Science.gov

Sample records for chemical reaction thermal

  1. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  2. Quantum instanton approximation for thermal rate constants of chemical reactions

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Zhao, Yi; Ceotto, Michele; Yang, Sandy

    2003-07-01

    A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-βĤ). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (˜10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials.

  3. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  4. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  5. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  6. Solar photo-thermal catalytic reactions to produce high value chemicals

    SciTech Connect

    Prengle, H.W. Jr.; Wentworth, W.E. )

    1992-04-01

    This report presents a summary of the research work accomplished to date on the utilization of solar photo-thermal energy to convert low cost chemical feedstocks into high $-value chemical products. The rationale is that the solar IR-VIS-UV spectrum is unique, supplying endothermic reaction energy as well as VIS-UV for photochemical activation. Chemical market analysis and product price distribution focused attention on speciality chemicals with prices >$1.00/lb, and a synthesis sequence of n-paraffins to aromatics to partial oxidized products. The experimental work has demonstrated that enhanced reaction effects result from VIS-UV irradiation of catalytically active V2O5/SiO2. Experiments of the past year have been on dehydrogenation and dehydrocyclization of n-paraffins to olefins and aromatics with preference for the latter. Recent results using n-hexane produced 95% conversion with 56% benzene; it is speculated that aromatic yield should reach {approximately}70% by further optimization. Pilot- and commercial-scale reactor configurations have been examined; the odds-on-favorite being a shallow fluid-bed of catalyst with incident radiation from the top. Sequencing for maximum cost effectiveness would be day-time endothermic followed by night-time exothermic reactions to produce the products.

  7. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution. PMID:20967399

  8. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.

    PubMed

    Vázquez-Vázquez, Carmen; Vaz, Belén; Giannini, Vincenzo; Pérez-Lorenzo, Moisés; Alvarez-Puebla, Ramon A; Correa-Duarte, Miguel A

    2013-09-18

    We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.

  9. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  10. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  11. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  12. Vaporization or Chemical Reaction: Which controls the fate of contaminants treated by in situ thermal remediation?

    EPA Science Inventory

    Thermal remediation technologies, which includes steam enhanced extraction, electrical resistance heating, and thermal conductive heating, have been developed based on technologies employed by the enhanced oil recovery industry. Although mobilization and/or volatilization of con...

  13. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  14. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  15. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  16. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  17. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  18. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Sivakumar, P.

    2016-02-01

    The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  19. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  20. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  1. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  2. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  3. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Wang, K. D.; Zhao, W. Q.; Li, T. Q.

    2016-07-01

    In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si3N4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si3N4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si3N4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si3N4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si3N4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si3N4 was performed at different powers using a TEM00 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the accuracy of the predicated results for laser ablation of materials undergoing thermo-chemical reactions.

  4. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  5. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Lakshmi, C. S.

    2015-05-01

    Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  6. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  7. Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model.

    PubMed

    Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun

    2014-12-01

    The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.

  8. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  9. Mixed Convective Flow of an Elastico-Viscous Fluid Past a Vertical Plate in the Presence of Thermal Radiation and Chemical Reaction with an Induced Magnetic Field

    NASA Astrophysics Data System (ADS)

    Das, Utpal Jyoti

    2016-01-01

    The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.

  10. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction

    PubMed Central

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  11. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  12. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  13. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  14. Chemical burn or reaction

    MedlinePlus

    Burn from chemicals ... in contact with the toxic substance Rash , blisters , burns on the skin Unconsciousness or other states of ... Make sure the cause of the burn has been removed. Try not to come ... yourself. If the chemical is dry, brush off any excess. Avoid ...

  15. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  16. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  17. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  18. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  19. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  20. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  1. Theoretical studies of chemical reaction dynamics

    SciTech Connect

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  2. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  3. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-04-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  4. The lepidocrocite-maghemite-haematite reaction chain-I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Gendler, T. S.; Shcherbakov, V. P.; Dekkers, M. J.; Gapeev, A. K.; Gribov, S. K.; McClelland, E.

    2005-03-01

    We report on the magnetic properties and the acquisition of a chemical remanent magnetization (CRM) in a field of 100 μT as a function of temperature and time during the lepidocrocite-maghemite-haematite reaction chain. The development of CRM was monitored at a series of 13 temperatures ranging from 175 to 550 °C data acquisition was done at the specific formation temperatures for durations of up to 500 hr. Up to acquisition temperatures of 200 °C it takes a considerable time (up to 7 hr) before the CRM is measurable. This time decreases with increasing temperature, reflecting the activation energy of the reaction to form the first maghemite. During the lepidocrocite conversion, formation of two types of maghemite is suggested by two peaks in the CRM versus time curves. Magnetic properties were analysed after various stages in the reaction. They indicate a mixture of superparamagnetic and single-domain maghemite. The first reaction product (obtained after annealing at 200 °C) is a fine-grained yet crystalline maghemite (labelled type A). Before massive maghemite formation occurs, the coercive and remanent coercive forces go through a minimum at intermediate temperatures of 250-300 °C (annealing for 2.5 hr). This minimum lowers to 200-250 °C with increasing annealing time (500 hr). This is probably the result of two processes acting simultaneously-formation of superparamagnetic maghemite particles of a second less crystalline maghemite type (labelled type B) and removal of stacking faults in type A maghemite. The second process is suggested by analogy to the behaviour of natural magnetite/maghemite systems on annealing. Removal of stacking faults is reported to result in a magnetic softening of the grain assemblage. Annealing at 300-350 °C removes most of the lepidocrocite and the second maghemite type, type B, becomes prominent. Haematite formation sets in at slightly higher temperatures, yet the type B maghemite is in part thermally stable up to 600

  5. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  6. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  7. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  8. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  9. Combined Influence of Thermal Diffusion and Diffusion Thermo on Unsteady MHD Free Convective Fluid Flow Past an Infinite Vertical Porous Plate in Presence of Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Srinivasa Raju, Rallabandi

    2016-06-01

    The present investigation is concerned with the effects of thermal diffusion (Soret) and diffusion thermo (Dufour) on an unsteady MHD free convective flow with heat and mass transfer of an electrically conducting fluid in the presence of chemical reaction. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The problem is governed by coupled non-linear partial differential equations with appropriate boundary conditions. A finite element numerical solution is developed to solve the resulting well-posed two-point boundary value problem. The present numerical results are compared with available data and are found in an excellent agreement. The expressions for velocity, temperature and concentration fields are obtained. With the aid of these, the expressions for the coefficient of skin-friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are derived. Finally the effects of various physical parameters of the flow quantities are studied with the help of graphs and tables.

  10. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  11. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  12. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  13. A reversible nanoconfined chemical reaction.

    PubMed

    Nielsen, Thomas K; Bösenberg, Ulrike; Gosalawit, Rapee; Dornheim, Martin; Cerenius, Yngve; Besenbacher, Flemming; Jensen, Torben R

    2010-07-27

    Hydrogen is recognized as a potential, extremely interesting energy carrier system, which can facilitate efficient utilization of unevenly distributed renewable energy. A major challenge in a future "hydrogen economy" is the development of a safe, compact, robust, and efficient means of hydrogen storage, in particular, for mobile applications. Here we report on a new concept for hydrogen storage using nanoconfined reversible chemical reactions. LiBH4 and MgH2 nanoparticles are embedded in a nanoporous carbon aerogel scaffold with pore size Dmax approximately 21 nm and react during release of hydrogen and form MgB2. The hydrogen desorption kinetics is significantly improved compared to bulk conditions, and the nanoconfined system has a high degree of reversibility and stability and possibly also improved thermodynamic properties. This new scheme of nanoconfined chemistry may have a wide range of interesting applications in the future, for example, within the merging area of chemical storage of renewable energy.

  14. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  15. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  16. Thermodynamic performance for a chemical reactions model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Sánchez-Salas, N.; Chimal-Eguía, J. C.

    2015-01-01

    This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.

  17. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  18. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  19. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  20. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  1. Solar thermal aerosol flow reaction process

    SciTech Connect

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  2. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  3. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  4. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  5. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  6. Chemical-reaction model for Mexican wave

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2003-05-01

    We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.

  7. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  8. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions

    PubMed Central

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174

  9. Identifying individual chemical bonds in single-molecule chemical reaction products using nc-AFM

    NASA Astrophysics Data System (ADS)

    Wickenburg, Sebastian; de Oteyza, Dimas G.; Chen, Yen-Chia; Riss, Alexander; Tsai, Hsin-Zon; Pedramrazi, Zahra; Bradley, Aaron J.; Ugeda, Miguel M.; Gorman, Patrick; Etkin, Grisha; Mowbray, Duncan J.; Perez, Alejandro; Rubio, Angel; Crommie, Michael F.; Fischer, Felix R.

    2014-03-01

    Determining reaction pathways and products is an integral part of chemical synthesis. Ensemble measurements are commonly used, but identifying products of complex reactions at surfaces presents a significant challenge. Here we present a non-contact AFM (nc-AFM) study to directly address this issue. We followed the change of the chemical structures, from reactants to products of enediyne cyclization reactions on metal surfaces. Thermal annealing of enediynes induced a series of cyclization cascades leading to radical species and the formation of dimers. Atomically resolved nc-AFM images reveal the precise chemical structure and the formation of chemical bonds between single molecular units. With the support of DFT calculations, we identified the underlying chemical pathways and barriers, demonstrating the potential of this atomically resolved AFM technique to study unknown reaction products in surface chemistry at the single-molecule level.

  10. Chemical Reactions at Surfaces. Final Progress Report

    SciTech Connect

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  11. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  12. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  13. Chemical Principles Revisited: Annotating Reaction Equations.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1987-01-01

    Urges chemistry teachers to have students annotate the chemical reactions in aqueous-solutions that they see in their textbooks and witness in the laboratory. Suggests this will help students recognize the reaction type more readily. Examples are given for gas formation, precipitate formation, redox interaction, acid-base interaction, and…

  14. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  15. Chemical reactions in perfume ageing.

    PubMed

    Blakeway, J M; Frey, M L; Lacroix, S; Salerno, M S

    1987-10-01

    Summary The interactions between a typical range of perfume materials, alcohol, water, air, elevated temperatures and daylight have been studied. The changes of composition, acidity, peroxide content and the formation of new molecules were followed. The stabilizing effects of UV absorbers, antioxidants and sequestering agents were examined; - the formation of acid reaction products was accelerated by air, temperature, daylight and the presence of natural products; - peroxide formation was accelerated by heat and light and the presence of air; as the acidity increased, the peroxides decomposed; - the acetalization of other aldehydes was accelerated by temperature and daylight and the presence of natural products up to 40% of certain aldehydes may be converted into acetals after 3 months at 37 degrees C; - many stereoisomerizations occur, e.g., transisoeugenol is converted up to 10% into the cis isomer after 3 months at 37 degrees C and 58% in daylight; - evaluation of antioxidants UV absorbers and sequestering agents showed a significant protection against deterioration only by EDTA dipotassium salt; - ethanol was converted into acetaldehyde and its diethylacetal by peroxides present and formed on ageing up to 0.08%. Natural products accelerated this formation; - the reaction between benzoyl peroxide and ethanol was shown to yield up to 63% of acetaldehyde+diethyl acetal whilst di-t-butyl peroxide gave only 23% under the same conditions. These results go some way to explaining odour changes in perfume ageing.

  16. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    SciTech Connect

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-20

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  17. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  18. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  19. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  20. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    PubMed Central

    2015-01-01

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726

  1. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    DOE PAGES

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less

  2. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    SciTech Connect

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.

  3. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  4. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  5. Anatomy of an Elementary Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew J.; Zare, Richard N.

    1998-09-01

    The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.

  6. Cores from the Salton Sea scientific drilling program: Metamorphic reaction progress as a function of chemical and thermal environment: Final report

    SciTech Connect

    Papike, J.J.; Shearer, C.K.

    1987-05-13

    The study investigated the downhole progressive metamorphism at the Salton Sea site by monitoring and evaluating discontinuous and continuous metamorphic reactions. The main emphasis was placed on: (1) the addition of petrographic, geochemical, and mineralogical data to the Salton Sea data base; (2) determination of downhole reactions; (3) evaluation of the progress of individual continuous reaction (epsilon) and the overall reaction progress (epsilon/sub T/) during the transition from one metamorphic zone to the next; and (4) evaluation and correlation of mineral reactions and reaction progress with mineral phase and organic material geothermometry. To these ends, thirty-three samples from the Salton Sea core were analyzed for: (1) quantitative modal mineralogy using the x-ray diffraction reference intensity method (RIM), (2) 30 major and trace elements in the whole rock and (3) mineral chemistry and structural state. In addition, a subset of these samples were used for temperature determinations using vitrinite reflectivity.

  7. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  8. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  9. Theoretical study of chemical reactions in solution

    SciTech Connect

    Yokogawa, D.

    2015-12-31

    Quantum chemical calculations in solution are becoming more and more important in chemistry. Reference interaction site model self-consistent field (RISM-SCF) is one of the powerful approaches to perform quantum chemical calculations in solution. In this work, we developed a new generation of RISM-SCF, where a robust fitting method was newly introduced. We applied the new method to tautomerization reaction of cytosine in aqueous phase. Our calculation reproduced experimentally obtained relative stabilities and relative free energies correctly.

  10. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  11. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  12. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    A color-change reaction is described in which two colorless solutions are combined to afford a black mixture. Two more colorless solutions are combined to afford a white mixture. The black and white mixtures are then combined to afford a clear, colorless solution. The reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, vinegar, ammonia, bleach, Epsom salt, and laundry starch.

  13. A chemical reaction network solver for the astrophysics code NIRVANA

    NASA Astrophysics Data System (ADS)

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  14. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  15. Classification of Chemical Reactions: Stages of Expertise

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2008-01-01

    In this study we explore the strategies that undergraduate and graduate chemistry students use when engaged in classification tasks involving symbolic and microscopic (particulate) representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention when classifying…

  16. Computer Animation of a Chemical Reaction.

    ERIC Educational Resources Information Center

    Eaker, Charles W.; Jacobs, Edwin L.

