Sample records for chemical process design

  1. Conceptual Chemical Process Design for Sustainability.

    EPA Science Inventory

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  2. WORKSHOP ON ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    To encourage the consideration of environmental issues during chemical process design, the USEPA has developed techniques and software tools to evaluate the relative environmental impact of a chemical process. These techniques and tools aid in the risk management process by focus...

  3. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  4. New Vistas in Chemical Product and Process Design.

    PubMed

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  5. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...

  6. Conceptual Chemical Process Design for Sustainability. ...

    EPA Pesticide Factsheets

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyses throughout the conceptual design. Hierarchical and short-cut decision-making methods will be used to approach sustainability. An example showing a sustainability-based evaluation of chlor-alkali production processes is presented with economic analysis and five pollutants described as emissions. These emissions are analyzed according to their human toxicity potential by ingestion using the Waste Reduction Algorithm and a method based on US Environmental Protection Agency reference doses, with the addition of biodegradation for suitable components. Among the emissions, mercury as an element will not biodegrade, and results show the importance of this pollutant to the potential toxicity results and therefore the sustainability of the process design. The dominance of mercury in determining the long-term toxicity results when energy use is included suggests that all process system evaluations should (re)consider the role of mercury and other non-/slow-degrading pollutants in sustainability analyses. The cycling of nondegrading pollutants through the biosphere suggests the need for a complete analysis based on the economic, environmental, and social aspects of sustainability. Chapter reviews

  7. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  8. A Framework to Design and Optimize Chemical Flooding Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  9. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  10. DESIGNING CHEMICAL PROCESSES WITH OPEN AND FUGITIVE EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the conomics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. Th...

  11. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  12. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    EPA Science Inventory

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  13. DECISION SUPPORT SYSTEM TO ENHANCE AND ENCOURAGE SUSTAINABLE CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    There is an opportunity to minimize the potential environmental impacts (PEIs) of industrial chemical processes by providing process designers with timely data nad models elucidating environmentally favorable design options. The second generation of the Waste Reduction (WAR) algo...

  14. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...

  15. Fire Hazard Assessment in Supporting Fire Protection System Design of a Chemical Process Facility

    DTIC Science & Technology

    1996-08-01

    CSDP/Studies/FireHaz –i– 3/28/97 FIRE HAZARD ASSESSMENT IN SUPPORTING FIRE PROTECTION SYSTEM DESIGN OF A CHEMICAL PROCESS FACILITY Ali Pezeshk...Joseph Chang, Dwight Hunt, and Peter Jahn Parsons Infrastructure & Technology Group, Inc. Pasadena, California 91124 ABSTRACT Because fires in a chemical ...Assessment in Supporting Fire Protection System Design of a Chemical Process Facility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  16. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.

  17. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    ERIC Educational Resources Information Center

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  18. EVALUATING AND DESIGNING CHEMICAL PROCESSES FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Chemicals and chemical processes are at the heart of most environmental problems. This isn't surprising since chemicals make up all of the products we use in our lives. The common use of cjhemicals makes them of high interest for systems analysis, particularly because of environ...

  19. Assessing Chemical Process Sustainability with GREENSCOPE

    EPA Pesticide Factsheets

    GREENSCOPE is a sustainability assessment tool used to evaluate and assist in the design of chemical processes. The goal is to minimize resource use, prevent or reduce releases, and increase the economic feasibility of a chemical process.

  20. Modeling chemical reactions for drug design.

    PubMed

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  1. Experiments To Demonstrate Chemical Process Safety Principles.

    ERIC Educational Resources Information Center

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  2. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  3. DESIGNING PROCESSES FOR ENVIRONMENTAL PROBLEMS

    EPA Science Inventory

    Designing for the environment requires consideration of environmental impacts. The Generalized WAR Algorithm is the methodology that allows the user to evaluate the potential environmental impact of the design of a chemical process. In this methodology, chemicals are assigned val...

  4. A Course in Chemical Reactor Design.

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1983-01-01

    Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)

  5. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  6. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  7. Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article)

    EPA Science Inventory

    An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...

  8. Teaching Process Design through Integrated Process Synthesis

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  9. Chemical Process Design: An Integrated Teaching Approach.

    ERIC Educational Resources Information Center

    Debelak, Kenneth A.; Roth, John A.

    1982-01-01

    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  10. Implementation of an Innovative Teaching Project in a Chemical Process Design Course at the University of Cantabria, Spain

    ERIC Educational Resources Information Center

    Galan, Berta; Muñoz, Iciar; Viguri, Javier R.

    2016-01-01

    This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and…

  11. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  12. Chemical Processing Manual

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1972-01-01

    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  13. Chemical processing of glasses

    NASA Astrophysics Data System (ADS)

    Laine, Richard M.

    1990-11-01

    The development of chemical processing methods for the fabrication of glass and ceramic shapes for photonic applications is frequently Edisonian in nature. In part, this is because the numerous variables that must be optimized to obtain a given material with a specific shape and particular properties cannot be readily defined based on fundamental principles. In part, the problems arise because the basic chemistry of common chemical processing systems has not been fully delineated. The prupose of this paper is to provide an overview of the basic chemical problems associated with chemical processing. The emphasis will be on sol-gel processing, a major subset pf chemical processing. Two alternate approaches to chemical processing of glasses are also briefly discussed. One approach concerns the use of bimetallic alkoxide oligomers and polymers as potential precursors to mulimetallic glasses. The second approach describes the utility of metal carboxylate precursors to multimetallic glasses.

  14. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...

  15. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...

  16. VCM Process Design: An ABET 2000 Fully Compliant Project

    ERIC Educational Resources Information Center

    Benyahia, Farid

    2005-01-01

    A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…

  17. Reflow process stabilization by chemical characteristics and process conditions

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  18. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  19. EVALUATING THE ENVIRONMENTAL FRIENDLINESS, ECONOMICS, AND ENERGY EFFICIENCY OF CHEMICAL PROCESSES: HEAT INTEGRATION

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  20. A software for managing chemical processes in a multi-user laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camino, Fernando E.

    Here, we report a software for logging chemical processes in a multi-user laboratory, which implements a work flow designed to reduce hazardous situations associated with the disposal of chemicals in incompatible waste containers. The software allows users to perform only those processes displayed in their list of authorized chemical processes and provides the location and label code of waste containers, among other useful information. The software has been used for six years in the cleanroom of the Center for Functional Nanomaterials at Brookhaven National Laboratory and has been an important factor for the excellent safety record of the Center.

  1. A software for managing chemical processes in a multi-user laboratory

    DOE PAGES

    Camino, Fernando E.

    2016-10-26

    Here, we report a software for logging chemical processes in a multi-user laboratory, which implements a work flow designed to reduce hazardous situations associated with the disposal of chemicals in incompatible waste containers. The software allows users to perform only those processes displayed in their list of authorized chemical processes and provides the location and label code of waste containers, among other useful information. The software has been used for six years in the cleanroom of the Center for Functional Nanomaterials at Brookhaven National Laboratory and has been an important factor for the excellent safety record of the Center.

  2. Implementation of an innovative teaching project in a Chemical Process Design course at the University of Cantabria, Spain

    NASA Astrophysics Data System (ADS)

    Galan, Berta; Muñoz, Iciar; Viguri, Javier R.

    2016-09-01

    This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.

  3. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  4. Design of High Quality Chemical XOR Gates with Noise Reduction.

    PubMed

    Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir

    2017-07-05

    We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chemical Sensing in Process Analysis.

    ERIC Educational Resources Information Center

    Hirschfeld, T.; And Others

    1984-01-01

    Discusses: (1) rationale for chemical sensors in process analysis; (2) existing types of process chemical sensors; (3) sensor limitations, considering lessons of chemometrics; (4) trends in process control sensors; and (5) future prospects. (JN)

  6. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  7. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    PubMed

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  8. Bayesian molecular design with a chemical language model

    NASA Astrophysics Data System (ADS)

    Ikebata, Hisaki; Hongo, Kenta; Isomura, Tetsu; Maezono, Ryo; Yoshida, Ryo

    2017-04-01

    The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.

  9. Bayesian molecular design with a chemical language model.

    PubMed

    Ikebata, Hisaki; Hongo, Kenta; Isomura, Tetsu; Maezono, Ryo; Yoshida, Ryo

    2017-04-01

    The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.

  10. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    PubMed

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.

  11. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  12. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    ERIC Educational Resources Information Center

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  13. Sliding mode control: an approach to regulate nonlinear chemical processes

    PubMed

    Camacho; Smith

    2000-01-01

    A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.

  14. Modular Chemical Process Intensification: A Review.

    PubMed

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  15. Modular Chemical Process Intensification: A Review

    DOE PAGES

    Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...

    2016-06-24

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less

  16. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via

  17. Chemical and biological assessment of Angelicae Sinensis Radix after processing with wine: an orthogonal array design to reveal the optimized conditions.

    PubMed

    Zhan, Janis Y X; Zheng, Ken Y Z; Zhu, Kevin Y; Bi, Cathy W C; Zhang, Wendy L; Du, Crystal Y Q; Fu, Qiang; Dong, Tina T X; Choi, Roy C Y; Tsim, Karl W K; Lau, David T W

    2011-06-08

    The roots of Angelica sinensis [Angelica Sinensis Radix (ASR)] have been used as a common health food supplement for women's care for thousands of years in China. According to Asian tradition, ASR could be processed with the treatment of wine, which subsequently promoted the biological functions of ASR. By chemical and biological assessments, an orthogonal array design was employed here to determine the roles of three variable parameters in the processing of ASR, including oven temperature, baking time, and flipping frequency. The results suggested that oven temperature and baking time were two significant factors, while flipping frequency was a subordinate factor. The optimized condition of processing with wine therefore was considered to be heating in an oven at 80 °C for 90 min with flipping twice per hour. Under the optimized processing conditions, the solubilities of ferulic acid and Z-ligustilide from ASR were markedly increased and decreased, respectively. In parallel, the biological functions of processed ASR were enhanced in both anti-platelet aggregation and estrogenic activation; these increased functions could be a result of the altered levels of ferulic acid and Z-ligustilide in wine-processed ASR. Thus, the chemical and biological assessment of the processed ASR was in full accordance with the Chinese old tradition.

  18. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  19. Hierarchical optimal control of large-scale nonlinear chemical processes.

    PubMed

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  20. INCORPORATING ENVIRONMENTAL AND ECONOMIC CONSIDERATIONS INTO PROCESS DESIGN: THE WASTE REDUCTION (WAR) ALGORITHM

    EPA Science Inventory

    A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...

  1. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act

  2. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  3. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  4. Fiber optic sensor design for chemical process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mahendran, R. S.; Harris, D.; Wang, L.; Machavaram, V. R.; Chen, R.; Kukureka, St. N.; Fernando, G. F.

    2007-07-01

    Cure monitoring is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composites can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in-situ cure monitoring of a model thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture in the cured resin system.

  5. Fiber-optic sensor design for chemical process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mahendran, R. S.; Wang, L.; Machavaram, V. R.; Pandita, S. D.; Chen, R.; Kukureka, S. N.; Fernando, G. F.

    2009-10-01

    "Curing" is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber-reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composite can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in situ monitoring of the cross-linking reactions of a commercially available thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture into the cured resin system.

  6. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    EPA Science Inventory

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  7. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  8. Quantification of chemical transport processes from the soil to surface runoff.

    PubMed

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. An integrated biotechnology platform for developing sustainable chemical processes.

    PubMed

    Barton, Nelson R; Burgard, Anthony P; Burk, Mark J; Crater, Jason S; Osterhout, Robin E; Pharkya, Priti; Steer, Brian A; Sun, Jun; Trawick, John D; Van Dien, Stephen J; Yang, Tae Hoon; Yim, Harry

    2015-03-01

    Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

  10. Interactive design of generic chemical patterns.

    PubMed

    Schomburg, Karen T; Wetzer, Lars; Rarey, Matthias

    2013-07-01

    Every medicinal chemist has to create chemical patterns occasionally for querying databases, applying filters or describing functional groups. However, the representations of chemical patterns have been so far limited to languages with highly complex syntax, handicapping the application of patterns. Graphic pattern editors similar to chemical editors can facilitate the work with patterns. In this article, we review the interfaces of frequently used web search engines for chemical patterns. We take a look at pattern editing concepts of standalone chemical editors and finally present a completely new, unpublished graphical approach to pattern design, the SMARTSeditor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sealed-bladdered chemical processing method and apparatus

    DOEpatents

    Harless, D. Phillip

    1999-01-01

    A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.

  12. A novel method for multifactorial bio-chemical experiments design based on combinational design theory.

    PubMed

    Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan

    2017-01-01

    Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.

  13. Using GREENSCOPE for Sustainable Process Design: An Educational Opportunity

    EPA Science Inventory

    Increasing sustainability can be approached through the education of those who design, construct, and operate facilities. As chemical engineers learn elements of process systems engineering, they can be introduced to sustainability concepts. The EPA’s GREENSCOPE methodology and...

  14. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include:more » landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.« less

  15. PROCESS DESIGN FOR ENVIRONMENT: A MULTI-OBJECTIVE FRAMEWORK UNDER UNCERTAINTY

    EPA Science Inventory

    Designing chemical processes for environment requires consideration of several indexes of environmental impact including ozone depletion and global warming potentials, human and aquatic toxicity, and photochemical oxidation, and acid rain potentials. Current methodologies like t...

  16. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    EPA Science Inventory

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  17. DEVELOPMENT OF A CHEMICAL PROCESS MODELING ENVIRONMENT BASED ON CAPE-OPEN INTERFACE STANDARDS AND THE MICROSOFT .NET FRAMEWORK

    EPA Science Inventory

    Chemical process simulation has long been used as a design tool in the development of chemical plants, and has long been considered a means to evaluate different design options. With the advent of large scale computer networks and interface models for program components, it is po...

  18. Enhanced Teaching and Student Learning through a Simulator-Based Course in Chemical Unit Operations Design

    ERIC Educational Resources Information Center

    Ghasem, Nayef

    2016-01-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…

  19. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.

  20. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  1. Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials

    PubMed Central

    Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng

    2016-01-01

    The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790

  2. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    PubMed

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  3. Trace chemical contaminant generation rates for spacecraft contamination control system design

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1995-01-01

    A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

  4. Chemical Compound Design Using Nuclear Charge Distributions

    DTIC Science & Technology

    2012-03-01

    Finding optimal solutions to design problems in chemistry is hampered by the combinatorially large search space. We develop a general theoretical ... framework for finding chemical compounds with prescribed properties using nuclear charge distributions. The key is the reformulation of the design

  5. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    PubMed

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  6. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  7. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  8. Central Processing of the Chemical Senses: An Overview

    PubMed Central

    2010-01-01

    Our knowledge regarding the neural processing of the three chemical senses has been considerably lagging behind that of our other senses. It is only during the last 25 years that significant advances have been made in our understanding of where in the human brain odors, tastants, and trigeminal stimuli are processed. Here, we provide an overview of the current knowledge of how the human brain processes chemical stimuli based on findings in neuroimaging studies using positron emission tomography and functional magnetic resonance imaging. Additionally, we provide new insights from recent meta-analyses, on the basis of all published neuroimaging studies of the chemical senses, of where the chemical senses converge in the brain. PMID:21503268

  9. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    PubMed Central

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  10. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    PubMed

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Chemical Processing of Electrons and Holes.

    ERIC Educational Resources Information Center

    Anderson, Timothy J.

    1990-01-01

    Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)

  12. MRI of chemical reactions and processes.

    PubMed

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. A Probablistic Diagram to Guide Chemical Design with ...

    EPA Pesticide Factsheets

    Toxicity is a concern with many chemicals currently in commerce, and with new chemicals that are introduced each year. The standard approach to testing chemicals is to run studies in laboratory animals (e.g. rats, mice, dogs), but because of the expense of these studies and concerns for animal welfare, few chemicals besides pharmaceuticals and pesticides are fully tested. Over the last decade there have been significant developments in the field of computational toxicology which combines in vitro tests and computational models. The ultimate goal of this ?field is to test all chemicals in a rapid, cost effective manner with minimal use of animals. One of the simplest measures of toxicity is provided by high-throughput in vitro cytotoxicity assays, which measure the concentration of a chemical that kills particular types of cells. Chemicals that are cytotoxic at low concentrations tend to be more toxic to animals than chemicals that are less cytotoxic. We employed molecular characteristics derived from density functional theory (DFT) and predicted values of log(octanol-water partition coe?fficient) (logP)to construct a design variable space, and built a predictive model for cytotoxicity using a Naive Bayesian algorithm. External evaluation showed that the area under the curve (AUC) for the receiver operating characteristic (ROC) of the model to be 0.81. Using this model, we provide design rules to help synthetic chemists minimize the chance that a newly synthesize

  15. Some aspects of mathematical and chemical modeling of complex chemical processes

    NASA Technical Reports Server (NTRS)

    Nemes, I.; Botar, L.; Danoczy, E.; Vidoczy, T.; Gal, D.

