry Congress, we reflect on the 51 years of such congresses every 4 years since 1963. Meanwhile, our journal, Pesticide Science/Pest Management Science, has in parallel continually published relevant science for nearly as long (44 years from 1970).

  10. Economic evaluation of area-wide pest management program to control asian tiger mosquito in New Jersey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Area-wide pest management (AWPM) is recommended to control urban mosquitoes, such as Aedes albopictus, which limit outdoor activities. While several evaluations of effectiveness exist, information on costs is lacking. Economic evaluation of such a program is important to help inform policy makers an...

  11. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and ...

  12. Cost-benefit analysis of an area-wide pest management program to control Asian tiger mosquito in New Jersey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Area-wide pest management (AWPM) is recommended to control urban mosquitoes, such as Aedes albopictus (Asian tiger mosquito), which limit outdoor activities. We conducted a cost-benefit analysis for an AWPM in Mercer and Monmouth counties, New Jersey, as part of a controlled design with matched area...

  13. Incorporating carbon storage into the optimal management of forest insect pests: a case study of the southern pine beetle (Dendroctonus frontalis Zimmerman) in the New Jersey Pinelands.

    PubMed

    Niemiec, Rebecca M; Lutz, David A; Howarth, Richard B

    2014-10-01

    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal.

  14. Incorporating Carbon Storage into the Optimal Management of Forest Insect Pests: A Case Study of the Southern Pine Beetle ( Dendroctonus Frontalis Zimmerman) in the New Jersey Pinelands

    NASA Astrophysics Data System (ADS)

    Niemiec, Rebecca M.; Lutz, David A.; Howarth, Richard B.

    2014-10-01

    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal.

  15. New dispenser types for integrated pest management of agriculturally significant insect pests: an algorithm with specialized searching capacity in electronic data bases.

    PubMed

    Hummel, H E; Eisinger, M T; Hein, D F; Breuer, M; Schmid, S; Leithold, G

    2012-01-01

    Pheromone effects discovered some 130 years, but scientifically defined just half a century ago, are a great bonus for basic and applied biology. Specifically, pest management efforts have been advanced in many insect orders, either for purposes or monitoring, mass trapping, or for mating disruption. Finding and applying a new search algorithm, nearly 20,000 entries in the pheromone literature have been counted, a number much higher than originally anticipated. This compilation contains identified and thus synthesizable structures for all major orders of insects. Among them are hundreds of agriculturally significant insect pests whose aggregated damages and costly control measures range in the multibillions of dollars annually. Unfortunately, and despite a lot of effort within the international entomological scene, the number of efficient and cheap engineering solutions for dispensing pheromones under variable field conditions is uncomfortably lagging behind. Some innovative approaches are cited from the relevant literature in an attempt to rectify this situation. Recently, specifically designed electrospun organic nanofibers offer a lot of promise. With their use, the mating communication of vineyard insects like Lobesia botrana (Lep.: Tortricidae) can be disrupted for periods of seven weeks.

  16. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops.

    PubMed

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean-Pierre; Kiss, Jozsef; Köhl, Jürgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry.

  17. Applying GIS and population genetics for managing livestock insect pests: case studies of tsetse and screwworm flies.

    PubMed

    Feldmann, U; Ready, P D

    2014-10-01

    The Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported a Co-ordinated Research Project (CRP) on 'Applying GIS and population genetics for managing livestock insect pests'. This six-year CRP (2008-2013) focused on research aimed at under-pinning the Area-Wide Integrated Pest Management (AW-IPM) of populations of tsetse and screwworm flies, and this introductory paper to the Special Issue integrates the findings of the CRP participants and discusses them in a broader context. The tools and techniques for mapping and modelling the distributions of genetically-characterised populations of tsetse and screwworm flies are increasingly used by researchers and managers for more effective decision-making in AW-IPM programmes, as illustrated by the reports in this Special Issue. Currently, the insect pests are often characterized only by neutral genetic markers suitable for recognizing spatially isolated populations that are sometimes associated with specific environments. Two challenges for those involved in AW-IPM are the standardization of best practice to permit the efficient application of GIS and genetic tools by regional teams, and the need to develop further the mapping and modelling of parasite and pest phenotypes that are epidemiologically important.

  18. Use of chemical communication in the management of freshwater aquatic species that are vectors of human diseases or are invasive.

    PubMed

    Corkum, Lynda D; Belanger, Rachelle M

    2007-01-01

    Chemical communication occurs when both originator (signaller) and one or more receiver(s) possess specializations for chemical exchange of information. Chemical information can be used by a wide variety of species to locate food and mates, avoid predators and engage in social interactions. In this review, we focus on chemical signalling between mates or cues from nest sites or hosts by selected aquatic pest species and indicate how chemical information can be used to manage pests. The pests are vectors of disease (blood-sucking insects) or invasive species (crayfishes and fishes) that have exhibited detrimental effects on indigenous species. Pheromones released by females attract and stimulate males in some taxa (insects, crayfish, goldfish, and crucian carp), whereas pheromones released by males attract females in others (round goby, sea lamprey). Other chemicals (e.g., habitat odours or odours given off by developmental stages of conspecifics) can affect oviposition decisions of pest species. In areas of aquatic environments where other cues may be limited (e.g., visual), freshwater organisms may rely solely on chemical signals or in concert with environmental cues for reproduction. Once the chemical structure of odour attractants are identified and shown to lure conspecifics to traps, odorants or their blends can be used to control the aquatic pests. There is promise for the application of pheromone traps to control the malarian vector (Anopheles gambiae) or invasive species such as signal crayfish (Pacifastacus leniusculus), sea lamprey (Petromyzon marinus) and the round goby (Neogobius melanostomus) by disrupting the reproductive behaviours of these species.

  19. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae)

    PubMed Central

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-01-01

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters. PMID:27876748

  20. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae).

    PubMed

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-11-23

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.

  1. Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae).

    PubMed

    Kang, Jung Koo; Pittendrigh, Barry R; Onstad, David W

    2013-12-01

    The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), can cause up to 100% yield loss of stored cowpea seeds in a few months in West Africa. Genes expressing toxins delaying insect maturation (MDTs) are available for genetic engineering. A simulation model was used to investigate the possible use of MDTs for managing C. maculatus. Specifically, we studied the effect of transgenic cowpea expressing an MDT, an insecticide, or both, on the evolution of resistance by C. maculatus at constant temperature. Transgenic cowpea expressing only a nonlethal MDT causing 50-100% maturation delay did not control C. maculatus well. Mortality caused by a maturation delay improved the efficacy of transgenic cowpea expressing only a lethal MDT, but significantly reduced the durability of transgenic cowpea Transgenic cowpea expressing only a lethal MDT causing 50% maturation delay and 90% mortality controlled C. maculatus better than one expressing only a nonlethal MDT, but its durability was only 2 yr. We concluded that transgenic cowpea expressing only an MDT has little value for managing C. maculatus. The resistance by C. maculatus to transgenic cowpea expressing only an insecticide rapidly evolved. Stacking a gene expressing a nonlethal MDT and a gene expressing an insecticide in transgenic cowpea did not significantly improve the durability of an insecticide, but stacking a gene expressing a lethal MDT and a gene expressing an insecticide in transgenic cowpea significantly improved the durability of an insecticide and an MDT. We also discussed this approach within the idea of using transgenic RNAi in pest control strategies.

  2. Efficacy of silk channel injections with insecticides for management of Lepidopteran pests of sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary Lepidopteran pests of sweet corn in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J.E. Smith). Control of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers fre...

  3. 1978 Insect Pest Management Guide: Commercial Vegetable Crops and Greenhouse Vegetables. Circular 897.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)

  4. Recent developments and applications of bait stations for integrated pest management of tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attract-and-kill approach involves the behavioral manipulation of pest insects through the integration of long-distance olfactory/visual stimuli to attract a particular pest and a killing agent and/or a collection device. Bait stations, an element of an attract-and-kill system, can be defined as...

  5. Training Childcare Center Administrators about Integrated Pest Management through Greener Environmental Communication Venues and Collecting Pesticide Use Data in the Process

    ERIC Educational Resources Information Center

    Anderson, Marcia

    2014-01-01

    Many people assume that schools and childcare centers are environmentally safe places for children to learn. However, adverse health effects from pest allergy related illnesses or pesticide exposure incidents can demonstrate the need for safer and more effective pest management strategies. The goal of this research is to measure the efficacy of…

  6. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  7. German cockroach allergen levels in North Carolina schools: comparison of integrated pest management and conventional cockroach control.

    PubMed

    Nalyanya, Godfrey; Gore, J Chad; Linker, H Michael; Schal, Coby

    2009-05-01

    Cockroach suppression is fundamental to cockroach allergen mitigation in infested homes. The effects of various cockroach control strategies on cockroach populations and allergen concentration have not been examined in schools. This study was conducted to compare the effectiveness of integrated pest management (IPM) and conventional pest control in controlling German cockroach (Blattella germanica L.) infestations and concentrations of the cockroach allergen Bla g 1 in public school buildings. Two school districts included six schools that used conventional pest control and one district included seven schools that used IPM to control pests. Cockroach traps were deployed to assess the level of infestation, settled dust samples were collected in food service areas, classrooms, and other school areas, and the Bla g 1 allergen was quantified by ELISA. Both cockroach counts and Bla g 1 concentrations were dependent on the pest control approach, with highly significant differences between IPM-treated schools and conventionally treated schools in both the cockroach mean trap counts (0 versus 82.6 +/- 17.3 cockroaches/trap/wk, respectively) and in the amount of Bla g 1 in dust samples (2.8 +/- 0.3 versus 30.6 +/- 3.4 U/g dust). Cockroaches and Bla g 1 were primarily associated with food preparation and food service areas and much less with classrooms and offices. Our data extend recent findings from studies in homes, showing that cockroach allergens can be reduced by cockroach elimination alone or by integrating several tactics including education, cleaning, and pest control. IPM is not only effective at controlling cockroaches but also can lead to long-term reductions in cockroach allergen concentrations, resulting in a healthier environment for students and school personnel.

  8. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    PubMed

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  9. Effectiveness of an Integrated Pest Management Intervention in Controlling Cockroaches, Mice, and Allergens in New York City Public Housing

    PubMed Central

    Kass, Daniel; McKelvey, Wendy; Carlton, Elizabeth; Hernandez, Marta; Chew, Ginger; Nagle, Sean; Garfinkel, Robin; Clarke, Brian; Tiven, Julius; Espino, Christian; Evans, David

    2009-01-01

    Background Cockroaches and mice, which are common in urban homes, are sources of allergens capable of triggering asthma symptoms. Traditional pest control involves the use of scheduled applications of pesticides by professionals as well as pesticide use by residents. In contrast, integrated pest management (IPM) involves sanitation, building maintenance, and limited use of least toxic pesticides. Objectives We implemented and evaluated IPM compared with traditional practice for its impact on pests, allergens, pesticide use, and resident satisfaction in a large urban public housing authority. Methods We assigned IPM or control status to 13 buildings in five housing developments, and evaluated conditions at baseline, 3 months, and 6 months in 280 apartments in Brooklyn and Manhattan, in New York City (New York). We measured cockroach and mouse populations, collected cockroach and mouse urinary protein allergens in dust, and interviewed residents. All statistical models controlled for baseline levels of pests or allergens. Results Compared with controls, apartments receiving IPM had significantly lower counts of cockroaches at 3 months and greater success in reducing or sustaining low counts of cockroaches at both 3 and 6 months. IPM was associated with lower cockroach allergen levels in kitchens at 3 months and in beds and kitchens at 6 months. Pesticide use was reduced in IPM relative to control apartments. Residents of IPM apartments also rated building services more positively. Conclusions In contrast to previous IPM studies, which involved extensive cleaning, repeat visits, and often extensive resident education, we found that an easily replicable single IPM visit was more effective than the regular application of pesticides alone in managing pests and their consequences. PMID:19672400

  10. Aggression in Tephritidae Flies: Where, When, Why? Future Directions for Research in Integrated Pest Management

    PubMed Central

    Benelli, Giovanni

    2014-01-01

    True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested. PMID:26463064

  11. Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider.

    PubMed

    Vetter, Richard S

    2011-06-01

    Experiments reported in Sandidge (2003; Nature 426: 30) indicated that the brown recluse spider, Loxosceles reclusa Gertsch & Mulaik, preferred to scavenge dead prey over live prey and that the spiders were not detrimentally affected when fed insecticide-killed crickets. Extrapolations made in subsequent media coverage disseminating the results of this research made counter-intuitive statements that pesticide treatment in houses would increase brown recluse populations in homes. This information was presented as if the scavenging behavior was specialized in the brown recluse; however, it was more likely that this behavior has not been well studied in other species. To provide a comparison, the current laboratory study examined the likelihood of non-Loxosceles spiders to scavenge dead prey. Of 100 non-Loxosceles spiders that were tested (from 11 families, 24 genera, and at least 29 species from a variety of spider hunting guilds), 99 scavenged dead crickets when offered in petri dishes. Some of the spiders were webspinners in which real-world scavenging of dead prey is virtually impossible, yet they scavenge when given the opportunity. Therefore, scavenging is a flexible opportunistic predatory behavior that is spread across a variety of taxa and is not a unique behavior in brown recluses. These findings are discussed in relation to pest management practices.

  12. The population genetics of using homing endonuclease genes in vector and pest management.

    PubMed

    Deredec, Anne; Burt, Austin; Godfray, H C J

    2008-08-01

    Homing endonuclease genes (HEGs) encode proteins that in the heterozygous state cause double-strand breaks in the homologous chromosome at the precise position opposite the HEG. If the double-strand break is repaired using the homologous chromosome, the HEG becomes homozygous, and this represents a powerful genetic drive mechanism that might be used as a tool in managing vector or pest populations. HEGs may be used to decrease population fitness to drive down population densities (possibly causing local extinction) or, in disease vectors, to knock out a gene required for pathogen transmission. The relative advantages of HEGs that target viability or fecundity, that are active in one sex or both, and whose target is expressed before or after homing are explored. The conditions under which escape mutants arise are also analyzed. A different strategy is to place HEGs on the Y chromosome that cause one or more breaks on the X chromosome and so disrupt sex ratio. This strategy can cause severe sex-ratio biases with efficiencies that depend on the details of sperm competition and zygote mortality. This strategy is probably less susceptible to escape mutants, especially when multiple X shredders are used.

  13. Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies.

    PubMed

    Roubos, Craig R; Rodriguez-Saona, Cesar; Holdcraft, Robert; Mason, Keith S; Isaacs, Rufus

    2014-02-01

    A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.

  14. Tsetse flies: their biology and control using area-wide integrated pest management approaches.

    PubMed

    Vreysen, Marc J B; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2013-03-01

    Tsetse flies are the cyclical vectors of trypanosomes, the causative agents of 'sleeping sickness' or human African trypanosomosis (HAT) in humans and 'nagana' or African animal trypanosomosis (AAT) in livestock in Sub-saharan Africa. Many consider HAT as one of the major neglected tropical diseases and AAT as the single greatest health constraint to increased livestock production. This review provides some background information on the taxonomy of tsetse flies, their unique way of reproduction (adenotrophic viviparity) making the adult stage the only one easily accessible for control, and how their ecological affinities, their distribution and population dynamics influence and dictate control efforts. The paper likewise reviews four control tactics (sequential aerosol technique, stationary attractive devices, live bait technique and the sterile insect technique) that are currently accepted as friendly to the environment, and describes their limitations and advantages and how they can best be put to practise in an IPM context. The paper discusses the different strategies for tsetse control i.e. localised versus area-wide and focusses thereafter on the principles of area-wide integrated pest management (AW-IPM) and the phased-conditional approach with the tsetse project in Senegal as a recent example. We argue that sustainable tsetse-free zones can be created on Africa mainland provided certain managerial and technical prerequisites are in place.

  15. Organochlorine pesticide residues in strawberries from integrated pest management and organic farming.

    PubMed

    Fernandes, Virginia C; Domingues, Valentina F; Mateus, Nuno; Delerue-Matos, Cristina

    2011-07-27

    A rapid, specific, and sensitive method based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method and a cleanup using dispersive solid-phase extraction with MgSO(4), PSA, and C18 sorbents has been developed for the routine analysis of 14 pesticides in strawberries. The analyses were performed by three different analytical methodologies: gas chromatography (GC) with electron capture detection (ECD), mass spectrometry (MS), and tandem mass spectrometry (MS/MS). The recoveries for all the pesticides studied were from 46 to 128%, with relative standard deviation of <15% in the concentration range of 0.005-0.250 mg/kg. The limit of detection (LOD) for all compounds met maximum residue limits (MRL) accepted in Portugal for organochlorine pesticides (OCP). A survey study of strawberries produced in Portugal in the years 2009-2010 obtained from organic farming (OF) and integrated pest management (IPM) was developed. Lindane and β-endosulfan were detected above the MRL in OF and IPM. Other OCP (aldrin, o,p'-DDT and their metabolites, and methoxychlor) were found below the MRL. The OCP residues detected decreased from 2009 to 2010. The QuEChERS method was successfully applied to the analysis of strawberry samples.

  16. The Role of Pest Control Advisers in Preventative Management of Grapevine Trunk Diseases.

    PubMed

    Hillis, Vicken; Lubell, Mark; Kaplan, Jonathan; Doll, David; Baumgartner, Kendra

    2016-04-01

    Vineyards with trunk diseases (Botryosphaeria dieback, Esca, Eutypa dieback, and Phomopsis dieback) can have negative returns in the long run. Minimizing economic impacts depends on effective management, but adopting a preventative practice after infection occurs may not improve yields. Pest control advisers may reduce grower uncertainty about the efficacy of and need for prevention, which often entails future and unobservable benefits. Here, we surveyed advisers in California to examine their influence over grower decision-making, in the context of trunk diseases, which significantly limit grape production and for which curative practices are unavailable. Our online survey revealed adviser awareness of high disease incidence, and reduced yields and vineyard lifespan. Advisers rated both preventative and postinfection practices positively. Despite higher cost estimates given to postinfection practices, advisers did not recommend preventative practices at higher rates. High recommendation rates were instead correlated with high disease incidence for both preventative and postinfection practices. Recommendation rates declined with increasing cost for preventative, but not for postinfection, practices. Our findings suggest that even when advisers acknowledge the risks of trunk diseases, they may not recommend preventative practices before infection occurs. This underscores the importance of clear outreach, emphasizing both the need for prevention and its long-term cost efficacy.

  17. Oviposition Preference of Pea Weevil, Bruchus pisorum L. Among Host and Non-host Plants and its Implication for Pest Management.

    PubMed

    Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter

    2015-01-01

    The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants.