    1982-01-01

    Taking a prototype chemical reaction (molecular hydrogen plus hydrogen atom), constructs an accurate semiempirical, generalized diatomics-in-molecules potential energy surface, calculates motions of these atoms on this surface using REACTS trajectory program, and presents results as moving picture on a microcomputer graphics system. Provides…

  17. Tailoring oxidation degrees of graphene oxide by simple chemical reactions

    SciTech Connect

    Wang Gongkai; Sun Xiang; Lian Jie; Liu Changsheng

    2011-08-01

    High quality graphene oxide (GO) with controllable degrees of oxidation was synthesized by simple chemical reactions inspired by approaches to unzip single wall carbon nanotubes using strong oxidizing agents. As compared to the conventional Hummers method, these reactions are less exo-therm involved without emission of toxic gases. The structural characteristics of the synthesized GO with various oxidation degrees were evaluated by x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, thermal gravimetric analysis, and UV-vis-IR spectroscopy. GO with tailored degrees of oxidation displays tunable optoelectronic properties and may have a significant impact on developing graphene- or GO-based platforms for various technological applications.

  18. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments

    SciTech Connect

    Nichols, A.L. III

    1996-05-01

    The ability to predict the response of a weapon system that contains insensitive explosives to elevated temperatures is important in understanding its safety characteristics. To model such a system at elevated temperatures in a finite element computer code requires a variety of capabilities. These modeling capabilities include thermal diffusion and convection to transport the heat to the explosives in the weapon system, temperature based chemical reaction modeling of the decomposition of the explosive materials, and mechanical modeling of both the metal casing and the unreacted and decomposed explosive. The Chemical TOPAZ code has been developed to model coupled thermal/chemical problems where we do not need to model the mass motion. We have also developed the LYNX2D code, based on PALM2D and Chemical TOPAZ, which is an implicit, two-dimensional coupled thermal/chemical/mechanical finite element model computer code. Some representative examples are shown. {copyright} {ital 1996 American Institute of Physics.}

  19. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  20. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media.

  1. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  2. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  3. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed.

  4. Concordant chemical reaction networks and the Species-Reaction Graph.

    PubMed

    Shinar, Guy; Feinberg, Martin

    2013-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network's Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams.

  5. Uncertainty Quantification for Nonlinear Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Robinson, B. A.; Aceves, A. B.; Tartakovsky, D. M.

    2006-12-01

    Systems of coupled chemical reactions are greatly affected by the inherent uncertainties in natural phenomena. These uncertainties can be parametric in nature due to measurement errors or insufficient data. Modeling uncertainties also arise at the molecular level when determining what fraction of the population of each chemical species participates in a chemical reaction at any given time. We present different methods used to quantify both modeling and parametric uncertainties. The application we focus on is that of chemical reactions in the subsurface that greatly affect the transport of contaminants in groundwater. The example considered here is the sorption of Neptunium Np-237 through a competitive ion exchange process. Np-237 is a key radio-nuclide of concern for the Yucca Mountain High Level Waste storage site due to its relatively long half-life, high solubility and low sorption properties. By quantifying the effects of modeling and parametric uncertainties, we can estimate the error associated with Np-237 sorptivity and hence its transport.

  6. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  7. Ablation Thermal Protection Systems: Suitability of ablation systems to thermal protection depends on complex physical and chemical processes.

    PubMed

    Ungar, E W

    1967-11-10

    The performance of ablation thermal protection systems is intimately related to the mass transfer, heat transfer, and chemical reactions which occur within the gas boundary layer. Production of a liquid layer and phase change or chemical reaction heat sinks greatly improve materials performance. Materials are available which achieve many goals for thermal protection. However, advanced materials which are now being developed provide hope of further reductions in the weight of heat-shielding structures. PMID:17732614

  8. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  9. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  10. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  11. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  12. Computed Potential Energy Surfaces for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A manuscript describing the calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction, which were described in the last progress report, has been accepted for publication in J. Chem. Phys., and a copy of the manuscript is included in the appendix. The production of (1)CH2 in this reaction is important in hydrocarbon combustion since (1)CH2 is highly reactive and would be expected to insert into N2, possibly leading to a new source for prompt NO(x) (vide infra). During the last six months new calculations have been carried out for the NH2 + NO system, which is important in the thermal de-NO(x) process.

  13. The smallest chemical reaction system with bistability

    PubMed Central

    Wilhelm, Thomas

    2009-01-01

    Background Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity. Results Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i) reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations (decreasing importance from i-iii). The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular). We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature. Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc.), we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.). This helps modelling multistable systems and it is important for corresponding synthetic biology projects. Conclusion The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with simple systems and for

  14. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kabbani, Mohamad A.; Tiwary, Chandra Sekhar; Autreto, Pedro A. S.; Brunetto, Gustavo; Som, Anirban; Krishnadas, K. R.; Ozden, Sehmus; Hackenberg, Ken P.; Gong, Yongi; Galvao, Douglas S.; Vajtai, Robert; Kabbani, Ahmad T.; Pradeep, Thalappil; Ajayan, Pulickel M.

    2015-06-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations.

  15. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes.

    PubMed

    Kabbani, Mohamad A; Tiwary, Chandra Sekhar; Autreto, Pedro A S; Brunetto, Gustavo; Som, Anirban; Krishnadas, K R; Ozden, Sehmus; Hackenberg, Ken P; Gong, Yongi; Galvao, Douglas S; Vajtai, Robert; Kabbani, Ahmad T; Pradeep, Thalappil; Ajayan, Pulickel M

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations.

  16. Law of Localization in Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Mochizuki, Atsushi

    2016-07-01

    In living cells, chemical reactions are connected by sharing their products and substrates, and form complex networks, e.g., metabolic pathways. Here we developed a theory to predict the sensitivity, i.e., the responses of concentrations and fluxes to perturbations of enzymes, from network structure alone. Nonzero response patterns turn out to exhibit two characteristic features, localization and hierarchy. We present a general theorem connecting sensitivity with network topology that explains these characteristic patterns. Our results imply that network topology is an origin of biological robustness. Finally, we suggest a strategy to determine real networks from experimental measurements.

  17. Law of Localization in Chemical Reaction Networks.

    PubMed

    Okada, Takashi; Mochizuki, Atsushi

    2016-07-22

    In living cells, chemical reactions are connected by sharing their products and substrates, and form complex networks, e.g., metabolic pathways. Here we developed a theory to predict the sensitivity, i.e., the responses of concentrations and fluxes to perturbations of enzymes, from network structure alone. Nonzero response patterns turn out to exhibit two characteristic features, localization and hierarchy. We present a general theorem connecting sensitivity with network topology that explains these characteristic patterns. Our results imply that network topology is an origin of biological robustness. Finally, we suggest a strategy to determine real networks from experimental measurements. PMID:27494502

  18. Law of Localization in Chemical Reaction Networks.

    PubMed

    Okada, Takashi; Mochizuki, Atsushi

    2016-07-22

    In living cells, chemical reactions are connected by sharing their products and substrates, and form complex networks, e.g., metabolic pathways. Here we developed a theory to predict the sensitivity, i.e., the responses of concentrations and fluxes to perturbations of enzymes, from network structure alone. Nonzero response patterns turn out to exhibit two characteristic features, localization and hierarchy. We present a general theorem connecting sensitivity with network topology that explains these characteristic patterns. Our results imply that network topology is an origin of biological robustness. Finally, we suggest a strategy to determine real networks from experimental measurements.

  19. Chemical Reaction Dynamics in Nanoscle Environments

    SciTech Connect

    Evelyn M. Goldfield

    2006-09-26

    The major focus of the research in this program is the study of the behavior of molecular systems confined in nanoscale environments. The goal is to develop a theoretical framework for predicting how chemical reactions occur in nanoscale environments. To achieve this goal we have employed ab initio quantum chemistry, classical dynamics and quantum dynamics methods. Much of the research has focused on the behavior of molecules confined within single-walled carbon nanotubes (SWCNTs). We have also studied interactions of small molecules with the exterior surface of SWCNTs. Nonequilibrium molecular dynamics of interfaces of sliding surface interfaces have also been performed.

  20. Thermal runaway in VRLAB-Phenomena, reaction mechanisms and monitoring

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Monahov, B.; Kirchev, A.; Valkovska, D.

    During operation of the oxygen cycle water decomposes forming O 2 at the lead dioxide electrode, while at the lead electrode O 2 is reduced forming water. The mechanism of these processes is related with thermal phenomena as a result of which heat is released. When the cell temperature increases substantially the battery can be damaged. This phenomenon is often called thermal runaway (TRA). The present work investigates the changes in positive and negative plate potentials, temperature, current, and gassing rate during thermal runaway. It is established that during TRA maximums in the transient curves of positive plate potential, current, and finally cell temperature appear. These maximums mark four periods in the development of the TRA phenomenon. The processes that take place during each of these periods are elucidated. On ground of the experimental results a model of the electrochemical and chemical reactions that take place in the system is proposed. The thermal effects of these reactions lead to increase of the cell temperature. Water decomposition at the positive plate and water formation at the negative one cause changes in the concentration of H 2SO 4 at the plate interfaces. When the applied cell voltage is high the increase of the temperature and the changes in H 2SO 4 concentration lead to changes in the structure and phase composition of the electrodes interfaces. This results in changes of the type of the reactions that proceed at the two interfaces. Exothermic chemical reactions take place at the negative plate. Due to the increased temperature and H 2SO 4 concentration the positive plate partially passivates and the current goes through maximum and starts to decrease. The changes in Pb/solution interface and the decreased O 2 flow lead to a maximum in the cell temperature. Problems appear when the value of this maximum becomes higher than the temperature limit below which the battery operates normally. On ground of this model of the thermal phenomena

  1. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  2. Thermal maps of gases in heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Jarenwattananon, Nanette N.; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R.; Yaghi, Omar M.; Bouchard, Louis-S.

    2013-10-01

    More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing

  3. Thermal maps of gases in heterogeneous reactions.

    PubMed

    Jarenwattananon, Nanette N; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R; Yaghi, Omar M; Bouchard, Louis-S

    2013-10-24

    More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing

  4. Systematic Error Estimation for Chemical Reaction Energies.

    PubMed

    Simm, Gregor N; Reiher, Markus

    2016-06-14

    For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation.

  5. CHEMICAL REACTIVITY TEST: Assessing Thermal Stability and Chemical Compatibility

    SciTech Connect

    Koerner, J; Tran, T; Gagliardi, F; Fontes, A

    2005-04-21

    The thermal stability of high explosive (HE) and its compatibility with other materials are of critical importance in storage and handling practices. These properties are measured at Lawrence Livermore National Laboratory using the chemical reactivity test (CRT). The CRT measures the total amount of gas evolved from a material or combination of materials after being heat treated for a designated period of time. When the test result is compared to a threshold value, the relative thermal stability of an HE or the compatibility of an HE with other materials is determined. We describe the CRT testing apparatus, the experimental procedure, and the comparison methodology and provide examples and discussion of results.

  6. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully. PMID:23033092

  7. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  8. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  9. Thermal energy harvesting plasmonic based chemical sensors.

    PubMed

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2014-10-28

    Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods. PMID:25280004

  10. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  11. Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-11-01

    This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.

  12. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models.

    PubMed

    Liberman, M A; Kiverin, A D; Ivanov, M F

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  13. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  14. Plasmon-driven sequential chemical reactions in an aqueous environment.

    PubMed

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  15. Plasmon-driven sequential chemical reactions in an aqueous environment

    PubMed Central

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-01-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

  16. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  17. Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

    SciTech Connect

    ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

    2000-11-27

    The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw

  18. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  19. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  20. Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.

    2001-01-01

    Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)

  1. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  2. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  3. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  4. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  5. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions. PMID:24899535

  6. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  7. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    DOE PAGES

    Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua

    2016-11-03

    This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less

  8. Chemical Changes in Proteins Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  9. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  10. Semiclassical methods in chemical reaction dynamics

    SciTech Connect

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  11. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  12. Multidimensional thermal-chemical cookoff modeling

    SciTech Connect

    Baer, M.R.; Gross, R.J.; Gartling, D.K.; Hobbs, M.L.

    1994-08-01

    Multidimensional thermal/chemical modeling is an essential step in the development of a predictive capability for cookoff of energetic materials in systems subjected to abnormal thermal environments. COYOTE II is a state-of-the-art two- and three-dimensional finite element code for the solution of heat conduction problems including surface-to-surface thermal radiation heat transfer and decomposition chemistry. Multistep finite rate chemistry is incorporated into COYOTE II using an operator-splitting methodology; rate equations are solved element-by-element with a modified matrix-free stiff solver, CHEMEQ. COYOTE II is purposely designed with a user-oriented input structure compatible with the database, the pre-processing mesh generation, and the post-processing tools for data visualization shared with other engineering analysis codes available at Sandia National Laboratories. As demonstrated in a companion paper, decomposition during cookoff in a confined or semi-confined system leads to significant mechanical behavior. Although mechanical effect are not presently considered in COYOTE II, the formalism for including mechanics in multidimensions is under development.

  13. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  14. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  15. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant.

    PubMed

    Yi, Jian-Hua; Zhao, Feng-Qi; Wang, Bo-Zhou; Liu, Qian; Zhou, Cheng; Hu, Rong-Zu; Ren, Ying-Hui; Xu, Si-Yu; Xu, Kang-Zhen; Ren, Xiao-Ning

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f(alpha)=(1-alpha)(2), and the kinetic equations are dalpha/dt = 10(19.24)(1-alpha)(2)e(-2.32x10(4)/T) and dalpha/dt = 10(20.32)(1-alpha)(2)e(-2.32x10(4)/T). The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  16. Chemical reactions of organic compounds on clay surfaces

    SciTech Connect

    Soma, Yuko; Soma, Mitsuyuki )

    1989-11-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Broensted or Lewis acidity of clay minerals.

  17. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  18. Chemical kinetics computer program for static and flow reactions

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.