    1983-01-01

    Some theoretical questions involved in the mathematical modeling of the kinetics of complex chemical process are discussed. The analysis is carried out for the homogeneous oxidation of ethylbenzene in the liquid phase. Particular attention is given to the determination of the general characteristics of chemical systems from an analysis of mathematical models developed on the basis of linear algebra.

  16. EVALUATING THE ECONOMICS AND ENVIRONMENTAL FRIENDLINESS OF NEWLY DESIGNED OR RETROFITTED CHEMICAL PROCESSES

    EPA Science Inventory

    This work describes a method for using spreadsheet analyses of process designs and retrofits to provide simple and quick economic and environmental evaluations simultaneously. The method focuses attention onto those streams and components that have the largest monetary values and...

  17. Rethinking Process through Design

    ERIC Educational Resources Information Center

    Newcomb, Matthew; Leshowitz, Allison

    2017-01-01

    We take a look at work on writing processes by examining design processes. Design processes offer a greater emphasis on empathy with users, feedback and critique during idea generation, and varied uses of materials. After considering work already done on design and composition, we explore a variety of design processes and develop our own…

  18. Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods.

    PubMed

    Gooding, Owen W

    2004-06-01

    The use of parallel synthesis techniques with statistical design of experiment (DoE) methods is a powerful combination for the optimization of chemical processes. Advances in parallel synthesis equipment and easy to use software for statistical DoE have fueled a growing acceptance of these techniques in the pharmaceutical industry. As drug candidate structures become more complex at the same time that development timelines are compressed, these enabling technologies promise to become more important in the future.

  19. Ultrasound‐assisted emerging technologies for chemical processes

    PubMed Central

    Geertman, Rob; Wierschem, Matthias; Skiborowski, Mirko; Gielen, Bjorn; Jordens, Jeroen; John, Jinu J; Van Gerven, Tom

    2018-01-01

    Abstract The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound‐assisted extraction/crystallization/reaction) are on their way to becoming the next‐generation technologies. This article focuses on the advances of ultrasound (US)‐assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US‐assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state‐of‐the‐art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US‐assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29780194

  20. Design and Control of Chemical Grouting : Volume 4 - Executive Summary

    DOT National Transportation Integrated Search

    1983-04-01

    This report focuses on the engineering practice of chemical grouting, summarizing the findings of a study to improve design and control techniques for chemical grouting in soils. Improved methods for the planning, control and evaluation of chemical g...

  1. Lyophilization process design space.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2013-11-01

    The application of key elements of quality by design (QbD), such as risk assessment, process analytical technology, and design space, is discussed widely as it relates to freeze-drying process design and development. However, this commentary focuses on constructing the Design and Control Space, particularly for the primary drying step of the freeze-drying process. Also, practical applications and considerations of claiming a process Design Space under the QbD paradigm have been discussed. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. DYNSYL: a general-purpose dynamic simulator for chemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.K.; Rozsa, R.B.

    1978-09-05

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less

  3. How chemical information processing interferes with face processing: a magnetoencephalographic study.

    PubMed

    Walla, Peter; Mayer, Dagmar; Deecke, Lüder; Lang, Wilfried

    2005-01-01

    Magnetic field changes related to face encoding were recorded in 20 healthy young participants. Faces had to be deeply encoded under four kinds of simultaneous nasal chemical stimulation. Neutral room air, phenyl ethyl alcohol (PEA, rose flavor), carbon dioxide (CO2, pain), and hydrogen sulfide (H2S, rotten eggs flavor) were used as chemical stimuli. PEA and H2S represented odor stimuli, whereas CO2 was used for trigeminal stimulation (pain sensation). After the encoding of faces, the respective recognition performances were tested focusing on recognition effects related to specific chemical stimulation during encoding. The number of correctly recognized faces (hits) varied between chemical conditions. PEA stimulation during face encoding significantly increased the number of hits compared to the control condition. H2S also led to an increased mean number of hits, whereas simultaneous CO2 administration during face encoding resulted in a reduction. Analysis of the physiological data revealed two latency regions of interest. Compared to the control condition, both olfactory stimulus conditions resulted in reduced activity components peaking at about 260 ms after stimulus onset, whereas CO2 produced a strongly pronounced enhanced activity component peaking at about 700 ms after stimulus onset. Both olfactory conditions elicited only weak enhanced activities at about 700 ms, and CO2 did not show any difference activity at 260 ms after stimulus onset compared to the control condition. It is concluded that the early activity differences represent subconscious olfactory information processing leading to enhanced memory performances irrespective of the hedonic value, at least if they are only subconsciously processed. The later activity is suggested to reflect conscious CO2 perception negatively affecting face encoding and therefore leading to reduced subsequent face recognition. We interpret that conscious processing of nasal chemical stimulation competes with deep face

  4. Total chemical management in photographic processing

    USGS Publications Warehouse

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  5. Development of Chemical Process Design and Control for ...

    EPA Pesticide Factsheets

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  6. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  7. Identifying and designing chemicals with minimal acute aquatic toxicity.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  8. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  9. Rock fracture processes in chemically reactive environments

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed

  10. Chemical processing and shampooing impact cortisol measured in human hair.

    PubMed

    Hoffman, M Camille; Karban, Laura V; Benitez, Patrick; Goodteacher, Angela; Laudenslager, Mark L

    2014-08-01

    The assessment of cortisol in hair has gained popularity as a means to measure retrospective hypothalamic-pituitary-adrenal activity in a number of species; however, cortisol levels from human hair subjected to typical chemicals for cosmetic or hygienic purposes may be altered by the chemicals used. The purposed of this study was to determine if exposure of hair to chemical processing or shampooing impacts cortisol values. Human hair not exposed to prior chemical processing was cut from the posterior vertex region of the head of 106 human subjects as close to the scalp as possible. The hair sample was divided into 4-6 full-length clusters depending on quantity of hair available. Each hair sample was processed for baseline (native) cortisol and remaining clusters were exposed to five standard chemical hair treatments (Experiment 1) or were shampooed 15 or 30 times (Experiment 2). Hair was ground and cortisol levels were determined by enzyme immunoassay (EIA). Comparisons were made between native hair and processed hair using paired t-tests and Pearson correlation. Hair cortisol as assessed by EIA was significantly altered by chemical processing but in somewhat different ways. Exposure to bleach (harshest exposure), demi-perm (least exposure) or 15-30 shampoos resulted in a significant decrease in cortisol level while exposure to varying percentages of peroxides increased cortisol measured. There were no differences in cortisol levels associated with sex, age or tobacco use in the native hair for this particular group. Chemical processing and frequent shampooing affect cortisol levels measured in hair. Chemically processed or excessively shampooed hair should be avoided when recruiting subjects for hair cortisol studies.

  11. Chemical processing and shampooing impact cortisol measured in human hair

    PubMed Central

    Hoffman, M. Camille; Karban, Laura V.; Benitez, Patrick; Goodteacher, Angela; Laudenslager, Mark L.

    2015-01-01

    Purpose The assessment of cortisol in hair has gained popularity as a means to measure retrospective hypothalamic-pituitary-adrenal activity in a number of species; however, cortisol levels from human hair subjected to typical chemicals for cosmetic or hygienic purposes may be altered by the chemicals used. The purposed of this study was to determine if exposure of hair to chemical processing or shampooing impacts cortisol values. Methods Human hair not exposed to prior chemical processing was cut from the posterior vertex region of the head of 106 human subjects as close to the scalp as possible. The hair sample was divided into 4-6 full-length clusters depending on quantity of hair available. Each hair sample was processed for baseline (native) cortisol and remaining clusters were exposed to five standard chemical hair treatments (Experiment 1) or were shampooed 15 or 30 times (Experiment 2). Hair was ground and cortisol levels were determined by enzyme immunoassay (EIA). Comparisons were made between native hair and processed hair using paired t-tests and Pearson correlation. Results Hair cortisol as assessed by EIA was significantly altered by chemical processing but in somewhat different ways. Exposure to bleach (harshest exposure), demi-perm (least exposure) or 15-30 shampoos resulted in a significant decrease in cortisol level while exposure to varying percentages of peroxides increased cortisol measured. There were no differences in cortisol levels associated with sex, age or tobacco use in the native hair for this particular group. Conclusion Chemical processing and frequent shampooing affect cortisol levels measured in hair. Chemically processed or excessively shampooed hair should be avoided when recruiting subjects for hair cortisol studies. PMID:25090265

  12. Chemical interaction matrix between reagents in a Purex based process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.

    2008-07-01

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less

  13. Design of Linear-Quadratic-Regulator for a CSTR process

    NASA Astrophysics Data System (ADS)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  14. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  15. Effectiveness of the SYSTEM 1E Liquid Chemical Sterilant Processing System for reprocessing duodenoscopes.

    PubMed

    McDonnell, Gerald; Ehrman, Michele; Kiess, Sara

    2016-06-01

    A troubling number of health care-acquired infection outbreaks and transmission events, some involving highly resistant microbial pathogens and resulting in serious patient outcomes, have been traced to reusable, high-level disinfected duodenoscopes in the United States. The Food and Drug Administration (FDA) requested a study be conducted to verify liquid chemical sterilization efficacy of SYSTEM 1E(®) Liquid Chemical Sterilant Processing System (STERIS Corporation, Mentor, OH) with varied duodenoscope designs under especially arduous conditions. Here, we describe the system's performance under worst case SYSTEM 1E(®) processing conditions. The test protocol challenged the system's performance by running a fractional cycle to evaluate reduction of recoverable test spores from heavily contaminated endoscopes, including all channels and each distal tip, under worst case SYSTEM 1E(®) processing conditions. All devices were successfully liquid chemically sterilized, showing greater than a 6 log10 reduction of Geobacillus stearothermophilus spores at every inoculation site of each duodenoscope tested, in less than half the exposure time of the standard cycle. The successful outcome of the additional efficacy testing reported here indicates that the SYSTEM 1E(®) is an effective low-temperature liquid chemical sterilization method for duodenoscopes and other critical and semicritical devices. It offers a fast, safe, convenient processing alternative while providing the assurance of a system expressly tested and cleared to achieve liquid chemical sterilization of specific validated duodenoscope models. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. ACToR Chemical Structure processing using Open Source ...

    EPA Pesticide Factsheets

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  17. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide chemicals in processed foods. When pesticide...

  18. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    DOT National Transportation Integrated Search

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  19. Project Designed to Educate Public on Chemicals Starts Up.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1984-01-01

    The Chemical Education for Public Understanding Project is a three-year pilot project designed to provide the public with accurate information on uses and hazards of chemicals, ranging from control of garden pests to types of toxic wastes generated by industry. Discusses project aims and educational materials to be developed. (JN)

  20. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  1. Design and Control of Chemical Grouting : Volume 1 - Construction Control

    DOT National Transportation Integrated Search

    1983-04-01

    This report presents the results of a laboratory and field research program investigating innovative method for design and control of chemical grouting in soils. Chemical grouting practice is reviewed and standard evaluation and measurement technique...

  2. Website Designs for Communicating About Chemicals in Cigarette Smoke.

    PubMed

    Lazard, Allison J; Byron, M Justin; Vu, Huyen; Peters, Ellen; Schmidt, Annie; Brewer, Noel T

    2017-12-13

    The Family Smoking Prevention and Tobacco Control Act requires the US government to inform the public about the quantities of toxic chemicals in cigarette smoke. A website can accomplish this task efficiently, but the site's user interface must be usable to benefit the general public. We conducted online experiments with national convenience samples of 1,451 US adult smokers and nonsmokers to examine the impact of four interface display elements: the chemicals, their associated health effects, quantity information, and a visual risk indicator. Outcomes were perceptions of user experience (perceived clarity and usability), motivation (willingness to use), and potential impact (elaboration about the harms of smoking). We found displaying health effects as text with icons, providing quantity information for chemicals (e.g., ranges), and showing a visual risk indicator all improved the user experience of a webpage about chemicals in cigarette smoke (all p < .05). Displaying a combination of familiar and unfamiliar chemicals, providing quantity information for chemicals, and showing a visual risk indicator all improved motivation to use the webpage (all p < .05). Displaying health effects or quantity information increased the potential impact of the webpage (all p < .05). Overall, interface designs displaying health effects of chemicals in cigarette smoke as text with icons and with a visual risk indicator had the greatest impact on the user experience, motivation, and potential impact of the website. Our findings provide guidance for accessible website designs that can inform consumers about the toxic chemicals in cigarette smoke.

  3. Lessons learned from the design of chemical space networks and opportunities for new applications.

    PubMed

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  4. Lessons learned from the design of chemical space networks and opportunities for new applications

    NASA Astrophysics Data System (ADS)

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  5. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  6. Designer cell signal processing circuits for biotechnology

    PubMed Central

    Bradley, Robert W.; Wang, Baojun

    2015-01-01

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192

  7. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  8. Process simulation during the design process makes the difference: process simulations applied to a traditional design.

    PubMed

    Traversari, Roberto; Goedhart, Rien; Schraagen, Jan Maarten

    2013-01-01

    The objective is evaluation of a traditionally designed operating room using simulation of various surgical workflows. A literature search showed that there is no evidence for an optimal operating room layout regarding the position and size of an ultraclean ventilation (UCV) canopy with a separate preparation room for laying out instruments and in which patients are induced in the operating room itself. Neither was literature found reporting on process simulation being used for this application. Many technical guidelines and designs have mainly evolved over time, and there is no evidence on whether the proposed measures are also effective for the optimization of the layout for workflows. The study was conducted by applying observational techniques to simulated typical surgical procedures. Process simulations which included complete surgical teams and equipment required for the intervention were carried out for four typical interventions. Four observers used a form to record conflicts with the clean area boundaries and the height of the supply bridge. Preferences for particular layouts were discussed with the surgical team after each simulated procedure. We established that a clean area measuring 3 × 3 m and a supply bridge height of 2.05 m was satisfactory for most situations, provided a movable operation table is used. The only cases in which conflicts with the supply bridge were observed were during the use of a surgical robot (Da Vinci) and a surgical microscope. During multiple trauma interventions, bottlenecks regarding the dimensions of the clean area will probably arise. The process simulation of four typical interventions has led to significantly different operating room layouts than were arrived at through the traditional design process. Evidence-based design, human factors, work environment, operating room, traditional design, process simulation, surgical workflowsPreferred Citation: Traversari, R., Goedhart, R., & Schraagen, J. M. (2013). Process

  9. Considerations for designing chemical screening strategies in plant biology

    PubMed Central

    Serrano, Mario; Kombrink, Erich; Meesters, Christian

    2015-01-01

    Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects. PMID:25904921

  10. Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations.

    PubMed

    Yuen, Yeo Tze; Sharratt, Paul N; Jie, Bu

    2016-11-01

    Numerous carbon dioxide mineralization (CM) processes have been proposed to overcome the slow rate of natural weathering of silicate minerals. Ten of these proposals are mentioned in this article. The proposals are described in terms of the four major areas relating to CM process design: pre-treatment, purification, carbonation, and reagent recycling operations. Any known specifics based on probable or representative operating and reaction conditions are listed, and basic analysis of the strengths and shortcomings associated with the individual process designs are given in this article. The processes typically employ physical or chemical pseudo-catalytic methods to enhance the rate of carbon dioxide mineralization; however, both methods have its own associated advantages and problems. To examine the feasibility of a CM process, three key aspects should be included in the evaluation criteria: energy use, operational considerations as well as product value and economics. Recommendations regarding the optimal level of emphasis and implementation of measures to control these aspects are given, and these will depend very much on the desired process objectives. Ultimately, a mix-and-match approach to process design might be required to provide viable and economic proposals for CM processes.

  11. Chemical Processing of Organics within Clouds: Pilot Study at Whiteface Mountain in Upstate NY

    NASA Astrophysics Data System (ADS)

    Lance, S.; Carlton, A. G.; Barth, M. C.; Schwab, J. J.; Minder, J. R.; Freedman, J. M.; Zhang, J.; Brandt, R. E.; Casson, P.; Brewer, M.; Orlowski, D.; Christiansen, A.