  18. Oviposition Preference of Pea Weevil, Bruchus pisorum L. Among Host and Non-host Plants and its Implication for Pest Management

    PubMed Central

    Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter

    2016-01-01

    The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants. PMID:26779220

  19. Agroecological management of a soil-dwelling orthopteran pest in vineyards.

    PubMed

    Nboyine, Jerry Asalma; Boyer, Stephane; Saville, David J; Wratten, Stephen David

    2016-11-28

    The efficacy of different combinations of undervine and inter-row treatments for managing a soil-dwelling orthopteran pest, weta (Hemiandrus sp.), in vineyards was investigated over 2 seasons. This insect damages vine buds, thus reducing subsequent grape yield. The undervine treatments comprised pea straw mulch, mussel shells, tick beans [Vicia faba Linn. var minor (Fab)], plastic sleeves on vine trunks (treated control) and control (no intervention), while inter-rows contained either the existing vegetation or tick beans. Treatments were arranged in a randomized complete block design with 10 replicates. Data were collected on weta densities, damage to beans and components of yield. The latter were numbers of bud laid down per vine, shoots per bud, clusters per shoot, grape bunches per vine, bunch weight and yield. The undervine treatments significantly affected all variables except the number of shoots per bud. In contrast, none of the variables was significantly affected by the inter-row treatments or their interaction with undervine treatments, apart from weta density. At the end of the experiment, weta density in the shell treatment was about 58% lower than in the control. As a result, there was about 39% significant yield increase in that treatment compared to the control. Although the undervine beans and sleeves treatments increased yield, there were no reductions in weta density. With undervine beans, the insect fed on the bean plants instead of vine buds. Thus, yield in that treatment was approximately 28% higher than in the control. These results demonstrate that simple agroecological management approaches can reduce above-ground damage by soil-dwelling insects.

  20. 1978 Insect Pest Management Guide: Home, Yard, and Garden. Circular 900.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This publication lists certain insecticides to control insect pests of food, fabrics, structures, man and animals, lawns, shrubs, trees, flowers and vegetables. Suggestions are given for selection, dosage and application of insecticides to combat infestation. (CS)

  1. Integrated Pest Management Practices Reduce Insecticide Applications, Preserve Beneficial Insects, and Decrease Pesticide Residues in Flue-Cured Tobacco Production.

    PubMed

    Slone, Jeremy D; Burrack, Hannah J

    2016-09-22

    Integrated pest management (IPM) recommendations, including scouting and economic thresholds (ETs), are available for North Carolina flue-cured tobacco growers, although ETs for key pests have not been updated in several decades. Moreover, reported IPM adoption rates by flue-cured tobacco growers remain low, at < 40%, according to NC cooperative extension surveys conducted during the last four years. Previous research has suggested that timing insecticide treatments using currently available ETs can reduce the average number of applications to two or fewer per season. We conducted field-scale trials at nine commercial tobacco farms, three in 2104 and six in 2015, to quantify inputs associated with current scouting recommendations, to determine if current ETs were able to reduce insecticide applications as compared to grower standard practices, and to assess the impacts of reduced insecticide applications on end of season yield and pesticide residues. Two fields were identified at each farm and were scouted weekly for insects. One field was only treated with insecticides if pests reached ET (IPM), while the other field was managed per grower discretion (Grower Standard). IPM fields received an average of two fewer insecticide applications without compromising yield. More insecticide applications resulted in higher pesticide residues in cured leaf samples from Grower Standard fields than those from IPM fields. Reductions in insecticides and management intensity also resulted in larger beneficial insect populations in IPM fields.

  2. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    PubMed

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  3. Practical Pest Management Strategies to Reduce Pesticide Runoff for Argentine Ant (Hymenoptera: Formicidae) Control.

    PubMed

    Greenberg, Les; Rust, Michael K; Richards, Jaben; Wu, Xiaoqin; Kabashima, John; Wilen, Cheryl; Gan, Jay; Choe, Dong-Hwan

    2014-12-01

    The purpose of this study was to involve pest management professionals in the design of application techniques and strategies that would be efficacious and also reduce insecticide runoff. Our study involved measuring both the efficacy of treatments for the Argentine ant, Linepithema humile (Mayr), and the concurrent runoff of fipronil and pyrethroids. Two collaborating companies used low-impact protocols for controlling ants while minimizing runoff. Protocol 1 involved bimonthly treatments, while Protocol 2 was monthly. Both protocols involved an initial treatment with a fipronil spray around the foundation. At the garage door-driveway interface, the fipronil application was done as a pin stream for Protocol 1, and as a crack and crevice application in the expansion joint near the garage for Protocol 2. Protocol 1 replaced most pyrethroid sprays with bifenthrin granules placed around bushes and away from the driveway. For the next treatment on day 63, Protocol 1 also included cyfluthrin spray treatments around the house foundation and crack and crevice applications around the edge of the driveway. For the first treatment in Protocol 2, the fipronil spray was supplemented with spot treatments of cyfluthrin. For subsequent Protocol 2 treatments, botanical insecticides were applied. For weeks 1 and 2 posttreatment combined, Protocol 1 had significantly higher reductions in ant numbers compared with Protocol 2. Thereafter there were no significant differences between the protocols. Runoff of bifenthrin from the granules used with Protocol 1 was much lower than in previous trials involving bifenthrin sprays. Day 1 fipronil runoff for Protocol 2 was significantly lower than that for Protocol 1. This difference may be because of the crack and crevice application applied in Protocol 2. Cyfluthrin runoff was minimal for Protocol 2, which involved spot treatments to supplement the fipronil on day 1, or the botanical insecticides for subsequent treatments. Protocol 1 had a

  4. Pest management in traditional maize stores in West Africa: a farmer's perspective.

    PubMed

    Meikle, W G; Markham, R H; Nansen, C; Holst, N; Degbey, P; Azoma, K; Korie, S

    2002-10-01

    Farmers in the Republic of Benin have few resources to invest in protection of stored maize, and prophylactic pesticide application is often recommended by extension and development agencies. Neither the efficacy nor profitability of such an application in traditional maize storage facilities has been addressed quantitatively. In this study, existing management options for stored maize were evaluated monthly over 6 mo in central and southern Benin with respect to their effects on grain injury and on densities of Prostephanus truncatus (Horn) and Sitophilus zeamais Motschulsky. P. truncatus infested 54% of the experimental stores in the study even though Teretrius nigrescens (Lewis), a natural enemy introduced against P. truncatus, was well established in the region. S. zeamais was the most common pest, found in 85% of the experimental storage facilities. Prophylactically treated maize was, on average, worth more than untreated maize for month 1 through 5 in southern Benin, after taking into account market price, pesticide costs, percentage grain damage and weight loss, but maize storage was not profitable overall. No difference was observed between treatments in central Benin. After 6 mo treated storage facilities were not significantly different from untreated storage facilities in terms of either percentage damage or profit in either region. A rapid scouting plan intended to provide farmers with a means for identifying storage facilities at greatest risk of severe P. truncatus infestation was field validated. Given that unsafe pesticide use is prevalent in Benin, research and extension services should clearly state the limitations to prophylactic treatment and increase the effort to educate farmers on appropriate pesticide use, store monitoring and marketing.

  5. Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso.

    PubMed

    Georges, Kambou; Jayaprakasam, Bolleddula; Dalavoy, Sanjeev S; Nair, Muraleedharan G

    2008-04-01

    Insecticidal activity of eight plants collected from Burkina Faso was studied using mosquito (Ochlerotatus triseriatus), Helicoverpa zea and Heliothis virescens larvae and adult white fly (Bemisia tabaci). The n-hexane, ethyl acetate and methanol extracts of Pseudocedrela kotschyi, Strophantus hispidus, Securidaca longepedunculata, Sapium grahamii, Swartzia madagascariensis, Cassia nigricans, Jatropha curcas and Datura innoxia were used in this study. Extracts were tested at 250 microg/mL concentration. All three extracts of C. nigricans, J. curcas (skin and seeds) and D. innoxia exhibited 100% mortality on fourth instar mosquito (O. triseriatus) larvae. In addition, the n-hexane and ethyl acetate extracts of S. hispidus, S. longepedunculata, S. grahamii showed 100% mortality. The ethyl acetate extract of S. madagascariensis was the most active on adult white fly and exhibited 80% mortality. Extracts of all other plants exhibited 30-50% mortality on B. tabaci. In the antifeedant assays against H. zea and H. virescens, the MeOH extracts of C. nigricans, S. madagascarensis and S. hispidus were more effective against H. zea as indicated by 74% larval weight reduction as compared to the control. Since C. nigricans is commonly used in West Africa to protect grain storage from insects, we have characterized the insecticidal components present in its extract. Bioassay directed isolation of C. nigricans leaf extract yielded anthraquinones emodin, citreorosein, and emodic acid and a flavonoid, luteolin. Emodin, the most abundant and active anthraquinone in C. nigricans showed approximately 85% mortality on mosquito larvae Anopheles gambiaea and adult B. tabaci at 50 and 25 microg/mL, respectively, in 24 h. These results suggest that the extract of C. nigricans has the potential to be used as an organic approach to manage some of the agricultural pests.

  6. Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera

    PubMed Central

    Vélez, Ana M.; Fishilevich, Elane; Matz, Natalie; Storer, Nicholas P.; Narva, Kenneth E.; Siegfried, Blair D.

    2016-01-01

    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests. PMID:28029123

  7. Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera.

    PubMed

    Vélez, Ana M; Fishilevich, Elane; Matz, Natalie; Storer, Nicholas P; Narva, Kenneth E; Siegfried, Blair D

    2016-12-24

    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests.

  8. The Efficacy of Bacillus thuringiensis spp. galleriae Against Rice Water Weevil (Coleoptera: Curculionidae) for Integrated Pest Management in California Rice.

    PubMed

    Aghaee, Mohammad-Amir; Godfrey, Larry D

    2015-02-01

    Rice water weevil (Lissorhoptrus oryzophilus Kushel) is the most damaging insect pest of rice in the United States. Larval feeding on the roots stunt growth and reduce yield. Current pest management against the weevil in California relies heavily on pyrethroids that can be damaging to aquatic food webs. Examination of an environmentally friendly alternative biopesticide based on Bacillus thuringiensis spp. galleriae chemistry against rice water weevil larvae showed moderate levels of activity in pilot studies. We further examined the performance of different formulations of Bt.galleriae against the leading insecticide used in California rice, λ-cyhalothrin. The granular formulation performed as well as the λ-cyhalothrin in use in California in some of our greenhouse and field studies. This is the first reported use of B. thuringiensis spp. galleriae against rice water weevil.

  9. Inclusion of Specialist and Generalist Stimuli in Attract-and-Kill Programs: Their Relative Efficacy in Apple Maggot Fly (Diptera: Tephritidae) Pest Management.

    PubMed

    Morrison, William R; Lee, Doo-Hyung; Reissig, W Harvey; Combs, David; Leahy, Kathleen; Tuttle, Arthur; Cooley, Daniel; Leskey, Tracy C

    2016-08-01

    Investigating the chemical ecology of agricultural systems continues to be a salient part of integrated pest management programs. Apple maggot fly, a key pest of apple in eastern North America, is a visual specialist with attraction to host fruit-mimicking cues. These cues have been incorporated into red spherical traps used for both monitoring and behaviorally based management. Incorporating generalist or specialist olfactory cues can potentially increase the overall success of this management system. The primary aim of this study was to evaluate the attractiveness of a generalist olfactory cue, ammonium carbonate, and the specialist olfactory cue, a five-component apple volatile blend, when included as a component of a red attracticidal sphere system. Secondly, we assessed how critical it was to maintain minimal deviation from the optimal, full-round specialist visual stimulus provided by red spheres. Finally, attracticidal spheres were deployed with specialist olfactory cues in commercial apple orchards to evaluate their potential for effective management of apple maggot. Ammonium carbonate did not increase residency, feeding time, or mortality in the laboratory-based trials. Field deployment of specialist olfactory cues increased apple maggot captures on red spheres, while the generalist cue did not. Apple maggot tolerated some deviation from the optimal visual stimulus without reducing captures on red spheres. Attracticidal spheres hung in perimeter trees in orchards resulted in acceptable and statistically identical levels of control compared with standard insecticide programs used by growers. Overall, our study contributes valuable information for developing a reliable attract-and-kill system for apple maggot.

  10. Microbial control of arthropod pests of tropical tree fruits.

    PubMed

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  11. Evaluating mustard and arugula volatiles and refuge plants for sustainable control of insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arugu...

  12. Companion and refuge plants to enhance control of insect pests in vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arug...

  13. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity

    PubMed Central

    Sekulic, Gregory; Rempel, Curtis B.

    2016-01-01

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. PMID:27527233

  14. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity.

    PubMed

    Sekulic, Gregory; Rempel, Curtis B

    2016-08-03

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species.

  15. Predator in First: A prophylactic biological control strategy for management of multiple pests of pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of biocontrol agents is critical for success of biological control strategies. Predator-In-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. Predator-In-First uses the characteristics of generalist p...

  16. Advances in managing pest resistance to Bt crops: Pyramids and seed mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic crops producing toxins from the soil bacterium Bacillus thuringiensis (Bt) have been widely used for the control of insect pests during the last 20 years. Although Bt crops have provided significant environmental and economic benefits, sustainable use of these crops is threatened by the r...

  17. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidoptera are among the most severe pests of food and fibre crops in the world and are mainly controlled using broad spectrum insecticides. This does not lead to sustainable control and farmers are demanding alternative control tools which are both effective and friendly to the environment. The st...

  18. Integrated pest management of the Pyralid stalkborers, Eoreuma loftini and Diatraea saccharalis (Lepidoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane represents an important commodity crop in the Lower Rio Grande Valley of Texas. The primary insect pest of sugarcane is the Mexican rice borer, Eoreuma loftini followed by the sugarcane borer, Diatraea saccharalis (Lepidoptera) which cause substantial economic damage. We quantified the re...

  19. The problem of current toxic chemicals management.

    PubMed

    Tickner, Joel; Geiser, Ken

    2004-01-01

    In this article, we explore the limitations of current chemicals management policies worldwide and the evolution of new European, International and U.S. policies to address the problem of toxic chemicals control. It is becoming increasingly apparent that current chemicals management policies in Europe and the United States are inadequate. There is a general lack of toxicity and exposure information on chemicals in commerce and the vast majority of chemicals were considered safe until proven guilty in legislation. Governments must then prove each chemical is dangerous through a slow and resource-intensive risk assessment process. For more than a decade, Nordic countries, such as Denmark and Sweden, have actively promoted integrated chemicals policies to address contamination of critical waterways. They have successfully used a variety of voluntary and mandatory policy tools, such as education, procurement, lists of chemicals of concern, eco-labeling, research and development on safer substitutes, and chemical phase-out requirements, to encourage companies using chemicals to reduce their reliance on harmful substances and to develop safer substitutes. While previously isolated to particular countries, innovative and exciting European-wide policies to promote sustainable chemicals management are now moving forward, including the recently published draft Registration, Evaluation and Authorization of CHemicals (REACH) policy of the European Union. A sweeping change in chemicals management policies in Europe is inevitable and it will ultimately affect manufacturers in the U.S. and globally. The European movement provides an opportunity to initiate a discussion on integrated chemicals policy in the U.S. where some innovative initiatives already are underway.

  20. Impact of Training Bolivian Farmers on Integrated Pest Management and Diffusion of Knowledge to Neighboring Farmers.

    PubMed

    Jørs, Erik; Konradsen, Flemming; Huici, Omar; Morant, Rafael C; Volk, Julie; Lander, Flemming

    2016-01-01

    Teaching farmers integrated pest management (IPM) in farmer field schools (FFS) has led to reduced pesticide use and safer handling. This article evaluates the long-term impact of training farmers on IPM and the diffusion of knowledge from trained farmers to neighboring farmers, a subject of importance to justify training costs and to promote a healthy and sustainable agriculture. Training on IPM of farmers took place from 2002 to 2004 in their villages in La Paz County, Bolivia, whereas dissemination of knowledge from trained farmer to neighboring farmer took place until 2009. To evaluate the impact of the intervention, self-reported knowledge and practice on pesticide handling and IPM among trained farmers (n = 23) and their neighboring farmers (n = 47) were analyzed in a follow-up study and compared in a cross-sectional analysis with a control group of farmers (n = 138) introduced in 2009. Variables were analyzed using χ2 test and analysis of variance (ANOVA). Trained farmers improved and performed significantly better in all tested variables than their neighboring farmers, although the latter also improved their performance from 2002 to 2009. Including a control group showed an increasing trend in all variables, with the control farmers having the poorest performance and trained farmers the best. The same was seen in an aggregated variable where trained farmers had a mean score of 16.55 (95% confidence interval [CI]: 15.45-17.65), neighboring farmers a mean score of 11.97 (95% CI: 10.56-13.38), and control farmers a mean score of 9.18 (95% CI: 8.55-9.80). Controlling for age and living altitude did not change these results. Trained farmers and their neighboring farmers improved and maintained knowledge and practice on IPM and pesticide handling. Diffusion of knowledge from trained farmers might explain the better performance of the neighboring farmers compared with the control farmers. Dissemination of knowledge can contribute to justify the cost and convince

  1. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets.

    PubMed

    Wolf, P F J; Verreet, A

    2008-01-01

    Powdery mildew, caused by Erysiphe betae (Vanha) Weltzien, may be assumed as an important leaf disease in sugar beet growing areas of central Europe. Although the causal agent is mainly adapted to arid climatic zones, the disease is appearing every year, where the extent of infection is mainly dependent on weather conditions and susceptibility of cultivar. The losses caused by powdery mildew seldom exceed 10% of sugar yield; moreover, losses are likely only under the condition that the epidemic onset occurs before end-August. Nevertheless, the epidemic onset varies in a wide range, as there are years with high incidence followed by growing periods without severe infection. Therefore, in order to have a flexible control of the disease, where the use of fungicides could be minimised to an essential amount, a quaternary IPM (Integrated Pest Management) -concept was developed. The development is based on epidemiological field studies (Germany, 1993-2004, n = 76) of sugar beet leaf diseases under variation of year, site and cultivar. Efficacy of fungicide treatment timing was assessed in relation to the epidemic development. Comparison of treatments comprised fungicide sprays carried out from disease initiation till later stages of the epidemic. Additionally, the assessments were performed in relation to an untreated and a healthy control--the latter was three times treated according to a treatment regime with three to four week intervals. The effect of different application timings was measured by the potential of disease and yield loss control. The quaternary concept combines the advantages of four elements in order to compensate the constraints of the single tools: The period without disease risk is determined by a so-called negative-prognosis (i). First symptoms appear in the period from mid-July till the beginning of September. If disease initiation cannot be excluded, field observations by a sample of 100 leaves are advised. The disease scores enable the appliance

  2. Chemical-management policy: prioritizing children's health.

    PubMed

    2011-05-01

    The American Academy of Pediatrics recommends that chemical-management policy in the United States be revised to protect children and pregnant women and to better protect other populations. The Toxic Substance Control Act (TSCA) was passed in 1976. It is widely recognized to have been ineffective in protecting children, pregnant women, and the general population from hazardous chemicals in the marketplace. It does not take into account the special vulnerabilities of children in attempting to protect the population from chemical hazards. Its processes are so cumbersome that in its more than 30 years of existence, the TSCA has been used to regulate only 5 chemicals or chemical classes of the tens of thousands of chemicals that are in commerce. Under the TSCA, chemical companies have no responsibility to perform premarket testing or postmarket follow-up of the products that they produce; in fact, the TSCA contains disincentives for the companies to produce such data. Voluntary programs have been inadequate in resolving problems. Therefore, chemical-management policy needs to be rewritten in the United States. Manufacturers must be responsible for developing information about chemicals before marketing. The US Environmental Protection Agency must have the authority to demand additional safety data about a chemical and to limit or stop the marketing of a chemical when there is a high degree of suspicion that the chemical might be harmful to children, pregnant women, or other populations.