  19. Stereodynamics: From elementary processes to macroscopic chemical reactions

    SciTech Connect

    Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  20. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)

  1. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  2. Mesoscale simulations of shockwave energy dissipation via chemical reactions

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin; Strachan, Alejandro

    2015-02-01

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  3. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    PubMed

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock. PMID:25725713

  4. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    PubMed

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  5. Chemical and genomic evolution of enzyme-catalyzed reaction networks.

    PubMed

    Kanehisa, Minoru

    2013-09-01

    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  6. An Analysis of the Algebraic Method for Balancing Chemical Reactions.

    ERIC Educational Resources Information Center

    Olson, John A.

    1997-01-01

    Analyzes the algebraic method for balancing chemical reactions. Introduces a third general condition that involves a balance between the total amount of oxidation and reduction. Requires the specification of oxidation states for all elements throughout the reaction. Describes the general conditions, the mathematical treatment, redox reactions, and…

  7. Energy analysis of thermal, chemical, and metallurgical processes

    SciTech Connect

    Szargut, J.; Morris, D.R.; Steward, F.R.

    1988-01-01

    This book consists of the following chapters: The exergy concept and exergy losses; Calculation of exergy; Physical and chemical exergy of typical substances; Exergy analysis of typical thermal and chemical processes; Cumulative exergy consumption and cumulative degree of perfection; Reduction of external exergy losses; Exergy analysis of major thermal and chemical processes; Thermoeconomic applications of exergy; and Ecological applications of exergy.

  8. Power law behavior in chemical reactions.

    PubMed

    Claycomb, J R; Nawarathna, D; Vajrala, V; Miller, J H

    2004-12-22

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied. PMID:15606263

  9. Power law behavior in chemical reactions

    NASA Astrophysics Data System (ADS)

    Claycomb, J. R.; Nawarathna, D.; Vajrala, V.; Miller, J. H.

    2004-12-01

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied.

  10. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  11. The How and Why of Chemical Reactions

    ERIC Educational Resources Information Center

    Schubert, Leo

    1970-01-01

    Presents a discussion of some of the fundamental concepts in thermodynamics and quantum mechanics including entropy, enthalpy, free energy, the partition function, chemical kinetics, transition state theory, the making and breaking of chemical bonds, electronegativity, ion sizes, intermolecular energies and of their role in explaining the nature…

  12. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes

    PubMed Central

    Kabbani, Mohamad A.; Tiwary, Chandra Sekhar; Autreto, Pedro A.S.; Brunetto, Gustavo; Som, Anirban; Krishnadas, K.R.; Ozden, Sehmus; Hackenberg, Ken P.; Gong, Yongi; Galvao, Douglas S.; Vajtai, Robert; Kabbani, Ahmad T.; Pradeep, Thalappil; Ajayan, Pulickel M.

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  13. Photo, thermal and chemical degradation of riboflavin

    PubMed Central

    Kazi, Sadia Hafeez; Ahmed, Sofia; Anwar, Zubair; Ahmad, Iqbal

    2014-01-01

    Summary Riboflavin (RF), also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented. PMID:25246959

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  15. Classical transition states for collinear chemical reactions

    NASA Astrophysics Data System (ADS)

    Maslen, V. W.

    An analysis of a simple model for the interaction region of the potential energy surface of a collinear atom-diatomic molecule reaction is used to interpret recent observations of periodic trajectories on accurate energy surfaces.

  16. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  17. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  18. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    PubMed Central

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  19. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  20. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  1. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  2. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  3. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.

    1992-01-01

    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given.

  4. Non-equilibrium effects in high temperature chemical reactions

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  5. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  6. Communication: Control of chemical reactions using electric field gradients

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  7. Developing Secondary Students' Conceptions of Chemical Reactions: The Introduction of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico; Dekkers, Hetty

    1998-01-01

    Describes an empirical study concerning the introduction of the concept of chemical equilibrium in chemistry classrooms in a way which challenges students' initial conceptions of chemical reactions. Contains 23 references. (DDR)

  8. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  9. Thermal and Chemical Evolution of Collapsing Filaments

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  10. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  12. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  13. Quantifying chemical reactions by using mixing analysis.

    PubMed

    Jurado, Anna; Vázquez-Suñé, Enric; Carrera, Jesús; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Besòs River Delta (NE Barcelona, Spain), where the River Besòs is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Besòs: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point.

  14. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  15. Earth's interdependent thermal, structural, and chemical evolution

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2012-12-01

    The popular view that 30-55% of Earth's global power is primordial, with deep layers emanating significant power, rests on misunderstandings and models that omit magmatism and outgassing. These processes link Earth's chemical and thermal evolution, while creating layers, mainly because magmas transport latent heat and radioactive isotopes rapidly upwards. We link chemistry to heat flow, measured and theoretical, to understand the interior layering and workings. Quasi-steady state conditions describe most of Earth's history: (1) Accretion was cold and was not a source of deep heat. (2) Friction during core formation cannot have greatly heated the interior (thermodynamics plus buoyancy). (3) Conduction is the governing microscopic mechanism in the deep Earth. (4) Using well-constrained values of thermal conductivity (k), we find that homogeneously distributed radionuclides provide extremely high internal temperature (T) under radial symmetry. Moreover, for any given global power, sequestering heat producing elements into the upper mantle reduces Earth's central temperature by a factor of 10 from a homogeneous distribution. Hence, (5) core formation was a major cooling event. From modern determinations of k(T) we provide a reference conductive geotherm. Present-day global power of 30 TW from heat flux measurements and sequestering of heat producing elements in the upper mantle and transition zone, produces nearly isothermal T = 5300 K below 670 km, which equals experimentally determined freezing of pure Fe0 at the inner core boundary. Core freezing buffers the interior temperatures, while the Sun constrains the surface temperature, providing steady state conditions: Earth's deep interior is isothermal due to these constraints, low flux and high k. Our geotherms point to a stagnant lower mantle and convection above 670 km. Rotational flattening cracks the brittle lithosphere, providing paths for buoyant magmas to ascend. Release of latent heat augments the conductive

  16. Probing Isotope Effects in Chemical Reactions Using Single Ions

    SciTech Connect

    Staanum, Peter F.; Hoejbjerre, Klaus; Drewsen, Michael; Wester, Roland

    2008-06-20

    Isotope effects in reactions between Mg{sup +} in the 3p {sup 2}P{sub 3/2} excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only {approx}250 reactions with HD, the branching ratio between formation of MgD{sup +} and MgH{sup +} is found to be larger than 5. From an additional 65 reactions with H{sub 2} and D{sub 2} we find that the overall fragmentation probability of the intermediate MgH{sub 2}{sup +}, MgHD{sup +}, or MgD{sub 2}{sup +} complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  17. Probing Isotope Effects in Chemical Reactions Using Single Ions

    NASA Astrophysics Data System (ADS)

    Staanum, Peter F.; Højbjerre, Klaus; Wester, Roland; Drewsen, Michael

    2008-06-01

    Isotope effects in reactions between Mg+ in the 3p P3/22 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ˜250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From an additional 65 reactions with H2 and D2 we find that the overall fragmentation probability of the intermediate MgH2+, MgHD+, or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  18. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets.

    PubMed

    Bain, Ryan M; Pulliam, Christopher J; Thery, Fabien; Cooks, R Graham

    2016-08-22

    Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated.

  19. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  20. Laser cutting with chemical reaction assist

    SciTech Connect

    Gettemy, D.J.

    1991-04-08

    This invention is comprised of a method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  1. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  2. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J.

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  3. Is the simplest chemical reaction really so simple?

    PubMed Central

    Jankunas, Justin; Sneha, Mahima; Zare, Richard N.; Bouakline, Foudhil; Althorpe, Stuart C.; Herráez-Aguilar, Diego; Aoiz, F. Javier

    2014-01-01

    Modern computational methods have become so powerful for predicting the outcome for the H + H2 → H2 + H bimolecular exchange reaction that it might seem further experiments are not needed. Nevertheless, experiments have led the way to cause theorists to look more deeply into this simplest of all chemical reactions. The findings are less simple. PMID:24367084

  4. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  5. Cu-free click cycloaddition reactions in chemical biology†

    PubMed Central

    Jewett, John C.

    2010-01-01

    Bioorthogonal chemical reactions are paving the way for new innovations in biology. These reactions possess extreme selectivity and biocompatibility, such that their participating reagents can form covalent bonds within richly functionalized biological systems—in some cases, living organisms. This tutorial review will summarize the history of this emerging field, as well as recent progress in the development and application of bioorthogonal copper-free click cycloaddition reactions. PMID:20349533

  6. Conservation-dissipation structure of chemical reaction systems.

    PubMed

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics.

  7. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  8. Adsorption and catalysis: The effect of confinement on chemical reactions

    NASA Astrophysics Data System (ADS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, Małgorzata

    2005-10-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area.

  9. Concerted reactions of polynuclear metalloenzymes and their functional chemical models

    NASA Astrophysics Data System (ADS)

    Dzhabiev, T. S.; Shilov, A. E.

    2011-03-01

    The mechanisms of the many-electron oxidation of water by a chemical model of the manganese oxidase cofactor in photosynthesis photosystem II (manganese(IV) clusters) and nitrogen reduction in chemical models of nitrogenase cofactor (vanadium(II) and molybdenum(III) clusters) were considered. The hypothesis was suggested according to which polynuclear enzyme cofactors and their functional chemical models performed two important functions, catalyzed noncomplementary processes and effected many-substrate concerted reactions with decreased activation energies.

  10. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  11. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  12. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  13. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    PubMed

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  15. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  16. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  17. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  18. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  19. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  20. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front.

  1. Thermal degradation reaction mechanism of xylose: A DFT study

    NASA Astrophysics Data System (ADS)

    Huang, Jinbao; He, Chao; Wu, Longqin; Tong, Hong

    2016-08-01

    The thermal degradation reaction mechanism of xylose as hemicellulose model compound was investigated by using density functional theory methods M062X with the 6-31++G(d,p) basis set. Eight possible pyrolytic reaction pathways were proposed and the standard kinetic and thermodynamic parameters in all reaction pathways were calculated at different temperatures. In reaction pathway (1), xylose is first transformed into acyclic containing-carbonyl isomer, and then the isomer further decomposes through four possible pyrolysis pathways (1-1)-(1-4). Pathways (2) and (3) depict an immediate ring-opening process through the simultaneous breaking of C-O and C-C bonds. Pathways (4)-(7) describe the pyrolysis processes of various anhydro-xyloses through a direct ring-opening process. Pathway (8) gives the evolutionary process of pyranones. The calculation results show that reaction pathways (1), (2) and (5) are the major reaction channels and reaction pathways (3), (4), and (6)-(8) are the competitive reaction channels in pyrolysis of xylose. The major products of xylose pyrolysis are low molecular products such as 2-furaldehyde, glycolaldehyde, acetaldehyde, methylglyoxal and acetone, and the main competitive products are formaldehyde, formic acid, acetic acid, CO2, CH4, acetol, pyranone, and so on.

  2. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  3. Theoretical studies of the dynamics of chemical reactions

    SciTech Connect

    Wagner, A.F.

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  4. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    PubMed

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  5. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    NASA Astrophysics Data System (ADS)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  6. Chemical reactions on solid surfaces of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Biham, Ofer; Pirronello, Valerio; Vidali, Gianfranco

    Observed abundances of chemical species in interstellar clouds can be explained in most cases by reaction schemes involving only species in the gas phase. There is however clear evidence that reactions occurring on the surface of dust grains, helping the formation of key molecules, play a fundamental role into shaping the universe as we see it today. In this chapter we focus our attention on surface reactions on solids and in conditions close to those encountered in interstellar clouds. We will describe how experimental techniques of surface science have been used to study the recombination reaction of hydrogen on interstellar dust grain analogues and the oxidation of carbon monoxide in the interaction of oxygen atoms in water ice layers. Using theoretical methods and computer simulations, we show that it is possible to relate experimental results obtained in the laboratory to actual physical and chemical processes occurring in the interstellar space.

  7. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  8. High-pressure matrix isolation of heterogeneous condensed phase chemical reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rice, Jane K.; Russell, T. P.

    1995-03-01

    A new technique which combines high-pressure and thermal-shock conditions with low-temperature matrix isolation in a gem anvil cell is presented. This serves to partially quench or arrest the reaction sequence of an energetic material. New chemical species are observed which indicate that intermediates are trapped in addition to final products. This combination of high pressure and low temperature helps elucidate the complicated reaction pathways in the deflagration to detonation regime. We have applied this technique to hexanitrohexaazaisowurtzitane (HNIW, chemical name: 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0 5,9.0 3,11]dodecane). Products are identified using infrared spectroscopy and comparisons are made to previously reported data taken under thermal, ambient pressure conditions.

  9. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  10. Equilibriumlike behavior in chemical reaction networks far from equilibrium.

    PubMed

    Lubensky, David K

    2010-06-01

    In an equilibrium chemical reaction mixture, the number of molecules present obeys a Poisson distribution. We report that, surprisingly, the same is true of a large class of nonequilibrium reaction networks. In particular, we show that certain topological features imply a Poisson distribution, whatever the reaction rates. Such driven systems also obey an analog of the fluctuation-dissipation theorem. Our results shed light on the fundamental question of when equilibrium concepts might apply to nonequilibrium systems and may have applications to models of noise in biochemical networks.

  11. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate

    PubMed Central

    2016-01-01

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate. PMID:27413783

  12. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate.

    PubMed

    Holtzer, Laurent; Oleinich, Igor; Anzola, Marcello; Lindberg, Eric; Sadhu, Kalyan K; Gonzalez-Gaitan, Marcos; Winssinger, Nicolas

    2016-06-22

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate.

  13. Jet quenching and holographic thermalization with a chemical potential

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Kundu, Arnab; Yang, Di-Lun

    2014-03-01

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS d+1 background for d = 3 and d = 4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition.