    2017-12-01

    Aqueous chemical processing within cloud and fog water has been identified as a key process in the formation of secondary organic aerosol (SOA) mass, which is found abundantly throughout the troposphere. Yet, significant uncertainty remains regarding the organic chemical reactions taking place within clouds and the conditions under which those reactions occur. Routine longterm measurements from the Whiteface Mountain (WFM) Research Observatory in upstate NY provide a unique and broad view of regional air quality relevant to the formation of particulate matter within clouds, largely due to the fact that the summit of WFM is within non-precipitating clouds 30-50% in summertime and the site is undisturbed by local sources. An NSF-funded Cloud Chemistry Workshop in Sept 2016 brought together key researchers at WFM to lay out the most pertinent scientific questions relevant to heterogeneous chemistry occurring within fogs and clouds and to discuss preliminary model intercomparisons. The workshop culminated in a plan to coordinate chemical analyses of cloud water samples focused on chemical constituents thought to be most relevant for SOA formation. Workshop participants also recommended that a pilot study be conducted at WFM to better characterize the meteorological conditions, airflow patterns and clouds intercepting the site, in preparation for future intensive field operations focused on the chemical processing of organics within clouds. This presentation will highlight the experimental design and preliminary observations from the pilot study taking place at WFM in August 2017. Upwind below-cloud measurements of aerosol CCN activation efficiency, size distribution and chemical composition will be compared with similar measurements made at the summit. Under certain conditions, we anticipate that aerosols measured at the summit between cloud events will be representative of cloud droplet residuals recently detrained from the frequent shallow cumulus intercepting the

  12. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  13. Designing Intelligent Secure Android Application for Effective Chemical Inventory

    NASA Astrophysics Data System (ADS)

    Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad

    2017-08-01

    Mobile services support various situations in everyday life and with the increasing sophistication of phone functions, the daily life is much more easier and better especially in term of managing tools and apparatus. Since chemical inventory management system has been experiencing a new revolution from antiquated to an automated inventory management system, some additional features should be added in current chemical inventory system. Parallel with the modern technologies, chemical inventory application using smart phone has been developed. Several studies about current related chemical inventory management using smart phone application has been done in this paper in order to obtain an overview on recent studies in smartphone application for chemical inventory system which are needed in schools, universities or other education institutions. This paper also discuss about designing the proposed secure mobile chemical inventory system. The study of this paper can provide forceful review analysis support for the chemical inventory management system related research.

  14. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  15. Design Process-System and Methodology of Design Research

    NASA Astrophysics Data System (ADS)

    Bashier, Fathi

    2017-10-01

    Studies have recognized the failure of the traditional design approach both in practice and in the studio. They showed that design problems today are too complex for the traditional approach to cope with and reflected a new interest in a better quality design services in order to meet the challenges of our time. In the mid-1970s and early 1980s, there has been a significant shift in focus within the field of design research towards the aim of creating a ‘design discipline’. The problem, as will be discussed, is the lack of an integrated theory of design knowledge that can explicitly describe the design process in a coherent way. As a consequence, the traditional approach fails to operate systematically, in a disciplinary manner. Addressing this problem is the primary goal of the research study in the design process currently being conducted in the research-based master studio at Wollega University, Ethiopia. The research study seeks to make a contribution towards a disciplinary approach, through proper understanding the mechanism of knowledge development within design process systems. This is the task of the ‘theory of design knowledge’. In this article the research project is introduced, and a model of the design process-system is developed in the studio as a research plan and a tool of design research at the same time. Based on data drawn from students’ research projects, the theory of design knowledge is developed and empirically verified through the research project.

  16. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less

  17. Chemical Processing Department monthly report, September 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-10-18

    The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  18. Chemical Processing Department monthly report, November 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-12-23

    The November, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  19. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  20. Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System

    NASA Astrophysics Data System (ADS)

    Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro

    A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.

  1. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  2. In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis.

    PubMed

    Kleinstreuer, Nicole C; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Paul, Katie B; Reif, David M; Crofton, Kevin M; Hamilton, Kerry; Hunter, Ronald; Shah, Imran; Judson, Richard S

    2013-01-01

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes to build models for priority setting and further testing. We describe a model for predicting rodent carcinogenicity based on HTS data from 292 chemicals tested in 672 assays mapping to 455 genes. All data come from the EPA ToxCast project. The model was trained on a subset of 232 chemicals with in vivo rodent carcinogenicity data in the Toxicity Reference Database (ToxRefDB). Individual HTS assays strongly associated with rodent cancers in ToxRefDB were linked to genes, pathways, and hallmark processes documented to be involved in tumor biology and cancer progression. Rodent liver cancer endpoints were linked to well-documented pathways such as peroxisome proliferator-activated receptor signaling and TP53 and novel targets such as PDE5A and PLAUR. Cancer hallmark genes associated with rodent thyroid tumors were found to be linked to human thyroid tumors and autoimmune thyroid disease. A model was developed in which these genes/pathways function as hypothetical enhancers or promoters of rat thyroid tumors, acting secondary to the key initiating event of thyroid hormone disruption. A simple scoring function was generated to identify chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity in different rat tissues and organs. This scoring function was applied to an external test set of 33 compounds with carcinogenicity classifications from the EPA's Office of Pesticide Programs and successfully (p = 0.024) differentiated between chemicals classified as "possible"/"probable"/"likely" carcinogens and those designated as "not likely" or with "evidence of noncarcinogenicity." This model represents a chemical carcinogenicity prioritization tool supporting targeted

  3. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  4. Chemical Equilibrium And Transport (CET)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  5. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    NASA Astrophysics Data System (ADS)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  6. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  7. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    ERIC Educational Resources Information Center

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  8. Prevention and harm reduction for chemical dependency: a process perspective.

    PubMed

    DiClemente, C C

    1999-06-01

    Clinical psychology is often on the periphery of treatment and prevention efforts to stop substance abuse and dependence. This article describes the current status of prevention research and practice, outlines a process perspective on the initiation and cessation of drug use and abuse, and offers some new ideas about how psychology can and should become involved in the prevention of chemical dependency. Psychologists are faced with the precursors and consequences of chemical dependency on a daily basis. With improved training and increased awareness, and aided by a process perspective, psychology and psychologists can play an important role in preventing the onset of chemical dependency, creating early interventions to stop the process of initiation, and becoming more involved in treatment and harm-reduction efforts. Psychologists have the basic training and the biopsychosocial orientation that could make them effective agents for primary, secondary, and tertiary prevention of chemical dependency.

  9. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  10. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    EPA Science Inventory

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  11. Design Considerations for Creating a Chemical Information Workstation.

    ERIC Educational Resources Information Center

    Mess, John A.

    1995-01-01

    Discusses what a functional chemical information workstation should provide to support the users in an academic library and examines how it can be implemented. Highlights include basic design considerations; natural language interface, including grammar-based, context-based, and statistical methodologies; expert system interface; and programming…

  12. Chemical Processing Department monthly report, October 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1962-11-21

    This report, from the Chemical Processing Department at HAPO, for October, 1962 discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

  13. Reengineering the Project Design Process

    NASA Technical Reports Server (NTRS)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  14. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  15. Chemical engineering design of CO oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  16. Design Thinking in Elementary Students' Collaborative Lamp Designing Process

    ERIC Educational Resources Information Center

    Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai

    2013-01-01

    Design and Technology education is potentially a rich environment for successful learning, if the management of the whole design process is emphasised, and students' design thinking is promoted. The aim of the present study was to unfold the collaborative design process of one team of elementary students, in order to understand their multimodal…

  17. Development of Chemical Process Design and Control for Sustainability

    EPA Science Inventory

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  18. The Need for, and the Role of the Toxicological Chemist in the Design of Safer Chemicals.

    PubMed

    DeVito, Stephen C

    2018-02-01

    During the past several decades, there has been an ever increasing emphasis for designers of new commercial (nonpharmaceutical) chemicals to include considerations of the potential impacts a planned chemical may have on human health and the environment as part of the design of the chemical, and to design chemicals such that they possess the desired use efficacy while minimizing threats to human health and the environment. Achievement of this goal would be facilitated by the availability of individuals specifically and formally trained to design such chemicals. Medicinal chemists are specifically trained to design and develop safe and clinically efficacious pharmaceutical substances. No such formally trained science hybrid exists for the design of safer commercial (nonpharmaceutical) chemicals. This article describes the need for and role of the "toxicological chemist," an individual who is formally trained in synthetic organic chemistry, biochemistry, physiology, toxicology, environmental science, and in the relationships between structure and commercial use efficacy, structure and toxicity, structure and environmental fate and effects, and global hazard, and trained to integrate this knowledge to design safer commercially efficacious chemicals. Using examples, this article illustrates the role of the toxicological chemist in designing commercially efficacious, safer chemical candidates. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by a US Government employee and is in the public domain in the US.

  19. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  20. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    PubMed

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  1. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  2. Design of nanomaterial synthesis by aerosol processes.

    PubMed

    Buesser, Beat; Pratsinis, Sotiris E

    2012-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.

  3. Expanding Rational Molecular Design beyond Pharma: Metrics to Guide Safer Chemical Design

    EPA Science Inventory

    The demand for safer, healthier and sustainable products, materials and processes has been increasing over the past several years. Differentiating which chemicals are relatively less hazardous than others, often referred to as “greener” or “sustainable, demands a comprehensive, h...

  4. Expanding Rational Molecular Design beyond Pharma: Metrics toGuide Safer Chemical Design

    EPA Science Inventory

    The demand for safer, healthier and sustainable products, materials and processes has been increasing over the past several years. Differentiating which chemicals are relatively less hazardous than others, often referred to as “greener” or “sustainable, demands a comprehensive, h...

  5. Safety Considerations in the Chemical Process Industries

    NASA Astrophysics Data System (ADS)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  6. Integrating Data Sources for Process Sustainability ...

    EPA Pesticide Factsheets

    To perform a chemical process sustainability assessment requires significant data about chemicals, process design specifications, and operating conditions. The required information includes the identity of the chemicals used, the quantities of the chemicals within the context of the sustainability assessment, physical properties of these chemicals, equipment inventory, as well as health, environmental, and safety properties of the chemicals. Much of this data are currently available to the process engineer either from the process design in the chemical process simulation software or online through chemical property and environmental, health, and safety databases. Examples of these databases include the U.S. Environmental Protection Agency’s (USEPA’s) Aggregated Computational Toxicology Resource (ACToR), National Institute for Occupational Safety and Health’s (NIOSH’s) Hazardous Substance Database (HSDB), and National Institute of Standards and Technology’s (NIST’s) Chemistry Webbook. This presentation will provide methods and procedures for extracting chemical identity and flow information from process design tools (such as chemical process simulators) and chemical property information from the online databases. The presentation will also demonstrate acquisition and compilation of the data for use in the EPA’s GREENSCOPE process sustainability analysis tool. This presentation discusses acquisition of data for use in rapid LCI development.

  7. Design Expert's Participation in Elementary Students' Collaborative Design Process

    ERIC Educational Resources Information Center

    Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai

    2013-01-01

    The main goal of the present study was to provide insights into how disciplinary expertise might be infused into Design and Technology classrooms and how authentic processes based on professional design practices might be constructed. We describe elementary students' collaborative lamp designing process, where the leadership was provided by a…

  8. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J.; Edwards, T.

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) statemore » of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.« less

  9. Reengineering the project design process

    NASA Astrophysics Data System (ADS)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  10. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  11. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  12. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  13. Introducing the "Decider" Design Process

    ERIC Educational Resources Information Center

    Prasa, Anthony R., Jr.; Del Guercio, Ryan

    2016-01-01

    Engineers are faced with solving important problems every day and must follow a step-by-step design process to arrive at solutions. Students who are taught an effective design process to apply to engineering projects begin to see problems as an engineer would, consider all ideas, and arrive at the best solution. Using an effective design process…

  14. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered chemicals...

  15. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  16. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  17. Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes

    PubMed Central

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298

  18. 40 CFR 790.26 - Initiation and completion of rulemaking proceedings on ITC-designated chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... proceedings on ITC-designated chemicals. 790.26 Section 790.26 Protection of Environment ENVIRONMENTAL... completion of rulemaking proceedings on ITC-designated chemicals. (a) Where EPA concludes that a consensus... novel issues that require additional Agency review and opportunity for public comment, the Agency may...

  19. DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  20. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  1. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  2. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  3. A Nuclear Reactor and Chemical Processing Design for Production of Molybdenum-99 with Crystalline Uranyl Nitrate Hexahydrate Fuel

    NASA Astrophysics Data System (ADS)

    Stange, Gary Michael

    Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium

  4. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  5. How to design cell-based biosensors using the sol-gel process.

    PubMed

    Depagne, Christophe; Roux, Cécile; Coradin, Thibaud

    2011-05-01

    Inorganic gels formed using the sol-gel process are promising hosts for the encapsulation of living organisms and the design of cell-based biosensors. However, the possibility to use the biological activity of entrapped cells as a biological signal requires a good understanding and careful control of the chemical and physical conditions in which the organisms are placed before, during, and after gel formation, and their impact on cell viability. Moreover, it is important to examine the possible transduction methods that are compatible with sol-gel encapsulated cells. Through an updated presentation of the current knowledge in this field and based on selected examples, this review shows how it has been possible to convert a chemical technology initially developed for the glass industry into a biotechnological tool, with current limitations and promising specificities.

  6. Design and operation of a continuous integrated monoclonal antibody production process.

    PubMed

    Steinebach, Fabian; Ulmer, Nicole; Wolf, Moritz; Decker, Lara; Schneider, Veronika; Wälchli, Ruben; Karst, Daniel; Souquet, Jonathan; Morbidelli, Massimo

    2017-09-01

    The realization of an end-to-end integrated continuous lab-scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter-based cell-retention, a continuous two column capture process, a virus inactivation step, a semi-continuous polishing step (twin-column MCSGP), and a batch-wise flow-through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity-yield trade-off of classical batch-wise bind-elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight-through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end-to-end integration. The steady-state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303-1313, 2017. © 2017 American Institute of Chemical Engineers.

  7. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals.

    PubMed

    Morrison, Lisa M

    2004-07-26

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  8. [Design of an HACCP program for a cocoa processing facility].

    PubMed

    López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar

    2012-12-01

    The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well

  9. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    PubMed

    Menges, Achim

    2012-03-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.

  10. Influence of surface coverage on the chemical desorption process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorptionmore » efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.« less

  11. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  12. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  13. Value-added processing of crude glycerol into chemicals and polymers.

    PubMed

    Luo, Xiaolan; Ge, Xumeng; Cui, Shaoqing; Li, Yebo

    2016-09-01

    Crude glycerol is a low-value byproduct which is primarily obtained from the biodiesel production process. Its composition is significantly different from that of pure glycerol. Crude glycerol usually contains various impurities, such as water, methanol, soap, fatty acids, and fatty acid methyl esters. Considerable efforts have been devoted to finding applications for converting crude glycerol into high-value products, such as biofuels, chemicals, polymers, and animal feed, to improve the economic viability of the biodiesel industry and overcome environmental challenges associated with crude glycerol disposal. This article reviews recent advances of biological and chemical technologies for value-added processing of crude glycerol into chemicals and polymers, and provides strategies for addressing production challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  15. Practicing universal design to actual hand tool design process.

    PubMed

    Lin, Kai-Chieh; Wu, Chih-Fu

    2015-09-01

    UD evaluation principles are difficult to implement in product design. This study proposes a methodology for implementing UD in the design process through user participation. The original UD principles and user experience are used to develop the evaluation items. Difference of product types was considered. Factor analysis and Quantification theory type I were used to eliminate considered inappropriate evaluation items and to examine the relationship between evaluation items and product design factors. Product design specifications were established for verification. The results showed that converting user evaluation into crucial design verification factors by the generalized evaluation scale based on product attributes as well as the design factors applications in product design can improve users' UD evaluation. The design process of this study is expected to contribute to user-centered UD application. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the

  17. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  18. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore.

    PubMed

    Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina

    2014-06-30

    The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Green chemistry for chemical synthesis

    PubMed Central

    Li, Chao-Jun; Trost, Barry M.

    2008-01-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  20. Comparison of designed and randomly generated catalysts for simple chemical reactions.