  3. Determination of pesticide residues in Turkey's table grapes: the effect of integrated pest management, organic farming, and conventional farming.

    PubMed

    Turgut, Cafer; Ornek, Hakan; Cutright, Teresa J

    2011-02-01

    Turkey is one of the world's largest producers and exporters of table grapes. Growing social concerns over excessive pesticide use have led to farming to move from conventional to organic practices. Table grapes were collected from 99 different farms in three Aegean regions. Pesticide residues were only detected in farms using conventional agriculture practices while no pesticides were detected in grapes from farms using organic or integrated pest management. A risk assessment model indicated that lambda-cyhalothrin posed the most significant risk at conventional farms.

  4. Relevance of traditional integrated pest management (IPM) strategies for commercial corn producers in a transgenic agroecosystem: a bygone era?

    PubMed

    Gray, Michael E

    2011-06-08

    The use of transgenic Bt maize hybrids continues to increase significantly across the Corn Belt of the United States. In 2009, 59% of all maize planted in Illinois was characterized as a "stacked" gene variety. This is a 40% increase since 2006. Stacked hybrids typically express one Cry protein for corn rootworm control and one Cry protein for control of several lepidopteran pests; they also feature herbicide tolerance (to either glyphosate or glufosinate). Slightly more than 50 years has passed since Vernon Stern and his University of California entomology colleagues published (1959) their seminal paper on the integrated control concept, laying the foundation for modern pest management (IPM) programs. To assess the relevance of traditional IPM concepts within a transgenic agroecosystem, commercial maize producers were surveyed at a series of meetings in 2009 and 2010 regarding their perceptions on their use of Bt hybrids and resistance management. Special attention was devoted to two insect pests of corn, the European corn borer and the western corn rootworm. A high percentage of producers who participated in these meetings planted Bt hybrids in 2008 and 2009, 97 and 96.7%, respectively. Refuge compliance in 2008 and 2009, as mandated by the U.S. Environmental Protection Agency (EPA), was 82 and 75.7%, respectively, for those producers surveyed. A large majority of producers (79 and 73.3% in 2009 and 2010, respectively) revealed that they would, or had, used a Bt hybrid for corn rootworm (Diabrotica virgifera virgifera LeConte) or European corn borer (Ostrinia nubilalis Hübner) control even when anticipated densities were low. Currently, the EPA is evaluating the long-term use of seed blends (Bt and non-Bt) as a resistance management strategy. In 2010, a large percentage of producers, 80.4%, indicated they would be willing to use this approach. The current lack of integration of management tactics for insect pests of maize in the U.S. Corn Belt, due primarily to

  5. Tautomerism in chemical information management systems

    NASA Astrophysics Data System (ADS)

    Warr, Wendy A.

    2010-06-01

    Tautomerism has an impact on many of the processes in chemical information management systems including novelty checking during registration into chemical structure databases; storage of structures; exact and substructure searching in chemical structure databases; and depiction of structures retrieved by a search. The approaches taken by 27 different software vendors and database producers are compared. It is hoped that this comparison will act as a discussion document that could ultimately improve databases and software for researchers in the future.

  6. A Decision Model for Merging Base Operations: Outsourcing Pest Management on Joint Base Anacostia-Bolling

    DTIC Science & Technology

    2011-11-30

    operators and repairman; and (3) maintenance, which employs maintenance mechanics and carpenters . All three divisions work together to carry out pest...rodents,  3=insects, 4= bats/birds,  5= bees /wasps, 6=sml mammals,  7=lrg mammals, 8=gnrl trtmnt;  9=snakes) Description Work Center  (WCJP5E=In  House

  7. Management of chemical toxic wastes

    SciTech Connect

    Gold, L.

    1982-05-25

    Two regimes of vertical shaft furnace operation can be employed to slag encapsulate hazardous chemical wastes. One of these is similar to a method applicable to radioactive wastes, involving the pouring of hot molten slag from a coal reactor over the hazardous matter contained in a suitable designed crucible. The other method is especially appropriate for the treatment of chemical wastes that have become mixed with a great deal of soil or other diluent as must be handled as in the case of the love canal incident. It consists of feeding the contaminated solid mass into the coal reactor with a predetermined amount of coal and limestone that will still admit an adequate heat balance to generate a carefully tailored slag to incorporate the reacted waste feedstock.

  8. Development of reference transcriptomes for the major insect pests of cowpea: a toolbox for insect pest management approaches in West Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea crops are widely cultivated and a major nutritional source of protein for indigenous human populations in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include Anoplocnemis curvipes, Aphis craccivora, Cl...

  9. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China

    PubMed Central

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-01-01

    To meet the World’s food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a “banker plant system” for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) – the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system. PMID:28367978

  10. Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation.

    PubMed

    Srinivasu, P D N; Prasad, B S R V

    2010-04-01

    Use of additional food has been widely recognized by experimental scientists as one of the important tools for biological control such as species conservation and pest management. The quality and quantity of additional food supplied to the predators is known to play a vital role in the controllability of the system. The present study is continuation of a previous work that highlights the importance of quality and quantity of the additional food in the dynamics of a predator-prey system in the context of biological control. In this article the controllability of the predator-prey system is analyzed by considering inverse of quality of the additional food as the control variable. Control strategies are offered to steer the system from a given initial state to a required terminal state in a minimum time by formulating Mayer problem of optimal control. It is observed that an optimal strategy is a combination of bang-bang controls and could involve multiple switches. Properties of optimal paths are derived using necessary conditions for Mayer problem. In the light of the results evolved in this work it is possible to eradicate the prey from the eco-system in the minimum time by providing the predator with high quality additional food, which is relevant in the pest management. In the perspective of biological conservation this study highlights the possibilities to drive the state to an admissible interior equilibrium (irrespective of its stability nature) of the system in a minimum time.

  11. Management of pest mole crickets in Florida and Puerto Rico with a nematode and parasitic wasp

    SciTech Connect

    Leppla, N.C.; Frank, J.H.; Adjei, M.B.; Vicente, N.E.

    2007-03-15

    Non-indigenous invasive mole crickets, Scapteriscus vicinus Scudder (Orthoptera: Gryllotalpidae) in Florida and S. didactylus (Latreille) (the 'changa') in Puerto Rico, are being managed with an entomopathogenic nematode, Steinernema scapterisci (Nguyen and Smart) (Rhabditida: Steinernematidae), and a parasitic wasp, Larra bicolor L. (Hymenoptera: Sphecidae). Pest mole cricket populations have declined by 95% in north central Florida since these specialist natural enemies were released and established in the 1980s. Commercial production of the nematode was initiated, nearly 70 billion were applied in 34 Florida counties, and their establishment, spread, and impact on mole crickets were monitored. The infected mole crickets dispersed the nematode rapidly, so that within 6 months these parasites were present in most of the insects trapped in experimental pastures. Three years later, mole cricket populations were reduced to acceptable levels and the bahiagrass had recovered. The nematode was released for the first time in Puerto Rico during 2001 and has persisted; the wasp was introduced in the late 1930s. The geographical distribution of the wasp is being expanded in Florida and Puerto Rico by planting plots of Spermacoce verticillata (L.), a wildflower indigenous to Puerto Rico and widely distributed in southern Florida. Pastures, sod farms, golf courses, landscapes, and vegetable farms in Florida and Puerto Rico are benefiting from biological control of invasive mole crickets. (author) [Spanish] Los grillotopos invasores no indigenas, Scapteriscus vicinus (Orthoptera: Gryllotalpidae) en el estado de Florida y S. didactylus ('changa') en Puerto Rico, estan siendo manejados por el nematodo entomopathogeno, Steinernema scapterisci (Rhabditida: Steinernematidae) y la avispa parasitica, Larra bicolor (Hymenoptera: Sphecidae). Las poblaciones de los grillotopo plagas han declinado un 95% en el norte central de la Florida desde que estos enemigos naturales especialistas

  12. Using aesthetic assessments of azalea lace bug (Heteroptera: Tingidae) feeding injury to provide thresholds for pest management decisions.

    PubMed

    Klingeman, W E; Buntin, G D; Braman, S K

    2001-10-01

    Research on consumer, grower, and landscape manager perception of azalea lace bug, Stephanitis pyrioides (Scott), feeding and on plant productivity parameters, including gas exchange and growth, has increased our understanding of the nature of feeding injury. These studies made it possible to develop decision-making guidelines for cost-effective maintenance of aesthetically pleasing azaleas. Criteria were considered for three management situations: a 0.41-ha (1-acre) nursery production system that may use either insecticidal soap, acephate, or imidacloprid to control lace bugs; a landscape planting of a group of 10 azaleas; or maintenance of a single azalea in the landscape. Lace bug thresholds were calculated using a hybrid economic injury level (EIL) formula. Pesticide application decisions were determined using survey-based data from grower, landscape manager, and consumer perceptions of unacceptably injured azaleas at point-of-purchase for the nursery situation. Additional landscape scenarios incorporated the perceptions of growers, landscape managers, and consumers for those levels of lace bug feeding-injury that prompted the desire for treatment. Hybrid EIL determinations are appropriate for lace bug management in landscape systems where landscape professionals manage large plantings of azaleas and as a component of pest management among nursery production systems. Aesthetic considerations are more appropriate in determining control thresholds among a few or individual azaleas in the landscape.

  13. Perceptions of risk, risk aversion, and barriers to adoption of decision support systems and integrated pest management: an introduction.

    PubMed

    Gent, David H; De Wolf, Erick; Pethybridge, Sarah J

    2011-06-01

    Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect tactical management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease risk and thus assist in accurately targeting events critical for management. However, in many instances adoption of these systems for use in routine disease management has been perceived as slow. The under-utilization of some decision support systems is likely due to both technical and perception constraints that have not been addressed adequately during development and implementation phases. Growers' perceptions of risk and their aversion to these perceived risks can be reasons for the "slow" uptake of decision support systems and, more broadly, integrated pest management (IPM). Decision theory provides some tools that may assist in quantifying and incorporating subjective and/or measured probabilities of disease occurrence or crop loss into decision support systems. Incorporation of subjective probabilities into IPM recommendations may be one means to reduce grower uncertainty and improve trust of these systems because management recommendations could be explicitly informed by growers' perceptions of risk and economic utility. Ultimately though, we suggest that an appropriate measure of the value and impact of decision support systems is grower education that enables more skillful and informed management decisions independent of consultation of the support tool outputs.

  14. Dynamic complexities in a pest control model with birth pulse and harvesting

    NASA Astrophysics Data System (ADS)

    Goel, A.; Gakkhar, S.

    2016-04-01

    In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.

  15. New Miticides for Integrated Pest Management of Varroa destructor (Acari: Varroidae) in Honey Bee Colonies on the Canadian Prairies.

    PubMed

    Vandervalk, L P; Nasr, M E; Dosdall, L M

    2014-12-01

    Varroa destructor Anderson and Trueman 2000 (Acari: Varroidae) is an ectoparasitic mite of the honey bee, Apis mellifera L. (Hymenoptera: Apidae). Honey bee colonies require extensive management to prevent mortality caused by varroa mites and the viruses they vector. New miticides (Thymovar and HopGuard) to manage varroa mites were evaluated during the spring and fall treatment windows of the Canadian prairies to determine their effectiveness as part of an integrated management strategy. Thymovar and HopGuard were evaluated alongside the currently used industry standards: Apivar and formic acid. Results demonstrated that Apivar and formic acid remain effective V. destructor management options under spring and fall conditions. Applications of Thymovar during spring were associated with a reduction in brood area, and therefore should be limited to the fall season. The miticide HopGuard was not effective in managing V. destructor, and alteration of the current delivery system is necessary. This study demonstrates the potential for new effective treatment options to supplement currently used V. destructor integrated pest management systems.

  16. Process safety management for highly hazardous chemicals

    SciTech Connect

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  17. The integrated control concept and its relevance to current integrated pest management in California fresh market grapes.

    PubMed

    Bentley, Walter J

    2009-12-01

    The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad-spectrum insecticide use from 1995 to 2007.

  18. Interacting Agricultural Pests and Their Effect on Crop Yield: Application of a Bayesian Decision Theory Approach to the Joint Management of Bromus tectorum and Cephus cinctus

    PubMed Central

    Keren, Ilai N.; Menalled, Fabian D.; Weaver, David K.; Robison-Cox, James F.

    2015-01-01

    Worldwide, the landscape homogeneity of extensive monocultures that characterizes conventional agriculture has resulted in the development of specialized and interacting multitrophic pest complexes. While integrated pest management emphasizes the need to consider the ecological context where multiple species coexist, management recommendations are often based on single-species tactics. This approach may not provide satisfactory solutions when confronted with the complex interactions occurring between organisms at the same or different trophic levels. Replacement of the single-species management model with more sophisticated, multi-species programs requires an understanding of the direct and indirect interactions occurring between the crop and all categories of pests. We evaluated a modeling framework to make multi-pest management decisions taking into account direct and indirect interactions among species belonging to different trophic levels. We adopted a Bayesian decision theory approach in combination with path analysis to evaluate interactions between Bromus tectorum (downy brome, cheatgrass) and Cephus cinctus (wheat stem sawfly) in wheat (Triticum aestivum) systems. We assessed their joint responses to weed management tactics, seeding rates, and cultivar tolerance to insect stem boring or competition. Our results indicated that C. cinctus oviposition behavior varied as a function of B. tectorum pressure. Crop responses were more readily explained by the joint effects of management tactics on both categories of pests and their interactions than just by the direct impact of any particular management scheme on yield. In accordance, a C. cinctus tolerant variety should be planted at a low seeding rate under high insect pressure. However as B. tectorum levels increase, the C. cinctus tolerant variety should be replaced by a competitive and drought tolerant cultivar at high seeding rates despite C. cinctus infestation. This study exemplifies the necessity of

  19. Temperature-activity relationships in Meligethes aeneus: implications for pest management

    PubMed Central

    Ferguson, Andrew W; Nevard, Lucy M; Clark, Suzanne J; Cook, Samantha M

    2015-01-01

    BACKGROUND Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. RESULTS Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature–response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0–12.5 °C, 13.6–14.2 °C and 15.5–16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6–20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. CONCLUSION These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage. © 2014 Society of Chemical Industry PMID:25052810

  20. Ecology and management of the woolly whitefly (Hemiptera: Aleyrodidae), a new invasive citrus pest in Ethiopia.

    PubMed

    Belay, Difabachew K; Zewdu, Abebe; Foster, John E

    2011-08-01

    Distribution and importance of woolly whitefly (Aleurothrixus floccosus) (Maskell) (Hemiptera: Aleyrodidae), was studied in Ethiopia with an evaluation of treatments against it. Results showed that the pest is distributed in most citrus-growing parts of the country equally infesting all types of citrus crops. Only one pupal parasitoid, Amitus sp., was recorded at Melkaoba. During 2006-2007, eight treatments gave better control of woolly whitefly compared with the control: endod (Phytolacca dodecandra L'Herit) berry extract, white oil 80%, neem oil, omo detergent soap, band application of gasoline, cyhalothrin (karate) 5% EC, selecron (profenofos) 500 EC, and rimon (novaluron) 10 EC. Treatments were applied on 6-8 yr-old orange trees at Melkaoba and Nazareth. At Melkaoba, application of cyhalothrin, selecron, white oil, and Neem gave better control of woolly whitefly compared with the control. All the treatments resulted in a lower number of ants than the control. Ants disrupt biocontrol agents of honeydew-secreting pests, including woolly whiteflies. Mean infestation score was higher in the control than the rest of the treatments. Similarly, at Nazareth, woolly whitefly numbers were lower recorded on cyhalothrin-treated plants. However, the numbers of eggs were significantly higher in endod extract-sprayed plants than the control. All treatments controlled ants better than the control except endod. Infestation scores were lower on endod- and cyhalothrin-treated plants than the control. Mean number of adult woolly whiteflies and eggs were significantly higher on newly grown leaves than older leaves. In general, the number of live adult woolly whiteflies showed a decreasing trend at both sites after treatment applications compared with the control.

  1. How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance?

    PubMed

    Gressel, Jonathan; Gassmann, Aaron J; Owen, Micheal Dk

    2017-01-01

    Resistance has evolved to single transgenic traits engineered into crops for arthropod and herbicide resistances, and can be expected to evolve to the more recently introduced pathogen resistances. Combining transgenes against the same target pest is being promoted as the solution to the problem. This solution will work if used pre-emptively, but where resistance has evolved to one member of a stack, resistance should easily evolve for the second gene in most cases. We propose and elaborate criteria that could be used to evaluate the value of stacked traits for pest resistance management. Stacked partners must: target the same pest species; be in a tandem construct to preclude segregation; be synchronously expressed in the same tissues; have similar tissue persistence; target pest species that are still susceptible to at least two stacked partners. Additionally, transgene products must not be degraded in the same manner, and there should be a lack of cross-resistance to stacked transgenes or to their products. With stacked herbicide resistance transgenes, both herbicides must be used and have the same persistence. If these criteria are followed, and integrated with other pest management practices, resistance may be considerably delayed. © 2016 Society of Chemical Industry.

  2. Effectiveness of the area wide pest management program to control asian tiger mosquito in New Jersey: evidence from a household survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Households’ behaviors can both mitigate and measure the spread of urban mosquito species. Beginning in 2009, an area-wide pest management (AWPM) project to control Ae. Albopictus was implemented in 6 areas in Monmouth and Mercer counties, NJ. Including other activities, the project focused on increa...

  3. Effectiveness of the Area-wide Pest Management Program to Control Asian Tiger Mosquito in New Jersey: Evidence from a Household Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Households’ behaviors can both mitigate and measure the spread of urban mosquitos. Beginning in 2009, a comprehensive area-wide pest management (AWPM) project to control Aedes albopictus was implemented in 4 areas in Monmouth and Mercer Counties, New Jersey. Including other activities, the project f...

  4. Willingness-to-pay for an area-wide integrated Pest Managment Program to control the Asian Tiger Mosquito in New Jersey.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using contingent valuation, the perceived value of an area-wide, integrated pest management program for the Asian tiger mosquito, Aedes albopictus, implemented in Monmouth and Mercer Counties, New Jersey, was estimated. The residents’ maximum willingness-to-pay (WTP) and payment modality was estimat...

  5. The Learning Facilitation Role of Agricultural Extension Workers in the Adoption of Integrated Pest Management by Tropical Fruit Growers in Thailand.