  14. Chemical pathways in ultracold reactions of SrF molecules

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2011-03-15

    We present a theoretical investigation of the chemical reaction SrF + SrF {yields} products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF {yields} Sr{sub 2} + F{sub 2} is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF {yields} SrF{sub 2} + Sr, and even then only singlet states of the SrF{sub 2} trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule ''handing off'' a fluorine atom to the other molecule.

  15. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  16. Reduction of chemical reaction networks through delay distributions.

    PubMed

    Barrio, Manuel; Leier, André; Marquez-Lago, Tatiana T

    2013-03-14

    Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional "backward" bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or "forward" bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

  17. Reduction of chemical reaction networks through delay distributions

    NASA Astrophysics Data System (ADS)

    Barrio, Manuel; Leier, André; Marquez-Lago, Tatiana T.

    2013-03-01

    Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional "backward" bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or "forward" bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

  18. Relationship between Pressure and Reaction Violence in Thermal Explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Rodriguez, George; Remelius, Dennis; Baca, Eva; Oschwald, David; Suvorova, Natalya

    2015-06-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX9502 thermal explosions, and fiber bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  19. Effects of incomplete mixing on chemical reactions under flow heterogeneities.

    NASA Astrophysics Data System (ADS)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  20. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  1. Evaluation on thermal explosion induced by slightly exothermic interface reaction.

    PubMed

    Yu, Ma-Hong; Li, Yong-Fu; Sun, Jin-Hua; Hasegawa, Kazutoshi

    2004-09-10

    An asphalt-salt mixture (ASM), which once caused a fire and explosion in a reprocessing plant, was prepared by imitating the real bituminization process of waste on a lab scale to evaluate its actual thermal hazards. Heat flux reaction calorimeters were used to measure the release of heat for the simulated ASM at a constant heating rate and at a constant temperature, respectively. Experimental results show that the reaction in the ASM below about 250 degrees C is a slightly exothermic interface reaction between the asphalt and the salt particles contained in the asphalt, and that the heat release rate increases sharply above about 250 degrees C due to melting of the salt particles. The reaction rates were formulated on the basis of an assumed reaction model, and the kinetic parameters were determined. Using the model with the kinetic parameters, temperature changes with time and drum-radius axes for the ASM-filled drum were numerically simulated assuming a one-dimensional infinite cylinder system, where the drum was being cooled at an ambient temperature of 50 degrees C. The minimum filling temperature, at which the runaway reaction (MFTRR) can occur for the simulated ASM in the drum is about 194 degrees C. Furthermore, a very good linear correlation exists between this MFTRR and the initial radius of salt particles formed in the bituminization product. The critical filling temperature to the runaway reaction is about 162 degrees C for the asphalt-salt mixture, containing zero-size salt particles, filled in the same drum at an ambient temperature of 50 degrees C. Thus, the runaway reaction will never occur in the drum filled with the asphalt-salt mixture under the conditions of the filling temperature below 162 degrees C and a constant ambient temperature of 50 degrees C. As a consequence, the ASM explosion occurred in the reprocessing plant likely was due to a slightly exothermically reaction and self heating.

  2. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  3. Supersonic molecular beam experiments on surface chemical reactions.

    PubMed

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces.

  4. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  5. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    SciTech Connect

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  6. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  7. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  8. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.

  9. Mapping students' ideas about chemical reactions at different educational levels

    NASA Astrophysics Data System (ADS)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  10. Molecular codes in biological and chemical reaction networks.

    PubMed

    Görlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  11. Molecular Codes in Biological and Chemical Reaction Networks

    PubMed Central

    Görlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon’s theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process “meaningful” information from those that do not. Here, we present a formal method to assess a system’s semantic capacity by analyzing a reaction network’s capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  12. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals

    NASA Astrophysics Data System (ADS)

    Austin, R. A.; Barton, N. R.; Howard, W. M.; Fried, L. E.

    2014-05-01

    The localization of deformation in shock-loaded crystals of high explosive material leads to the formation of hot spots, which, if hot enough, initiate chemical reactions. The collapse of microscopic pores contained within a crystal is one such process that localizes energy and generates hot spots. Given the difficulty of resolving the details of pore collapse in shock compression experiments, it is useful to study the problem using direct numerical simulation. In this work, we focus on simulating the shock-induced closure of a single pore in crystalline β-HMX using a multiphysics finite element code. To address coupled thermal-mechanical-chemical responses, the model incorporates a crystal-mechanics-based description of thermoelasto-viscoplasticity, the crystal melting behavior, and transformation kinetics for a single-step decomposition reaction. The model is applied to stress wave amplitudes of up to 11 GPa to study the details of pore collapse, energy localization, and the early stages of reaction initiation.

  13. Computer simulation of chemical reactions in porous materials

    NASA Astrophysics Data System (ADS)

    Turner, Christoffer Heath

    Understanding reactions in nanoporous materials from a purely experimental perspective is a difficult task. Measuring the chemical composition of a reacting system within a catalytic material is usually only accomplished through indirect methods, and it is usually impossible to distinguish between true chemical equilibrium and metastable states. In addition, measuring molecular orientation or distribution profiles within porous systems is not easily accomplished. However, molecular simulation techniques are well-suited to these challenges. With appropriate simulation techniques and realistic molecular models, it is possible to validate the dominant physical and chemical forces controlling nanoscale reactivity. Novel nanostructured catalysts and supports can be designed, optimized, and tested using high-performance computing and advanced modeling techniques in order to guide the search for next-generation catalysts---setting new targets for the materials synthesis community. We have simulated the conversion of several different equilibrium-limited reactions within microporous carbons and we find that the pore size, pore geometry, and surface chemistry are important factors for determining the reaction yield. The equilibrium-limited reactions that we have modeled include nitric oxide dimerization, ammonia synthesis, and the esterification of acetic acid, all of which show yield enhancements within microporous carbons. In conjunction with a yield enhancement of the esterification reaction, selective adsorption of ethyl acetate within carbon micropores demonstrates an efficient method for product recovery. Additionally, a new method has been developed for simulating reaction kinetics within porous materials and other heterogeneous environments. The validity of this technique is first demonstrated by reproducing the kinetics of hydrogen iodide decomposition in the gas phase, and then predictions are made within slit-shaped carbon pores and carbon nanotubes. The rate

  14. Mixing, chemical reaction and flow field development in ducted rockets

    SciTech Connect

    Vanka, S.P.; Craig, R.R.; Stull, F.D.

    1984-09-01

    Calculations have been made of the three-dimensional mixing, chemical reaction, and flow field development in a typical ducted rocket configuration. The governing partial differential equations are numerically solved by an iterative finite-difference solution procedure. The physical models include the k approx. epsilon turbulence model, one-step reaction, and mixing controlled chemical reaction rate. Radiation is neglected. The mean flow structure, fuel dispersal patterns, and temperature field are presented in detail for a base configuration with 0.058 m (2 in.) dome height, 45/sup 0/ side arm inclination, and with gaseous ethylene injected from the dome plate at an eccentric location. In addition, the influences of the geometrical parameters such as dome height, inclination of the side arms, and location of the fuel injector are studied.

  15. The role of chemical reactions in the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Grishanin, E. I.

    2010-12-01

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000°C occurred in the core. The yield of fission products thus sharply increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.

  16. Coriolis coupling and nonadiabaticity in chemical reaction dynamics.

    PubMed

    Wu, Emilia L

    2010-12-01

    The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.

  17. The role of chemical reactions in the Chernobyl accident

    SciTech Connect

    Grishanin, E. I.

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharply increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.

  18. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions

    NASA Astrophysics Data System (ADS)

    Panayotov, Dimitar A.; Morris, John R.

    2016-03-01

    The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO2) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide oxidation. Harnessing the full potential of Au/TiO2 will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO2. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO2 as an efficient catalyst and low-energy photocatalyst.

  19. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores.

    PubMed

    Malijevský, Alexandr; Lísal, Martin

    2009-04-28

    We present a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical nanopores. We use a density functional theory (DFT) to investigate the effects of temperature, pore geometry, bulk pressure, transition layering, and capillary condensation on a dimerization reaction that mimics the nitric oxide dimerization reaction, 2NO <==> (NO)(2), in carbonlike slit and cylindrical nanopores in equilibrium with a vapor reservoir. In addition to the DFT calculations, we also utilize the reaction ensemble Monte Carlo method to supplement the DFT results for reaction conversion. This work is an extension of the previous DFT study by Tripathi and Chapman [J. Chem. Phys. 118, 7993 (2003)] on the dimerization reactions confined in the planar slits.

  20. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  1. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  2. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  3. PDF calculation of scalar mixing layer with simple chemical reactions

    NASA Astrophysics Data System (ADS)

    Kanzaki, Takao; Pope, Stephen B.

    1999-11-01

    A joint velocity-composition-turbulent frequency PDF(JPDF) model is used to simulate reactive mixing layer in a grid-generated turbulence with the influence of second-order irreversible chemical reactions. To investigate the effects of molecular mixing, a gas flow and a liquid flow are simulated. For a gas flow, the oxidation reaction (NO+ O3 arrow NO2 +O2 ) between nitricoxide (NO) and ozone (O3 ) is used. For a liquid flow, the saponification reaction(NaOH+HCOOCH3 arrow HCOONa+CH_3OH) between sodiumhydroxide(NaOH) and methylformate(HCOOCH_3) is used. The both cases are moderately fast reactions. Therefore, reactive scalar statistics are affected by turbulent mixing. The results of caliculation are compared with experimental data of Komori et al.(1994) and Bilger et al.(1991)

  4. Chemical research on red pigments after adverse reactions to tattoo.

    PubMed

    Tammaro, A; Toniolo, C; Giulianelli, V; Serafini, M; Persechino, S

    2016-03-01

    Currently, the incidence of tattooing is on the rise compared to the past, especially among adolescents, and it leads to the urgency of monitoring the security status of tattooing centers, as well as to inform people about the risks of tattoo practice. In our clinical experience, 20% of tattooed patients presented adverse reactions, like allergic contact dermatitis, psoriasis with Koebner's phenomena and granulomatous reactions, with the latter most prevalent and most often related to red pigment. Adverse reactions to tattoo pigments, especially the red one, are well known and described in literature. Great attention has to be focused on the pigments used, especially for the presence of new substances, often not well known. For this reason, we decided to perform a study on 12 samples of red tattoo ink, obtained by patients affected by different cutaneous reactions in the site of tattoo, to analyze their chemical composition. PMID:26934738

  5. Chemical research on red pigments after adverse reactions to tattoo.

    PubMed

    Tammaro, A; Toniolo, C; Giulianelli, V; Serafini, M; Persechino, S

    2016-03-01

    Currently, the incidence of tattooing is on the rise compared to the past, especially among adolescents, and it leads to the urgency of monitoring the security status of tattooing centers, as well as to inform people about the risks of tattoo practice. In our clinical experience, 20% of tattooed patients presented adverse reactions, like allergic contact dermatitis, psoriasis with Koebner's phenomena and granulomatous reactions, with the latter most prevalent and most often related to red pigment. Adverse reactions to tattoo pigments, especially the red one, are well known and described in literature. Great attention has to be focused on the pigments used, especially for the presence of new substances, often not well known. For this reason, we decided to perform a study on 12 samples of red tattoo ink, obtained by patients affected by different cutaneous reactions in the site of tattoo, to analyze their chemical composition.

  6. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces.

    PubMed

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M; Otero, Roberto; Gallego, José M; Ballester, Pablo; Galan-Mascaros, José R; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  7. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  8. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    PubMed

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).

  9. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    PubMed Central

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  10. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  11. Photo-induced chemical reaction of trans-resveratrol.

    PubMed

    Zhao, Yue; Shi, Meng; Ye, Jian-Hui; Zheng, Xin-Qiang; Lu, Jian-Liang; Liang, Yue-Rong

    2015-03-15

    Photo-induced chemical reaction of trans-resveratrol has been studied. UV B, liquid state and sufficient exposure time are essential conditions to the photochemical change of trans-resveratrol. Three principal compounds, cis-resveratrol, 2,4,6-phenanthrenetriol and 2-(4-hydroxyphenyl)-5,6-benzofurandione, were successively generated in the reaction solution of trans-resveratrol (0.25 mM, 100% ethanol) under 100 μW cm(-2) UV B radiation for 4h. cis-Resveratrol, originated from isomerization of trans-resveratrol, resulted in 2,4,6-phenanthrenetriol through photocyclisation reaction meanwhile loss of 2 H. 2,4,6-Phenanthrenetriol played a role of photosensitizer producing singlet oxygen in the reaction pathway. The singlet oxygen triggered [4+2] cycloaddition reaction of trans-resveratrol, and then resulted in the generation of 2-(4-hydroxyphenyl)-5,6-benzofurandione through photorearrangement and oxidation reaction. The singlet oxygen reaction was closely related to the substrate concentration of trans-resveratrol in solution.

  12. Chemical enhancement of fingermark in blood on thermal paper.

    PubMed

    Hong, Sungwook; Seo, Jin Yi

    2015-12-01

    Chemical enhancement methods for fingermark in blood deposited on the surface of a thermal paper substrate were examined. The blood-sensitive reagents compared were LCV (leuco crystal violet), Amido black and Hungarian red. Fingermark in blood on the surface of thermal paper can be fixed with 2% 5-sulfosalicylic acid solution. LCV was found as an inadequate blood staining reagent because of bubbling, diffusion, and blurring on the surface of thermal paper. Hungarian red was also an inadequate blood staining reagent because excess Hungarian red on the surface of thermal paper was not washed away in the de-staining procedure. Amido black was the best staining reagent among three staining reagents compared. The maximum dilution ratio visible to the naked eye after Amido black staining was 1 in 80 for the thermally sensitive surface and 1 in 20 for the thermally non-sensitive surface.

  13. Reachability bounds for chemical reaction networks and strand displacement systems.

    PubMed

    Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján

    2014-01-01

    Chemical reaction networks (CRNs) and DNA strand displacement systems (DSDs) are widely-studied and useful models of molecular programming. However, in order for some DSDs in the literature to behave in an expected manner, the initial number of copies of some reagents is required to be fixed. In this paper we show that, when multiple copies of all initial molecules are present, general types of CRNs and DSDs fail to work correctly if the length of the shortest sequence of reactions needed to produce any given molecule exceeds a threshold that grows polynomially with attributes of the system.