    PubMed

    Kipnis, Yakov; Baker, David

    2012-09-01

    There has been recent success in designing enzymes for simple chemical reactions using a two-step protocol. In the first step, a geometric matching algorithm is used to identify naturally occurring protein scaffolds at which predefined idealized active sites can be realized. In the second step, the residues surrounding the transition state model are optimized to increase transition state binding affinity and to bolster the primary catalytic side chains. To improve the design methodology, we investigated how the set of solutions identified by the design calculations relate to the overall set of solutions for two different chemical reactions. Using a TIM barrel scaffold in which catalytically active Kemp eliminase and retroaldolase designs were obtained previously, we carried out activity screens of random libraries made to be compositionally similar to active designs. A small number of active catalysts were found in screens of 10³ variants for each of the two reactions, which differ from the computational designs in that they reuse charged residues already present in the native scaffold. The results suggest that computational design considerably increases the frequency of catalyst generation for active sites involving newly introduced catalytic residues, highlighting the importance of interaction cooperativity in enzyme active sites. Copyright © 2012 The Protein Society.

  1. Instructional Design Processes and Traditional Colleges

    ERIC Educational Resources Information Center

    Vasser, Nichole

    2010-01-01

    Traditional colleges who have implemented distance education programs would benefit from using instructional design processes to develop their courses. Instructional design processes provide the framework for designing and delivering quality online learning programs in a highly-competitive educational market. Traditional college leaders play a…

  2. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  3. Integrated Electrochemical Processes for CO 2 Capture and Conversion to Commodity Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, T. Alan; Jamison, Timothy

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO 2. The process is assessed as a novel chemical sequestration technology that utilizes CO 2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO 2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of COmore » 2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO 2 and epoxide to cyclic carbonates; 3) Investigation of CO 2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.« less

  4. GREENSCOPE: A Method for Modeling Chemical Process Sustainability

    EPA Science Inventory

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Ef...

  5. Risk-based design of process plants with regard to domino effects and land use planning.

    PubMed

    Khakzad, Nima; Reniers, Genserik

    2015-12-15

    Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  7. Design of chemical space networks on the basis of Tversky similarity

    NASA Astrophysics Data System (ADS)

    Wu, Mengjun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-01-01

    Chemical space networks (CSNs) have been introduced as a coordinate-free representation of chemical space. In CSNs, nodes represent compounds and edges pairwise similarity relationships. These network representations are mostly used to navigate sections of biologically relevant chemical space. Different types of CSNs have been designed on the basis of alternative similarity measures including continuous numerical similarity values or substructure-based similarity criteria. CSNs can be characterized and compared on the basis of statistical concepts from network science. Herein, a new CSN design is introduced that is based upon asymmetric similarity assessment using the Tversky coefficient and termed TV-CSN. Compared to other CSNs, TV-CSNs have unique features. While CSNs typically contain separate compound communities and exhibit small world character, many TV-CSNs are also scale-free in nature and contain hubs, i.e., extensively connected central compounds. Compared to other CSNs, these hubs are a characteristic of TV-CSN topology. Hub-containing compound communities are of particular interest for the exploration of structure-activity relationships.

  8. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  9. Information-Processing Models and Curriculum Design

    ERIC Educational Resources Information Center

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  10. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  11. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  12. Analysis of digester design concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gasmore » cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.« less

  13. Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dhooge, P.M.

    1994-04-01

    Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less

  14. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights

  15. P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process

    NASA Astrophysics Data System (ADS)

    Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.

    2009-09-01

    The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).

  16. Determinants of job stress in chemical process industry: A factor analysis approach.

    PubMed

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  17. Reengineering the JPL Spacecraft Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, C.

    1995-01-01

    This presentation describes the factors that have emerged in the evolved process of reengineering the unmanned spacecraft design process at the Jet Propulsion Laboratory in Pasadena, California. Topics discussed include: New facilities, new design factors, new system-level tools, complex performance objectives, changing behaviors, design integration, leadership styles, and optimization.

  18. Design and fabrication of chemically robust three-dimensional microfluidic valves.

    PubMed

    Maltezos, George; Garcia, Erika; Hanrahan, Grady; Gomez, Frank A; Vyawahare, Saurabh; Vyawhare, Saurabh; van Dam, R Michael; Chen, Yan; Scherer, Axel

    2007-09-01

    A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-stick" fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.

  19. Nitrous oxide production from reactive nitrification intermediates: a concerted action of biological and chemical processes

    NASA Astrophysics Data System (ADS)

    Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry

    2017-04-01

    intermediates into the soil matrix. It will be shown that the magnitude of these chemically produced N2O fluxes is not only governed by soil nitrogen availability and soil water content, but also by organic matter content and composition, pH, redox conditions and redox-active metal ion content. The presented data reveal that the interplay between biological and chemical processes is relevant for soil N2O emissions. The integration of these processes and their additional controlling variables in soil N trace gas emission models would very likely have a great potential for reducing the uncertainty in emission model results and for facilitating the design of appropriate, site-specific N2O mitigation strategies.

  20. Ionic Liquids and Relative Process Design

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.

    Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.

  1. Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor

    NASA Astrophysics Data System (ADS)

    Remley, Kate A.; Weisshaar, Andreas

    1996-08-01

    The design of a silicon-based antiresonant reflecting optical waveguide (ARROW) chemical sensor is presented, and its theoretical performance is compared with that of a conventional structure. The use of an ARROW structure permits incorporation of a thick guiding region for efficient coupling to a single-mode fiber. A high-index overlay is added to fine tune the sensitivity of the ARROW chemical sensor. The sensitivity of the sensor is presented, and design trade-offs are discussed.

  2. Hafnium transistor process design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  3. Design of a lunar propellant processing facility. NASA/USRA advanced program

    NASA Technical Reports Server (NTRS)

    Batra, Rajesh; Bell, Jason; Campbell, J. Matt; Cash, Tom; Collins, John; Dailey, Brian; France, Angelique; Gareau, Will; Gleckler, Mark; Hamilton, Charles

    1993-01-01

    Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.

  4. Design Projects of the Future

    ERIC Educational Resources Information Center

    Shaeiwitz, Joseph A.; Turton, Richard

    2006-01-01

    The chemical engineering profession is in the midst of a significant evolution, perhaps a revolution. As the profession moves toward product development and design and away from petroleum and chemical process development and design, a new paradigm for chemical engineering education is evolving. Therefore, a new generation of capstone design…

  5. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  6. Linking performance benchmarking of refinery process chemicals to refinery key performance indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.M.; Nieman, L.D.

    In 1977 Solomon Associates, Inc. issued its first study of refining in the US entitled, Comparative Performance Analysis for Fuel Product Refineries, most commonly referred to as the Solomon Study, or the Fuels Study. In late 1993, both the Water and Waste Water Management, and Petroleum Divisions of Nalco Chemical Company came to the same conclusion; that they must have a better understanding of the Solomon Study process, and have some input to this system of measurement. The authors first approached Solomon Associates with the idea that a specific study should be done of specialty chemicals used in the refinery.more » They felt that this would result in two studies, one for water treatment applications, and one for process. The water treatment study came first, and was completed in 1993 with the United States Petroleum Refineries Water Treatment Performance Analysis for Operating Year 1993. The process study, entitled United States Petroleum Refinery Process Treatment Performance Analysis for Operating Years 1994--95 will be issued in the 2nd quarter of this year by Nalco/Exxon Energy Chemicals, L.P, which includes the combined resources of the former Petroleum Division of Nalco Chemical Company (including the petroleum related portions of most of its overseas companies), and the petroleum related specialty chemical operations of Exxon Chemical on a global basis. What follows is a recap of the process study focus, some examples of output, and comment on both the linkage to key refinery operating indicators, as well as the perception of the effect of such measurement on the supplier relationship of the future.« less

  7. 40 CFR 63.100 - Applicability and designation of source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing process unit has two or more products that have the same maximum annual design capacity on a mass... subject to this subpart. (3) For chemical manufacturing process units that are designed and operated as... chemical manufacturing process units that are designed and operated as flexible operation units shall be...

  8. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study.

    PubMed

    Van Speybroeck, Veronique; De Wispelaere, Kristof; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Waroquier, Michel

    2014-11-07

    To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular

  9. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    EPA Science Inventory

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  10. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  11. Subfemtosecond directional control of chemical processes in molecules

    NASA Astrophysics Data System (ADS)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  12. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    PubMed

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  13. Illinois Occupational Skill Standards: Chemical Process Technical Operators.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended for workforce preparation program providers, details the Illinois Occupational Skill Standards for programs preparing students for employment as chemical process technical operators. The document begins with a brief overview of the Illinois perspective on occupational skill standards and credentialing, the process…

  14. Launch Vehicle Design Process Description and Training Formulation

    NASA Technical Reports Server (NTRS)

    Atherton, James; Morris, Charles; Settle, Gray; Teal, Marion; Schuerer, Paul; Blair, James; Ryan, Robert; Schutzenhofer, Luke

    1999-01-01

    A primary NASA priority is to reduce the cost and improve the effectiveness of launching payloads into space. As a consequence, significant improvements are being sought in the effectiveness, cost, and schedule of the launch vehicle design process. In order to provide a basis for understanding and improving the current design process, a model has been developed for this complex, interactive process, as reported in the references. This model requires further expansion in some specific design functions. Also, a training course for less-experienced engineers is needed to provide understanding of the process, to provide guidance for its effective implementation, and to provide a basis for major improvements in launch vehicle design process technology. The objective of this activity is to expand the description of the design process to include all pertinent design functions, and to develop a detailed outline of a training course on the design process for launch vehicles for use in educating engineers whose experience with the process has been minimal. Building on a previously-developed partial design process description, parallel sections have been written for the Avionics Design Function, the Materials Design Function, and the Manufacturing Design Function. Upon inclusion of these results, the total process description will be released as a NASA TP. The design function sections herein include descriptions of the design function responsibilities, interfaces, interactive processes, decisions (gates), and tasks. Associated figures include design function planes, gates, and tasks, along with other pertinent graphics. Also included is an expanded discussion of how the design process is divided, or compartmentalized, into manageable parts to achieve efficient and effective design. A detailed outline for an intensive two-day course on the launch vehicle design process has been developed herein, and is available for further expansion. The course is in an interactive lecture

  15. Process characterization and Design Space definition.

    PubMed

    Hakemeyer, Christian; McKnight, Nathan; St John, Rick; Meier, Steven; Trexler-Schmidt, Melody; Kelley, Brian; Zettl, Frank; Puskeiler, Robert; Kleinjans, Annika; Lim, Fred; Wurth, Christine

    2016-09-01

    Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody (MAb). This chapter describes the tools used for the characterization and validation of MAb manufacturing process under the QbD paradigm. This comprises risk assessments for the identification of potential Critical Process Parameters (pCPPs), statistically designed experimental studies as well as studies assessing the linkage of the unit operations. Outcome of the studies is the classification of process parameters according to their criticality and the definition of appropriate acceptable ranges of operation. The process and product knowledge gained in these studies can lead to the approval of a Design Space. Additionally, the information gained in these studies are used to define the 'impact' which the manufacturing process can have on the variability of the CQAs, which is used to define the testing and monitoring strategy. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Design and Application of Sensors for Chemical Cytometry.

    PubMed

    Vickerman, Brianna M; Anttila, Matthew M; Petersen, Brae V; Allbritton, Nancy L; Lawrence, David S

    2018-02-08

    The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.

  17. Chemical Hygiene Program

    NASA Technical Reports Server (NTRS)

    Mayor, Antoinette C.

    1999-01-01

    The Chemical Management Team is responsible for ensuring compliance with the OSHA Laboratory Standard. The program at Lewis Research Center (LeRC) evolved over many years to include training, developing Standard Operating Procedures (SOPS) for each laboratory process, coordinating with other safety and health organizations and teams at the Center, and issuing an SOP binder. The Chemical Hygiene Policy was first established for the Center. The Chemical Hygiene Plan was established and reviewed by technical, laboratory and management for viability and applicability to the Center. A risk assessment was conducted for each laboratory. The laboratories were prioritized by order of risk, higher risk taking priority. A Chemical Management Team staff member interviewed the lead researcher for each laboratory process to gather the information needed to develop the SOP for the process. A binder containing the Chemical Hygiene Plan, the SOP, a map of the laboratory identifying the personal protective equipment and best egress, and glove guides, as well as other guides for safety and health. Each laboratory process has been captured in the form of an SOP. The chemicals used in the procedure have been identified and the information is used to reduce the number of chemicals in the lab. The Chemical Hygiene Plan binder is used as a training tool for new employees. LeRC is in compliance with the OSHA Standard. The program was designed to comply with the OSHA standard. In the process, we have been able to assess the usage of chemicals in the laboratories, as well as reduce or relocate the chemicals being stored in the laboratory. Our researchers are trained on the hazards of the materials they work with and have a better understanding of the hazards of the process and what is needed to prevent any incident. From the SOP process, we have been able to reduce our chemical inventory, determine and implement better hygiene procedures and equipment in the laboratories, and provide

  18. Near-miss incident management in the chemical process industry.

    PubMed

    Phimister, James R; Oktem, Ulku; Kleindorfer, Paul R; Kunreuther, Howard

    2003-06-01

    This article provides a systematic framework for the analysis and improvement of near-miss programs in the chemical process industries. Near-miss programs improve corporate environmental, health, and safety (EHS) performance through the identification and management of near misses. Based on more than 100 interviews at 20 chemical and pharmaceutical facilities, a seven-stage framework has been developed and is presented herein. The framework enables sites to analyze their own near-miss programs, identify weak management links, and implement systemwide improvements.

  19. Human Integration Design Processes (HIDP)

    NASA Technical Reports Server (NTRS)

    Boyer, Jennifer

    2014-01-01

    The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference

  20. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  1. Physical-chemical processes of diamond grinding

    NASA Astrophysics Data System (ADS)

    Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu

    2017-10-01

    The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.

  2. The new risk paradigm for chemical process security and safety.

    PubMed

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  3. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Coexistence of superconductivity and magnetism by chemical design

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.

    2010-12-01

    Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.

  5. Fundamentals of Chemical Processes.

    ERIC Educational Resources Information Center

    Moser, William R.

    1985-01-01

    Describes a course that provides students with a fundamental understanding of the chemical, catalytic, and engineering sciences related to the chemical reactions taking place in a variety of reactors of different configurations. Also describes the eight major lecture topics, course examinations, and term papers. The course schedule is included.…

  6. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  7. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking

  8. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  9. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  10. Reinventing The Design Process: Teams and Models

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.

    1999-01-01

    The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.

  11. Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI.

    Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…

  12. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  13. Design Science Methodology Applied to a Chemical Surveillance Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhuanyi; Han, Kyungsik; Charles-Smith, Lauren E.

    Public health surveillance systems gain significant benefits from integrating existing early incident detection systems,supported by closed data sources, with open source data.However, identifying potential alerting incidents relies on finding accurate, reliable sources and presenting the high volume of data in a way that increases analysts work efficiency; a challenge for any system that leverages open source data. In this paper, we present the design concept and the applied design science research methodology of ChemVeillance, a chemical analyst surveillance system.Our work portrays a system design and approach that translates theoretical methodology into practice creating a powerful surveillance system built for specificmore » use cases.Researchers, designers, developers, and related professionals in the health surveillance community can build upon the principles and methodology described here to enhance and broaden current surveillance systems leading to improved situational awareness based on a robust integrated early warning system.« less

  14. Status summary of chemical processing development in plutonium-238 supply program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; Benker, Dennis; Wham, Robert M.

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO 2 product to Los Alamos National Laboratory (LANL) at an averagemore » rate of 1.5 kg/y.« less

  15. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  16. Launch Vehicle Design Process Characterization Enables Design/Project Tool

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Robinson, Nancy (Technical Monitor)

    2001-01-01

    The objectives of the project described in this viewgraph presentation included the following: (1) Provide an overview characterization of the launch vehicle design process; and (2) Delineate design/project tool to identify, document, and track pertinent data.

  17. Cognitive Design for Learning: Cognition and Emotion in the Design Process

    ERIC Educational Resources Information Center

    Hasebrook, Joachim

    2016-01-01

    We are so used to accept new technologies being the driver of change and innovation in human computer interfaces (HCI). In our research we focus on the development of innovations as a design process--or design, for short. We also refer to the entire process of creating innovations and putting them to use as "cognitive processes"--or…

  18. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less

  19. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  20. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  1. Learning Objects: A User-Centered Design Process

    ERIC Educational Resources Information Center

    Branon, Rovy F., III

    2011-01-01

    Design research systematically creates or improves processes, products, and programs through an iterative progression connecting practice and theory (Reinking, 2008; van den Akker, 2006). Developing a new instructional systems design (ISD) processes through design research is necessary when new technologies emerge that challenge existing practices…

  2. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  3. Protein-protein interface analysis and hot spots identification for chemical ligand design.