    ERIC Educational Resources Information Center

    Elsey, Barry; Sirichoti, Kittipong

    2002-01-01

    A sample of 120 Thai fruit growers reported that agricultural extension workers were influential in their adoption of integrated pest management, which balances cultural tradition and progressive practice. Extension workers used discussion and reflection on practical experience, a participatory and collaborative approach to the adoption of…

  6. Perceived Consequences of Herbicide-Tolerant and Insect-Resistant Crops on Integrated Pest Management Strategies in the Western United States: Results of an Online Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted an online survey to assess the potential effects of herbicide-tolerant (HT) and insect-resistant (IR) crops on integrated pest management (IPM) practices in the Western United States. For HT crops, participants perceived a decrease in several IPM practices, including crop and herbicide ...

  7. Cultural and chemical pest control methods alter habitat suitability for biological control agents: An example from Wisconsin commercial cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...

  8. Pathogenicity of a Microsporidium Isolate from the Diamondback Moth against Noctuid Moths:Characterization and Implications for Microbiological Pest Management

    PubMed Central

    Ghani, Idris Abd; Dieng, Hamady; Abu Hassan, Zainal Abidin; Ramli, Norazsida; Kermani, Nadia; Satho, Tomomitsu; Ahmad, Hamdan; Abang, Fatimah Bt; Fukumitsu, Yuki; Ahmad, Abu Hassan

    2013-01-01

    Background Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera. Methodology/Principal Findings We investigated some biological characteristics of the microsporidian parasite isolated from wild Plutella xylostella (PX) and evaluated its pathogenicity on the laboratory responses of sympatric invasive and resident noctuid moths. There were significant differences in spore size and morphology between PX and Spodoptera litura (SL) isolates. Spores of PX isolate were ovocylindrical, while those of SL were oval. PX spores were 1.05 times longer than those of SL, which in turn were 1.49 times wider than those of the PX. The timing of infection peaks was much shorter in SL and resulted in earlier larval death. There were no noticeable differences in amplicon size (two DNA fragments were each about 1200 base pairs in length). Phylogenetic analysis revealed that the small subunit (SSU) rRNA gene sequences of the two isolates shared a clade with Nosema/Vairimorpha sequences. The absence of octospores in infected spodopteran tissues suggested that PX and SL spores are closely related to Nosema plutellae and N. bombycis, respectively. Both SL and S. exigua (SE) exhibited susceptibility to the PX isolate infection, but showed different infection patterns. Tissular infection was more diverse in the former and resulted in much greater spore production and larval mortality. Microsporidium-infected larvae pupated among both infected and control larvae, but adult emergence occurred only in the second group. Conclusion/Significance The PX isolate infection prevented completion of development of most leafworm and beet armyworm larvae. The ability of the microsporidian isolate to severely infect and kill larvae of both native and introduced spodopterans makes it a valuable

  9. Adaptive management of invasive pests in natural protected areas: the case of Matsucoccus feytaudi in Central Italy.

    PubMed

    Sciarretta, A; Marziali, L; Squarcini, M; Marianelli, L; Benassai, D; Logli, F; Roversi, P F

    2016-02-01

    Invasive species are a significant threat to affected ecosystems, having serious environmental, economic and social impacts. The maritime pine bast scale, Matsucoccus feytaudi Ducasse (Hemiptera: Matsucoccidae), causes serious damage to Pinus pinaster forests in SE France, Corsica and Italy where it has been introduced. This study illustrates the adaptive management plan implemented in the Migliarino, San Rossore, Massaciuccoli Regional Natural Park in Tuscany, Italy, where M. feytaudi arrived in 2004, leading to the decay of local P. pinaster stands. The management programme, aimed at slowing the establishment and growth of M. feytaudi, was carried out in the main sector of the park, Tenuta di San Rossore, to retard the destruction of the P. pinaster coastal strip protecting the more internal woodland from sea salt and to allow replacement of P. pinaster trees with a more stable broad-leaved wood. The combined use of mass trapping and silvicultural interventions, applied in a targeted manner according to distribution maps of pest captures and damage, helped to delay forest destruction compared with a nearby unmanaged area of the park Tenuta di Tombolo. Although M. feytaudi continued to spread during the management period, the populations remained at low levels for 6 years, showing a marked increase in 2012. During this period, the P. pinaster stands were reduced from 320 to 249 ha. The final result of this ongoing gradual conversion process will be transformation of the P. pinaster forest into Holm oak woods and Mediterranean shrub land, while P. pinaster will survive as clusters or blocks of trees.

  10. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  11. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    PubMed

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  12. Soil fertility management and pest responses: a comparison of organic and synthetic fertilization.

    PubMed

    Hsu, Yu-Tzu; Shen, Tse-Chi; Hwang, Shaw-Yhi

    2009-02-01

    The objective of this study was to assess the effect of fertilization (organic or synthetic) and cabbage, Brassica oleracea L., cultivars ('K-Y cross' and 'Summer Summit') on the chemistry of cabbage and on the responses of a cabbage specialist Pieris rapae crucivora Boisduval. Cabbages were grown from seeds in the greenhouse with either organic, synthetic, or no fertilizer treatments. Trials of ovipositional preference and larval feeding were conducted to evaluate the effect of foliage quality on insect responses. In addition, the foliar chemistry (water, nitrogen, total nonstructural carbohydrates, sinigrin, and anthocyanin) was measured during the insect bioassays. The results indicated that butterflies preferred to lay eggs on foliage of fertilized plants. The larvae grew faster on plants fertilized with synthetic fertilizer, but there was no evidence that contents of sinigrin delayed the developmental time of the larvae. However, plants that received organic fertilizer had higher biomass. In summary, the results of this study suggested that proper organic treatment can increase a plant's biomass production and may have a lower pest occurrence.

  13. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union.

    PubMed

    Matyjaszczyk, Ewa

    2015-09-01

    Products containing microorganisms (bacteria, fungi and viruses) can be used in plant production as an intervention as well as a prevention method for pest control. Their utilisation is strictly in line with the principles of integrated pest management, provided that they are effective and safe. The rules of registration of microorganisms for crop production in the European Union differ, depending on whether they are placed on the market as plant protection products or not. For over 20 years, uniform rules for registration of plant protection products have been in force. Currently, 36 microorganisms marked up to the strain are approved for use in pest control in the Community. The decision concerning market placement of plant protection products containing approved microorganisms is issued for each member state separately. The approaches to market placement of other products with microorganisms differ within the EU, ranging from a complete lack of requirements to long and costly registration procedures.

  14. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.

    PubMed

    Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W

    2003-01-01

    The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated

  15. Tick pests and vectors (Acari: Ixodoidea) in European towns: Introduction, persistence and management.

    PubMed

    Uspensky, Igor

    2014-02-01

    Ticks have always been a part of fauna in and around human settlements, and their significance changed concurrently with the enlargement of settlements and their transformation into towns. The increased rate of urbanization during the last decades has created a new reality for tick existence. Two groups of ticks are of major concern for modern towns: those living under natural conditions of urban surroundings and those well-adapted to urban conditions. During the process of urbanization, encroachment into forested and uncultivated areas as well as protection of existing green spaces create opportunities for ticks living in nature to also exist under urban and suburban conditions. Conditions of modern urban and especially suburban environment in developed European countries adequately meet tick requirements. Tick species having an advantage in urban areas are those that can use one and the same host at all parasitic stages, can starve for a prolonged time, can use either urban pests or domesticated animals as hosts, and can live in man-made buildings. The ticks of the Argas reflexus group (Argasidae) and the brown dog tick Rhipicephalus sanguineus (Ixodidae) comply with practically all conditions necessary for successful survival in urban areas. The ability of ticks to transmit numerous human and animal pathogens and the presence of many reservoir hosts in urban and suburban areas create persistent danger for human populations and domestic animals. Impact on urban ticks should be directed against the two major requirements of tick existence: reducing populations of potential tick hosts (feral pigeons, stray dogs and cats, and urban rodents), and changing other environmental conditions to make them less suitable for ticks. It is especially important that urban inhabitants be properly informed about the danger posed by ticks, the sites of possible tick attacks, and basic self-protection techniques.

  16. Total chemical management in photographic processing

    USGS Publications Warehouse

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  17. In situ assessment of pesticide genotoxicity in an integrated pest management program: II. Maize waxy mutation assay.

    PubMed

    Rodrigues, G S; Pimentel, D; Weinstein, L H

    1998-02-13

    The mutagenicity induced by pesticides applied in an integrated pest management (IPM) program was evaluated in situ with the maize forward waxy mutation bioassay. Three pesticide application rates were prescribed as follows: (1) Low--no field pesticide spray; (2) Medium--IPM test rate: banded cyanazine plus metolachlor (2.7 kg a.i. and 2.3 l a.i./ha of herbicides, respectively); and (3) High--a preventative pesticide application program: broadcast cyanazine plus metolachlor (same application rates as above) plus chlorpyrifos (1 kg a.i./ha of insecticide). In general, there was no significant reduction in the genotoxic effects from the high to the medium treatment levels of the IPM program. This suggests that the reduction in pesticide application rates attained with the implementation of the proposed IPM program was not sufficient to abate the genotoxicity of the pesticides. The results indicate that replacing genotoxic compounds may be the only effective remediation measure if concern about environmental mutagenesis were to result in changes in agricultural management.

  18. Effectiveness of kaolin clay particle film in managing Helopeltis collaris (Hemiptera: Miridae), a major pest of cacao in the Philippines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helopeltis collaris Stal, commonly known as cacao mirid or capsid bug is one of the major pests of cacao in Southeast Asia. Recent survey of cacao pests in the Philippines showed that cacao mirid bug is causing significant yield loss particularly in cacao growing areas in Luzon. Kaolin is a naturall...

  19. The red palm weevil, Rhynchophorus ferrugineus, a new pest threat in the Caribbean: Biology and options for management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red palm weevil (RPW) Rhynchophorus ferrugineus, is a serious pest of palms. RPW is native to Asia, but over the last few decades it has spread to the Middle East, Africa and Europe where it has caused major economic damage. This pest was accidentally introduced to the Caribbean (Curacao and Aru...

  20. Development of a precision areawide pest management decision system for cotton - Preliminary study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models simulate growth and development, and provide relevant information for the routine management of the crop. Integrating crop models with other information technologies such as geographic information systems (GIS), variable rate technology, remote sensing, and global positioning systems (G...

  1. Pennsylvania: Penn State University Integrated Pest Management Project (A Former EPA CARE Project)

    EPA Pesticide Factsheets

    Penn State University (PSU) is the recipient of a Level II CARE cooperative agreement targeting environmental risks in Philadelphia communities. PSU is involved in developing IPM management practices recommendations and policies.

  2. Semiochemicals in pest management: development, regulation and applications. Subtitle: Delivering on the promise of pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this special issue, we present a total of 20 review articles and original research papers in semiochemical applications from not only insects, also in some vertebrates. We have covered many areas of using chemical ecology tools for practical applications from all four continents, which include ph...

  3. Precision Farming and Precision Pest Management: The Power of New Crop Production Technologies

    PubMed Central

    Strickland, R. Mack; Ess, Daniel R.; Parsons, Samuel D.

    1998-01-01

    The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage. PMID:19274236

  4. Precision farming and precision pest management: the power of new crop production technologies.

    PubMed

    Strickland, R M; Ess, D R; Parsons, S D

    1998-12-01

    The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage.

  5. Cost and effectiveness of community-wide integrated pest management for German cockroach, cockroach allergen, and insecticide use reduction in low-income housing.

    PubMed

    Wang, Changlu; Bennett, Gary W

    2009-08-01

    Many low-income housing units in the United States continue to have chronic German cockroach, Blattella germanica (L.), infestations and high prevalence of cockroach allergens despite the availability of highly effective cockroach control products. Several studies have demonstrated the greater effectiveness of integrated pest management (IPM) compared with routine chemical interventions in apartment buildings and the benefit of cockroach allergen reduction using IPM. Yet, there has been little information on the cost and benefit of community-wide cockroach IPM, which is critical for voluntary adoption of IPM programs. We evaluated a community-wide IPM program in two low-income apartment complexes in Gary, IN. The program included education of staff and residents, monthly monitoring, and nonchemical (laying sticky traps) and chemical treatment based on monitoring results. One complex of 191 apartments was treated with cockroach gel bait, boric acid dust, and sticky traps by state licensed entomologists from Purdue University (E-IPM group). The other complex of 251 apartments was treated by pest management professionals (PMPs) from a contractor (C-IPM group) following the same protocol as the E-IPM group. Purdue University researchers trained Gary Housing Authority (GHA) staff on cockroach biology and management and cockroach allergen reduction techniques. GHA staff educated all residents in the two complexes on cockroach control and allergen reduction through printed materials, demonstrations, or both. Purdue University entomologists conducted the initial and monthly monitoring in both complexes (laying six sticky traps per apartment and retrieving them the next day) with the assistance from GHA to evaluate program effectiveness, guide insecticide applications, and identify apartments with poor sanitation conditions. Dust samples were collected from kitchen floors of 72 cockroach-infested apartments at the beginning, and again at 6 and 12 mo to evaluate changes in

  6. Community monitoring of integrated pest management versus conventional pesticide use in a World Bank project in Indonesia.

    PubMed

    Ishii-Eiteman, Marcia J; Ardhianie, Nila

    2002-01-01

    Pesticide Action Network North America (PANNA) collaborated with a local Indonesian nongovernmental organization (NGO), Yayasan Duta Awam (YDA), in monitoring impacts of the World Bank-financed Integrated Swamps Development Project (ISDP). This paper reports the results of the community-based investigation, which found wide disparities between the World Bank's policy on pest management and its implementation. Instead of reducing farmers' reliance on pesticides as required, the ISDP led to increased intensity and frequency of pesticide use and adverse health and environmental effects from pesticide exposures. YDA and PANNA presented the findings to the Indonesian government and World Bank officials, and farmers requested training in IPM among other recommendations. After NGOs undertook joint advocacy efforts to reduce pesticide dependence in the project, the World Bank withdrew hazardous pesticides from input packages, IPM training was initiated, and community monitors became local leaders in their villages. The study demonstrates the importance and efficacy of independent community-based monitoring in documenting pesticide problems and replacing pesticides with IPM in World Bank development projects.

  7. Dispersal of the Invasive Pasture Pest Heteronychus arator into Areas of Low Population Density: Effects of Sex and Season, and Implications for Pest Management

    PubMed Central

    Mansfield, Sarah; Gerard, Philippa J.; Hurst, Mark R. H.; Townsend, Richard J.; Wilson, Derrick J.; van Koten, Chikako

    2016-01-01

    African black beetle, Heteronychus arator (Scarabaeidae), is an exotic pest of pastures in northern New Zealand. Both adults and larvae feed on pasture grasses. Adults disperse by walking (short range) or flying (long range). Dispersal flights are triggered by warm night temperatures in spring and autumn. Short range adult dispersal in search of mates, food or oviposition sites is poorly understood. This study investigated walking activity of H. arator adults over three seasons in New Zealand pastures. Adult walking activity was monitored using pitfall traps along fence lines and in pasture plots on a dairy farm in Waikato, New Zealand, in spring 2013, spring 2014, and autumn 2015. Beetle populations were reduced by application of a biopesticide bait to compare walking activity between treated and control plots for up to 26 days post-treatment. Marked beetles were released into the pasture plots to measure the distance traveled by recaptured individuals. Trap catches along the fence lines were correlated with air temperatures in 2013. Trap catches were male biased in spring 2014 compared with autumn 2015. Trap numbers in the control plots were nearly double that of treated plots in both seasons. More beetles were caught in the pitfall traps at the edges of the treated plots than in the center. Trap catches were consistent throughout the control plot in spring 2014, but in autumn 2015 more beetles were caught in the center of the control plot than at the edges. Few marked beetles were recaptured with dispersal rates estimated as <0.5 m per day. Warmer temperatures encouraged short range dispersal in H. arator. Males were more active than females during the spring mating season. Edge effects were strong and should be considered in the design of field experiments. PMID:27617018

  8. Dispersal of the Invasive Pasture Pest Heteronychus arator into Areas of Low Population Density: Effects of Sex and Season, and Implications for Pest Management.

    PubMed

    Mansfield, Sarah; Gerard, Philippa J; Hurst, Mark R H; Townsend, Richard J; Wilson, Derrick J; van Koten, Chikako

    2016-01-01

    African black beetle, Heteronychus arator (Scarabaeidae), is an exotic pest of pastures in northern New Zealand. Both adults and larvae feed on pasture grasses. Adults disperse by walking (short range) or flying (long range). Dispersal flights are triggered by warm night temperatures in spring and autumn. Short range adult dispersal in search of mates, food or oviposition sites is poorly understood. This study investigated walking activity of H. arator adults over three seasons in New Zealand pastures. Adult walking activity was monitored using pitfall traps along fence lines and in pasture plots on a dairy farm in Waikato, New Zealand, in spring 2013, spring 2014, and autumn 2015. Beetle populations were reduced by application of a biopesticide bait to compare walking activity between treated and control plots for up to 26 days post-treatment. Marked beetles were released into the pasture plots to measure the distance traveled by recaptured individuals. Trap catches along the fence lines were correlated with air temperatures in 2013. Trap catches were male biased in spring 2014 compared with autumn 2015. Trap numbers in the control plots were nearly double that of treated plots in both seasons. More beetles were caught in the pitfall traps at the edges of the treated plots than in the center. Trap catches were consistent throughout the control plot in spring 2014, but in autumn 2015 more beetles were caught in the center of the control plot than at the edges. Few marked beetles were recaptured with dispersal rates estimated as <0.5 m per day. Warmer temperatures encouraged short range dispersal in H. arator. Males were more active than females during the spring mating season. Edge effects were strong and should be considered in the design of field experiments.

  9. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    PubMed Central

    Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc

    2015-01-01

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186

  10. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance.

    PubMed

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A; Wu, Jianhong

    2013-11-01

    Integrated pest management options such as combining chemical and biological control are optimal for combating pesticide resistance, but pose questions if a pest is to be controlled to extinction. These questions include (i) what is the relationship between the evolution of pesticide resistance and the number of natural enemies released? (ii) How does the cumulative number of natural enemies dying affect the number of natural enemies to be released? To address these questions, we developed two novel pest-natural enemy interaction models incorporating the evolution of pesticide resistance. We investigated the number of natural enemies to be released when threshold conditions for the extinction of the pest population in two different control tactics are reached. Our results show that the number of natural enemies to be released to ensure pest eradication in the presence of increasing pesticide resistance can be determined analytically and depends on the cumulative number of dead natural enemies before the next scheduled release time.