  14. Complex wave patterns in an effective reaction-diffusion model for chemical reactions in microemulsions.

    PubMed

    Alonso, Sergio; John, Karin; Bär, Markus

    2011-03-01

    An effective medium theory is employed to derive a simple qualitative model of a pattern forming chemical reaction in a microemulsion. This spatially heterogeneous system is composed of water nanodroplets randomly distributed in oil. While some steps of the reaction are performed only inside the droplets, the transport through the extended medium occurs by diffusion of intermediate chemical reactants as well as by collisions of the droplets. We start to model the system with heterogeneous reaction-diffusion equations and then derive an equivalent effective spatially homogeneous reaction-diffusion model by using earlier results on homogenization in heterogeneous reaction-diffusion systems [S.Alonso, M.Bär, and R.Kapral, J. Chem. Phys. 134, 214102 (2009)]. We study the linear stability of the spatially homogeneous state in the resulting effective model and obtain a phase diagram of pattern formation, that is qualitatively similar to earlier experimental results for the Belousov-Zhabotinsky reaction in an aerosol OT (AOT)-water-in-oil microemulsion [V.K.Vanag and I.R.Epstein, Phys. Rev. Lett. 87, 228301 (2001)]. Moreover, we reproduce many patterns that have been observed in experiments with the Belousov-Zhabotinsky reaction in an AOT oil-in-water microemulsion by direct numerical simulations.

  15. Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF 6-based electrolyte

    NASA Astrophysics Data System (ADS)

    Xiao, Ang; Li, Wentao; Lucht, Brett L.

    The thermal reaction of ternary electrolyte (1.0 M LiPF 6 in 1:1:1 ethylene carbonate/dimethyl carbonate/diethyl carbonate) with mesocarbon microbeads (MCMB) particles was investigated by the combined use of NMR, GC-MS, FTIR-ATR, TGA, XPS and SEM/EDS-element map. The thermal decomposition of ternary electrolyte is not inhibited by the presence of MCMB particles. The chemical composition and morphology of the surface of MCMB particles changes significantly upon storage in the presence of ternary electrolyte. Electrolyte decomposition products including oligocarbonates, oligoethylene oxides, polyethylene oxide (PEO), lithium fluorophosphates (Li xPO yF z), and lithium fluoride are deposited on the surface of MCMB particles. The concentration of decomposition products on the surface of MCMB increases with increased storage time and temperature. The addition of dimethyl acetamide (DMAc) impedes the thermal decomposition of the electrolyte and deposition of electrolyte decomposition products on the surface of MCMB.

  16. Propagation of Reactions in Thermally-damaged PBX-9501

    SciTech Connect

    Tringe, J W; Glascoe, E A; Kercher, J R; Willey, T M; Springer, H K; Greenwood, D W; Molitoris, J D; Smilowitz, L; Henson, B F; Maienschein, J L

    2010-03-05

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosive and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.

  17. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  18. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  19. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  20. Potential for exothermic chemical reactions in waste tanks

    SciTech Connect

    Van Tuyl, H.H.

    1983-02-03

    The potential for exothermic chemical reactions in waste tanks at Hanford is discussed. Organic chemicals have been added to Hanford waste tanks, particularly as ferrocyanides and when processing sludges at B Plant. Recent planned or ongoing activities involving stored wastes have possibly increased the potential for reaction of these wastes with nitrate salts in the waste tanks. Risk evaluations appear to be deficient in assessing the consequences of a deflagration, and in determining the probability of either a deflagration or detonation. The present question is whether current plans and recent safety-related documentation have given proper consideration to the available information about organic compounds in waste tanks. The principal organic additions to Hanford waste tanks are 1200 tonnes of organic carbon'' and 500 tonnes of Ni{sub 2}Fe(CN){sub 6}. 13 refs.

  1. Assessment of multireference perturbation methods for chemical reaction barrier heights.

    PubMed

    Fracchia, Francesco; Cimiraglia, Renzo; Angeli, Celestino

    2015-05-28

    A few flavors of multireference perturbation theory, two variants of the n-electron valence state perturbation theory and two of the complete active space perturbation theory, are here tested for the calculation of barrier heights for the set of chemical reactions included in the DBH24/08 database, for which very accurate values are available. The comparison of the results obtained with these approaches with those already published for other theoretical models indicates that multireference perturbation theory is a valuable tool for the description of a chemical reaction. Moreover, limiting the comparison to the perturbation theory approaches, one observes that the bad behavior found for single reference methods (such as Møller-Plesset to second and fourth order in the energy) is markedly improved upon moving to the multireference generalizations.

  2. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Technical Reports Server (NTRS)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  3. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Astrophysics Data System (ADS)

    Carlson, A. B.; Bird, Graeme A.

    1994-04-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  4. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  5. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  6. Shock induced chemical reactions in energetic structural materials

    NASA Astrophysics Data System (ADS)

    Reding, Derek J.

    Energetic structural materials (ESMs) constitute a new class of materials that provide dual functions of strength and energetic characteristics. ESMs are typically composed of micron-scale or nano-scale intermetallic mixtures or mixtures of metals and metal oxides, polymer binders, and structural reinforcements. Voids are included to produce a composite with favorable chemical reaction characteristics. In this thesis, a continuum approach is used to simulate gas-gun or explosive loading experiments where a strong shock is induced in the ESM by an impacting plate. Algorithms are developed to obtain equations of state of mixtures. It is usually assumed that the shock loading increases the energy of the ESM and causes the ESM to reach the transition state. It is also assumed that the activation energy needed to reach the transition state is a function of the temperature of the mixture. In this thesis, it is proposed that the activation energy is a function of temperature and the stress state of the mixture. The incorporation of such an activation energy is selected in this thesis. Then, a multi-scale chemical reaction model for a heterogeneous mixture is introduced. This model incorporates reaction initiation, propagation, and extent of completed reaction in spatially heterogeneous distributions of reactants. A new model is proposed for the pore collapse of mixtures. This model is formulated by modifying the Carol, Holt, and Nesterenko spherically symmetric model to include mixtures and compressibility effects. Uncertainties in the model result from assumptions in formulating the models for continuum relationships and chemical reactions in mixtures that are distributed heterogeneously in space and in numerical integration of the resulting equations. It is important to quantify these uncertainties. In this thesis, such an uncertainty quantification is investigated by systematically identifying the physical processes that occur during shock compression of ESMs which are

  7. Control of Ultracold Chemical Reactions Through Conical Intersections

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2016-05-01

    The pioneering work on obtaining a quantum degenerate sample of ground state KRb molecules is one of the great successes in ultracold physics. The early experimental and theoretical investigations to describe quantum chemical reactions of ultracold KRb molecules with residual ultracold K atoms have been based on probing their inelastic collision loss rates. A natural progression towards control of molecular reactivity would be to study the potential landscape of the collisional complex with the inherited degeneracies and intersections between two lowest electronic states. The topology of these surfaces provide us with a qualitative understanding of the reaction mechanism. Here we study how the ability to prepare unique initial states combined with the presence of conical intersections can be used to control the outcome of ultracold chemical reactions of alkali-metal atoms and molecules. We locate and determine properties of conical intersections for the KRbK molecular system and determine signatures of non-adiabatic passage through the conical intersection to distinguish between relaxation and reaction pathways. This work is supported by the ARO-MURI and NSF Grants.

  8. Phase and chemical equilibria in multicomponent fluid systems with a chemical reaction

    NASA Astrophysics Data System (ADS)

    Toikka, A. M.; Samarov, A. A.; Toikka, M. A.

    2015-04-01

    Studies of the phase and chemical equilibria in the systems with chemical reaction cover a wide range of problems related to both experimental determination of physicochemical characteristics of these systems and various aspects of thermodynamic analysis of the phase and chemical processes occurring there. The main goal of this review consists in systematization and analysis of available experimental data concerning the vapour-liquid and liquid-liquid equilibria in multicomponent systems where chemical reactions occur. The studies considered here have been mainly published in recent years, and they include rather detailed data on physicochemical properties, phase transitions and chemical processes in fluid systems, i.e., the data which are essential for thermodynamic analysis. Available approaches to the thermodynamic analysis of heterogeneous systems with chemical reactions are also discussed. Particular attention is paid to the studies of the simultaneous phase and chemical equilibria. We hope that this review could be useful both for fundamental studies of heterogeneous reactive systems and for solving applied problems on the design of combined reactive and mass-transfer processes. The bibliography includes 79 references.

  9. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  10. Mesoscale simulations of shockwave energy dissipation via chemical reactions

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin; Strachan, Alejandro

    2015-06-01

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials under shockwave-loading conditions. An additional implicit variable (the particle size) is used to describe volume-reducing chemical reactions using an intra-molecular potential inspired by Transition State Theory, while the dynamics of the center-of-mass motion evolves according to inter-particle forces. The equations of motion are derived from a Hamiltonian and the model captures both: total energy conservation and Galilean invariance. We demonstrate that this model captures complex thermo-mechanical-chemical processes, and we use these features to explore materials with the capabilities to dissipate shocks-wave energy due to ballistic impacts. Our results characterize how the parameters of the chemical model affect shock-wave attenuation, and we elucidate on how the coupling between the different energy-transferring mechanisms influences nucleation of chemistry for conditions away from equilibrium.

  11. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  12. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  13. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  14. Anodic reactions in the Ca/CaCrO/sub 4/ thermal battery

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1985-09-01

    The reaction of Ca with a CaCrO/sub 4/-(LiCl-KCl eutectic) solution at temperatures of 400/sup 0/C to 500/sup 0/C was studied to better understand the nature of the chemical reactions and electrochemical processes that occur in the Ca/CaCrO/sub 4/ thermal battery at the anode during activation and discharge. Limited tests also were conducted with a CaCrO/sub 4/-(CaCl/sub 2/-NaCl-KCl eutectic) solution at 550/sup 0/C. Ca/CaCrO/sub 4/ and CaLi/sub 2//CaCrO/sub 4/ single cells were tested to observe the relative performance differences of Ca and CaLi/sub 2/ anodes. The discharged cells were analyzed by optical microscopy, electron microprobe, Auger electron spectroscopy, and secondary-ion mass spectroscopy. These analytical data were used in conjunction with the results of chemical-reaction experiments to propose a discharge mechanism for the Ca/CaCrO/sub 4/ thermal battery, consistent with experimental observations.

  15. Anodic reactions in the Ca/CaCrO4 thermal battery

    NASA Astrophysics Data System (ADS)

    Guidotti, R. A.; Reinhardt, F. W.

    1985-09-01

    The reaction of Ca with a CaCrO4-(LiCl-KCl eutectic) solution at temperatures of 400(0)C to 500(0)C was studied to better understand the nature of the chemical reactions and electrochemical processes that occur in the Ca/CaCrO4 thermal battery at the anode during activation and discharge. Limited tests also were conducted with a CaCrO4-(CaCl2-NaCl-KCl eutectic) solution at 550(0)C. Ca/CaCrO4 and CaLi2/CaCrO4 single cells were tested to observe the relative performance differences of Ca and CaLi2 anodes. The discharged cells were analyzed by optical microscopy, electron microprobe, Auger electron spectroscopy, and secondary-ion mass spectroscopy. These analytical data were used in conjunction with the results of chemical-reaction experiments to propose a discharge mechanism for the Ca/CaCrO4 thermal battery, consistent with experimental observations.

  16. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  17. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  18. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.

    PubMed

    Lísal, Martin; Brennan, John K; Smith, William R

    2006-02-14

    We present a molecular-level simulation study of the effects of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo (RxMC) method to investigate the effects of temperature, nanopore size, bulk pressure, and capillary condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium with a bulk reservoir. In addition to the RxMC simulations, we also utilize the molecular-dynamics method to determine self-diffusion coefficients for confined nonreactive mixtures of nitric oxide monomers and dimers at compositions obtained from the RxMC simulations. We analyze the effects of the temperature, nanopore width, bulk pressure, and capillary condensation on the reaction equilibrium with respect to the reaction conversion, fluid structure, and self-diffusion coefficients. We show that the influence of the temperature, nanopore size, and capillary condensation on the confined reaction equilibrium is quite dramatic while the effect of the bulk pressure on the reaction equilibrium in the carbon slit nanopore is only moderate. This work is an extension of previous work by Turner et al. [J. Chem. Phys. 114, 1851 (2001)] on the confined reactive nitric oxide system.

  19. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

    PubMed

    Kraka, Elfi; Cremer, Dieter

    2010-05-18

    Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists

  20. Thermal reaction studies of organic model compound-mineral matter interactions in solids

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Thomas, K.B.

    1995-07-01

    The solid-state chemistry of silica-immobilized phenethyl phenyl ethers is being investigated in the presence of interdispersed aluininosilicates at temperatures relevant to coal processing to gain a better understanding of the impact of mineral matter on pyrolysis and liquefaction mechanisms. Results demonstrate the dramatic effect that aluminosilicates can have in altering the normal thermal reaction pathways for these models of ether linkages in lignin and low rank coals. An investigation of the chemistry of these model compounds at low temperatures (ca. 150-200{degrees}C) in the presence of aluminosilicates, including montmorillonite, is currently being investigated to delineate the chemical transformations that can occur during lignin maturation.

  1. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  2. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  3. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed.

  4. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  5. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  6. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  7. Determination of caffeine using oscillating chemical reaction in a CSTR.

    PubMed

    Gao, Jinzhang; Ren, Jie; Yang, Wu; Liu, XiuHui; Yang, Hua

    2003-07-14

    A new analytical method for the determination of caffeine by the sequential perturbation caused by different amounts of caffeine on the oscillating chemical system involving the manganese(II)-catalyzed reaction between potassium bromate and tyrosine in acidic medium in a CSTR was proposed. The method exposed for the first time in this work. It relies on the relationship between the changes in the oscillation amplitude of the chemical system and the concentration of caffeine. The calibration curve fits a second-order polynomial equation very well when the concentration of caffeine over the range 4.0 x 10(-6) - 1.2 x 10(-4) M (r = 0.9968). The effect of influential variables, such as the concentration of reaction components, injection point, temperature, flow rate and stirring rate were studied. Some aspects of the potential mechanism of action of caffeine on the chemical oscillating system were also discussed. A real sample was determined and the result was satisfactory.