    PubMed

    Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua

    2014-01-01

    Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.

  4. Efficient utilization of renewable feedstocks: the role of catalysis and process design

    NASA Astrophysics Data System (ADS)

    Palkovits, Regina; Delidovich, Irina

    2017-11-01

    Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  5. Integrating Data Sources for Process Sustainability Assessments (presentation)

    EPA Science Inventory

    To perform a chemical process sustainability assessment requires significant data about chemicals, process design specifications, and operating conditions. The required information includes the identity of the chemicals used, the quantities of the chemicals within the context of ...

  6. Graphic Design in Libraries: A Conceptual Process

    ERIC Educational Resources Information Center

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  7. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  8. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  9. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  10. Chemicals, Health, Environment, and Me.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Hall of Science.

    The CHEM (Chemicals, Health, Environment, and Me) Project is a series of 10 units designed to provide experiences for fifth and sixth graders that help them to accomplish an understanding of: (1) the nature of chemicals and how they interact with the environment; (2) how to collect, process, and analyze information; (3) how to use scientific…

  11. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  12. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  13. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    PubMed

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  14. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  16. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    NASA Astrophysics Data System (ADS)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  17. Vesicle-based method for collecting, manipulating, and chemically processing trace macromolecular species

    DOEpatents

    Davalos, Rafael V [Oakland, CA; Ellis, Christopher R. B. [Oakland, CA

    2010-08-17

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  18. Software For Design Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1991-01-01

    Design Assistant Workstation (DAWN) computer program is prototype of expert software system for analysis and design of regenerative, physical/chemical life-support systems that revitalize air, reclaim water, produce food, and treat waste. Incorporates both conventional software for quantitative mathematical modeling of physical, chemical, and biological processes and expert system offering user stored knowledge about materials and processes. Constructs task tree as it leads user through simulated process, offers alternatives, and indicates where alternative not feasible. Also enables user to jump from one design level to another.

  19. Process Materialization Using Templates and Rules to Design Flexible Process Models

    NASA Astrophysics Data System (ADS)

    Kumar, Akhil; Yao, Wen

    The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.

  20. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    NASA Astrophysics Data System (ADS)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  1. Discrete-Event Simulation in Chemical Engineering.

    ERIC Educational Resources Information Center

    Schultheisz, Daniel; Sommerfeld, Jude T.

    1988-01-01

    Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)

  2. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by

  3. Conceptual design of industrial process displays.

    PubMed

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  4. Rational Design of Mixed-Metal Oxides for Chemical Looping Combustion of Coal via Coupled Computational-Experimental Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Amit; Li, Fanxing; Santiso, Erik

    Energy and global climate change are two grand challenges to the modern society. An urgent need exists for development of clean and efficient energy conversion processes. The chemical looping strategy, which utilizes regenerable oxygen carriers (OCs) to indirectly convert carbonaceous fuels via redox reactions, is considered to be one of the more promising approaches for CO2 capture by the U.S. Department of Energy (USDOE). To date, most long-term chemical looping operations were conducted using gaseous fuels, even though direct conversion of coal is more desirable from both economics and CO2 capture viewpoints. The main challenges for direct coal conversion residemore » in the stringent requirements on oxygen carrier performances. In addition, coal char and volatile compounds are more challenging to convert than gaseous fuels. A promising approach for direct conversion of coal is the so called chemical looping with oxygen uncoupling (CLOU) technique. In the CLOU process, a metal oxide that decomposes at the looping temperature, and releases oxygen to the gas phase is used as the OC. The overarching objective of this project was to discover the fundamental principles for rational design and optimization of oxygen carriers (OC) in coal chemical looping combustion (CLC) processes. It directly addresses Topic Area B of the funding opportunity announcement (FOA) in terms of “predictive description of the phase behavior and mechanical properties” of “mixed metal oxide” based OCs and rational development of new OC materials with superior functionality. This was achieved through studies exploring i) iron-containing mixed-oxide composites as oxygen carriers for CLOU, ii) Ca1-xAxMnO3-δ (A = Sr and Ba) as oxygen carriers for CLOU, iii) CaMn1-xBxO3-δ (B=Al, V, Fe, Co, and Ni) as oxygen carrier for CLOU and iv) vacancy creation energy in Mn-containing perovskites as an indicator chemical looping with oxygen uncoupling.« less

  5. Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes.

    PubMed

    Malloy, Timothy; Zaunbrecher, Virginia; Beryt, Elizabeth; Judson, Richard; Tice, Raymond; Allard, Patrick; Blake, Ann; Cote, Ila; Godwin, Hilary; Heine, Lauren; Kerzic, Patrick; Kostal, Jakub; Marchant, Gary; McPartland, Jennifer; Moran, Kelly; Nel, Andre; Ogunseitan, Oladele; Rossi, Mark; Thayer, Kristina; Tickner, Joel; Whittaker, Margaret; Zarker, Ken

    2017-09-01

    Alternatives analysis (AA) is a method used in regulation and product design to identify, assess, and evaluate the safety and viability of potential substitutes for hazardous chemicals. It requires toxicological data for the existing chemical and potential alternatives. Predictive toxicology uses in silico and in vitro approaches, computational models, and other tools to expedite toxicological data generation in a more cost-effective manner than traditional approaches. The present article briefly reviews the challenges associated with using predictive toxicology in regulatory AA, then presents 4 recommendations for its advancement. It recommends using case studies to advance the integration of predictive toxicology into AA, adopting a stepwise process to employing predictive toxicology in AA beginning with prioritization of chemicals of concern, leveraging existing resources to advance the integration of predictive toxicology into the practice of AA, and supporting transdisciplinary efforts. The further incorporation of predictive toxicology into AA would advance the ability of companies and regulators to select alternatives to harmful ingredients, and potentially increase the use of predictive toxicology in regulation more broadly. Integr Environ Assess Manag 2017;13:915-925. © 2017 SETAC. © 2017 SETAC.

  6. Rational design of a dual-mode optical and chemical prodrug.

    PubMed

    McCoy, Colin P; Rooney, Clare; Jones, David S; Gorman, Sean P; Nieuwenhuyzen, Mark

    2007-01-01

    The purpose of this study is to demonstrate the rational design and behaviour of the first dual-mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30x10(-2) s-1, while chemical, hydrolytic liberation proceeded independently at 1.89x10(-3) s-1. The photochemical and hydrolytic reactions were both quantitative. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

  7. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  8. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  9. Implementation of an online chemical mechanism within a global-regional atmospheric model: design and initial steps

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Baldasano, J. M.

    2009-04-01

    Chemical processes in air quality modelling systems are usually treated independently from the meteorological models. This approach is computationally attractive since off-line chemical transport simulations only require a single meteorological dataset to produce many chemical simulations. However, this separation of chemistry and meteorology produces a loss of important information about atmospheric processes and does not allow for feedbacks between chemistry and meteorology. To take into account such processes current models are evolving to an online coupling of chemistry and meteorology to produce consistent chemical weather predictions. The Earth Sciences Department of the Barcelona Supercomputing Center (BSC) develops the NMMB/BSC-DUST (Pérez et al., 2008), an online dust model within the global-regional NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) under development at National Centers for Environmental Prediction (NCEP). Current implementation is based on the well established regional dust model and forecast system DREAM (Nickovic et al., 2001). The most relevant characteristics of NMMB/BSC-DUST are its on-line coupling of the dust scheme with the meteorological driver, the wide range of applications from meso to global scales, and the inclusion of dust radiative effects allowing feedbacks between aerosols and meteorology. In order to complement such development, BSC works also in the implementation of a fully coupled online chemical mechanism within NMMB/BSC-DUST. The final objective is to develop a fully chemical weather prediction system able to resolve gas-aerosol-meteorology interactions from global to local scales. In this contribution we will present the design of the chemistry coupling and the current progress of its implementation. Following the NCEP/NMMB approach, the chemistry part will be coupled through the Earth System Modeling Framework (ESMF) as a pluggable component. The chemical mechanism and chemistry solver is

  10. Documenting the Engineering Design Process

    ERIC Educational Resources Information Center

    Hollers, Brent

    2017-01-01

    Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…

  11. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide...

  12. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide...

  13. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide...

  14. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide...

  15. Design Evolution and Verification of the A-3 Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  16. Process Design Manual for Nitrogen Control.

    ERIC Educational Resources Information Center

    Parker, Denny S.; And Others

    This manual presents theoretical and process design criteria for the implementation of nitrogen control technology in municipal wastewater treatment facilities. Design concepts are emphasized through examination of data from full-scale and pilot installations. Design data are included on biological nitrification and denitrification, breakpoint…

  17. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    ERIC Educational Resources Information Center

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  18. Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process

    NASA Astrophysics Data System (ADS)

    Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj

    2017-06-01

    In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.

  19. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food

    NASA Astrophysics Data System (ADS)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2017-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  20. Reduced product yield in chemical processes by second law effects

    NASA Technical Reports Server (NTRS)

    England, C.; Funk, J. E.

    1980-01-01

    An analysis of second law effects in chemical processes, where product yield is explicitly related to the individual irreversibilities within the process to indicate a maximum theoretical yield, is presented. Examples are given that indicate differences between first and second law approaches toward process efficiency and process yield. This analysis also expresses production capacity in terms of the heating value of a product. As a result, it is particularly convenient in analyzing fuel conversion plants and their potential for improvement. Relationships are also given for the effects of irreversibilities on requirements for process heat and for feedstocks.

  1. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  2. Design and development of a space station hazardous material system for assessing chemical compatibility

    NASA Technical Reports Server (NTRS)

    Congo, Richard T.

    1990-01-01

    As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.

  3. A design optimization process for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Fox, George; Duquette, William H.

    1990-01-01

    The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.

  4. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide...

  5. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide...

  6. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide...

  7. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide...

  8. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide...

  9. MITLL Silicon Integrated Photonics Process: Design Guide

    DTIC Science & Technology

    2015-07-31

    Silicon Integrated Photonics Process Comprehensive Design Guide 16  Deep Etch for Fiber Coupling (DEEP_ETCH...facets for fiber coupling. Standard design layers for each process are defined in Section 3, but other options can be made available. Notes on...a silicon thinning process that can create very low loss waveguides (and which better suppresses back scatter and, therefore, resonance splitting in

  10. Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models.

    PubMed

    Corrales, Jone; Kristofco, Lauren A; Steele, W Baylor; Saari, Gavin N; Kostal, Jakub; Williams, E Spencer; Mills, Margaret; Gallagher, Evan P; Kavanagh, Terrance J; Simcox, Nancy; Shen, Longzhu Q; Melnikov, Fjodor; Zimmerman, Julie B; Voutchkova-Kostal, Adelina M; Anastas, Paul T; Brooks, Bryan W

    2017-04-17

    Sustainable molecular design of less hazardous chemicals presents a potentially transformative approach to protect public health and the environment. Relationships between molecular descriptors and toxicity thresholds previously identified the octanol-water distribution coefficient, log D, and the HOMO-LUMO energy gap, ΔE, as two useful properties in the identification of reduced aquatic toxicity. To determine whether these two property-based guidelines are applicable to sublethal oxidative stress (OS) responses, two common aquatic in vivo models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), were employed to examine traditional biochemical biomarkers (lipid peroxidation, DNA damage, and total glutathione) and antioxidant gene activation following exposure to eight structurally diverse industrial chemicals (bisphenol A, cumene hydroperoxide, dinoseb, hydroquinone, indene, perfluorooctanoic acid, R-(-)-carvone, and tert-butyl hydroperoxide). Bisphenol A, cumene hydroperoxide, dinoseb, and hydroquinone were consistent inducers of OS. Glutathione was the most consistently affected biomarker, suggesting its utility as a sensitivity response to support the design of less hazardous chemicals. Antioxidant gene expression (changes in nrf2, gclc, gst, and sod) was most significantly (p < 0.05) altered by R-(-)-carvone, cumene hydroperoxide, and bisphenol A. Results from the present study indicate that metabolism of parent chemicals and the role of their metabolites in molecular initiating events should be considered during the design of less hazardous chemicals. Current empirical and computational findings identify the need for future derivation of sustainable molecular design guidelines for electrophilic reactive chemicals (e.g., SN2 nucleophilic substitution and Michael addition reactivity) to reduce OS related adverse outcomes in vivo.

  11. Simplifying Chemical Reactor Design by using Molar Quantities Instead of Fractional Conversion.

    ERIC Educational Resources Information Center

    Brown, Lee F.; Falconer, John L.

    1987-01-01

    Explains the advantages of using molar quantities in chemical reactor design. Advocates the use of differential versions of reactor mass balances rather than the integrated forms. Provides specific examples and cases to illustrate the principles. (ML)

  12. Notification: Efficiency of the Chemical Safety Board (CSB) Investigation Process

    EPA Pesticide Factsheets

    October 17, 2012. The EPA OIG plans to begin fieldwork with a modified objective from our May 15, 2012, preliminary research objective on the U.S. Chemical Safety and Hazard Investigation Board’s (CSB’s) investigation process.

  13. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    PubMed

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The

  14. Optimization process in helicopter design

    NASA Technical Reports Server (NTRS)

    Logan, A. H.; Banerjee, D.

    1984-01-01

    In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.

  15. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  16. Inhomogeneous chemical evolution of r-process elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehmeyer, B., E-mail: benjamin.wehmeyer@unibas.ch; Thielemann, F.-K.; Pignatari, M.

    2016-06-21

    We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model ”ICE”, which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of ”magneto-rotationally driven Supernovae” (”Jet-SNe”), their occurence rate in comparison to ”standard” Supernovae (SNe).

  17. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    EPA Science Inventory

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  18. Practicing chemical process safety: a look at the layers of protection.

    PubMed

    Sanders, Roy E

    2004-11-11

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a "within-the-fence" view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm.

  19. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    NASA Astrophysics Data System (ADS)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  20. Creativity Processes of Students in the Design Studio

    ERIC Educational Resources Information Center

    Huber, Amy Mattingly; Leigh, Katharine E.; Tremblay, Kenneth R., Jr.

    2012-01-01

    The creative process is a multifaceted and dynamic path of thinking required to execute a project in design-based disciplines. The goal of this research was to test a model outlining the creative design process by investigating student experiences in a design project assignment. The study used an exploratory design to collect data from student…

  1. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  2. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.

  3. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  4. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  5. MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; Zamecnik, J.; Best, D.

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah Rivermore » National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.« less

  7. Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action

    PubMed Central

    Steinman, Jonathan B; Santarossa, Cristina C; Miller, Rand M; Yu, Lola S; Serpinskaya, Anna S; Furukawa, Hideki; Morimoto, Sachie; Tanaka, Yuta; Nishitani, Mitsuyoshi; Asano, Moriteru; Zalyte, Ruta; Ondrus, Alison E; Johnson, Alex G; Ye, Fan; Nachury, Maxence V; Fukase, Yoshiyuki; Aso, Kazuyoshi; Foley, Michael A; Gelfand, Vladimir I; Chen, James K; Carter, Andrew P; Kapoor, Tarun M

    2017-01-01

    Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition. DOI: http://dx.doi.org/10.7554/eLife.25174.001 PMID:28524820

  8. My contribution to broadening the base of chemical engineering.

    PubMed

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  9. Solid propellant processing factor in rocket motor design

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  10. Connecting Toxicology and Chemistry to Ensure Safer Chemical Design

    EPA Science Inventory

    Designing safer, healthier and sustainable products and processes requires the engagement of toxicologists and the incorporation of twenty-first century toxicology principles and practices. Hazard reduction through molecular design benefits from trans-disciplinary collaboration, ...

  11. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  12. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  13. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  14. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  15. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  16. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  17. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  18. Using a Readily Available Commercial Spreadsheet to Teach a Graduate Course on Chemical Process Simulation

    ERIC Educational Resources Information Center

    Clarke, Matthew A.; Giraldo, Carlos

    2009-01-01

    Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…

  19. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    NASA Astrophysics Data System (ADS)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  20. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN.

    PubMed

    Noyes, Pamela D; Garcia, Gloria R; Tanguay, Robert L

    2016-12-21

    Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world

  1. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN

    PubMed Central

    Noyes, Pamela D.; Garcia, Gloria R.; Tanguay, Robert L.

    2016-01-01

    Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world

  2. Multi-Criteria Approach in Multifunctional Building Design Process

    NASA Astrophysics Data System (ADS)

    Gerigk, Mateusz

    2017-10-01

    The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.