  11. Monitoring insect pests in retail stores by trapping and spatial analysis.

    PubMed

    Arbogast, R T; Kendra, P E; Mankin, R W; McGovern, J E

    2000-10-01

    Stored-product insects are a perennial problem in retail stores, where they damage and contaminate susceptible merchandise such as food products and animal feed. Historically, pest management in these stores has relied heavily on chemical insecticides, but environmental and health issues have dictated use of safer methods, and these require better monitoring. A monitoring procedure that employs an array of moth and beetle traps combined with spatial (contour) analysis of trap catch was tested in three department stores and two pet stores. The rate of capture increased with the level of infestation but was essentially constant over 4- to 5-d trapping periods. Contour analysis effectively located foci of infestation and reflected population changes produced by applications of the insect growth regulator (S)-hydroprene. The most abundant insects were Plodia interpunctella (Hiibner), Lasioderma serricorne (F.), Oryzaephilus mercator (Fauvel), Tribolium castaneum (Herbst), and Cryptolestes pusillus (Schönherr). The results indicate that contour analysis of trap counts provides a useful monitoring tool for management of storage pests in retail stores. It identifies trouble spots and permits selection, timing, and precision targeting of control measures to achieve maximum pest suppression with minimum pesticide risk. It permits managers and pest control operators to visualize pest problems over an entire store, to monitor changes over time, and to evaluate the effectiveness of control intervention. The contour maps themselves, along with records of control applications and stock rotation, provide permanent documentation of pest problems and the effectiveness of pest management procedures.

  12. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests

    PubMed Central

    Guo, Shanshan; Geng, Zhufeng; Zhang, Wenjuan; Liang, Junyu; Wang, Chengfang; Deng, Zhiwei; Du, Shushan

    2016-01-01

    To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management. PMID:27827929

  13. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests.

    PubMed

    Guo, Shanshan; Geng, Zhufeng; Zhang, Wenjuan; Liang, Junyu; Wang, Chengfang; Deng, Zhiwei; Du, Shushan

    2016-11-04

    To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management.

  14. Integrated chemical management system: A tool for managing chemical information at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Costain, D.

    1995-07-01

    The Integrated Chemical Management System is a computer-based chemical information at the Rocky Flats Environmental Technology Site. Chemical containers are identified by bar code labels and information on the type, quantity and location of chemicals are tracked on individual data bases in separate buildings. Chemical inventories from multiple buildings are uploaded to a central sitewide chemical data base where reports are available from Product, Waste, and Chemical Use modules. Hazardous chemical information is provided by a separate Material Safety Data Sheet module and excess chemicals are traded between chemical owners and users with the aid of the Chemical Exchange Module.

  15. Pesticide compatibility with natural enemies for pest management in greenhouse gerbera daisies.

    PubMed

    Abraham, Cheri M; Braman, S K; Oetting, R D; Hinkle, N C

    2013-08-01

    Pesticides commonly used in commercial greenhouse management were evaluated for compatibility with two biological control agents: a leafminer parasitoid (Diglyphus isaea [Walker]), and a predatory mite (Neoseiulus californicus [McGregor]). These natural enemies were exposed to miticides, fungicides, and insecticides targeting leafminers, thrips, and whiteflies, according to label directions in laboratory vial assays, after which mortality at 12, 24, and 48 h was recorded. Greater mortality of predatory mites than leafminer parasitoids was observed overall, illustrating that fewer pesticides were compatible with predatory mites compared with the parasitoid. However, some commonly used pesticides were found to cause high mortality to both the leafminer parasitoid and predatory mites. Twospotted spider mite (Tetranychus urticae Koch) infestations often disrupt leafminer (Liriomyza trifolii [Burgess]) biocontrol programs. Therefore, potentially compatible miticides (bifenazate, hexythiazox, spiromesifen, acequinocyl, etoxazole, and clofentezine) identified in laboratory trials were also evaluated in a greenhouse study and found to be compatible with leafminer biocontrol.

  16. In situ assessment of pesticide genotoxicity in an integrated pest management program I--Tradescantia micronucleus assay.

    PubMed

    Rodrigues, G S; Pimentel, D; Weinstein, L H

    1998-02-13

    The genotoxicity induced by pesticides applied in an integrated pest management (IPM) program was evaluated with the Tradescantia micronucleus assay (Trad-MCN). Three pesticide application rates were prescribed as follows: (a) Low, no field pesticide spray; (b) Medium, IPM test rate: banded cyanazine plus metolachlor (2.7 kg a.i. and 2.3 l a.i./ha of herbicides, respectively); and (c) High, a preventative pesticide application program: broadcast cyanazine plus metolachlor (same application rates as above) plus chlorpyrifos (1 kg a.i./ha of insecticide). The Trad-MCN was employed for the assessment of (a) the formulated compounds, singly and in combinations; (b) pesticide residues extracted from soils sampled before and after application, and (c) in situ exposures (14-h exposure to pesticide-sprayed field). All pesticides showed clastogenic potency at doses between 10 and 50 ppm. Aqueous extracts of the two pesticide-sprayed soils were clastogenic, but the unsprayed soil extracts were not. Plants exposed in situ to pesticide-sprayed soils (inside a chamber receiving vapors from the soil) also showed significant increases in micronuclei frequency in relation to controls exposed to unsprayed soil. In general, there was no significant reduction in the genotoxic effects from the High to the Medium treatment levels of the IPM program. This suggests that the reduction in pesticide application rates attained with the implementation of the proposed IPM program was not sufficient to abate the genotoxicity of the pesticides, as perceived with the sensitive assays employed. The results indicate that replacing genotoxic compounds may be the only effective remediation measure to eliminate the risks imposed by mutagenic compounds in the agricultural environment.

  17. Analysis of 1,3-Dichloropropene for Control of Meloidogyne spp. in a Tobacco Pest Management System

    PubMed Central

    Fortnum, B. A.; Johnson, A. W.; Lewis, S. A.

    2001-01-01

    1,3-Dichloropropene (1,3-D) and nonfumigant nematicides were evaluated for control of Meloidogyne spp. and soil and foliar insects in a tobacco pest management system. In a field with a high Meloidogyne spp. population density (root gall index 4.0 to 4.5 on a 0 to 10 scale in untreated controls), tobacco yields and crop values increased (482 kg/ha and $1,784/ha for 1, 3-D; 326 kg/ha and $1,206/ha for fenamiphos; 252 kg/ha and $933/ha for ethoprop) with nematicide application over an untreated control. In fields with a low population density of Meloidogyne arenaria or M. incognita (root gall index 2.3 to 2.5 in untreated controls), yields ranged from 1,714 to 2,027 kg/ha and were not altered by fumigant or nonfumigant nematicide application. Carbofuran, a soil-applied nonfumigant nematicide/insecticide, reduced the number of foliar insecticide applications required to keep insect populations below treatment threshold (3.8 vs. 4.5, respectively, for treated vs. untreated). Carbofuran reduced the cost ($23/ha) of foliar insecticide treatments when compared to an untreated control. Although nonfumigant nematicides provided some soil and foliar insect control, the cost of using a fumigant plus a lower insecticidal rate of a soil insecticide/nematicide was comparable to the least expensive non-fumigant nematicide when the cost of foliar insecticide applications was included in the cost estimates. Savings in foliar insecticide cost by use of soil-applied nonfumigant nematicide/insecticides were small ($23/ha) in comparison to potential value reductions by root-knot nematodes when the nonfumigant nematicides fenamiphos or ethoprop ($578/ha and $851/ha, respectively) were used instead of 1,3-D. PMID:19265897

  18. Cost-effectiveness of integrated pest management compared with insecticidal spraying against the German cockroach in apartment buildings.

    PubMed

    Shahraki, Gholam H; Hafidzi, M N; Khadri, M S; Rafinejad, J; Ibrahim, Y B

    2011-10-01

    This study assessed the cost and effectiveness of an integrated pest management (IPM) program using hydramethylnon gel baits compared with conventional spraying for controlling the German cockroach, Blattella germanica (L.) (Blattodea: Blattellidae), in two residential buildings in Yasuj, Iran. The IPM approach was based on educational programs using pamphlets, posters and lectures, sanitation using vacuuming and application of hydramethylnon gel baits. Conventional approach used cypermethrin (10% EC) on baseboard and cracks-and-crevices. Sticky traps were used as tools for monitoring cockroach population densities. The IPM approach reduced (943%) the rate of insecticide application compared to the conventional spray. Cockroach populations in the IPM treatment were significantly reduced from an average of 12.2 ± 3.01 cockroaches per unit before treatment to zero cockroach per unit by week four and thereafter. Cockroach populations in the conventional spray treatment were reduced from an average of 11.5 ± 4.43 cockroaches per unit before treatment to an average of 3.4 ± 0.99 cockroach per unit after 11 weeks of post treatment. The IPM treatment improved 100% of infested units compared to 78% for spray treatment to obtain a clean level of infestation (< 1cockroach per trap per unit). The results suggest that the intervention by IPM using hydramethylnon gel baits significantly reduced cockroach infestation compared to cypermethrin spray throughout the 11 weeks of post-treatment period. However, within the study period, the IPM system involving gel baits, educational program and sanitation was 363.2% more expensive than the conventional method.

  19. Efficacy and value of prophylactic vs. integrated pest management approaches for management of cereal leaf beetle (Coleoptera: Chrysomelidae) in wheat and ramifications for adoption by growers.

    PubMed

    Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Kuhar, Thomas; Malone, Sean; Philips, Chris; Weisz, Randy

    2012-10-01

    Cereal leaf beetle, Oulema melanopus L., can be effectively managed in southeastern U.S. wheat, Triticum aestivum L., with scouting and a single insecticide treatment, applied at the recommended economic threshold. However, many growers eschew this approach for a prophylactic treatment, often tank mixed with a nitrogen application before wheat growth stage 30. The efficacy of a prophylactic and an integrated pest management (IPM) approach was compared for 2 yr using small plot studies in North Carolina and regional surveys across North Carolina and Virginia. Economic analyses were performed, comparing the total cost of management of each approach using the regional survey data. From a cost perspective, the prophylactic approach was riskier, because when cereal leafbeetle densities were high, economic loss was also high. However, fields under the prophylactic approach did not exceed threshold as often as fields using IPM. Total cost of prophylactic management was also $20.72 less per hectare, giving this approach an economic advantage over IPM. The majority of fields under the IPM approach did not exceed the economic threshold. Hence, from an economic perspective, both the prophylactic and IPM approaches have advantages and disadvantages. This helps explains the partial, rather than complete, adoption of IPM by southeastern U.S. wheat growers. Cereal leaf beetle was spatially aggregated across the region in 2010, but not in 2011. As a result, from an economic standpoint, prophylaxis or IPM may have a better fit in localized areas of the region than others. Finally, because IPM adoption is favored when it has a strong economic advantage over alternative management approaches, more emphasis should be placed on research to reduce costs within the IPM approach.

  20. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae).

    PubMed

    Fischbein, D; Corley, J C

    2015-02-01

    Classical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoid Ibalia leucospoides. The species is a natural enemy of Sirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success by I. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to which S. noctilio population is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest-parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.

  1. Are naringenin and quercetin useful chemicals in pest-management strategies?

    PubMed

    Goławska, Sylwia; Sprawka, Iwona; Lukasik, Iwona; Goławski, Artur

    2014-01-01

    The effects of two polyphenolic flavonoids (flavanone naringenin and flavonol quercetin) on development, fecundity, and mortality of the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), were determined in vitro, on an artificial diets. Also determined in vitro (DC EPG method), on sucrose-agarose gels, were the effects of flavonoids on the probing and feeding behavior of adult apterae. When added to a liquid diet, higher concentrations of studied flavonoids increased the developmental time, the pre-reproductive period, and mortality and decreased fecundity and the intrinsic rate of natural increase of A. pisum. In most events associated with stylet activity (as indicated by EPG waveform g-C), differences in probing behavior did not statistically differ between the control gel and those with flavonoids; quercetin at 10, 100, and 1,000 µg cm(-3) prolonged the number of gel penetrations; and quercetin only at 10,000 μg cm(-3) prolonged the time the first g-C waveform was observed. Addition of flavonoids to the gels generally reduced passive ingestion from fluids of the gels (EPG waveform g-E2). At higher concentrations (>1,000 µg cm(-3)) the flavonoids completely stopped salivation (EPG waveform g-E1) and passive ingestion from fluids of the gels (EPG waveform g-E2). In events associated with active ingestion (EPG waveform g-G), however, differences in feeding behavior did not statistically differ between the control gel and those with flavonoids. The present findings demonstrate detrimental effects of the flavanone naringenin and flavonol on the behavior of the pea aphid. This can be employed in a biotechnological projects for plant breeding resistant to herbivores, including aphids.

  2. Complete Lesson 2: Pesky Pests and Household Hazards

    EPA Pesticide Factsheets

    Examines environmentally friendly ways to keep our homes and schools pest-free. Defines pests, pesticides, household hazards, chemicals, and toxic, and explores strategies for keeping common household hazards out of reach.

  3. Comparative efficacy of various chemical stabilizers on the thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine.

    PubMed

    Sarkar, J; Sreenivasa, B P; Singh, R P; Dhar, P; Bandyopadhyay, S K

    2003-12-01

    Thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine recently developed at Indian Veterinary Research Institute was studied using conventional lyophilization conditions. A total of four stabilizers viz., lactalbumin hydrolysate-sucrose (LS), Weybridge medium (WBM), buffered gelatin-sorbitol (BUGS) and trehalose dihydrate (TD) were used to prepare the lyophilized vaccine. The study revealed that the PPR vaccine lyophilized with either LS or TD is more stable than rest of the stabilizers having an expiry period of at least 45 days (so far studied) at 4 degrees C, 15-19 days at 25 degrees C and 1-2 days at 37 degrees C. However, at a temperature of 45 degrees C, BUGS had a marginal superiority, although lasted for few hours, followed by TD and LS with respect to shelf-life, LS and TD with respect to half-life. On the basis of half-life also LS followed by TD appeared superior at a temperature of 4, 25 and 37 degrees C. Reconstitution of vaccine with distilled water or 1M MgSO(4) or 0.85% NaCl maintained the required virus titre (2.5log(10)TCID(50) per dose) up to 8h at 37 degrees C and 7h at 45 degrees C. Among the three diluents, 1M MgSO(4) appeared to be the better diluent for reconstitution of lyophilized PPR vaccine, as the loss on dilution was lowest and maintain the required virus titre for a longer period. Investigation suggests for using LS as stabilizer for lyophilization and 1M MgSO(4) as vaccine diluent for the newly developed PPR vaccine.

  4. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops.

    PubMed

    Douglas, Margaret R; Tooker, John F

    2015-04-21

    Neonicotinoids are the most widely used class of insecticides worldwide, but patterns of their use in the U.S. are poorly documented, constraining attempts to understand their role in pest management and potential nontarget effects. We synthesized publicly available data to estimate and interpret trends in neonicotinoid use since their introduction in 1994, with a special focus on seed treatments, a major use not captured by the national pesticide-use survey. Neonicotinoid use increased rapidly between 2003 and 2011, as seed-applied products were introduced in field crops, marking an unprecedented shift toward large-scale, preemptive insecticide use: 34-44% of soybeans and 79-100% of maize hectares were treated in 2011. This finding contradicts recent analyses, which concluded that insecticides are used today on fewer maize hectares than a decade or two ago. If current trends continue, neonicotinoid use will increase further through application to more hectares of soybean and other crop species and escalation of per-seed rates. Alternatively, our results, and other recent analyses, suggest that carefully targeted efforts could considerably reduce neonicotinoid use in field crops without yield declines or economic harm to farmers, reducing the potential for pest resistance, nontarget pest outbreaks, environmental contamination, and harm to wildlife, including pollinator species.

  5. Performance of arrhenotokous and thelytokous Thrips tabaci (Thysanoptera: Thripidae) on onion and cabbage and its implications on evolution and pest management.

    PubMed

    Li, Xiao-Wei; Fail, Jozsef; Wang, Ping; Feng, Ji-Nian; Shelton, A M

    2014-08-01

    Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is an important pest on onion and cabbage. Two reproductive modes--arrhenotoky and thelytoky--are found in this species and co-occur in the field. We compared life table traits between arrhenotokous and thelytokous T. tabaci on cabbage and onion. Experiments were conducted in cages to determine which reproductive mode is more competitive. Additionally, host adaption of the arrhenotokous and thelytokous T. tabaci between onion and cabbage was investigated. On onion, arrhenotokous T. tabaci performed better than thelytokous T. tabaci, while on cabbage the opposite occurred. When comparing life table and demographic growth parameters (net reproductive rates R(o), mean generation time T, the intrinsic rate of natural increase r(m), finite rate of increase A, and population doubling time T(d)) on different host plants, we found that arrhenotokous T. tabaci performed better on onion than on cabbage, whereas thelytokous T. tabaci performed better on cabbage than on onion. Host-related performance differences in this species suggest that the divergence between two reproductive modes might be associated with host adaption. Pest management strategies for this global pest should recognize that the two reproductive modes can impact population dynamics on different crops.

  6. Application of Predator-in-First approach in managing thrips and other key pests in pepper crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of biocontrol agents is critical for success of a biological control strategies. Predator-In-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. PIF uses the characteristics of generalist phytoseiid mi...

  7. Predator-In-First: A novel biocontrol strategy for managing thrips and other key pests in pepper crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predator-In-First (PIF) is a novel biological-based approach for sustainable control of thrips and other key pests that threaten pepper production in protected and outdoor culture. In the current study pepper plants were used as a model crop system and the key component of this method involves the r...

  8. A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabroticina is a speciose subtribe of New World Chrysomelidae (Subfamily Galerucinae: Tribe Luperini) that includes pests like corn rootworms, cucumber beetles and bean leaf beetles (e.g. Diabrotica, Acalymma, Cerotoma species). The evolution and spread of pesticide resistance, the European invasio...

  9. Current management efforts against Cactoblastis cactorum as a pest of North American prickly pear cactus, Opuntia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unintentional arrival of Cactoblastis cactorum (Lepidoptera: Pyralidae) to Florida changed the scope of this celebrated weed biological control agent from savior to pest. Based on this insects’ substantial control of non-native Opuntia spp. (prickly pear cactus) in Australia and other parts of ...

  10. Genetic identification of an unknown Rhagoletis fruit fly infesting Chinese crabapple (Malus spectabilis): implications for apple pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus s...

  11. Multifunctional strategies for management of stink bugs based on the ecology and biology of these pests and their natural enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophagous stink bugs (Hemiptera: Pentatomidae) are economically important pests in orchard, row, vegetable, and grain crops worldwide. Stink bugs move between closely associated hosts throughout the growing season in response to the deteriorating suitability of their current hosts, and an edge ef...

  12. Integrated pest management of the southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae) on tomato in North Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Southern Green Stinkbug, Nezara viridula is a serious insect pest of tomatoes in north Florida. We evaluated three trap crops and three refuge crops to investigate their potential for IPM of N. viridula. The experimental trap crops and refuge crops were, striped sunflower, WGF sorghum and brown ...

  13. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia.

    PubMed

    Mensah, Robert K; Young, Alison; Rood-England, Leah

    2015-04-09

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 10² to 10⁸) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 10⁷ spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  14. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia

    PubMed Central

    Mensah, Robert K.; Young, Alison; Rood-England, Leah

    2015-01-01

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189

  15. Economic Evaluation of an Area-Wide Integrated Pest Management Program to Control the Asian Tiger Mosquito in New Jersey

    PubMed Central

    Shepard, Donald S.; Halasa, Yara A.; Fonseca, Dina M.; Farajollahi, Ary; Healy, Sean P.; Gaugler, Randy; Bartlett-Healy, Kristen; Strickman, Daniel A.; Clark, Gary G.