  8. Mechano-chemical coupling in Belousov-Zhabotinskii reactions

    NASA Astrophysics Data System (ADS)

    Klika, Václav; Grmela, Miroslav

    2014-03-01

    Mechano-chemical coupling has been recently recognised as an important effect in various systems as chemical reactivity can be controlled through an applied mechanical loading. Namely, Belousov-Zhabotinskii reactions in polymer gels exhibit self-sustained oscillations and have been identified to be reasonably controllable and definable to the extent that they can be harnessed to perform mechanical work at specific locations. In this paper, we use our theoretical work of nonlinear mechano-chemical coupling and investigate the possibility of providing an explanation of phenomena found in experimental research by means of this theory. We show that mechanotransduction occurs as a response to both static and dynamic mechanical stimulation, e.g., volume change and its rate, as observed experimentally and discuss the difference of their effects on oscillations. Plausible values of the quasi-stoichiometric parameter f of Oregonator model are estimated together with its dependence on mechanical stimulation. An increase in static loading, e.g., pressure, is predicted to have stimulatory effect whereas dynamic loading, e.g., rate of volume change, is predicted to be stimulatory only up to a certain threshold. Further, we offer a physically consistent explanation of the observed phenomena why some Belousov-Zhabotinskii gels require an additional mechanical stimulation to show emergence of oscillation or why "revival" of oscillations in Belousov-Zhabotinskii reactions is possible together with indications for further experimental setups.

  9. Chemical, Electrical and Thermal Characterization of Nanoceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Martin, Hervie; Abunaemeh, Malek; Smith, Cydale; Muntele, Claudiu; Budak, Satilmish; Ila, Daryush

    2009-03-01

    Silicon carbide (SiC) is a lightweight high bandgap semiconductor material that can maintain dimensional and chemical stability in adverse environments and very high temperatures. These properties make it suitable for high temperature thermoelectric converters. At the Center for Irradiaton of Materials (CIM) we design, manufacture and fabricate nanoceramic SiC, and perform electrical, thermal and chemical characterization of the material using particle induced X-ray emission (PIXE), Rutherford backscattering spectroscopy (RBS), Seebeck coefficient, electrical conductivity, and thermal conductivity measurements to calculate its efficiency as a thermoelectric generator. We are looking to compare the electrical and thermal properties of SiC ceramics with some other materials used for the same purposes.

  10. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education

    ERIC Educational Resources Information Center

    Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2013-01-01

    Two new semiquantitative green chemistry metrics, the green circle and the green matrix, have been developed for quick assessment of the greenness of a chemical reaction or process, even without performing the experiment from a protocol if enough detail is provided in it. The evaluation is based on the 12 principles of green chemistry. The…

  11. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  12. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    PubMed Central

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  13. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.

    PubMed

    Chang, Seok-Woo

    2012-11-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  14. Steam reduction of CO2 on Pd/TiO2 catalysts: a comparison between thermal and photocatalytic reactions.

    PubMed

    Vaiano, V; Sannino, D; Ciambelli, P

    2015-03-01

    The aim of this work was to compare traditional catalysis, which drives chemical reactions by thermal energy, with a photocatalytic process that can induce chemical reactions by light activation. Taking apart the obvious economic advantage to operate under mild conditions, a closer view of the characteristic behaviours of the thermal and light activation can give new insights for the selection of the more appropriate process. The performances of Pd/TiO2 catalysts in the steam reduction of CO2 were analyzed in a photocatalytic and in a thermo-catalytic system. The comparison in the range 140 °C-600 °C showed, for this reaction, the superiority of the photocatalytic route, since at any temperature level, no relevant products or higher selectivities towards the formation of methane and CO were observed. The CH4 photo-formation rate achieved a value of about 64 μmol g(-1) h(-1) at Pd loading equal to 1 wt%.

  15. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  16. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  17. Chemical reactions of As complexation by glutathione: an XAFS study

    NASA Astrophysics Data System (ADS)

    Franco, M. W.; Vasconcelos, I. F.; Modolo, L. V.; Barbosa, F. A. R.

    2016-05-01

    In this study, the chemical reactions between As(III) and As(V) with glutathione, which is a target compound in As biochemistry due to its primordial role in As immobilization and intracellular reduction, in various molar ratios were investigated using As K-edge XAFS spectroscopy. Results showed a gradual substitution of As-O bonds in the coordination of aqueous As(III) and As(V) for three As-S bonds in the As+GSH complex. Moreover, the data showed reduction of As(V) to As(III) prior or concomitant to the As+GSH complex formation.

  18. Structural cluster analysis of chemical reactions in solution

    NASA Astrophysics Data System (ADS)

    Gallet, Grégoire A.; Pietrucci, Fabio

    2013-08-01

    We introduce a simple and general approach to the problem of clustering structures from atomic trajectories of chemical reactions in solution. By considering distance metrics which are invariant under permutation of identical atoms or molecules, we demonstrate that it is possible to automatically resolve as distinct structural clusters the configurations corresponding to reactants, products, and transition states, even in presence of atom-exchanges and of hundreds of solvent molecules. Our approach strongly simplifies the analysis of large trajectories and it opens the way to the construction of kinetic network models of activated processes in solution employing the available efficient schemes developed for proteins conformational ensembles.

  19. Spatially resolved chemical reaction monitoring using magnetic resonance imaging.

    PubMed

    Feindel, Kirk W

    2016-06-01

    Over the previous three decades, the use of MRI for studying dynamic physical and chemical processes of materials systems has grown significantly. This mini-review provides a brief introduction to relevant principles of MRI, including methods of spatial localization, factors contributing to image contrast, and chemical shift imaging. A few historical examples of (1) H MRI for reaction monitoring will be presented, followed by a review of recent research including (1) H MRI studies of gelation and biofilms, (1) H, (7) Li, and (11) B MRI studies of electrochemical systems, in vivo glucose metabolism monitored with (19) F MRI, and in situ temperature monitoring with (27) Al MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  1. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  2. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  3. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  4. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  5. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Miller, William H.

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within ˜20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods.

  6. Parameter estimation in complex flows with chemical reactions

    NASA Astrophysics Data System (ADS)

    Robinson, Daniel J.

    The estimation of unknown parameters in engineering and scientific models continues to be of great importance in order to validate them to available experimental data. These parameters of concern cannot be known beforehand, but must be measured experimentally, variables such as chemical species concentrations, pressures, or temperatures as examples. Particularly, in chemically reacting flows, the estimation of kinetic rate parameters from experimentally determined values is in great demand and not well understood. New parameter optimization algorithms have been developed from a Gauss-Newton formulation for the estimation of reaction rate parameters in several different complex flow applications. A zero-dimensional parameter estimation methodology was used in conjunction with a parameter sensitivity study and then applied to three-dimensional flow models. This new parameter estimation technique was applied to three-dimensional models for chemical vapor deposition of silicon carbide and gallium arsenide semiconductor materials. The parameter estimation for silicon carbide for several different operating points was in close agreement to experiment. The parameter estimation for gallium arsenide proved to be very accurate, being within four percent of the experimental data. New parameter estimation algorithms were likewise created for a three-dimensional multiphase model for methanol spray combustion. The kinetic rate parameters delivered results in close agreement to experiment for profiles of combustion species products. In addition, a new parameter estimation method for the determination of spray droplet sizes and velocities is presented. The results for methanol combustion chemical species profiles are in good agreement to experiment for several different droplet sizes. Lastly, the parameter estimation method was extended to a bio-kinetic application, namely mitochondrial cells, that are cardiac or respiratory cells found in animals and humans. The results for the

  7. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  8. Chemical reactions modulated by mechanical stress: extended Bell theory.

    PubMed

    Konda, Sai Sriharsha M; Brantley, Johnathan N; Bielawski, Christopher W; Makarov, Dmitrii E

    2011-10-28

    A number of recent studies have shown that mechanical stress can significantly lower or raise the activation barrier of a chemical reaction. Within a common approximation due to Bell [Science 200, 618 (1978)], this barrier is linearly dependent on the applied force. A simple extension of Bell's theory that includes higher order corrections in the force predicts that the force-induced change in the activation energy will be given by -FΔR - ΔχF(2)∕2. Here, ΔR is the change of the distance between the atoms, at which the force F is applied, from the reactant to the transition state, and Δχ is the corresponding change in the mechanical compliance of the molecule. Application of this formula to the electrocyclic ring-opening of cis and trans 1,2-dimethylbenzocyclobutene shows that this extension of Bell's theory essentially recovers the force dependence of the barrier, while the original Bell formula exhibits significant errors. Because the extended Bell theory avoids explicit inclusion of the mechanical stress or strain in electronic structure calculations, it allows a computationally efficient characterization of the effect of mechanical forces on chemical processes. That is, the mechanical susceptibility of any reaction pathway is described in terms of two parameters, ΔR and Δχ, both readily computable at zero force.

  9. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  10. Anthropogenic reaction parameters--the missing link between chemical intuition and the available chemical space.

    PubMed

    Keserű, György M; Soós, Tibor; Kappe, C Oliver

    2014-08-01

    How do skilled synthetic chemists develop good intuitive expertise? Why can we only access such a small amount of the available chemical space-both in terms of the reactions used and the chemical scaffolds we make? We argue here that these seemingly unrelated questions have a common root and are strongly interdependent. We performed a comprehensive analysis of organic reaction parameters dating back to 1771 and discovered that there are several anthropogenic factors that limit reaction parameters and thus the scope of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as narrow parameter space and the opportunity for rapid and clear feedback on the progress of reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In parallel, however, all of these same factors represent limitations for the exploration of available chemistry space and we argue that these are thus at least partly responsible for limited access to new chemistries. We advocate, therefore, that the present anthropogenic boundaries can be expanded by a more conscious exploration of "off-road" chemistry that would also extend the intuitive knowledge of trained chemists.

  11. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  12. Experimental studies of thermal and chemical interactions between molten aluminum and water

    SciTech Connect

    Farahani, A.A.; Corradini, M.L.

    1995-09-01

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shock tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.

  13. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    SciTech Connect

    Nichols, A.L.; Couch, R.; Maltby, J.D.; McCallen, R.C.; Otero, I.; Sharp, R.

    1996-10-01

    We must improve our ability to model the response of energetic ma@ to thmnal stimuli and the processes involved m the energetic response. Traditionally, the analyses of energeuc have mvolved coupled thermal chemical reaction codes. This provides only a reasonable estimate of the dw and location of ensuing rapid reaction. To predict the violence of the reaction, the m cal motion must be included in the wide range of time scales as with the th@ hazard. Ile ALE3D code has been modified to the hazards associated with heaung energetic ma@ in weapons. We have merged the thermal models from TOPAZ3D and the chemistry models &vel@ in Chemical TOPAZ into ALE3D. We have developed and use an impMt time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer fim scales materials can be expected to have signifimt motion, it is even more important to provide high- ordcr advection for all components, including the chemical species. We will show an example cook-off problem to illustrate these capabilities.

  14. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald G.

    1993-04-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  15. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  16. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  17. Concentration fluctuations in a mesoscopic oscillating chemical reaction system

    PubMed Central

    Qian, Hong; Saffarian, Saveez; Elson, Elliot L.

    2002-01-01

    Under sustained pumping, kinetics of macroscopic nonlinear biochemical reaction systems far from equilibrium either can be in a stationary steady state or can execute sustained oscillations about a fixed mean. For a system of two dynamic species X and Y, the concentrations nx and ny will be constant or will repetitively trace a closed loop in the (nx, ny) phase plane, respectively. We study a mesoscopic system with nx and ny very small; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We show that nx and ny execute cyclic random walks in the (nx, ny) plane whether or not the deterministic kinetics for the corresponding macroscopic system represents a steady or an oscillating state. Probability distributions and correlation functions for nx(t) and ny(t) show quantitative but not qualitative differences between states that would appear as either oscillating or steady in the corresponding macroscopic systems. A diffusion-like equation for probability P(nx, ny, t) is obtained for the two-dimensional Brownian motion in the (nx, ny) phase plane. In the limit of large nx, ny, the deterministic nonlinear kinetics derived from mass action is recovered. The nature of large fluctuations in an oscillating nonequilibrium system and the conceptual difference between “thermal stochasticity” and “temporal complexity” are clarified by this analysis. This result is relevant to fluorescence correlation spectroscopy and metabolic reaction networks. PMID:12124397

  18. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  19. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  20. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage. PMID:22097561

  1. Reduction of WO 3 to nano-WC by thermo-chemical reaction route

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay; Singh, K.; Pandey, O. P.

    2009-02-01

    Thermo-chemical reaction route has been used to synthesize WC-nanoparticles from WO 3. Two different carbon sources are used to study the effect of these sources on synthesis. The as-prepared samples are characterized by using X-ray diffraction (XRD), differential thermal analyzer (DTA), thermo-gravimetric analysis (TGA) and transmission electron microscope (TEM). The results indicate that reduction of WO 3 to WC takes place by the adsorption of carbon at the surface of WO 3 forming porous structure at the defect sites through which carbon diffuses. As the concentration of adsorbed carbon increases the growth of carbon nanotube starts from this site which ultimately gets converted to carbon nano-fibers of higher chemical activity.

  2. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to

  3. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  4. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    SciTech Connect

    Nicholls, A L., III; Tarver, C M

    1998-08-26

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed.

  5. Monte-Carlo simulations of chemical reactions in molecular crystals

    NASA Astrophysics Data System (ADS)

    Even, J.; Bertault, M.