  3. Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses.

    PubMed

    Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L

    2015-07-01

    The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.

  4. Prioritization methodology for chemical replacement

    NASA Technical Reports Server (NTRS)

    Cruit, Wendy; Goldberg, Ben; Schutzenhofer, Scott

    1995-01-01

    Since United States of America federal legislation has required ozone depleting chemicals (class 1 & 2) to be banned from production, The National Aeronautics and Space Administration (NASA) and industry have been required to find other chemicals and methods to replace these target chemicals. This project was initiated as a development of a prioritization methodology suitable for assessing and ranking existing processes for replacement 'urgency.' The methodology was produced in the form of a workbook (NASA Technical Paper 3421). The final workbook contains two tools, one for evaluation and one for prioritization. The two tools are interconnected in that they were developed from one central theme - chemical replacement due to imposed laws and regulations. This workbook provides matrices, detailed explanations of how to use them, and a detailed methodology for prioritization of replacement technology. The main objective is to provide a GUIDELINE to help direct the research for replacement technology. The approach for prioritization called for a system which would result in a numerical rating for the chemicals and processes being assessed. A Quality Function Deployment (QFD) technique was used in order to determine numerical values which would correspond to the concerns raised and their respective importance to the process. This workbook defines the approach and the application of the QFD matrix. This technique: (1) provides a standard database for technology that can be easily reviewed, and (2) provides a standard format for information when requesting resources for further research for chemical replacement technology. Originally, this workbook was to be used for Class 1 and Class 2 chemicals, but it was specifically designed to be flexible enough to be used for any chemical used in a process (if the chemical and/or process needs to be replaced). The methodology consists of comparison matrices (and the smaller comparison components) which allow replacement technology

  5. GREENSCOPE: A Method for Modeling Chemical Process ...

    EPA Pesticide Factsheets

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  6. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  7. Active pharmaceutical ingredient (API) production involving continuous processes--a process system engineering (PSE)-assisted design framework.

    PubMed

    Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V

    2012-10-01

    A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical

  8. Design Process Improvement for Electric CAR Harness

    NASA Astrophysics Data System (ADS)

    Sawatdee, Thiwarat; Chutima, Parames

    2017-06-01

    In an automobile parts design company, the customer satisfaction is one of the most important factors for product design. Therefore, the company employs all means to focus its product design process based on the various requirements of customers resulting in high number of design changes. The objective of this research is to improve the design process of the electric car harness that effects the production scheduling by using Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA) as the main tools. FTA is employed for root cause analysis and FMEA is used to ranking a High Risk Priority Number (RPN) which is shows the priority of factors in the electric car harness that have high impact to the design of the electric car harness. After the implementation, the improvements are realized significantly since the number of design change is reduced from 0.26% to 0.08%.

  9. Automated Simulation For Analysis And Design

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.

    1992-01-01

    Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.

  10. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  11. Reducing Design Cycle Time and Cost Through Process Resequencing

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  12. Determining high-quality critical body residues for multiple species and chemicals by applying improved experimental design and data interpretation concepts.

    PubMed

    van der Heijden, Stephan A; Hermens, Joop L M; Sinnige, Theo L; Mayer, Philipp; Gilbert, Dorothea; Jonker, Michiel T O

    2015-02-03

    Ecotoxicological effect data are generally expressed as effective concentrations in the external exposure medium and do thus not account for differences in chemical uptake, bioavailability, and metabolism, which can introduce substantial data variation. The Critical Body Residue (CBR) concept provides clear advantages, because it links effects directly to the internal exposure. Using CBRs instead of external concentrations should therefore reduce variability. For compounds that act via narcosis even a constant CBR has been proposed. Despite the expected uniformity, CBR values for these compounds still show large variability, possibly due to biased and inconsistent experimental testing. In the present study we tested whether variation in CBR data can be substantially reduced when using an improved experimental design and avoiding confounding factors. The aim was to develop and apply a well-defined test protocol for accurately and precisely measuring CBR data, involving improved (passive) dosing, sampling, and processing of organisms. The chemicals 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 2,3,4-trichloroaniline, 2,3,5,6-tetrachloroaniline, 4-chloro-3-methylphenol, pentylbenzene, pyrene, and bromophos-methyl were tested on Lumbriculus variegatus (California blackworm), Hyalella azteca (scud), and Poecilia reticulata (guppy), which yielded a high-quality database of 348 individual CBR values. Medians of CBR values ranged from 2.1 to 16.1 mmol/kg wet weight (ww) within all combinations of chemicals and species, except for the insecticide bromophos-methyl, for which the median was 1.3 mmol/kg ww. The new database thus covers about one log unit, which is considerably less than in existing databases. Medians differed maximally by a factor of 8.4 between the 7 chemicals but within one species, and by a factor of 2.6 between the three species but for individual chemicals. Accounting for the chemicals' internal distribution to different partitioning domains and

  13. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  14. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  15. Defining process design space for monoclonal antibody cell culture.

    PubMed

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  16. A strategy for design and fabrication of low cost microchannel for future reproductivity of bio/chemical lab-on-chip application

    NASA Astrophysics Data System (ADS)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.

    2017-03-01

    The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.

  17. Development of a New De Novo Design Algorithm for Exploring Chemical Space.

    PubMed

    Mishima, Kazuaki; Kaneko, Hiromasa; Funatsu, Kimito

    2014-12-01

    In the first stage of development of new drugs, various lead compounds with high activity are required. To design such compounds, we focus on chemical space defined by structural descriptors. New compounds close to areas where highly active compounds exist will show the same degree of activity. We have developed a new de novo design system to search a target area in chemical space. First, highly active compounds are manually selected as initial seeds. Then, the seeds are entered into our system, and structures slightly different from the seeds are generated and pooled. Next, seeds are selected from the new structure pool based on the distance from target coordinates on the map. To test the algorithm, we used two datasets of ligand binding affinity and showed that the proposed generator could produce diverse virtual compounds that had high activity in docking simulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  19. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  20. [Application of quality by design in granulation process for Ginkgo leaf tablet (Ⅲ): process control strategy based on design space].

    PubMed

    Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2017-03-01

    In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.

  1. Chemical pump study for Pioneer Venus program

    NASA Technical Reports Server (NTRS)

    Rotheram, M.

    1973-01-01

    Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.

  2. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  3. A Design Support Framework through Dynamic Deployment of Hypothesis and Verification in the Design Process

    NASA Astrophysics Data System (ADS)

    Nomaguch, Yutaka; Fujita, Kikuo

    This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.

  4. 77 FR 48924 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... have not yet commenced production or import. Any person who commences the manufacture or import of a... new chemical review process but have not yet commenced production or import, and to designate (for all... long-chain perfluoroalkyl carboxylate (LCPFAC) chemical substances that would designate manufacturing...

  5. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.

    PubMed

    Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito

    2016-10-24

    To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.

  6. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry.

    PubMed

    Meijster, Tim; Burstyn, Igor; Van Wendel De Joode, Berna; Posthumus, Maarten A; Kromhout, Hans

    2004-08-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations. Principal component analyses (PCA) and linear regression were used to determine the emission sources of different chemicals found in the air samples. We showed that complex mixtures of chemicals were released, but most concentrations were below Dutch exposure limits. Based on the results of the principal component analyses, the chemicals found were divided into three groups. The first group consisted of short chain aliphatic hydrocarbons (C2-C6). The second group included larger hydrocarbons (C9-C11) and some cyclic hydrocarbons. The third group contained all aromatic and two aliphatic hydrocarbons. Regression analyses showed that emission of the first group of chemicals was associated with cleaning activities and the use of epoxy resins. The second and third group showed strong association with the type of tape used in the new tape winding process. High levels of CO and HCN (above exposure limits) were measured on one occasion when a different brand of impregnated polypropylene sulphide tape was used in the tape winding process. Plans exist to drastically increase production with the new tape winding process. This will cause exposure levels to rise and therefore further control measures should be installed to reduce release of these chemicals.

  7. The Engineering Process in Construction & Design

    ERIC Educational Resources Information Center

    Stoner, Melissa A.; Stuby, Kristin T.; Szczepanski, Susan

    2013-01-01

    Recent research suggests that high-impact activities in science and math classes promote positive attitudinal shifts in students. By implementing high-impact activities, such as designing a school and a skate park, mathematical thinking can be linked to the engineering design process. This hands-on approach, when possible, to demonstrate or…

  8. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  9. Manufacturing process design for multi commodities in agriculture

    NASA Astrophysics Data System (ADS)

    Prasetyawan, Yudha; Santosa, Andrian Henry

    2017-06-01

    High-potential commodities within particular agricultural sectors should be accompanied by maximum benefit value that can be attained by both local farmers and business players. In several cases, the business players are small-medium enterprises (SMEs) which have limited resources to perform added value process of the local commodities into the potential products. The weaknesses of SMEs such as the manual production process with low productivity, limited capacity to maintain prices, and unattractive packaging due to conventional production. Agricultural commodity is commonly created into several products such as flour, chips, crackers, oil, juice, and other products. This research was initiated by collecting data by interview method particularly to obtain the perspectives of SMEs as the business players. Subsequently, the information was processed based on the Quality Function Deployment (QFD) to determine House of Quality from the first to fourth level. A proposed design as the result of QFD was produced and evaluated with Technology Assessment Model (TAM) and continued with a revised design. Finally, the revised design was analyzed with financial perspective to obtain the cost structure of investment, operational, maintenance, and workers. The machine that performs manufacturing process, as the result of revised design, was prototyped and tested to determined initial production process. The designed manufacturing process offers IDR 337,897, 651 of Net Present Value (NPV) in comparison with the existing process value of IDR 9,491,522 based on similar production input.

  10. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    EPA Science Inventory

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  11. Doing Textiles Experiments in Game-Based Virtual Reality: A Design of the Stereoscopic Chemical Laboratory (SCL) for Textiles Education

    ERIC Educational Resources Information Center

    Lau, Kung Wong; Kan, Chi Wai; Lee, Pui Yuen

    2017-01-01

    Purpose: The purpose of this paper is to discuss the use of stereoscopic virtual technology in textile and fashion studies in particular to the area of chemical experiment. The development of a designed virtual platform, called Stereoscopic Chemical Laboratory (SCL), is introduced. Design/methodology/approach: To implement the suggested…

  12. EVALUATING POLLUTION PREVENTION PROGRESS (P2P) III: AN ENVIRONMENTAL TOOL FOR SCREENING IN PRODUCT LIFE CYCLE ASSESSMENT AND CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    P2P is a computer-based tool that supports the comparison of process and product alternatives in terms of environmental impacts. This tool provides screening-level information for use in process design and in product LCA. Twenty one impact categories and data for approximately ...

  13. Chemical and Biological Defense: Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

    DTIC Science & Technology

    2015-06-01

    Designated Leader, GAO-10-645 (Washington, D.C.: June 30, 2010). 35See GAO, Biological Defense: DOD Has Strengthened Coordination on Medical... on track to be designated a Leadership in Energy and Environmental Design facility. metabolic poisons, and pulmonary toxicants; nerve agent...CHEMICAL AND BIOLOGICAL DEFENSE Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

  14. The role of the optimization process in illumination design

    NASA Astrophysics Data System (ADS)

    Gauvin, Michael A.; Jacobsen, David; Byrne, David J.

    2015-07-01

    This paper examines the role of the optimization process in illumination design. We will discuss why the starting point of the optimization process is crucial to a better design and why it is also important that the user understands the basic design problem and implements the correct merit function. Both a brute force method and the Downhill Simplex method will be used to demonstrate optimization methods with focus on using interactive design tools to create better starting points to streamline the optimization process.

  15. [Chemical Constituents from Processed Products of Aconitum Vilmoriniani Radix].

    PubMed

    Guo, Zhi-jun; Yang, Zhu-ya; Tan, Wen-hong; Zhou, Zhi-hong; Ma, Xiao-xia

    2015-05-01

    To investigate the chemical constituents of the processed products of Aconitum Vilmorinian Radix. The constituents were isolated by repeated column chromatography over silica gel, alumina and RP-C18 as well as recrystallization. The structures were elucidated on the basis of spectral analysis and physicochemical properties. Ten compounds were obtained from the methanol extract, and they were identified as yunaconitine (1), 8-deacetyl-yunaconitine (2), geniculatine C (3), vilmorrianine B (4), vilmorrianine C(5), vilmorrianine D (6), talatisamine (7), β-sitosterol (8), β-daucosterol (9) and β-sitosterol acetate (10). All compounds are obtained from the processed products of Aconitum Vilmoriniani Radix for the first time.

  16. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  17. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  18. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    EPA Science Inventory

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  19. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    PubMed

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  20. A Design Basis for Spacecraft Cabin Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2009-01-01

    Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.

  1. Vesicle-based method and apparatus for collecting, manipulating, and chemically processing trace macromolecular species

    DOEpatents

    Davalos, Rafael V [Oakland, CA; Ellis, Christopher R. B. [Oakland, CA

    2008-03-04

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  2. Distributed Group Design Process: Lessons Learned.

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ganesan, Radha

    A typical Web-based training development team consists of a project manager, an instructional designer, a subject-matter expert, a graphic artist, and a Web programmer. The typical scenario involves team members working together in the same setting during the entire design and development process. What happens when the team is distributed, that is…

  3. DESIGNING SUSTAINABLE PROCESSES WITH SIMULATION: THE WASTE REDUCTION (WAR) ALGORITHM

    EPA Science Inventory

    The WAR Algorithm, a methodology for determining the potential environmental impact (PEI) of a chemical process, is presented with modifications that account for the PEI of the energy consumed within that process. From this theory, four PEI indexes are used to evaluate the envir...

  4. Study on Product Innovative Design Process Driven by Ideal Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fuying; Lu, Ximei; Wang, Ping; Liu, Hui

    Product innovative design in companies today relies heavily on individual members’ experience and creative ideation as well as their skills of integrating creativity and innovation tools with design methods agilely. Creative ideation and inventive ideas generation are two crucial stages in product innovative design process. Ideal solution is the desire final ideas for given problem, and the striving reaching target for product design. In this paper, a product innovative design process driven by ideal solution is proposed. This design process encourages designers to overcome their psychological inertia, to foster creativity in a systematic way for acquiring breakthrough creative and innovative solutions in a reducing sphere of solution-seeking, and results in effective product innovative design rapidly. A case study example is also presented to illustrate the effectiveness of the proposed design process.

  5. Working on the Boundaries: Philosophies and Practices of the Design Process

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.

    1996-01-01

    While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.

  6. From chemical metabolism to life: the origin of the genetic coding process

    PubMed Central

    2017-01-01

    Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life. PMID:28684991

  7. The Lyophilization Process Maintains the Chemical and Biological Characteristics of Royal Jelly

    PubMed Central

    Moraes, Larissa Ariana Roveroni; Ferreira, Nathália Ursoli; Moreno, Gabriela de Padua; Uahib, Fernanda Grassi Mangolini; Barizon, Edna Aparecida

    2015-01-01

    The alternative use of natural products, like royal jelly (RJ), may be an important tool for the treatment of infections caused by antibiotic-resistant bacteria. RJ presents a large number of bioactive substances, including antimicrobial compounds. In this study, we carried out the chemical characterization of fresh and lyophilized RJ and investigated their antibacterial effects with the purpose of evaluating if the lyophilization process maintains the chemical and antibacterial properties of RJ. Furthermore, we evaluated the antibacterial efficacy of the main fatty acid found in RJ, the 10-hydroxy-2-decenoic acid (10H2DA). Chromatographic profile of the RJ samples showed similar fingerprints and the presence of 10H2DA in both samples. Furthermore, fresh and lyophilized RJ were effective against all bacteria evaluated; that is, the lyophilization process maintains the antibacterial activity of RJ and the chemical field of 10H2DA. The fatty acid 10H2DA exhibited a good antibacterial activity against Streptococcus pneumoniae. Therefore, it may be used as an alternative and complementary treatment for infections caused by antibiotic-resistant S. pneumoniae. PMID:26064175

  8. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerfulmore » two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.« less

  9. Case study: Lockheed-Georgia Company integrated design process

    NASA Technical Reports Server (NTRS)

    Waldrop, C. T.