    2014-01-01

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and Monmouth Counties, New Jersey with a controlled design (AW-IPM vs. control) from 2009 through 2011. The study analyzed financial documents and staff time for AW-IPM and surveyed an average of 415 randomly chosen households in AW-IPM and control areas each fall from 2008 through 2011. Hours lost from yard and porch activities were calculated as differences between actual and potential hours of these activities in an average summer week if there had been no mosquito concerns. Net estimated benefits of AW-IPM were based on cross-over and difference-in-difference analyses. Reductions in hours lost were valued based on respondents' willingness to pay for a hypothetical extra hour free of mosquitoes spent on yard or porch activities and literature on valuation of a quality adjusted life year (QALY). The incremental cost of AW-IPM per adult was $41.18 per year. Number of hours lost due to mosquitoes in AW-IPM areas between the base year (2008) and the intervention years (2009-2011) declined by 3.30 hours per summer week in AW-IPM areas compared to control areas. Survey respondents valued this improvement at $27.37 per adult per summer week. Over the 13-week summer, an average adult resident gained 42.96 hours of yard and porch time, worth $355.82. The net benefit over the summer was $314.63. With an average of 0.0027 QALYs gained per adult per year, AW-IPM was cost effective at $15,300 per QALY gained. The benefit-cost ratio from hours gained was 8.64, indicating that each $1 spent on AW-IPM gave adults additional porch and yard time worth over $8. PMID:25338065

  16. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey.

    PubMed

    Shepard, Donald S; Halasa, Yara A; Fonseca, Dina M; Farajollahi, Ary; Healy, Sean P; Gaugler, Randy; Bartlett-Healy, Kristen; Strickman, Daniel A; Clark, Gary G

    2014-01-01

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and Monmouth Counties, New Jersey with a controlled design (AW-IPM vs. control) from 2009 through 2011. The study analyzed financial documents and staff time for AW-IPM and surveyed an average of 415 randomly chosen households in AW-IPM and control areas each fall from 2008 through 2011. Hours lost from yard and porch activities were calculated as differences between actual and potential hours of these activities in an average summer week if there had been no mosquito concerns. Net estimated benefits of AW-IPM were based on cross-over and difference-in-difference analyses. Reductions in hours lost were valued based on respondents' willingness to pay for a hypothetical extra hour free of mosquitoes spent on yard or porch activities and literature on valuation of a quality adjusted life year (QALY). The incremental cost of AW-IPM per adult was $41.18 per year. Number of hours lost due to mosquitoes in AW-IPM areas between the base year (2008) and the intervention years (2009-2011) declined by 3.30 hours per summer week in AW-IPM areas compared to control areas. Survey respondents valued this improvement at $27.37 per adult per summer week. Over the 13-week summer, an average adult resident gained 42.96 hours of yard and porch time, worth $355.82. The net benefit over the summer was $314.63. With an average of 0.0027 QALYs gained per adult per year, AW-IPM was cost effective at $15,300 per QALY gained. The benefit-cost ratio from hours gained was 8.64, indicating that each $1 spent on AW-IPM gave adults additional porch and yard time worth over $8.

  17. Management of plant species for controlling pests, by peasant farmers at Lagoa Seca, Paraíba state, Brazil: an ethnoecological approach

    PubMed Central

    Guimarães, Andréia de Souza; Mourão, José da Silva

    2006-01-01

    Ethnoecological knowledge may be understood as spontaneous knowledge, culturally referenced of any society's members, learned and transmitted through social interactions and that are targeted at resolution of daily routine situations. The traditional knowledge in small scale economy societies as well as the non-academic knowledge in urban-industrial societies might be included in this concept. An ethnoecological approach study was performed here on people living at the communities of Alvinho, Almeida, Chã do Marinho, Floriano, and Chã de Oiti, all located in the municipality of Lagoa Seca, Paraíba state, Northeast Brazil. The general objective pursued here was to study the knowledge that peasant farmers have on management of plant species utilized for pest control. For this, the methodological instruments employed here to investigate the ethnoecological knowledge were: direct observation, structured and semi-structured interviews, and tours conducted by local peasant farmers. We analyzed the data obtained under an emic/etic view and also by comparing the local knowledge with those obtained from the literature. The results showed that people in those communities utilize management alternatives for controlling pests, which are mainly: (i) fallowing; (ii) crop rotation; (iii) destruction of crop remains and fruits attacked by pests; (iv) alternations of crops with repellent plants; and/or (v) mixed cropping; (vi) insect's larvae covered with soil; (vii) crops irrigated abundantly; and (viii) soil preparation. The recovery and comprehension we get about this knowledge as well as the farmers' savoir faire, are extremely important to the revival of ancient agricultural practices, which have been forgotten due to advances in modern agriculture. The data obtained here showed that a huge body of knowledge the farmers have on many forms or strategies of management are generally compatible with scientific knowledge. PMID:17026748

  18. Current status and future perspectives on sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While occasional insect pests of cultivated sunflowers may be managed by conventional or reduced-risk insecticides, the cumulative costs and risks of relying on insecticides to suppress perennial or severe pests (common in North America) call for exploration of broader pest management strategies. Re...

  19. 64 FR 33527 - Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-06-23

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals... extension of the information collection requirements contained in the standard on Process Safety Management.... 657.) In this regard, the information collection requirements in the Process Safety Management...

  20. Sandia National Laboratories, California Chemical Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  1. Genetic identification of an unknown Rhagoletis fruit fly (Diptera: Tephritidae) infesting Chinese crabapple: implications for apple pest management.

    PubMed

    St Jean, Gilbert; Egan, Scott P; Yee, Wee L; Feder, Jeffrey L

    2013-06-01

    The apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple (Malus spp.)-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus spectabilis (Aiton) Borkhausen, in Kennewick, Benton County, WA. If confirmed, Chinese crabapple would have represented a new host for R. pomonella in Washington and triggered quarantine measures in a surrounding three-county region of the state. Here, we establish, based on five microsatellite loci, the identity of the crabapple-infesting larvae as the western cherry fruit fly, Rhagoletis indifferens Curran, representing a new host record for the fly. Morphological analysis of six flies reared to adulthood confirmed the genetic identification. The results demonstrate the utility of integrating rapid genetic identification methods with field surveys of economic pests, which decreased detection times by months, and avoided enacting costly quarantine measures that saved local and federal bodies > US$0.5 million in monitoring, inspection, and control costs. We discuss current ongoing efforts to develop rapid, accurate, and inexpensive on site DNA-based detection tools for R. pomonella that would have general applicability for the control of pest insects.

  2. Tin Pest in Sn-0.5Cu Lead-Free Solder Alloys: A Chemical Analysis of Trace Elements

    NASA Astrophysics Data System (ADS)

    Leodolter-Dworak, Monika; Steffan, Ilse; Plumbridge, William J.; Ipser, Herbert

    2010-01-01

    Two samples of Sn-0.5Cu solder alloys, stored at -18°C for 7 years, were chemically analyzed by an inductively coupled plasma-optical emission spectroscopy method. One of the samples was unaffected by this exposure; the other one had completely transformed into brittle α-Sn. Ten elements were found to exhibit statistically significant differences in their concentrations between the two samples, with the higher always associated with the untransformed sample. The highest concentrations were found for elements with an appreciable solubility in Sn, i.e., Bi, In, Pb, and Sb.

  3. Ergonomics contribution to chemical risks prevention: An ergotoxicological investigation of the effectiveness of coverall against plant pest risk in viticulture.

    PubMed

    Garrigou, Alain; Baldi, Isabelle; Le Frious, Patricia; Anselm, Rémy; Vallier, Martine

    2011-01-01

    The purpose of this article is to present the contribution of a trans-disciplinary approach focused on ergonomics and chemical risk control. We shall more precisely discuss how such an approach carried out in the field of agricultural work has made it possible to highlight serious shortcomings in the effectiveness of the coveralls that are supposed to protect vineyard workers from pesticides. The study results, as well as the whistle-blow that followed have questioned the control and prevention measures used until then. The aforementioned trans-disciplinary approach gathers knowledge and methods from epidemiology, industrial hygiene, occupational health and safety and ergonomics. Ergonomics were central in the development of the approach as it connected task and activity analysis with contamination measurements. Lastly, the first results that were obtained have been confirmed and reused by the AFSSET (Agence Française de Sécurité Sanitaire Environnement et Travail, the French governmental agency in charge of environmental health and occupational health and safety issues) regarding the agricultural sector but also for all other situations in which workers use coveralls as protection against chemical risks.

  4. Chemical, Biological, Radiological, and Nuclear Consequence Management

    EPA Pesticide Factsheets

    The Chemical, Biological, Radiological, and Nuclear CMAD provides scientific support and technical expertise for decontamination of buildings, building contents, public infrastructure, agriculture, and associated environmental media.

  5. 61 FR 1604 - Process Safety Management of Highly Hazardous Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-01-22

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals AGENCY... approval for the paperwork requirements of 29 CFR 1910.119, Process Safety Management of Highly Hazardous... current OMB approval of the paperwork requirements in 29 CFR 1910.119, Process Safety Management of...

  6. Evaluation of two least toxic integrated pest management programs for managing bed bugs (Heteroptera: Cimicidae) with discussion of a bed bug intercepting device.

    PubMed

    Wang, Changlu; Gibb, Timothy; Bennett, Gary W

    2009-05-01

    The cost and effectiveness of two bed bug (Cimex lectularius L.) integrated pest management (IPM) programs were evaluated for 10 wk. Sixteen bed bug-infested apartments were chosen from a high-rise low-income apartment building. The apartments were randomly divided into two treatment groups: diatomaceous earth dust-based IPM (D-IPM) and chlorfenapyr spray-based IPM (S-IPM). The initial median (minimum, maximum) bed bug counts (by visual inspection) of the two treatment groups were 73.5 (10, 352) and 77 (18, 3025), respectively. A seminar and an educational brochure were delivered to residents and staff. It was followed by installing encasements on mattresses and box springs and applying hot steam to bed bug-infested areas in all 16 apartments. Diatomaceous earth dust (Mother Earth-D) was applied in the D-IPM group 2 d after steaming. In addition, bed bug-intercepting devices were installed under legs of infested beds or sofas or chairs to intercept bed bugs. The S-IPM group only received 0.5% chlorfenapyr spray (Phantom) after the nonchemical treatments. All apartments were monitored bi-weekly and retreated when necessary. After 10 wk, bed bugs were eradicated from 50% of the apartments in each group. Bed bug count reduction (mean +/- SEM) was 97.6 +/- 1.6 and 89.7 +/- 7.3% in the D-IPM and S-IPM groups, respectively. Mean treatment costs in the 10-wk period were $463 and $482 per apartment in the D-IPM and S-IPM groups, respectively. Bed bug interceptors trapped an average of 219 +/- 135 bed bugs per apartment in 10 wk. The interceptors contributed to the IPM program efficacy and were much more effective than visual inspections in estimating bed bug numbers and determining the existence of bed bug infestations.

  7. Pest control: A modelling approach. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by S. Petrovskii, N. Petrovskaya and D. Bearup

    NASA Astrophysics Data System (ADS)

    Tyson, Rebecca C.

    2014-09-01

    Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].

  8. Insecticidal Effect of Chrysanthemum coronarium L. Flowers on the Pest Spodoptera littoralis Boisd and its Parasitoid Microplitis rufiventris Kok. with Identifying the Chemical Composition

    NASA Astrophysics Data System (ADS)

    Shonouda, Mourad L.; Osman, Salah; Salama, Osama; Ayoub, Amal

    The flower extract of Chrysanthemum coronarium L. and their fractions have shown insecticidal effect on the cotton leaf worm Spodoptera littoralis. The third instar larvae fed for two days on treated leaves were more susceptible to plant extracts and to their ethyl acetate and chloroform fractions. The active lowest concentration (5%) of the flower fractions showed no significant effect on the percent reduction of emerged adult parasitoids, Microplitis rufiventris Kok. GC/MS analysis revealed that the major constituents in ethyl acetate fraction were 3-dihydro-methylene-2- (3H) furanone (17.8%), jasmolin I (15.6%), carveol 1 (13.6%), phosphoric acid, tributyl ester (11.4%) and cinerin II (11.1%), while those of chloroform fraction were 5-hydroxy-3 methyl-1H-pyrazole (42.7%) and carveol 1(24.8%). The medicinal plant C. coronarium seems to be a promising plant for application in integrated pest management due to its safety to the surrounding environment.

  9. Emergency management of chemical weapons injuries.

    PubMed

    Anderson, Peter D

    2012-02-01

    The potential for chemical weapons to be used in terrorism is a real possibility. Classes of chemical weapons include nerve agents, vesicants (blister agents), choking agents, incapacitating agents, riot control agents, blood agents, and toxic industrial chemicals. The nerve agents work by blocking the actions of acetylcholinesterase leading to a cholinergic syndrome. Nerve agents include sarin, tabun, VX, cyclosarin, and soman. The vesicants include sulfur mustard and lewisite. The vesicants produce blisters and also damage the upper airways. Choking agents include phosgene and chlorine gas. Choking agents cause pulmonary edema. Incapacitating agents include fentanyl and its derivatives and adamsite. Riot control agents include Mace and pepper spray. Blood agents include cyanide. The mechanism of toxicity for cyanide is blocking oxidative phosphorylation. Toxic industrial chemicals include agents such as formaldehyde, hydrofluoric acid, and ammonia.

  10. Towards a Collaborative Research: A Case Study on Linking Science to Farmers' Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management.

    PubMed

    Liebig, Theresa; Jassogne, Laurence; Rahn, Eric; Läderach, Peter; Poehling, Hans-Michael; Kucel, Patrick; Van Asten, Piet; Avelino, Jacques

    2016-01-01

    The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant

  11. Towards a Collaborative Research: A Case Study on Linking Science to Farmers’ Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management

    PubMed Central

    Liebig, Theresa; Läderach, Peter; Poehling, Hans-Michael; Kucel, Patrick; Van Asten, Piet; Avelino, Jacques

    2016-01-01

    The scientific community has recognized the importance of integrating farmer’s perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and

  12. Chemical process safety management within the Department of Energy

    SciTech Connect

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  13. The Management of Chemical Waste in a University Setting.

    ERIC Educational Resources Information Center

    Coons, David Michael

    This thesis describes a study of the management of chemical waste at the State University of New York at Binghamton. The study revealed that the majority of chemical waste at the university is in the form of hazardous waste. It was hypothesized that the volume, related costs, and potential long-term liability associated with the disposal of…

  14. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand.

    PubMed

    Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.

  15. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  16. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS WORKSHOP NEWMEDIA CD

    EPA Science Inventory

    This product is a CD-ROM version of the workshop, Effective Risk Management of Endocrine Disrupting Chemicals, held in January 2002, in Cincinnati, Ohio. The goal of this workshop was to introduce the science and engineering behind managing the potential risk of suspected endocri...

  17. Medical Management of Chemical Toxicity in Pediatrics

    DTIC Science & Technology

    2009-01-01

    Figure 61.1). Civilians have been unintended and, in some cases, intended targets of CW As since World War I. While cyanide FIGURE 61.1. School-age...Intelligence Agency (CIA) report stated that terrorist groups may have less interest in bio- logical materials compared to chemicals such as cyanide ...provided for exposed children because they are at higher risk for toxicity because of their unique vulnerabilities. E. Cyanide 1. INTRODUCTION Cyanide

  18. Corn insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  19. Dispersal Behavior of Tetranychus evansi and T. urticae on Tomato at Several Spatial Scales and Densities: Implications for Integrated Pest Management

    PubMed Central

    Azandémè-Hounmalon, Ginette Y.; Fellous, Simon; Kreiter, Serge; Fiaboe, Komi K. M.; Subramanian, Sevgan; Kungu, Miriam; Martin, Thibaud

    2014-01-01

    Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants. PMID:24743580

  20. Dispersal behavior of Tetranychus evansi and T. urticae on tomato at several spatial scales and densities: implications for integrated pest management.

    PubMed

    Azandémè-Hounmalon, Ginette Y; Fellous, Simon; Kreiter, Serge; Fiaboe, Komi K M; Subramanian, Sevgan; Kungu, Miriam; Martin, Thibaud

    2014-01-01

    Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants.

  1. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  2. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies.

    PubMed

    Scruggs, Caroline E; Van Buren, Harry J

    2016-05-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood.

  3. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies

    PubMed Central

    Scruggs, Caroline E.; Van Buren, Harry J.

    2014-01-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood. PMID:27471326

  4. Chemical leasing business models: a contribution to the effective risk management of chemical substances.

    PubMed

    Ohl, Cornelia; Moser, Frank

    2007-08-01

    Chemicals indisputably contribute greatly to the well-being of modern societies. Apart from such benefits, however, chemicals often pose serious threats to human health and the environment when improperly handled. Therefore, the European Commission has proposed a regulatory framework for the Registration, Evaluation and Authorization of Chemicals (REACH) that requires companies using chemicals to gather pertinent information on the properties of these substances. In this article, we argue that the crucial aspect of this information management may be the honesty and accuracy of the transfer of relevant knowledge from the producer of a chemical to its user. This may be particularly true if the application of potentially hazardous chemicals is not part of the user's core competency. Against this background, we maintain that the traditional sales concept provides no incentives for transferring this knowledge. The reason is that increased user knowledge of a chemical's properties may raise the efficiency of its application. That is, excessive and unnecessary usage will be eliminated. This, in turn, would lower the amount of chemicals sold and in competitive markets directly decrease profits of the producer. Through the introduction of chemical leasing business models, we attempt to present a strategy to overcome the incentive structure of classical sales models, which is counterproductive for the transfer of knowledge. By introducing two models (a Model A that differs least and a Model B that differs most from traditional sales concepts), we demonstrate that chemical leasing business models are capable of accomplishing the goal of Registration, Evaluation and Authorization of Chemicals: to effectively manage the risk of chemicals by reducing the total quantity of chemicals used, either by a transfer of applicable knowledge from the lessor to the lessee (Model A) or by efficient application of the chemical by the lessor him/herself (Model B).

  5. Deltamethrin-Incorporated Nets as an Integrated Pest Management Tool for the Invasive Halyomorpha halys (Hemiptera: Pentatomidae).

    PubMed

    Kuhar, T P; Short, B D; Krawczyk, G; Leskey, T C

    2017-03-06

    Long-lasting insecticide nets (LLINs), which have insecticide incorporated within the fibers, have been widely used for control of malaria and other insect-vectored diseases. Only recently have researchers begun exploring their use for control of agricultural pests. In this study, we evaluated the toxicity of a deltamethrin-incorporated LLIN, ZeroFly (Vestergaard-Frandsen, Washington, DC) for control of the brown marmorated stink bug, Halyomorpha halys (Stål). In the lab, exposure to the ZeroFly net for 10 s resulted in >90% mortality of H. halys nymphs and >40% mortality of H. halys adults. Longer exposure to the net resulted in higher mortality. In another experiment, a 15-cm2 sheet of ZeroFly net placed inside of the stink bug trap provided long-lasting kill of H. halys adults equal to or better than standard dichlorvos kill strip. Potential for the use of ZeroFly nets for H. halys IPM is discussed.