    1999-01-01

    Chemical reactions in molecular crystals, yielding new entities (dimers, trimers,…, polymers) in the original structure, are simulated for the first time by stochastic Monte Carlo methods. The results are compared with those obtained by deterministic methods. They show that numerical simulation is a tool for understanding the evolution of these mixed systems. They are in kinetic and not in thermodynamic control. Reactive site distributions, x-ray diffuse scattering, and chain length distributions can be simulated. Comparisons are made with deterministic models and experimental results obtained in the case of the solid state dimerization of cinnamic acid in the beta phase and in the case of the solid state polymerization of diacetylenes.

  6. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  7. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  8. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  9. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.

    PubMed

    Vellela, Melissa; Qian, Hong

    2007-07-01

    For a system of biochemical reactions, it is known from the work of T.G. Kurtz [J. Appl. Prob. 8, 344 (1971)] that the chemical master equation model based on a stochastic formulation approaches the deterministic model based on the Law of Mass Action in the infinite system-size limit in finite time. The two models, however, often show distinctly different steady-state behavior. To further investigate this "paradox," a comparative study of the deterministic and stochastic models of a simple autocatalytic biochemical reaction, taken from a text by the late J. Keizer, is carried out. We compute the expected time to extinction, the true stochastic steady state, and a quasistationary probability distribution in the stochastic model. We show that the stochastic model predicts the deterministic behavior on a reasonable time scale, which can be consistently obtained from both models. The transition time to the extinction, however, grows exponentially with the system size. Mathematically, we identify that exchanging the limits of infinite system size and infinite time is problematic. The appropriate system size that can be considered sufficiently large, an important parameter in numerical computation, is also discussed.

  10. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  11. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods.

    PubMed

    Maeda, Satoshi; Ohno, Koichi; Morokuma, Keiji

    2013-03-21

    Global reaction route mapping (GRRM), a fully-automated search for all important reaction pathways relevant to a given purpose, on the basis of quantum chemical calculations enables systematic elucidation of complex chemical reaction mechanisms. However, GRRM had previously been limited to very simple systems. This is mainly because such calculations are highly demanding even in small systems when a brute-force sampling is considered. Hence, we have developed two independent but complementary methods: anharmonic downward distortion following (ADDF) and artificial force induced reaction (AFIR) methods. ADDF can follow reaction pathways starting from local minima on the potential energy surface (PES) toward transition structures (TSs) and dissociation channels. AFIR can find pathways starting from two or more reactants toward TSs for their associative reactions. In other words, ADDF searches for A → X type isomerization and A → X + Y type dissociation pathways, whereas AFIR finds A + B → X (+ Y) type associative pathways. Both follow special paths called the ADDF path and the AFIR path, and these tend to pass through near TSs of corresponding reaction pathways, giving approximate TSs. Such approximate TSs can easily be re-optimized to corresponding true TSs by standard geometry optimizations. On the basis of these two methods, we have proposed practical strategies of GRRM. The GRRM strategies have been applied to a variety of chemical systems ranging from thermal- and photochemical-reactions in small systems to organometallic- and enzyme-catalysis, on the basis of quantum chemical calculations. In this perspective, we present an overview of the GRRM strategies and some results of applications. Their practical usage for systematic prediction is also discussed.

  12. Site remediation via Dispersion by Chemical Reaction (DCR). Special report

    SciTech Connect

    Marion, G.M.; Payne, J.R.; Brar, G.S.

    1997-08-01

    The DCR (Dispersion by Chemical Reaction) technologies are a group of patented waste treatment processes using CaO (quicklime) for the immobilization of heavily oiled sludges, oil-contaminated soils, acid-tars, and heavy metals in Ca(OH)2 and CaCO3 matrices. The objectives of this project were to: (1) evaluate the DCR process for remediating soils contaminated with pesticides, petroleum hydrocarbons (oils and fuels), and heavy metals in cold regions and (2) evaluate DCR-treated oil-contaminated soil as a non-frost-susceptible (NFS) construction material. Three major studies evaluated the DCR process to remediate (1) hydrocarbons at Eareckson Air Force Station on Shemya in the Aleutians, (2) pesticide-contaminated soils from Rocky Mt. Arsenal, and (3) heavy-metal contaminated soils from a former zinc smelter site at Palmerton, Pennsylvania. The DCR process was successful in stabilizing liquid organics and heavy metals in contaminated soils. The chemical properties of soils contaminated by solid organics (asphalt tar and pesticides) were not generally improved by the DCR process, but even in these cases, the physical properties were improved for potential reuse as construction materials.

  13. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.

    PubMed

    Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-12-14

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.

  14. On-chip isothermal, chemical cycling polymerase chain reaction (ccPCR)

    NASA Astrophysics Data System (ADS)

    Persat, Alexandre; Santiago, Juan

    2008-11-01

    We demonstrate a novel ccPCR technique for microfluidic DNA amplification where temperature is held constant in space and time. The polymerase chain reaction is a platform of choice for biological assays and typically based on a three-step thermal cycling: DNA denaturation, primers annealing and extension by an enzyme. We here demonstrate a novel technique where high concentration chemical denaturants (solvents) denature DNA. We leverage the high electrophoretic mobility of DNA and the electrical neutrality of denaturants to achieve chemical cycling. We focus DNA with isotachophoresis (ITP); a robust electrophoretic preconcentration technique which generates strong electric field gradients and protects the sample from dispersion. We apply a pressure-driven flow to balance electromigration velocity and keep the DNA sample stationary in a microchannel. We drive the DNA through a series of high denaturant concentration zones. DNA denatures at high denaturant concentration. At low denaturant concentration, the enzyme creates complementary strands. DNA reaction kinetics are slower than buffer reactions involved in ITP. We demonstrate successful ccPCR amplification for detection of E. Coli. The ccPCR has the potential for simpler chemistry than traditional PCR.

  15. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  16. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect

    Gopalsami, N.

    1999-03-30

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  17. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction.

    PubMed

    Schenk, Gerhard; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; McGeary, Ross P; Guddat, Luke W

    2012-09-18

    Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear

  18. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  19. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  20. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals

    NASA Astrophysics Data System (ADS)

    Austin, Ryan; Barton, Nathan; Howard, William; Fried, Laurence

    2013-06-01

    The collapse of micron-sized pores in crystalline high explosives is the primary route to initiating thermal decomposition reactions under shock wave loading. Given the difficulty of resolving such processes in experiments, it is useful to study pore collapse using numerical simulation. A significant challenge that is encountered in such calculations is accounting for anisotropic mechanical responses and the effects of highly exothermic chemical reactions. In this work, we focus on simulating the shock-wave-induced collapse of a single pore in crystalline HMX using a multiphysics finite element code (ALE3D). The constitutive model set includes a crystal-mechanics-based model of thermoelasto-viscoplasticity and a single-step decomposition reaction with empirically determined kinetics. The model is exercised for shock stresses up to ~10 GPa to study the localization of energy about the collapsing pore and the early stages of reaction initiation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-618941).

  1. Sunburn, Thermal, and Chemical Injuries to the Skin.

    PubMed

    Monseau, Aaron J; Reed, Zebula M; Langley, Katherine Jane; Onks, Cayce

    2015-12-01

    Sunburn, thermal, and chemical injuries to the skin are common in the United States and worldwide. Initial management is determined by type and extent of injury with special care to early management of airway, breathing, and circulation. Fluid management has typically been guided by the Parkland formula, whereas some experts now question this. Each type of skin injury has its own pathophysiology and resultant complications. All primary care physicians should have at least a basic knowledge of management of acute and chronic skin injuries. PMID:26612374

  2. Sunburn, Thermal, and Chemical Injuries to the Skin.

    PubMed

    Monseau, Aaron J; Reed, Zebula M; Langley, Katherine Jane; Onks, Cayce

    2015-12-01

    Sunburn, thermal, and chemical injuries to the skin are common in the United States and worldwide. Initial management is determined by type and extent of injury with special care to early management of airway, breathing, and circulation. Fluid management has typically been guided by the Parkland formula, whereas some experts now question this. Each type of skin injury has its own pathophysiology and resultant complications. All primary care physicians should have at least a basic knowledge of management of acute and chronic skin injuries.

  3. Chemical and thermal constraints on models of Thermal Springs Valley of Ten Thousand Smokes, Alaska

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Keith, T. E. C.

    1991-08-01

    Thermal (15-30°C) springs issuing from 1912 ash-flow tuff in the mid-valley region of the Valley of Ten Thousand Smokes consist of meteoric water that may have been heated by an incompletely cooled lens of welded tuff upvalley from the springs. Conductive cooling of the thermal waters along the flow path is the likely cause for the difference between the observed spring temperatures and the source temperature inferred from chemical geothermometry. Conductive cooling alone can not easily account for the seasonal fluctuations in spring temperatures, however. Mixing of the thermal waters with cold meteoric waters would seem a likely possibility; but thermal water chemistry is constant, indicating that mixing does not occur after the water leaves the zone of heating. Even if mixing occurred, simple mixing models do not account totally for the observed temperature differences of the springs from late spring to summer. The geochemical and thermal data argue for a complex hydrological and thermal regime.

  4. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  5. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  6. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front.

    PubMed

    Almarcha, C; Trevelyan, P M J; Grosfils, P; De Wit, A

    2013-09-01

    A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.

  7. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front

    NASA Astrophysics Data System (ADS)

    Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; De Wit, A.

    2013-09-01

    A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.

  8. Conversion of concentrated solar thermal energy into chemical energy.

    PubMed

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  9. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  10. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2005-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a novel procedure to speed up the training of NPCA. The same procedure termed L{sub 2}Boost can be used to increase the order of approximation of the Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of computing the derivatives of GRNN function approximation using complex variables or the Complex Step Method (CSM). The results presented demonstrate the significance of the methods developed and will be useful in many areas of applied science and engineering.

  11. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2004-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2004) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a procedure to speed up the training of NPCA. The developed procedure is based on the non-parametric statistical technique of kernel smoothing. When this smoothing technique is implemented as a Neural Network, It is know as Generalized Regression Neural Network (GRNN). We present results of implementing GRNN on a test problem. In addition, we present results of an in house developed 2-D CFD code that will be used through out the project period.

  12. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  13. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  14. Thermal and chemical degradation of inorganic membrane materials. Topical report

    SciTech Connect

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  15. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  16. Chemical reactions induced by high-velocity molecular impacts: challenges for closed-source mass spectrometry

    NASA Astrophysics Data System (ADS)

    Austin, Daniel

    2016-07-01

    Analysis of upper atmosphere composition using closed-source neutral mass spectrometers (e.g., Cassini INMS, MAVEN NGIMS) is subject to error due to chemical reactions caused by the high-velocity impacts of neutral molecules on the source surfaces. In addition to species traditionally considered "surface reactive" (e.g., O, N) it is likely that many or all impacting molecules are vibrationally excited to the point that chemical changes can occur. Dissociation, fragmentation, formation of radicals and ions, and other reactions likely obscure analysis of the native atmospheric composition, particularly of organic compounds. Existing techniques are not capable of recreating the relevant impact chemistry in the lab. We report on the development of a new capability allowing reactions of high-velocity neutrals impacting surfaces to be characterized directly. Molecules introduced into a vacuum chamber are impacted at several km/s by the surface of a high-speed rotor. These molecules subsequently impact multiple times on other surfaces within the vacuum chamber until they are thermalized, after which they are cryogenically collected and analyzed. Reaction pathways and thermodynamics for volatile compounds are then determined. We will present current results on this project, including data from low- and mid-range velocity experiments. This type of information is critical to clarify prior flight results and plan for future missions. Finally, we present a new type of inlet intended to significantly reduce fragmentation for impact velocities typical of a fly-by mission. Theoretical analysis indicates that this new inlet may reduce fragmentation by more than an order of magnitude for any encounter velocity.

  17. Artocarpus hirsuta lectin. Differential modes of chemical and thermal denaturation.

    PubMed

    Gaikwad, Sushama M; Gurjar, Madhura M; Khan, M Islam

    2002-03-01

    Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.

  18. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  19. Verification and Validation of a Chemical Reaction Solver Coupled to the Piecewise Parabolic Method

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen; Hossain, Jahed; Karkhanis, Varad; Roy, Sukesh; Gord, James; Uddin, Mesbah

    2012-11-01

    We present a detailed chemical kinetics reaction solver coupled to the Piecewise Parabolic Method (PPM) embedded in the widely used astrophysical FLASH code. The FLASH code solves the compressible Euler equations with a directionally split, PPM with Adaptive Mesh Refinement (AMR). The reaction network is solved using a library of coupled ODE solvers, specialized for handling stiff systems of equations. Finally, the diffusion of heat, mass, and momentum is handled either through an update of the fluxes of each quantity, or by directly solving a diffusion equation for each. The resulting product is capable of handling a variety of physics such as gas-phase chemical kinetics, diffusive transport of mass, momentum, and heat, shocks, sharp interfaces, multi-species mixtures, and thermal radiation. We will present results from verification and validation of the above capabilities through comparison with analytical solutions, and published numerical and experimental data. Our validation cases include advection of reacting fronts in 1-D and 2D, laminar premixed flames in a Bunsen burner configuration, and shock-driven combustion. We acknowledge funding from Spectral Energies LLC.

  20. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  1. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  2. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic

  3. Computational molecular technology towards macroscopic chemical phenomena-molecular control of complex chemical reactions, stereospecificity and aggregate structures

    SciTech Connect

    Nagaoka, Masataka

    2015-12-31

    A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.

  4. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  5. Thermal Reactions of Oxygen Atoms with Alkenes at Low Temperatures on Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Ward, Michael D.; Price, Stephen D.

    2011-11-01

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C2H4O and C3H6O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C2H4 + O and the C3H6 + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C2H4 reaction is ethylene oxide, an epoxide.

  6. THERMAL REACTIONS OF OXYGEN ATOMS WITH ALKENES AT LOW TEMPERATURES ON INTERSTELLAR DUST

    SciTech Connect

    Ward, Michael D.; Price, Stephen D. E-mail: s.d.price@ucl.ac.uk

    2011-11-10

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C{sub 2}H{sub 4}O and C{sub 3}H{sub 6}O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C{sub 2}H{sub 4} + O and the C{sub 3}H{sub 6} + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C{sub 2}H{sub 4} reaction is ethylene oxide, an epoxide.