    1980-01-01

    A case study of the development of an Integrated Design Process is presented. The approach taken in preparing for the development of an integrated design process includes some of the IPAD approaches such as developing a Design Process Model, cataloging Technical Program Elements (TPE's), and examining data characteristics and interfaces between contiguous TPE's. The implementation plan is based on an incremental development of capabilities over a period of time with each step directed toward, and consistent with, the final architecture of a total integrated system. Because of time schedules and different computer hardware, this system will not be the same as the final IPAD release; however, many IPAD concepts will no doubt prove applicable as the best approach. Full advantage will be taken of the IPAD development experience. A scenario that could be typical for many companies, even outside the aerospace industry, in developing an integrated design process for an IPAD-type environment is represented.

  10. 77 FR 37634 - Proposed Significant New Use Rule on Certain Chemical Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Toxic Substances Control Act (TSCA) for chemical substances identified generically as complex strontium... Proposed Significant New Use Rule on Certain Chemical Substances AGENCY: Environmental Protection Agency... process any of the chemical substances for an activity that is designated as a significant new use by this...

  11. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  12. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    ERIC Educational Resources Information Center

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  13. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  14. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  15. Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.

    2007-07-01

    To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and

  16. Information Architecture without Internal Theory: An Inductive Design Process.

    ERIC Educational Resources Information Center

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  17. Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.

    PubMed

    Jing, Chaoran; Cornish, Virginia W

    2013-01-01

    Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.

  18. POLLUTION PREVENTION IN THE EARLY STAGES OF HIERARCHICAL PROCESS DESIGN

    EPA Science Inventory

    Hierarchical methods are often used in the conceptual stages of process design to synthesize and evaluate process alternatives. In this work, the methods of hierarchical process design will be focused on environmental aspects. In particular, the design methods will be coupled to ...

  19. Synthetic biology: tools to design microbes for the production of chemicals and fuels.

    PubMed

    Seo, Sang Woo; Yang, Jina; Min, Byung Eun; Jang, Sungho; Lim, Jae Hyung; Lim, Hyun Gyu; Kim, Seong Cheol; Kim, Se Yeon; Jeong, Jun Hong; Jung, Gyoo Yeol

    2013-11-01

    The engineering of biological systems to achieve specific purposes requires design tools that function in a predictable and quantitative manner. Recent advances in the field of synthetic biology, particularly in the programmable control of gene expression at multiple levels of regulation, have increased our ability to efficiently design and optimize biological systems to perform designed tasks. Furthermore, implementation of these designs in biological systems highlights the potential of using these tools to build microbial cell factories for the production of chemicals and fuels. In this paper, we review current developments in the design of tools for controlling gene expression at transcriptional, post-transcriptional and post-translational levels, and consider potential applications of these tools. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  1. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    PubMed

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  2. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was amore » significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.« less

  3. Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development

    PubMed Central

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Masi, Annalisa; Melchiorre, Michele; Sansone, Anna; Terzidis, Michael A.; Torreggiani, Armida

    2013-01-01

    The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological environment and chemical knowledge plays a crucial role in unveiling basic processes and mechanisms. We developed a chemical biology approach able to connect free radical chemical reactivity with biological processes, providing information on the mechanistic pathways and products. The core of this approach is the design of biomimetic models to study biomolecule behavior (lipids, nucleic acids and proteins) in aqueous systems, obtaining insights of the reaction pathways as well as building up molecular libraries of the free radical reaction products. This context can be successfully used for biomarker discovery and examples are provided with two classes of compounds: mono-trans isomers of cholesteryl esters, which are synthesized and used as references for detection in human plasma, and purine 5',8-cyclo-2'-deoxyribonucleosides, prepared and used as reference in the protocol for detection of such lesions in DNA samples, after ionizing radiations or obtained from different health conditions. PMID:23629513

  4. Design of forging process variables under uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2005-02-01

    Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.

  5. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of

  6. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1987-01-01

    Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.

  7. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  8. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  9. Design and Activation of a LOX/GH Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  10. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  11. Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process.

    PubMed

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Lou, Jie-Chung

    2010-09-15

    A method in combination of acid leaching, chemical exchange and ferrite process was applied to recycle copper and confer higher chemical stability to the sludge generated from etching process in printed circuit board industry. Ninety-five percent copper could be recycled in the form of powder from the sludge. Moreover, not only the wastewater after chemical exchange can be treated to fulfill the effluent standard, but also the sludge can satisfy the toxicity characteristic leaching procedure (TCLP) limits made by Taiwan's environmental protection administration. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Biocatalysis for Biobased Chemicals

    PubMed Central

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  13. The opto-mechanical design process: from vision to reality

    NASA Astrophysics Data System (ADS)

    Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.

    2017-08-01

    The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.

  14. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.

    2002-01-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  15. Testing for Additivity in Chemical Mixtures Using a Fixed-Ratio Ray Design and Statistical Equivalence Testing Methods

    EPA Science Inventory

    Fixed-ratio ray designs have been used for detecting and characterizing interactions of large numbers of chemicals in combination. Single chemical dose-response data are used to predict an “additivity curve” along an environmentally relevant ray. A “mixture curve” is estimated fr...

  16. Rainwater as a chemical agent of geologic processes; a review

    USGS Publications Warehouse

    Carroll, Dorothy

    1962-01-01

    Chemical analyses of the rainwater collected at several localities are given to show the variations of the principal constitutents. In rock weathering and soil-forming processes, the chemical composition of rainwater has an important effect which has been evaluated for only a few arid areas. In humid regions the important amounts of calcium, magnesium, sodium, and potassium added yearly by rain may be expected to influence the composition of the soil water and thereby the cations in the exchange positions of soil clay minerals. The acquisition of cations by clay minerals may slow down chemical weathering. The stability of soil clay minerals is influenced by the constant accession of cations from rainwater. Conversely, the clay minerals modify the amounts and kinds of cations that are leached out by drainage waters. The stability of micaceous minerals in soils may be partly due to accessions of K +1 ions from rainwater. The pH of rainwater in any area varies considerably and seems to form a seasonal and regional pattern. The recorded pH values range from 3.0 to 9.8.

  17. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic optimization of chemical processes using ant colony framework.

    PubMed

    Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D

    2001-11-01

    Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.

  19. RATES OF REACTION AND PROCESS DESIGN DATA FOR THE HYDROCARB PROCESS

    EPA Science Inventory

    The report provides experimental and process design data in support of studies for developing the coprocessing of fossil fuels with biomass by the Hydrocarb process. The experimental work includes the hydropyrolysis of biomass and the thermal decomposition of methane in a 2.44 m ...

  20. The Architectural and Interior Design Planning Process.

    ERIC Educational Resources Information Center

    Cohen, Elaine

    1994-01-01

    Explains the planning process in designing effective library facilities and discusses library building requirements that result from electronic information technologies. Highlights include historical structures; Americans with Disabilities Act; resource allocation; electrical power; interior spaces; lighting; design development; the roles of…

  1. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  2. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Summers, W.; Boltrunis, C.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, whilemore » also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under

  3. 76 FR 31824 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process... establish those chemical mixtures containing red phosphorus or hypophosphorous acid and its salts (hereinafter ``regulated phosphorus'') that shall automatically qualify for exemption from the [[Page 31825...

  4. GREENSCOPE: Sustainable Process Modeling

    EPA Science Inventory

    EPA researchers are responding to environmental problems by incorporating sustainability into process design and evaluation. EPA researchers are also developing a tool that allows users to assess modifications to existing and new chemical processes to determine whether changes in...

  5. Technology resource document for the assembled chemical weapons assessment environmental impact statement. Vol. 4 : assembled systems for weapons destruction at Pueblo Chemical Depot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmell, T.; Folga, S., Frey, G.; Molberg, J.

    2001-04-30

    This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001c) pertains to the destruction of assembled chemical weapons (ACW) stored at Pueblo Chemical Depot (PCD), located outside Pueblo, Colorado. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at PCD. The destruction technologies described are those that have been demonstrated during Phase I of the Assembled Chemical Weaponsmore » Assessment (ACWA) demonstration process (see Volume 1).« less

  6. Consistent Chemical Mechanism from Collaborative Data Processing

    DOE PAGES

    Slavinskaya, Nadezda; Starcke, Jan-Hendrik; Abbasi, Mehdi; ...

    2016-04-01

    Numerical tool of Process Informatics Model (PrIMe) is mathematically rigorous and numerically efficient approach for analysis and optimization of chemical systems. It handles heterogeneous data and is scalable to a large number of parameters. The Boundto-Bound Data Collaboration module of the automated data-centric infrastructure of PrIMe was used for the systematic uncertainty and data consistency analyses of the H 2/CO reaction model (73/17) and 94 experimental targets (ignition delay times). The empirical rule for evaluation of the shock tube experimental data is proposed. The initial results demonstrate clear benefits of the PrIMe methods for an evaluation of the kinetic datamore » quality and data consistency and for developing predictive kinetic models.« less

  7. Design of electrolyzer for carbon dioxide conversion to fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Rosen, Jonathan S.

    the widespread use of CO2 electrolysis. A nanoporous Ag material was synthesized through a dealloying technique able to operate with less than 0.5 V overpotential and high selectivity towards CO. CO is a valuable intermediate chemical which can used in Fischer-Tropsch or Gas-to-liquids technologies to produce liquids fuels. A detailed investigation of nanostructured Ag catalysts found stepped sites to be responsible for enhanced CO2 reduction activity due to improved stabilization of the COOH intermediate on the catalyst surface. In addition, an low-cost Zn dendrite electrocatalyst was developed using an electroplating technique. Low coordinated sites formed through electrodeposition demonstrated the suppression of hydrogen evolution while maintaining CO activity. The Zn dendrite electrocatalyst was further examined using a newly developed in situ X-ray absorption technique able to probe catalyst stability and crystalline structure under CO2 reduction operating conditions. A final hurdle in the realization of CO2 electrolysis technologies is the integration of catalysts into working flow cell devices. To address this issue and enable testing in a practical system, a highly efficient and robust CO2 electrolysis flow cell was designed including the scale up of the previous nanoporous Ag synthesis procedure. Using the modified porous Ag catalyst, currents in the Amp regime were demonstrated approaching rates needed for energy storage applications. Stability on the order of days was successfully demonstrated due to use of robust system components and conditions suitable for process scale up.

  8. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    ERIC Educational Resources Information Center

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  9. Noise control, sound, and the vehicle design process

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  10. 23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...

  11. 23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...

  12. 23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...

  13. 23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...

  14. 23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...

  15. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  16. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  17. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less

  18. Intelligent process control of fiber chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  19. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  20. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  1. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  2. Film processing investigation. [improved chemical mixing system

    NASA Technical Reports Server (NTRS)

    Kelly, J. L.

    1972-01-01

    The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.

  3. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  4. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  5. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  6. Chemical laser exhaust pipe design research

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  7. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes.

    PubMed

    Steinlin, Christine; Bogdal, Christian; Pavlova, Pavlina A; Schwikowski, Margit; Lüthi, Martin P; Scheringer, Martin; Schmid, Peter; Hungerbühler, Konrad

    2015-12-15

    We present results from a chemical fate model quantifying incorporation of polychlorinated biphenyls (PCBs) into the Silvretta glacier, a temperate Alpine glacier located in Switzerland. Temperate glaciers, in contrast to cold glaciers, are glaciers where melt processes are prevalent. Incorporation of PCBs into cold glaciers has been quantified in previous studies. However, the fate of PCBs in temperate glaciers has never been investigated. In the model, we include melt processes, inducing elution of water-soluble substances and, conversely, enrichment of particles and particle-bound chemicals. The model is validated by comparing modeled and measured PCB concentrations in an ice core collected in the Silvretta accumulation area. We quantify PCB incorporation between 1900 and 2010, and discuss the fate of six PCB congeners. PCB concentrations in the ice core peak in the period of high PCB emissions, as well as in years with strong melt. While for lower-chlorinated PCB congeners revolatilization is important, for higher-chlorinated congeners, the main processes are storage in glacier ice and removal by particle runoff. This study gives insight into PCB fate and dynamics and reveals the effect of snow accumulation and melt processes on the fate of semivolatile organic chemicals in a temperate Alpine glacier.

  8. CAD/CAM interface design of excimer laser micro-processing system

    NASA Astrophysics Data System (ADS)

    Jing, Liang; Chen, Tao; Zuo, Tiechuan

    2005-12-01

    Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.

  9. Accelerated design of bioconversion processes using automated microscale processing techniques.

    PubMed

    Lye, Gary J; Ayazi-Shamlou, Parviz; Baganz, Frank; Dalby, Paul A; Woodley, John M

    2003-01-01

    Microscale processing techniques are rapidly emerging as a means to increase the speed of bioprocess design and reduce material requirements. Automation of these techniques can reduce labour intensity and enable a wider range of process variables to be examined. This article examines recent research on various individual microscale unit operations including microbial fermentation, bioconversion and product recovery techniques. It also explores the potential of automated whole process sequences operated in microwell formats. The power of the whole process approach is illustrated by reference to a particular bioconversion, namely the Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one for the production of optically pure lactones.

  10. Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design

    DTIC Science & Technology

    1996-02-01

    feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co

  11. What controls deposition rate in electron-beam chemical vapor deposition?

    PubMed

    White, William B; Rykaczewski, Konrad; Fedorov, Andrei G

    2006-08-25

    The key physical processes governing electron-beam-assisted chemical vapor deposition are analyzed via a combination of theoretical modeling and supporting experiments. The scaling laws that define growth of the nanoscale deposits are developed and verified using carefully designed experiments of carbon deposition from methane onto a silicon substrate. The results suggest that the chamber-scale continuous transport of the precursor gas is the rate controlling process in electron-beam chemical vapor deposition.

  12. An advanced wide area chemical sensor testbed

    NASA Astrophysics Data System (ADS)

    Seeley, Juliette A.; Kelly, Michael; Wack, Edward; Ryan-Howard, Danette; Weidler, Darryl; O'Brien, Peter; Colonero, Curtis; Lakness, John; Patel, Paras

    2005-11-01

    In order to meet current and emerging needs for remote passive standoff detection of chemical agent threats, MIT Lincoln Laboratory has developed a Wide Area Chemical Sensor (WACS) testbed. A design study helped define the initial concept, guided by current standoff sensor mission requirements. Several variants of this initial design have since been proposed to target other applications within the defense community. The design relies on several enabling technologies required for successful implementation. The primary spectral component is a Wedged Interferometric Spectrometer (WIS) capable of imaging in the LWIR with spectral resolutions as narrow as 4 cm-1. A novel scanning optic will enhance the ability of this sensor to scan over large areas of concern with a compact, rugged design. In this paper, we shall discuss our design, development, and calibration process for this system as well as recent testbed measurements that validate the sensor concept.

  13. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs

    PubMed Central

    Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang

    2017-01-01

    A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338

  14. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    PubMed

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  15. "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity.

    PubMed

    Branch, Sarah K; Agranat, Israel

    2014-11-13

    This Perspective addresses ambiguities in designations of "new drugs" intended as new therapeutic entities (NTEs). Designation of an NTE as a new drug is significant, as it may confer regulatory exclusivity, an important incentive for development of novel compounds. Such designations differ between jurisdictions according to their drug laws and drug regulations. Chemical, biological, and innovative drugs are addressed in turn. The terms new chemical entity (NCE), new molecular entity (NME), new active substance (NAS), and new biological entity (NBE) as applied in worldwide jurisdictions are clarified. Differences between them are explored through case studies showing why new drugs have different periods of exclusivity in different jurisdictions or none at all. Finally, this Perspective recommends that in future, for the purpose of new drug compilations, NME is used for a new chemical drug, NBE for a new biological drug, and the combined designation NTE should refer to either an NME or an NBE.

  16. The amount of ergonomics and user involvement in 151 design processes.

    PubMed

    Kok, Barbara N E; Slegers, Karin; Vink, Peter

    2012-01-01

    Ergonomics, usability and user-centered design are terms that are well known among designers. Yet, products often seem to fail to meet the users' needs, resulting in a gap between expected and experienced usability. To understand the possible causes of this gap the actions taken by the designer during the design process are studied in this paper. This can show whether and how certain actions influence the user-friendliness of the design products. The aim of this research was to understand whether ergonomic principles and methods are included in the design process, whether users are involved in this process and whether the experience of the designer (in ergonomics/user involvement) has an effect on the end product usability. In this study the design processes of 151 tangible products of students in design were analyzed. It showed that in 75% of the cases some ergonomic principles were applied. User involvement was performed in only 1/3 of the design cases. Hardly any correlation was found between the designers' experience in ergonomic principles and the way they applied it and no correlations were found between the designers' experience in user involvement and the users' involvement in the design process.

  17. REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM

    EPA Science Inventory

    The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...