  6. The Way Ahead: National & International Trends in Chemical Management

    DTIC Science & Technology

    2010-06-01

    EPA data call authority to require more testing to fill data gaps  Expansion of green chemistry programs  Greater transparency (less CBI claims...publically available  By design, spurs adoption of green chemistry Safe Chemical Act of 2010 Industry must provide data to prove safety Ensures...Promotes green chemistry Climate Change Legislation Driving Chemical Management (as of May 2010) 1997 Kyoto Protocol  22 states have GHG emission

  7. Comperative investigations of non chemical weed management methods in Hungary.

    PubMed

    Pali, Orsolya; Reisinger, Peter; Pomsar, Peter

    2007-01-01

    Organic farming has an increasing tendency in Hungary because of growing consumers' demands according to organic products not only in inland but also in the countries of the European Union. Developments of weed control methods in organically cropped field plants have become conspicuous next to developing chemical weed management methods of convencionally cropped cultural plants. The aim of our investigations was to make comperative investigations of non chemical weed control methods in wide rowed plants.

  8. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security

    PubMed Central

    Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336

  9. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security.

    PubMed

    Kriticos, Darren J; Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.

  10. Chemical Inventory Management at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kraft, Shirley S.; Homan, Joseph R.; Bajorek, Michael J.; Dominguez, Manuel B.; Smith, Vanessa L.

    1997-01-01

    The Chemical Management System (CMS) is a client/server application developed with Power Builder and Sybase for the Lewis Research Center (LeRC). Power Builder is a client-server application development tool, Sybase is a Relational Database Management System. The entire LeRC community can access the CMS from any desktop environment. The multiple functions and benefits of the CMS are addressed.

  11. Combined treatments of spinosad and chlorpyrifos-methyl for management of resistant psocid pests (Psocoptera: Liposcelididae) of stored grain.

    PubMed

    Nayak, Manoj K; Daglish, Gregory J

    2007-01-01

    The combined efficacy of spinosad and chlorpyrifos-methyl was determined against four storage psocid pests belonging to genus Liposcelis. This research was undertaken because of the increasing importance of these psocids in stored grain and the problem of finding grain protectants to control resistant strains. Firstly, mortality and reproduction were determined for adults exposed to wheat freshly treated with either spinosad (0.5 and 1 mg kg(-1)) or chlorpyrifos-methyl (2.5, 5 and 10 mg kg(-1)) or combinations of spinosad and chlorpyrifos-methyl at 30 degrees C and 70% RH. There were significant effects of application rate of spinosad and chlorpyrifos-methyl, both individually and in combination, on adult mortality and progeny reduction of all four psocids. Liposcelis bostrychophila Badonnel and L. decolor (Pearman) responded similarly, with incomplete control of adults and progeny at both doses of spinosad but complete control in all chlorpyrifos-methyl and combined treatments. In L. entomophila (Enderlein) and L. paeta Pearman, however, complete control of adults and progeny was only achieved in the combined treatments, with the exception of spinosad 0.5 mg kg(-1) plus chlorpyrifos-methyl 2.5 mg kg(-1) against L. entomophila. Next, combinations of spinosad (0.5 and 1 mg kg(-1)) and chlorpyrifos-methyl (2.5, 5 and 10 mg kg(-1)) in bioassays after 0, 1.5 and 3 months storage of treated wheat were evaluated. The best treatment was 1 mg kg(-1) of spinosad plus 10 mg kg(-1) of chlorpyrifos-methyl, providing up to 3 months of protection against infestations of all four Liposcelis spp. on wheat.

  12. Perceptions of risk, risk aversion, and barriers to adoption of decision support systems and integrated pest management: An introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease r...

  13. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae) infected with Nosema sp. (Microsporidia: Nosematidae): implications in integrated pest management strategy.

    PubMed

    Kermani, Nadia; Abu Hassan, Zainal-Abidin; Suhaimi, Amalina; Abuzid, Ismail; Ismail, Noor Farehan; Attia, Mansour; Ghani, Idris Abd

    2014-01-01

    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.

  14. Parasitism Performance and Fitness of Cotesia vestalis (Hymenoptera: Braconidae) Infected with Nosema sp. (Microsporidia: Nosematidae): Implications in Integrated Pest Management Strategy

    PubMed Central

    Kermani, Nadia; Abu Hassan, Zainal-Abidin; Suhaimi, Amalina; Abuzid, Ismail; Ismail, Noor Farehan; Attia, Mansour; Ghani, Idris Abd

    2014-01-01

    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control. PMID:24968125

  15. An overview of tropical pest species of bactrocera fruit flies (Diptera:Tephritidae) and the integration of biopesticides with other biological approaches for their management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit flies (Diptera:Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas of the world. These species are such devastating crop pests that major control and eradication prog...

  16. Chemical composition of cottonseed affected by cropping management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed is a valuable raw material for a range of food, animal feed, and industrial (such as adhesives) products. Chemical composition is one of the critical parameters to evaluate cottonseed's quality and potential end use. However, the information on the impacts of cropping management practices...

  17. DEVELOPING TOOLS FOR EVALUATING RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    The goal of endocrine disrupting chemical (EDC) risk management (RM) is to minimize the release of EDCs into the environment or to minimize the exposure of humans or wildlife to EDCs already present in the environment. RM research projects may involve: substituting more innocuous...

  18. REACH: next step to a sound chemicals management.

    PubMed

    Van der Wielen, Arnold

    2007-12-01

    REACH is the new European Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals. It entered into force on 1st June 2007 to streamline and improve the former legislative framework on new and on existing chemical substances of the European Union. Companies which manufacture or import more than 1 tonne of a substance per year will be required to register the substance at the new EU Chemicals Agency located in Helsinki. REACH places greater responsibility on industry to manage the risks that chemicals may pose to the health and the environment and to provide safety information that will be passed down the supply chain. In principle, REACH applies to all chemicals as such, as components in preparations and as used in articles. REACH is a radical step forward in the EU chemicals management. The onus will move from the authorities to industry. In addition, REACH will allow the further evaluation of substances where there are grounds for concern, foresees an authorisation system for the use of substances of very high concern and a system of restrictions, where applicable, for substances of concern. The Authorisation system will require companies to switch progressively to safer alternatives where a suitable alternative exists. Current use restrictions will remain under REACH system.

  19. [Hospital response and medical management in toxic chemical substance disasters].

    PubMed

    Yeh, I-Jeng; Lin, Tzeng-Jih

    2010-06-01

    A hazardous material is defined as any item or agent which has the potential to cause harm to humans, animals, or the environment, either by itself or through interaction with other factors. Toxic chemical substance events are increasingly common events in our modern world. The numerous variables and special equipment involved make effective response to toxic chemical events an especially critical test of hospital emergency response and patient rescue mechanisms. Inadequacies in management could result in disaster - even when only a simple event and minimal error are involved. This article introduces the general medical management algorithm for toxic chemical substance injury and the hospital incident command systems (HICS) developed and currently used by Taiwanese hospitals. Important steps and frequent mistakes made during medical management procedures are further described. The goal of medical care response and emergency units is to prevent catastrophic disasters in the emergency room and their subsequent results. This article further emphasizes correct patient management not only in terms of medical unit effort, but also in terms of cooperation between various relevant organizations including factory-based industrial health and safety systems, multi-factory union defense systems, coordination centers, fire protection and disaster rescue systems, the Environmental Protection Administration and national defense system in order to achieve the most appropriate management. Such coordination, in particular, requires reinforcement in order to ensure readiness for future response needs.

  20. Chemical Abstracts Service approach to management of large data bases.

    PubMed

    Huffenberger, M A; Wigington, R L

    1975-02-01

    When information handling is "the business," as it is at Chemical Abstract Service (CAS), the total organization must be involved in information management. Since 1967, when, as a result of long-range planning efforts, CAS adopted a "data-base approach" to management of both the processing system and the distribution of information files, CAS has been grappling with the problems of managing large collections of information in computer-based systems. This paper describes what has been done at CAS in the management of large files and what we see as necessary, as a result of our experience, to improve and complete the information management system that is the foundation of our production processes.

  1. Are chemicals in articles an obstacle for reaching environmental goals? - Missing links in EU chemical management.

    PubMed

    Molander, Linda; Breitholtz, Magnus; Andersson, Patrik L; Rybacka, Aleksandra; Rudén, Christina

    2012-10-01

    It is widely acknowledged that the management of risks associated with chemicals in articles needs to be improved. The EU environmental policy states that environmental damage should be rectified at source. It is therefore motivated that the risk management of substances in articles also takes particular consideration to those substances identified as posing a risk in different environmental compartments. The primary aim of the present study was to empirically analyze to what extent the regulation of chemicals in articles under REACH is coherent with the rules concerning chemicals in the Sewage Sludge Directive (SSD) and the Water Framework Directive (WFD). We also analyzed the chemical variation of the organic substances regulated under these legislations in relation to the most heavily used chemicals. The results show that 16 of 24 substances used in or potentially present in articles and regulated by the SSD or the WFD are also identified under REACH either as a substance of very high concern (SVHC) or subject to some restrictions. However, for these substances we conclude that there is limited coherence between the legislations, since the identification as an SVHC does not in itself encompass any use restrictions, and the restrictions in REACH are in many cases limited to a particular use, and thus all other uses are allowed. Only a minor part of chemicals in commerce is regulated and these show a chemical variation that deviates from classical legacy pollutants. This warrants new tools to identify potentially hazardous chemicals in articles. We also noted that chemicals monitored in the environment under the WFD deviate in their chemistry from the ones regulated by REACH. In summary, we argue that to obtain improved resource efficiency and a sustainable development it is necessary to minimize the input of chemicals identified as hazardous to health or the environment into articles.

  2. A Qualitative Study of Urban and Suburban Elementary Student Understandings of Pest-Related Science and Agricultural Education Benchmarks.

    ERIC Educational Resources Information Center

    Trexler, Cary J.

    2000-01-01

    Clinical interviews with nine fifth graders revealed that experiences play a pivotal role in their understanding of pests. They lack well-developed schema and language to discuss pest management. A foundation of core biological concepts was necessary for understanding pests and pest management. (Conatains 34 references.) (SK)

  3. Net returns and risk for cover crop use as an integrated pest management practice in Alabama cotton production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton producers in Alabama are faced with uncertain yields and prices, as well as increasing weed management challenges such as glyphosate resistant weeds. By utilizing a production system that will reduce risk while maintaining yield, cotton production may be economically sustainable into the futu...

  4. Improving confidence in (Q)SAR predictions under Canada's Chemicals Management Plan - a chemical space approach.

    PubMed

    Kulkarni, S A; Benfenati, E; Barton-Maclaren, T S

    2016-10-20

    One of the key challenges of Canada's Chemicals Management Plan (CMP) is assessing chemicals with limited/no empirical hazard data for their risk to human health. In some instances, these chemicals have not been tested broadly for their toxicological potency; as such, limited information exists on their potential to induce human health effects following exposure. Although (quantitative) structure activity relationship ((Q)SAR) models are able to generate predictions to address data gaps for certain toxicological endpoints, the confidence in predictions also needs to be addressed. One way to address this issue is to apply a chemical space approach. This approach uses international toxicological databases, for example, those available in the Organisation for Economic Co-operation and Development (OECD) QSAR Toolbox. The approach,assesses a model's ability to predict the potential hazards of chemicals that have limited hazard data that require assessment under the CMP when compared to a larger, data-rich chemical space that is structurally similar to chemicals of interest. This evaluation of a model's predictive ability makes (Q)SAR analysis more transparent and increases confidence in the application of these predictions in a risk-assessment context. Using this approach, predictions for such chemicals obtained from four (Q)SAR models were successfully classified into high, medium and low confidence levels to better inform their use in decision-making.

  5. Performance of a Genetically Modified Strain of the Mediterranean Fruit Fly (Diptera: Tephritidae) for Area-Wide Integrated Pest Management With the Sterile Insect Technique.

    PubMed

    Ramírez-Santos, Edwin M; Rendón, Pedro; Ruiz-Montoya, Lorena; Toledo, Jorge; Liedo, Pablo

    2016-12-23

    The genetically modified strain of Ceratitis capitata (Wiedemann) VIENNA 8 1260 has two morphological markers that exhibit fluorescence in body and sperm. To assess the feasibility of its use in area-wide integrated pest management (AW-IPM) programs using the sterile insect technique, its rearing performance and quality control profile under small, medium, and large scales was evaluated, as well as in field cages. The VIENNA 8 1260 strain had a lower yield than the control strains, VIENNA 8 with D53 inversion (VIENNA 8) and without D53 inversion (VIENNA 8 D53-). At mass-rearing scale, yield gradually increased in three generations without reaching the control strain values. The VIENNA 8 1260 strain was stable in the genetic sexing mechanism (>99.9%) and expression of fluorescence (100%). In field cages, the VIENNA 8 1260 males reduced the mating potential of wild males in the same magnitude as the VIENNA 8, when evaluated in independent cage tests. However, the relative sterility index and the strain male relative performance index of VIENNA 8 1260 males were significantly lower than those of the VIENNA 8. There were no significant differences in longevity of these strains. The potential application of the VIENNA 8 1260 in AW-IPM programs is further discussed.

  6. Willingness-to-pay for an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey.

    PubMed

    Halasa, Yara A; Shepard, Donald S; Wittenberg, Eve; Fonseca, Dina M; Farajollahi, Ary; Healy, Sean; Gaugler, Randy; Strickman, Daniel; Clark, Gary G

    2012-09-01

    Using contingent valuation we estimated the perceived value of an area-wide integrated pest management program for the Asian tiger mosquito, Aedes albopictus, implemented in Monmouth and Mercer counties, NJ. We estimated residents' maximum willingness-to-pay and perceived monetary benefits (willingness-to-pay excluding residents who protested all types of payments) and payment modality through a telephone survey of 51 randomly selected households. The mean (+/- SE) perceived monetary benefits for an enhanced mosquito abatement program was $9.54 +/- 2.90 per capita per year. Most respondents would have been willing to pay through taxes (35%) or charitable donations (6%) starting then, or through one of these approaches in the future (43%), whereas 16% were completely unwilling to pay any additional costs whatsoever. We projected that the perceived monetary benefits to the counties' 1.01 million residents for an enhanced mosquito control program would be $9.61 million annually. Thus, collectively residents perceived monetary benefits of 3.67 times the combined 2008 annual operating costs of the counties' existing mosquito control programs of $2.61 million.

  7. A Pest of Importance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cyst nematodes (PCN), G. rostochiensis and G. pallida, are internationally-recognized quarantine pests and considered the most devastating pests of potatoes worldwide. PCNs continue to spread throughout North America and were recently detected in Idaho (G. pallida) and Quebec and Alberta, Can...

  8. Structural Pest Control.

    ERIC Educational Resources Information Center

    Kahn, M. S.; Hoffman, W. M.

    This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…

  9. Design and Development of Countylevel Information Management System for Diseases and Pests of Hebei Province on GIS

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoyan; Zhang, Xiaoli; Xie, Fangyi

    To get a more convenience work in forest application, GIS and information system is used in forestry. GIS technology is used to build an informational management system of forest disease. For the practical requirement, the system is implemented by PDA which works outside to help completing the data collection. The major function of the system is input and output of the forest disease data and processing the report which is based on the criteria report and the assistant function of GIS. This article is aim to discuss about the theory, the process and the critical points of the information system. Besides the general information management system, GIS and PDA is introduced into the diseases system, which could combine the map and the attribute information and realize inventory data reform by PDA. The system is developed with VB and SuperMap Object (SuperMap Company).

  10. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.

    PubMed

    Schellhorn, Nancy A; Parry, Hazel R; Macfadyen, Sarina; Wang, Yongmo; Zalucki, Myron P

    2015-02-01

    Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management.

  11. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  12. Pest Insect Olfaction in an Insecticide-Contaminated Environment: Info-Disruption or Hormesis Effect

    PubMed Central

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an “odor world” and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an “info-disruptor” by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests. PMID:22457653

  13. Evaluation of the potential role of glufosinate-tolerant rice in integrated pest management programs for rice water weevil (Coleoptera: Curculionidae).

    PubMed

    Tindall, K V; Stout, M J; Williams, B J

    2004-12-01

    The impact of a herbicide-tolerant rice, Oryza sativa L., variety was assessed for its resistance to rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), and its place in current integrated pest management (IPM) programs. Greenhouse experiments were conducted to evaluate the resistance of a glufosinate-tolerant rice variety and its glufosinate-susceptible parent line Bengal to the rice water weevil in the presence and absence of glufosinate applications. The LC50 dose-response and behavioral effects of glufosinate on adult rice water weevils also were studied. Field studies investigated the impacts of glufosinate-tolerant rice on rice water weevil management in the presence and absence of glufosinate under early and delayed flood conditions. Greenhouse studies demonstrated that in the absence of glufosinate, oviposition was 30% higher on the glufosinate-tolerant rice line than on Bengal rice or on glufosinate-tolerant line treated with recommended rates of commercially formulated glufosinate. Applications of glufosinate to glufosinate-tolerant rice resulted in a 20% reduction in rice water weevil larval densities compared with nontreated glufosinate-tolerant rice. The LC50 of glufosinate against adult rice water weevil was nearly 2 times the concentration recommended for application to glufosinate-tolerant rice. There was no difference in the amount of leaf area consumed by adult rice water weevils on glufosinate-treated and nontreated foliage. The absence of direct toxicity of glufosinate to rice water weevil at recommended glufosinate use rates and lack of behavioral effects suggest that the reduction in rice water weevil densities observed after glufosinate applications resulted from herbicide-induced plant resistance. Field experiments showed that neither rice variety nor herbicide use affected larval densities; however, delaying flood and applying insecticide effectively reduced numbers of rice water weevil larvae.

  14. Management of Root Resorption Using Chemical Agents: A Review

    PubMed Central

    Mohammadi, Zahed; C. Cehreli, Zafer; Shalavi, Sousan; Giardino, Luciano; Palazzi, Flavio; Asgary, Saeed

    2016-01-01

    Root resorption (RR) is defined as the loss of dental hard tissues because of clastic activity inside or outside of tooth the root. In the permanent dentition, RR is a pathologic event; if untreated, it might result in the premature loss of the affected tooth. Several hypotheses have been suggested as the mechanisms of root resorption such as absence of the remnants of Hertwig's epithelial root sheath (HERS) and the absence of some intrinsic factors in cementum and predentin such as amelogenin or osteoprotegerin (OPG). It seems that a barrier is formed by the less-calcified intermediate cementum or the cementodentin junction that prevents external RR. There are several chemical strategies to manage root resorption. The purpose of this paper was to review several chemical agents to manage RR such as tetracycline, sodium hypochlorite, acids (citric acid, phosphoric acid, ascorbic acid and hydrochloric acid), acetazolamide, calcitonin, alendronate, fluoride, Ledermix and Emdogain. PMID:26843869

  15. Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management.

    PubMed

    Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga

    2016-05-11

    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.

  16. NSF-Sponsored Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Copley, N.; Galvarino, C.; Gegg, S. R.; Glover, D. M.; Groman, R. C.; Wiebe, P. H.; Work, T. T.; Biological; Chemical Oceanography Data Management Office

    2010-12-01

    Ocean biogeochemistry and marine ecosystem research projects are inherently interdisciplinary and benefit from improved access to well-documented data. Improved data sharing practices are important to the continued exploration of research themes that are a central focus of the ocean science community and are essential to interdisciplinary and international collaborations that address complex, global research themes. In 2006, the National Science Foundation Division of Ocean Sciences (NSF OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO) to serve the data management requirements of scientific investigators funded by the National Science Foundation’s Biological and Chemical Oceanography Sections. BCO-DMO staff members work with investigators to manage marine biogeochemical, ecological, and oceanographic data and information developed in the course of scientific research. These valuable data sets are documented, stored, disseminated, and protected over short and intermediate time frames. One of the goals of the BCO-DMO is to facilitate regional, national, and international data and information exchange through improved data discovery, access, display, downloading, and interoperability. In May 2010, NSF released a statement to the effect that in October 2010, it is planning to require that all proposals include a data management plan in the form of a two-page supplementary document. The data management plan would be an element of the merit review process. NSF has long been committed to making data from NSF-funded research publicly available and the new policy will strengthen this commitment. BCO-DMO is poised to assist in creating the data management plans and in ultimately serving the data and information resulting from NSF OCE funded research. We will present an overview of the data management system capabilities including: geospatial and text-based data discovery and access systems; recent enhancements to data search tools; data

  17. Preparedness for terrorism: managing nuclear, biological and chemical threats.

    PubMed

    Koenig, Kristi L

    2009-12-01

    The management of nuclear, biological and chemical (NBC) terrorism events is critical to reducing morbidity and mortality in the next decade; however, initial patient care considerations and protective actions for staff are unfamiliar to most front-line clinicians. High explosive events (bomb and blast) remain the most common type of terrorism and are easy to detect. Conversely, some types of terrorist attacks are more likely to be unsuspected or covert. This paper explains the current threat of terrorism and describes clues for detection that an event has occurred. Specific criteria that should lead to a high suspicion for terrorism are illustrated. The manuscript outlines initial actions and clinical priorities for management and treatment of patients exposed to nuclear/radiological, biological, chemical and combined agents (for example an explosion involving a chemical agent). Examples of terrorist events include: a nuclear explosion, an aerosolised release of anthrax (biological), dissemination of sarin in a subway (chemical), and the detonation of a radiologic dispersion device or "dirty bomb" (combined explosive and radiological). Basic principles of decontamination include potential risks to healthcare providers from secondary exposure and contamination. Unique issues may hinder clinical actions. These include coordination with law enforcement for a crime scene, public health entities for surveillance and monitoring, hazardous materials teams for decontamination, and the media for risk communications. Finally, the importance of personal preparedness is discussed.

  18. Thiamethoxam seed treatments hav no impact on pest numbers or yield in cultivated sunflowers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, non-target organisms which may be negatively affected by pest management...

  19. Quantifying Russian wheat aphid pest intensity across the Great Plains.

    PubMed

    Merrill, Scott C; Peairs, Frank B

    2012-12-01

    Wheat, the most important cereal crop in the Northern Hemisphere, is at-risk for an approximate 10% reduction in worldwide production because of animal pests. The potential economic impact of cereal crop pests has resulted in substantial research efforts into the understanding of pest agroecosystems and development of pest management strategy. Management strategy is informed frequently by models that describe the population dynamics of important crop pests and because of the economic impact of these pests, many models have been developed. Yet, limited effort has ensued to compare and contrast models for their strategic applicability and quality. One of the most damaging pests of wheat in North America is the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Eighteen D. noxia population dynamic models were developed from the literature to describe pest intensity. The strongest models quantified the negative effects of fall and spring precipitation on aphid intensity, and the positive effects associated with alternate food source availability. Population dynamic models were transformed into spatially explicit models and combined to form a spatially explicit, model-averaged result. Our findings were used to delineate pest intensity on winter wheat across much of the Great Plains and will help improve D. noxia management strategy.

  20. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  1. Chrysomelids American diabroticines Hosts and natural enemies. Biology-feasibility for control of pest species (Crisomelidos Diabroticinos americanos Hospederos y enemigos naturales Biologia y factibili manejo especies plagas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chrysomelids in the Diabroticites include some of the most important pest species of the American continent. The chemical and management techniques used to date to control them are: crop rotation to prevent re-infection of host crops, especially in the species that display an egg diapause; insec...

  2. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  3. Aquatic Pest Control. Sale Publication 4071.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…

  4. Symbiotic microorganisms: untapped resources for insect pest control.

    PubMed

    Douglas, Angela E

    2007-08-01

    Symbiotic microorganisms offer one route to meet the anticipated heightened demand for novel insect pest management strategies created by growing human populations and global climate change. Two approaches have particular potential: the disruption of microbial symbionts required by insect pests, and manipulation of microorganisms with major impacts on insect traits contributing to their pest status (e.g. capacity to vector diseases, natural enemy resistance). Specific research priorities addressed in this article include identification of molecular targets against which highly specific antagonists can be designed or discovered, and management strategies to manipulate the incidence and properties of facultative microorganisms that influence insect pest traits. Collaboration with practitioners in pest management will ensure that the research agenda is married to agricultural and public health needs.

  5. Propellant management for low thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  6. New developments in bait stations for control of pest Tephritids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...

  7. Companion and refuge plants to control insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...

  8. Ascochyta blight and insect pests of chickpeas in the Palouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This newsletter article informs chickpea growers in the Palouse region about current disease and insect pest problems. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insect pests including loopers and armyworms were rampant. Appropriate management practices for t...

  9. Avocado pests in Florida: Not what you expected

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avocado, Persea americana Mill., is Florida's second most important fruit crop after citrus. Until recently, the complex of spider mite and insect pests that affected avocado in south Florida was under a 20 year Integrated Pest Management (IPM) program. The recent invasion of avocado orchards by a...

  10. Risk management measures for chemicals: the "COSHH essentials" approach.

    PubMed

    Garrod, A N I; Evans, P G; Davy, C W

    2007-12-01

    "COSHH essentials" was developed in Great Britain to help duty holders comply with the Control of Substances Hazardous to Health (COSHH) Regulations. It uses a similar approach to that described in the new European "REACH" Regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals; EC No. 1907/2006 of the European Parliament), insofar as it identifies measures for managing the risk for specified exposure scenarios. It can therefore assist REACH duty holders with the identification and communication of appropriate risk-management measures. The technical basis for COSHH essentials is explained in the original papers published in the Annals of Occupational Hygiene. Its details will, therefore, not be described here; rather, its ability to provide a suitable means for communicating risk-management measures will be explored. COSHH essentials is a simple tool based on an empirical approach to risk assessment and risk management. The output is a "Control Guidance Sheet" that lists the "dos" and "don'ts" for control in a specific task scenario. The guidance in COSHH essentials recognises that exposure in the workplace will depend not just on mechanical controls, but also on a number of other factors, including administrative and behavioural controls, such as systems of work, supervision and training. In 2002, COSHH essentials was made freely available via the internet (http://www.coshh-essentials.org.uk/). This electronic delivery enabled links to be made between product series that share tasks, such as drum filling, and with ancillary guidance, such as setting up health surveillance for work with a respiratory sensitiser. COSHH essentials has proved to be a popular tool for communicating good control practice. It has attracted over 1 million visits to its site since its launch. It offers a common benchmark of good practice for chemical users, manufacturers, suppliers and importers, as well as regulators and health professionals.

  11. A New Data Management System for Biological and Chemical Oceanography

    NASA Astrophysics Data System (ADS)

    Groman, R. C.; Chandler, C.; Allison, D.; Glover, D. M.; Wiebe, P. H.

    2007-12-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created to serve PIs principally funded by NSF to conduct marine chemical and ecological research. The new office is dedicated to providing open access to data and information developed in the course of scientific research on short and intermediate time-frames. The data management system developed in support of U.S. JGOFS and U.S. GLOBEC programs is being modified to support the larger scope of the BCO-DMO effort, which includes ultimately providing a way to exchange data with other data systems. The open access system is based on a philosophy of data stewardship, support for existing and evolving data standards, and use of public domain software. The DMO staff work closely with originating PIs to manage data gathered as part of their individual programs. In the new BCO-DMO data system, project and data set metadata records designed to support re-use of the data are stored in a relational database (MySQL) and the data are stored in or made accessible by the JGOFS/GLOBEC object- oriented, relational, data management system. Data access will be provided via any standard Web browser client user interface through a GIS application (Open Source, OGC-compliant MapServer), a directory listing from the data holdings catalog, or a custom search engine that facilitates data discovery. In an effort to maximize data system interoperability, data will also be available via Web Services; and data set descriptions will be generated to comply with a variety of metadata content standards. The office is located at the Woods Hole Oceanographic Institution and web access is via http://www.bco-dmo.org.

  12. Chemical constraints of groundwater management in the Yucatan peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Back, W.; Lesser, J. M.

    1981-05-01

    Two critical objectives of water management in the Yucatan are: (1) to develop regional groundwater supplies for an expanding population and tourism based on the Mayan archeological sites and excellent beaches; and (2) to control groundwater pollution in a chemically sensitive system made vulnerable by geologic conditions. The Yucatan peninsula is a coastal plain underlain by permeable limestone and has an annual rainfall of more than 1000 mm. Such a setting should provide abundant supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that decrease the amount of available fresh water. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed by extensive use of groundwater. The religion was water-oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supplies by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution resulting from the use of a sewage disposal well adjacent to each supply well. The modern phase of water management began in 1959 when the Secretaría de Recursos Hidráulicos (S.R.H.) was charged with the responsibility for both scientific investigations and development programmes for water-supply and sewage-disposal systems for cities, villages and islands.

  13. Chemical constraints of groundwater management in the Yucatan peninsula, Mexico

    USGS Publications Warehouse

    Back, W.; Lesser, J.M.

    1981-01-01

    Two critical objectives of water management in the Yucatan are: (1) to develop regional groundwater supplies for an expanding population and tourism based on the Mayan archeological sites and excellent beaches; and (2) to control groundwater pollution in a chemically sensitive system made vulnerable by geologic conditions. The Yucatan peninsula is a coastal plain underlain by permeable limestone and has an annual rainfall of more than 1000 mm. Such a setting should provide abundant supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that decrease the amount of available fresh water. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed by extensive use of groundwater. The religion was water-oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supplies by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution resulting from the use of a sewage disposal well adjacent to each supply well. The modern phase of water management began in 1959 when the Secretari??a de Recursos Hidra??ulicos (S.R.H.) was charged with the responsibility for both scientific investigations and development programmes for water-supply and sewage-disposal systems for cities, villages and islands. ?? 1981.

  14. The Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.

    2011-12-01

    Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map

  15. A modelling methodology to assess the effect of insect pest control on agro-ecosystems

    PubMed Central

    Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo

    2015-01-01

    The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199

  16. Pest Management Records Modernization Act

    THOMAS, 113th Congress

    Rep. Schrader, Kurt [D-OR-5

    2014-11-14

    12/03/2014 Received in the Senate and Read twice and referred to the Committee on Agriculture, Nutrition, and Forestry. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  17. Probabilistic spill occurrence simulation for chemical spills management.

    PubMed

    Cao, Weihua; Li, James; Joksimovic, Darko; Yuan, Arnold; Banting, Doug

    2013-11-15

    Inland chemical spills pose a great threat to water quality in worldwide area. A sophisticated probabilistic spill-event model that characterizes temporal and spatial randomness and quantifies statistical uncertainty due to limited spill data is a major component in spill management and associated decision making. This paper presents a MATLAB-based Monte Carlo simulation (MMCS) model for simulating the probabilistic quantifiable occurrences of inland chemical spills by time, magnitude, and location based on North America Industry Classification System codes. The model's aleatory and epistemic uncertainties were quantified through integrated bootstrap resampling technique. Benzene spills in the St. Clair River area of concern were used as a case to demonstrate the model by simulating spill occurrences, occurrence time, and mass expected for a 10-year period. Uncertainty analysis indicates that simulated spill characteristics can be described by lognormal distributions with positive skewness. The simulated spill time series will enable a quantitative risk analysis for water quality impairments due to the spills. The MMCS model can also help governments to evaluate their priority list of spilled chemicals.

  18. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  19. DEVELOPMENT OF THE STERILE INSECT TECHNIQUE TO MANAGE AN INVASIVE INSECT PEST, CACTOBLASTIS CACTORUM, ATTACKING PRICKLY PEAR CACTUS IN QUINTANA ROO, MEXICO, AND SOUTHEASTERN USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most successful classical biological control of weeds program has been the control of invasive prickly-pear cactus (Opuntia spp.) by the Argentine cactus moth Cactoblastis cactorum. However, the moth has now become an invasive pest in the southeastern USA and its ability to dramatically control ...

  20. Environmental ethanol as an ecological constraint on the dietary breadth of the Spotted-Wing Drosophila, Drosophila suzukii Mat. (Diptera: Drosophilidae) and its implication for integrated pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted-wing Drosophila (SWD), Drosophila suzukii, is a recent exotic insect pest of the Americas. What makes SWD particularly destructive is the female’s double bladed and prominently serrated ovipositor, which inserts eggs below the epidermis of intact berries. Unlike the vast majority of Drosophi...

  1. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) hold significant promise for agriculture. Currently, UAVs are being employed for various reconnaissance purposes (“eyes in the sky”), but not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Luck La...

  2. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  3. Insect Pests Models and Insecticide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the dominant approach in theoretical pest management ecology has emphasized the use of simple analytical or mathematical models and the analysis of systems in equilibrium. Recent advancements in computer technology have provided the opportunity for ecological insect modelers to move aw...

  4. Biological control of livestock pests : Parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), are common pests on livestock, poultry, and equine facilities. Biological control of filth flies with pupal parasitoids can be used in conjunction with other control methods as part of an integrated fly management program. ...

  5. Cost and efficacy comparison of integrated pest management strategies with monthly spray insecticide applications for German cockroach (Dictyoptera: Blattellidae) control in public housing.

    PubMed

    Miller, D M; Meek, F

    2004-04-01

    The long-term costs and efficacy of two treatment methodologies for German cockroach, Blattella germanica (L.), control were compared in the public housing environment. The "traditional" treatment for German cockroaches consisted of monthly baseboard and crack and crevice treatment (TBCC) by using spray and dust formulation insecticides. The integrated pest management treatment (IPM) involved initial vacuuming of apartments followed by monthly or quarterly applications of baits and insect growth regulator (IGR) devices. Cockroach populations in the IPM treatment were also monitored with sticky traps. Technician time and the amount of product applied were used to measure cost in both treatments. Twenty-four hour sticky trap catch was used as an indicator of treatment efficacy. The cost of the IPM treatment was found to be significantly greater than the traditional treatment, particularly at the initiation of the test. In the first month (clean-out), the average cost per apartment unit was dollar 14.60, whereas the average cost of a TBCC unit was dollar 2.75. In the second month of treatment, the average cost of IPM was still significantly greater than the TBCC cost. However, after month 4 the cost of the two treatments was no longer significantly different because many of the IPM apartments were moved to a quarterly treatment schedule. To evaluate the long-term costs of the two treatments over the entire year, technician time and product quantities were averaged over all units treated within the 12-mo test period (total 600 U per treatment). The average per unit cost of the IPM treatment was (dollar 4.06). The average IPM cost was significantly greater than that of the TBCC treatment at dollar 1.50 per unit. Although the TBCC was significantly less expensive than the IPM treatment, it was also less effective. Trap catch data indicated that the TBCC treatment had little, if any, effect on the cockroach populations over the course of the year. Cockroach populations in

  6. In vitro test systems supporting the development of improved pest control methods: a case study with chemical mixtures and bivalve biofoulers.

    PubMed

    Silva, Carlos; Nunes, Bruno; Nogueira, António Ja; Gonçalves, Fernando; Pereira, Joana L

    2016-11-01

    Using the bivalve macrofouler Corbicula fluminea, the suitability of in vitro testing as a stepping stone towards the improvement of control methods based on chemical mixtures was addressed in this study. In vitro cholinesterase (ChE) activity inhibition following single exposure of C. fluminea tissue to four model chemicals (the organophosphates dimethoate and dichlorvos, copper and sodium dodecyl phosphate [SDS]) was first assessed. Consequently, mixtures of dimethoate with copper and dichlorvos with SDS were tested and modelled; mixtures with ChE revealed synergistic interactions for both chemical pairs. These synergic combinations were subsequently validated in vivo and the increased control potential of these selected combinations was verified, with gains of up to 50% in C. fluminea mortality relative to corresponding single chemical treatments. Such consistency supports the suitability of using time- and cost-effective surrogate testing platforms to assist the development of biofouling control strategies incorporating mixtures.

  7. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  8. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  9. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  10. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  11. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  12. Comparative evaluation of phenoloxidase in different larval stages of four lepidopteran pests after exposure to Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some lepidopteran insects are important agricultural pests, causing serious crop damage. Microbial entomopathogen-based bioinsecticides are considered effective pest control alternatives to synthetic chemicals. However, insects can defend against pathogens by innate mechanisms, including phenoloxi...

  13. 71 FR 4941 - Process Safety Management of Highly Hazardous Chemicals Standard; Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-01-30

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals Standard... collection requirements specified by its Process Safety Management of Highly Hazardous Chemicals Standard (29... of the other elements of process safety management in the Standard. Under paragraph (c)(3)...

  14. 74 FR 46621 - Process Safety Management of Highly Hazardous Chemicals (PSM) Standard; Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-09-10

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals (PSM... specified in the Standard on Process Safety Management of Highly Hazardous Chemicals (PSM) (29 CFR 1910.119... of the information collection requirements contained in the Standard on Process Safety Management...

  15. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  16. Pests of stored dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dates are a major food crop across a large band of Africa and Eurasia, and to a lesser extent elsewhere. In most of its growing range, dates are threatened with infestation in the field by a complex of pests including nitidulid beetles and pyralid moths of the Subfamily Phycitinae. They are further ...

  17. Pests in ornamental grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ornamental perennial grasses are becoming increasingly popular in the landscape due to their beauty and ease of care. Although few pest problems are encountered in ornamental grasses, they are not immune to insects and disease. Two lined spittlebugs (Prosapia bicincta) can cause damage to ornament...

  18. The War Against Pests

    ERIC Educational Resources Information Center

    Smith, Ray F.

    1973-01-01

    Insecticides should not be the only weapons of war used against pests; in addition to them, a strategy aimed at winning the millenial warfare should combine the tactical use of natural plant enemies, reinforced plant genetic qualities, and the application of adequate ecological techniques. (BL)

  19. Public Health Pest Control.

    ERIC Educational Resources Information Center

    Arizona Univ., Tucson. Cooperative Extension Service.

    This manual supplies information helpful to individuals wishing to become certified in public health pest control. It is designed as a technical reference for vector control workers and as preparatory material for structural applicators of restricted use pesticides to meet the General Standards of Competency required of commercial applicators. The…

  20. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.