  18. Hazardous Waste Cleanup: Frontier Chemical Waste Process Incorporated in Pendleton, New York

    EPA Pesticide Factsheets

    Frontier Chemical Waste Process, Inc. is located at 7025 Townline Road, Pendleton, New York. This site was used for the treatment of industrial wastes from 1959 to 1974, with many wastes being discharged to the lake on the property (Quarry Lake).

  19. Application of a Box-Behnken design for optimizing the extraction process of agave fructans (Agave tequilana Weber var. Azul).

    PubMed

    Flores-Girón, Emmanuel; Salazar-Montoya, Juan Alfredo; Ramos-Ramírez, Emma Gloria

    2016-08-01

    Agave (Agave tequilana Weber var. Azul) is an industrially important crop in México since it is the only raw material appropriate to produce tequila, an alcoholic beverage. Nowadays, however, these plants have also a nutritional interest as a source of functional food ingredients, owing to the prebiotic potential of agave fructans. In this study, a Box-Behnken design was employed to determine the influence of temperature, liquid:solid ratio and time in a maceration process for agave fructan extraction and optimization. The developed regression model indicates that the selected study variables were statistical determinants for the extraction yield, and the optimal conditions for maximum extraction were a temperature of 60 °C, a liquid:solid ratio of 10:1 (v/w) and a time of 26.7 min, corresponding to a predicted extraction yield of 37.84%. Through selective separation via precipitation with ethanol, fructans with a degree of polymerization of 29.1 were obtained. Box-Behnken designs are useful statistical methods for optimizing the extraction process of agave fructans. A mixture of carbohydrates was obtained from agave powder. This optimized method can be used to obtain fructans for use as prebiotics or as raw material for obtaining functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    NASA Astrophysics Data System (ADS)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  1. Designing safer chemicals: Predicting the rates of metabolism of halogenated alkanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, H.; Anders, M.W.; Higgins, L.

    1995-11-21

    A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts that rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies ({Delta}H{sub act}) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,1,2,2-tetrachloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: (rate, human CYP2E1) = 44.99 - 1.79 ({Delta}H{sub act}), r{sup 2} = 0.86; In (rate, human Cyp2E1)= 46399 -1.77 ({Delta}H{sub act}), r{sup 2} = 0.97 (rates are in nmolmore » of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics. 41 refs., 1 fig., 2 tabs.« less

  2. Design and Characterization of Next-Generation Micromirrors Fabricated in a Four-Level, Planarized Surface-Micromachined Polycrystalline Silicon Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves. These micromirror devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces usingmore » Chemical Mechanical Polishing (CMP), unique post-process metallization, and the best active surface area to date. This paper presents the design, fabrication, modeling, and characterization of several variations of Flexure-Beam (FBMD) and Axial-Rotation Micromirror Devices (ARMD). The released devices are first metallized using a standard sputtering technique relying on metallization guards and masks that are fabricated next to the devices. Such guards are shown to enable the sharing of bond pads between numerous arrays of micromirrors in order to maximize the number of on-chip test arrays. The devices are modeled and then empirically characterized using a laser interferometer setup located at the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB in Dayton, Ohio. Unique design considerations for these devices and the process are also discussed.« less

  3. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  4. Chemical Characterization of Dimethylsulfoxide (DMSO) Munitions Recrystallization Process Samples.

    DTIC Science & Technology

    1984-10-01

    position unless so designated by other aulthorized documents. Disposition Destroy this report when it is no longer needed. Do riot return it to the... DESTRIBUTION LIST ....... ........... ... ................................. -12 rABLES 1. HPLC Analyses of Munitions from DMS0 Recrystallization Process...characterization and identification of any trace organics present in addition to the nitramines. Portions of the two samples, designated as evaporator

  5. A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure

    NASA Astrophysics Data System (ADS)

    Snelling, Dean Andrew, Jr.

    The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 - T6 castings resulting from two different commercially available Binder Jetting media and traditional "no-bake" silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375°C was established for the ceramic insert (78

  6. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  7. Process-based organization design and hospital efficiency.

    PubMed

    Vera, Antonio; Kuntz, Ludwig

    2007-01-01

    The central idea of process-based organization design is that organizing a firm around core business processes leads to cost reductions and quality improvements. We investigated theoretically and empirically whether the implementation of a process-based organization design is advisable in hospitals. The data came from a database compiled by the Statistical Office of the German federal state of Rheinland-Pfalz and from a written questionnaire, which was sent to the chief executive officers (CEOs) of all 92 hospitals in this federal state. We used data envelopment analysis (DEA) to measure hospital efficiency, and factor analysis and regression analysis to test our hypothesis. Our principal finding is that a high degree of process-based organization has a moderate but significant positive effect on the efficiency of hospitals. The main implication is that hospitals should implement a process-based organization to improve their efficiency. However, to actually achieve positive effects on efficiency, it is of paramount importance to observe some implementation rules, in particular to mobilize physician participation and to create an adequate organizational culture.

  8. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    sources is paramount to success. We are currently working on several processes to produce the propellants that would allow us to visit and explore the surface of Mars. The capabilities currently at our disposal for launching and delivering equipment to another planet or satellite dictate that the size and scale of any hardware must be extremely small. The miniaturization of the processes needed to prepare the in situ propellants and life support commodities is a real challenge. Chemical engineers are faced with the prospect of reproducing an entire production facility in miniature so the complex can be lifted into space and delivered to our destination. Another area that does not normally concern chemical engineers is the extreme physical aspects payloads are subjected to with the launch of a spacecraft. Extreme accelerations followed by the sudden loss of nearly all gravitational forces are well outside normal equipment design conditions. If the equipment cannot survive the overall trip, then it obviously will not be able to yield the needed products upon arrival. These launch constraints must be taken into account. Finally, we must consider both the effectiveness and efficiencies of the processes. A facility located on the Moon or Mars will not have an unlimited supply of power or other ancillary utilities. For a Mars expedition, the available electric power is severely limited. The design of both the processes and the equipment must be considered. With these constraints in mind, only the most efficient designs will be viable. Cryogenics, in situ resource utilization, miniaturization, launchability, and power/process efficiencies are only a few of the areas that chemical engineers provide support and expertise for the exploration of space.

  9. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  10. Automation of the aircraft design process

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1974-01-01

    The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.

  11. Designing Systems for Environmental Sustainability

    EPA Science Inventory

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  12. Chip Design Process Optimization Based on Design Quality Assessment

    NASA Astrophysics Data System (ADS)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  13. Design and development of next-generation bottom anti-reflective coatings for 45nm process with hyper NA lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Makoto; Sakaguchi, Takahiro; Hashimoto, Keisuke; Sakamoto, Rikimaru; Kishioka, Takahiro; Takei, Satoshi; Enomoto, Tomoyuki; Nakajima, Yasuyuki

    2006-03-01

    Integrated circuit manufacturers are consistently seeking to minimize device feature dimensions in order to reduce chip size and increase integration level. Feature sizes on chips are achieved sub 65nm with the advanced 193nm microlithography process. R&D activities of 45nm process have been started so far, and 193nm lithography is used for this technology. The key parameters for this lithography process are NA of exposure tool, resolution capability of resist, and reflectivity control with bottom anti-reflective coating (BARC). In the point of etching process, single-layer resist process can't be applied because resist thickness is too thin for getting suitable aspect ratio. Therefore, it is necessary to design novel BARC system and develop hard mask materials having high etching selectivity. This system and these materials can be used for 45nm generation lithography. Nissan Chemical Industries, Ltd. and Brewer Science, Inc. have been designed and developed the advanced BARCs for the above propose. In order to satisfy our target, we have developed novel BARC and hard mask materials. We investigated the multi-layer resist process stacked 4 layers (resist / thin BARC / silicon-contained BARC (Si-ARC) / spin on carbon hard mask (SOC)) (4 layers process). 4 layers process showed the excellent lithographic performance and pattern transfer performance. In this paper, we will discuss the detail of our approach and materials for 4 layers process.

  14. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES

    PubMed Central

    Somogyi, Endre; Glazier, James A.

    2017-01-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment. PMID:29303160

  15. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    PubMed

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  16. Molecular simulation studies on chemical reactivity of methylcyclopentadiene.

    PubMed

    Wang, Qingsheng; Zhang, Yingchun; Rogers, William J; Mannan, M Sam

    2009-06-15

    Molecular simulations are important to predict thermodynamic values for reactive chemicals especially when sufficient experimental data are not available. Methylcyclopentadiene (MCP) is an example of a highly reactive and hazardous compound in the chemical process industry. In this work, chemical reactivity of 2-methylcyclopentadiene, including isomerization, dimerization, and oxidation reactions, is investigated in detail by theoretical computational chemistry methods and empirical thermodynamic-energy correlation. On the basis of molecular simulations, an average value of -15.2 kcal/mol for overall heat of dimerization and -45.6 kcal/mol for overall heat of oxidation were obtained in gaseous phase at 298 K and 1 atm. These molecular simulation studies can provide guidance for the design of safer chemical processes, safer handling of MCP, and also provide useful information for an investigation of the T2 Laboratories explosion on December 19, 2007, in Florida.

  17. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.

    PubMed

    Den, Walter; Sharma, Virender K; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  18. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals

    NASA Astrophysics Data System (ADS)

    Den, Walter; Sharma, Virender K.; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S.

    2018-04-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  19. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    PubMed

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  1. Designing transition metal surfaces for their adsorption properties and chemical reactivity

    NASA Astrophysics Data System (ADS)

    Montemore, Matthew M.

    Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications. First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates. Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design. In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the

  2. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1997-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory.

  3. Merging curriculum design with chemical epistemology: A case of teaching and learning chemistry through modeling

    NASA Astrophysics Data System (ADS)

    Erduran, Sibel

    The central problem underlying this dissertation is the design of learning environments that enable the teaching and learning of chemistry through modeling. Significant role of models in chemistry knowledge is highlighted with a shift in emphasis from conceptual to epistemological accounts of models. Research context is the design and implementation of student centered Acids & Bases Curriculum, developed as part of Project SEPIA. Qualitative study focused on 3 curriculum activities conducted in one 7th grade class of 19 students in an urban, public middle school in eastern United States. Questions guiding the study were: (a) How can learning environments be designed to promote growth of chemistry knowledge through modeling? (b) What epistemological criteria facilitate learning of growth of chemistry knowledge through modeling? Curriculum materials, and verbal data from whole class conversations and student group interviews were analyzed. Group interviews consisted of same 4 students, selected randomly before curriculum implementation, and were conducted following each activity to investigate students' developing understandings of models. Theoretical categories concerning definition, properties and kinds of models as well as educational and chemical models informed curriculum design, and were redefined as codes in the analysis of verbal data. Results indicate more diversity of codes in student than teacher talk across all activities. Teacher concentrated on educational and chemical models. A significant finding is that model properties such as 'compositionality' and 'projectability' were not present in teacher talk as expected by curriculum design. Students did make reference to model properties. Another finding is that students demonstrate an understanding of models characterized by the seventeenth century Lemery model of acids and bases. Two students' developing understandings of models across curriculum implementation suggest that curriculum bears some change in

  4. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials,more » in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.« less

  5. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    DOEpatents

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  6. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  7. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    NASA Astrophysics Data System (ADS)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  8. Transfer behavior of odorous pollutants in wastewater sludge system under typical chemical conditioning processes for dewaterability enhancement.

    PubMed

    Gao, Hongyu; Zhang, Weijun; Song, Zhenzhen; Yang, Xiaofang; Yang, Lian; Cao, Mengdi; Wang, Dongsheng; Liao, Guiying

    2017-06-13

    Chemical conditioning has been used for enhancing wastewater sludge dewaterability for many years, but the characteristics of odorous pollutants emission in sludge conditioning were still unclear. In this work, the transfer behavior of different odorous pollutants between air, liquid and solid phases under typical chemical conditioning processes for high-pressure dewatering was systematically investigated. The results indicated that that besides hydrogen sulfide (H 2 S) and ammonia (NH 3 ), 21 kinds of volatile organic contaminants (VOCs) were identified and quantified by gas chromatography-mass spectrometry (GC-MS), while the concentrations and composition of odorous pollutants varied greatly for different conditioning processes. VOCs were composed by three main constituents including benzenes, halogeno benzene and hydrocarbons. According to mass balance analysis, about 50% of VOCs adsorbed within sludge extracellular polymeric substances (EPS) fraction. Since EPS was damaged and/or flocculation in different chemical conditioning processes, VOCs distributed in solid phase transformed into liquid phase and then released into air. The discrepancies in mass of odorous pollutants before and after chemical conditioning were likely to be related to chemical conversion under acidification, oxidation and precipitation in the presence of ferric ions.

  9. Molpher: a software framework for systematic chemical space exploration.

    PubMed

    Hoksza, David; Skoda, Petr; Voršilák, Milan; Svozil, Daniel

    2014-03-21

    Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term 'molecular morphing', Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called 'morphing operators' that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline.

  10. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  11. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe

    2014-09-01

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  12. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    PubMed

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. DESIGN MANUAL: PHOSPHORUS REMOVAL

    EPA Science Inventory

    This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...

  14. Model-based design of experiments for cellular processes.

    PubMed

    Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E

    2013-01-01

    Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.

  15. Using a Laboratory Simulator in the Teaching and Study of Chemical Processes in Estuarine Systems

    ERIC Educational Resources Information Center

    Garcia-Luque, E.; Ortega, T.; Forja, J. M.; Gomez-Parra, A.

    2004-01-01

    The teaching of Chemical Oceanography in the Faculty of Marine and Environmental Sciences of the University of Cadiz (Spain) has been improved since 1994 by the employment of a device for the laboratory simulation of estuarine mixing processes and the characterisation of the chemical behaviour of many substances that pass through an estuary. The…

  16. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  17. Process Design Manual for Land Treatment of Municipal Wastewater.

    ERIC Educational Resources Information Center

    Crites, R.; And Others

    This manual presents a procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are given emphasis. The basic unit operations and unit processes are discussed in detail, and the design concepts and criteria are presented. The manual includes design…

  18. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  19. Design and Certification of the Extravehicular Activity Mobility Unit (EMU) Water Processing Jumper

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Neumeyer, Derek J.; Lewis, John F.

    2006-01-01

    The Extravehicular Mobility Units (EMUs) onboard the International Space Station (ISS) experienced a failure due to cooling water contamination from biomass and corrosion byproducts forming solids around the EMU pump rotor. The coolant had no biocide and a low pH which induced biofilm growth and corrosion precipitates, respectively. NASA JSC was tasked with building hardware to clean the ionic, organic, and particulate load from the EMU coolant loop before and after Extravehicular Activity (EVAs). Based on a return sample of the EMU coolant loop, the chemical load was well understood, but there was not sufficient volume of the returned sample to analyze particulates. Through work with EMU specialists, chemists, (EVA) Mission Operations Directorate (MOD) representation, safety and mission assurance, astronaut crew, and team engineers, requirements were developed for the EMU Water Processing hardware (sometimes referred to as the Airlock Coolant Loop Recovery [A/L CLR] system). Those requirements ranged from the operable level of ionic, organic, and particulate load, interfaces to the EMU, maximum cycle time, operating pressure drop, flow rate, and temperature, leakage rates, and biocide levels for storage. Design work began in February 2005 and certification was completed in April 2005 to support a return to flight launch date of May 12, 2005. This paper will discuss the details of the design and certification of the EMU Water Processing hardware and its components

  20. Designation of Alpha-Phenylacetoacetonitrile (APAAN), a Precursor Chemical Used in the Illicit Manufacture of Phenylacetone, Methamphetamine, and Amphetamine, as a List I Chemical. Final rule.

    PubMed

    2017-07-14

    The Drug Enforcement Administration (DEA) is finalizing the designation of the chemical alpha-phenylacetoacetonitrile (APAAN) and its salts, optical isomers, and salts of optical isomers, as a list I chemical under the Controlled Substances Act (CSA). The DEA proposed control of APAAN, due to its use in clandestine laboratories to illicitly manufacture the schedule II controlled substances phenylacetone (also known as phenyl-2-propanone or P2P), methamphetamine, and amphetamine. This rulemaking finalizes, without change, the control of APAAN as a list I chemical. This action does not establish a threshold for domestic and international transactions of APAAN. As such, all transactions involving APAAN, regardless of size, shall be regulated. In addition, chemical mixtures containing APAAN are not exempt from regulatory requirements at any concentration. Therefore, all transactions of chemical mixtures containing any quantity of APAAN shall be regulated pursuant to the CSA. However, manufacturers may submit an application for exemption for those mixtures that do not qualify for automatic exemption.