  7. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2006-09-21

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the significant development made in developing a truly meshfree computational fluid dynamics (CFD) flow solver to be coupled to NPCA. First, the procedure of obtaining nearly analytic accurate first order derivatives using the complex step method (CSM) is extended to include computation of accurate meshfree second order derivatives via a theorem described in this report. Next, boosted generalized regression neural network (BGRNN), described in our previous report is combined with CSM and used to obtain complete solution of a hard to solve wave dominated sample second order partial differential equation (PDE): the cubic Schrodinger equation. The resulting algorithm is a significant improvement of the meshfree technique of smooth particle hydrodynamics method (SPH). It is suggested that the demonstrated meshfree technique be termed boosted smooth particle hydrodynamics method (BSPH). Some of the advantages of BSPH over other meshfree methods include; it is of higher order accuracy than SPH; compared to other meshfree methods, it is completely meshfree and does not require any background meshes; It does not involve any construction of shape function with their associated solution of possibly ill conditioned matrix equations; compared to some SPH techniques, no equation for the smoothing parameter is required; finally it is easy to program.

  8. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  9. SUBSTITUTION REACTIONS FOR THE DETOXIFICATION OF HAZARDOUS CHEMICALS

    EPA Science Inventory

    Chemical Treatment is one of several treatment techniques used for the remediation of toxic and hazardous chemicals. Chemical treatment in this report is defined as substitution of halogens by hydrogens for the conversion of halogenated organic toxicant into its native hydrocarb...

  10. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  11. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  12. Reactions of hydrazines with chemicals found in environment. Technical report

    SciTech Connect

    Judeikis, H.S.; Damschen, D.E.

    1992-01-24

    Reactions of hydrazine, monomethylhydrazine and unsymmetrical dimethylhydrazine with selected species of interest that are found in the environment have been investigated. Included are aqueous phase reactions that can occur in atmospheric aerosols, groundwater, or soils in contact with groundwater, as well as selected gas phase reactions. Reactants include oxygen and hydrogen peroxide (both reactants in the presence and absence of catalysts), ozone, nitrous acid, sulfur dioxide, and acetone (as a model for environmental ketones and aldehydes). Rate constants for the reactions have been determined, or upper limits set. In several instances, reaction products have been identified. By far, the fastest reactions measured were those involving the hydrazines and ozone with (second-order) rate constants up to 2.4 x 107 liter/mole-sec.

  13. Effect of thermal nonequilibrium on reactions in hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Voelkel, S.; Raman, V.; Varghese, P. L.

    2016-09-01

    The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen-air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.

  14. Thermal and chemical stability of reflowed-photoresist microlenses

    NASA Astrophysics Data System (ADS)

    Han, Myung-Geun; Park, Yoon-Jung; Kim, Seoung-Hoe; Yoo, Byueng-Su; Park, Hyo-Hoon

    2004-03-01

    We have investigated the effect of heat treatment on the thermal and chemical stability of photoresist microlenses which were made by a reflow method. The microlenses were formed by patterning a novolac-based photoresist (PR) to pillar shapes and by reflowing it at 140 °C. After reflowing, the microlenses were heat treated at a relatively high temperature between 250 °C and 350 °C. After the heat treatment, the fundamental functions as a lens were maintained for infrared laser beams with wavelengths above 800 nm, except volume shrinkage and increment of the refractive index. The heat-treated microlenses also were not attacked by methanol and acetone. Our results suggest wide application of the PR as a simple, cost effective and stable lens medium.

  15. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  16. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  17. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  18. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…

  19. Motivational Factors Contributing to Turkish High School Students' Achievement in Gases and Chemical Reactions

    ERIC Educational Resources Information Center

    Kadioglu, Cansel; Uzuntiryaki, Esen

    2008-01-01

    This study aimed to investigate the contribution of motivational factors to 10th grade students' achievement in gases and chemical reactions in chemistry. Three hundred fifty nine 10th grade students participated in the study. The Gases and Chemical Reactions Achievement Test and the Motivated Strategies for Learning Questionnaire were…

  20. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  1. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  2. Chemical characteristics of the major thermal springs of Montana

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 milligramsper litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100?C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in 'granitic' terranes.

  3. Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations.

    PubMed

    Rutschmann, Alexis; Miles, Donald B; Le Galliard, Jean-François; Richard, Murielle; Moulherat, Sylvain; Sinervo, Barry; Clobert, Jean

    2016-03-01

    Substantial plastic variation in phenology in response to environmental heterogeneity through time in the same population has been uncovered in many species. However, our understanding of differences in reaction norms of phenology among populations from a given species remains limited. As the plasticity of phenological traits is often influenced by local thermal conditions, we expect local temperature to generate variation in the reaction norms between populations. Here, we explored temporal variation in parturition date across 11 populations of the common lizard (Zootoca vivipara) from four mountain chains as a function of air temperatures during mid-gestation. We characterized among-population variation to assess how local weather conditions (mean and variance of ambient temperatures during mid-gestation) and habitat openness (an index of anthropogenic disturbance) influence the thermal reaction norms of the parturition date. Our results provide evidence of interactive effects of anthropogenic disturbance and thermal conditions, with earlier parturition dates in warmer years on average especially in closed habitats. Variation in the reaction norms for parturition date was correlated with mean local thermal conditions at a broad geographical scale. However, populations exposed to variable thermal conditions had flatter thermal reaction norms. Assessing whether environmental heterogeneity drives differentiation among reaction norms is crucial to estimate the capacity of different populations to contend with projected climatic and anthropogenic challenges.

  4. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions.

    PubMed

    Joo, Sang Hoon; Park, Jeong Young; Tsung, Chia-Kuang; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A

    2009-02-01

    Recent advances in colloidal synthesis enabled the precise control of the size, shape and composition of catalytic metal nanoparticles, enabling their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here, we report the design of a high-temperature-stable model catalytic system that consists of a Pt metal core coated with a mesoporous silica shell (Pt@mSiO(2)). Inorganic silica shells encaged the Pt cores up to 750 degrees C in air and the mesopores providing direct access to the Pt core made the Pt@mSiO(2) nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt@mSiO(2) nanoparticles enabled high-temperature CO oxidation studies, including ignition behaviour, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt@mSiO(2) nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept used in the Pt@mSiO(2) core-shell catalyst can be extended to other metal/metal oxide compositions. PMID:19029893

  5. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions.

    PubMed

    Ceotto, Michele; Miller, William H

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within approximately 20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods. PMID:15267524

  6. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    SciTech Connect

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  7. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    SciTech Connect

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling.

  8. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  9. Chemical Synthesis Accelerated by Paper Spray: The Haloform Reaction

    ERIC Educational Resources Information Center

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2016-01-01

    In this laboratory, students perform a synthetic reaction in two ways: (i) by traditional bulk-phase reaction and (ii) in the course of reactive paper spray ionization. Mass spectrometry (MS) is used both as an analytical method and a means of accelerating organic syntheses. The main focus of this laboratory exercise is that the same ionization…

  10. The canonical and other mechanisms of elementary chemical reactions.

    PubMed

    Aldegunde, Jesús; Aoiz, F Javier; Sáez-Rábanos, Vicente; Kendrick, Brian K; de Miranda, Marcelo P

    2007-11-21

    This article introduces a definition of the concept of elementary reaction mechanism that, while conforming to the traditional view of reaction mechanisms as dynamical processes whereby reagents are transformed into products, sharpens it by requiring reagent and product states to be completely specified and fully correlated. This leads to well-defined mathematical requirements for classification of a dynamical process as a reaction mechanism and also to a straightforward mathematical procedure for the determination of a special class of independent collision mechanisms that are dubbed "canonical". Canonical mechanisms result from an exact decomposition of the differential cross section of the reaction and form a complete orthogonal basis in terms of which all reaction mechanisms can be described. Examples involving the benchmark F + H2 and D + H2 reactions at energies ranging from ultralow to hyperthermal illustrate how canonical and other reaction mechanisms can be visualised and also how analysis of a reaction in terms of its canonical mechanisms can provide insight into its dynamics.

  11. Thermal decomposition of sodium bicarbonate and its effect on the reaction of sodium bicarbonate and sulfur dioxide in a simulated flue gas

    SciTech Connect

    Keener, T.C.

    1982-01-01

    The effect of thermally decomposing sodium bicarbonate while simultaneously reacting with SO/sub 2/, was studied. The study was performed by quantitatively determining the rate of thermal decomposition as a function of particle size in an SO/sub 2/ free gas stream. The rate of reaction of sodium carbonate (product of the thermal decomposition) with SO/sub 2/ was then studied, and the data applied to a pore-plugging model which accounts for the loss in reactivity with increased reaction time. The reaction of sodium bicarbonate with SO/sub 2/ was then studied and the results compared to that for sodium carbonate. From the analysis of the data, the activation energy for the thermal decomposition reaction, the SO/sub 2/ sodium carbonate and SO/sub 2/ sodium bicarbonate reaction were derived. The thermal decomposition reaction of sodium biocarbonate was found to be similar to that of calcium carbonate below the point where heat transfer is rate limiting. The degree of conversion of sodium bicarbonate was found to be 12-17 times greater (depending on particle size) than that of sodium carbonate in the temperature range 250/sup 0/-350/sup 0/F (120/sup 0/-177/sup 0/C). This greater conversion was qualitatively explained by hypothesizing the formation of an activated species during thermal decomposition which would be more chemically reactive.

  12. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  13. Iteration Scheme for Implicit Calculations of Kinetic and Equilibrium Chemical Reactions in Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Ramshaw, J. D.; Chang, C. H.

    1995-02-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described (J. D. Ramshaw and A. A. Amsden, J. Comput. Phys.59, 484 (1985); 71 , 224 (1987)). Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in some regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow.

  14. A Unified Approach to the Study of Chemical Reactions in Freshman Chemistry.

    ERIC Educational Resources Information Center

    Cassen, T.; DuBois, Thomas D.

    1982-01-01

    Provides rationale and objectives for presenting chemical reactions in a unified, logical six-stage approach rather than a piecemeal approach. Stages discussed include: introduction, stable electronic configurations and stable oxidation states, reactions between two free elements, ion transfer/proton transfer reactions, double displacement…

  15. The elimination of fast variables in complex chemical reactions. I. Macroscopic level

    NASA Astrophysics Data System (ADS)

    Janssen, J. A. M.

    1989-10-01

    The kinetics of complex chemical reactions is considered. Different time scales exist if one or more of the rate constants of the individual reaction steps is much larger than the others. Examples of specific reactions are given in which the intermediates vary on the fast time scale. They can be eliminated according to a standard scheme, the lowest order of which coincides with the steady-state approximation usually employed in textbooks on chemical kinetics.

  16. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1993-06-01

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  17. On the deduction of chemical reaction pathways from measurements of time series of concentrations

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system.

  18. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  19. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    PubMed

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  20. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  1. Ultralocalized thermal reactions in subnanoliter droplets-in-air.

    PubMed

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-02-26

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.

  2. Ultralocalized thermal reactions in subnanoliter droplets-in-air.

    PubMed

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-02-26

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules. PMID:23401557

  3. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    PubMed

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. PMID:27381169

  4. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    SciTech Connect

    Sakai, Osamu Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-15

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH{sub 3} in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  5. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    PubMed

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology.

  6. Cutaneous reactions in nuclear, biological and chemical warfare.

    PubMed

    Arora, Sandeep

    2005-01-01

    Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  7. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

  8. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  9. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  10. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    PubMed

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions.

  11. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    PubMed Central

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  12. Identification of Maillard reaction induced chemical modifications on Ara h 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  13. Solvation and chemical reaction of sodium in water clusters

    NASA Astrophysics Data System (ADS)

    Bobbert, C.; Schulz, C. P.

    Nam(H2O)n Clusters ( n = 1...200, m = 1...50) are formed in a recently build pick-up arrangement. Preformed water clusters traverse a sodium oven, where sodium atoms are picked up. At low sodium vapour pressure ( < 1×10-4 mbar) pure Na(H2O)n clusters are observed in the mass spectra. At high sodium vapour pressure ( > 1×10-3 mbar) the water cluster pick up more than 50 Na atoms and reaction products Na(NaOH)n ( n = 2, 4...50) dominate the mass spectra. The even number of NaOH units in the products indicate that also in a finite cluster the reaction occurs in pairs as in the macroscopic reaction.

  14. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Kelemen, Simon R.; Walters, Clifford C.; Kwiatek, Peter J.; Freund, Howard; Afeworki, Mobae; Sansone, Michael; Lamberti, William A.; Pottorf, Robert J.; Machel, Hans G.; Peters, Kenneth E.; Bolin, Trudy

    2010-09-01

    Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and 13C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA. The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic

  15. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol

    SciTech Connect

    Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.; Vaida, Veronica

    2012-04-28

    The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energy is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.

  16. Interplay of explosive thermal reaction dynamics and structural confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Zucker, Jonathan; Dickson, Peter M.; Parker, Gary R.; Asay, Blaine W.

    2007-04-01

    Explosives play a significant role in human affairs; however, their behavior in circumstances other than intentional detonation is poorly understood. Accidents may have catastrophic consequences, especially if additional hazardous materials are involved. Abnormal ignition stimuli, such as impact, spark, friction, and heat may lead to a very violent outcome, potentially including detonation. An important factor influencing the behavior subsequent to abnormal ignition is the strength and inertia of the vessel confining the explosive, i.e., the near-field structural/mechanical environment, also known as confinement (inertial or mechanical). However, a comprehensive and quantified understanding of how confinement affects reaction violence does not yet exist. In the research discussed here, we have investigated a wide range of confinement conditions and related the explosive response to the fundamentals of the combustion process in the explosive. In our experiments, a charge of an octahydrotetranitrotetrazine-based plastic bonded explosive (PBX 9501) was loaded into a gun assembly having variable confinement conditions and subjected to a heating profile. The exploding charge breached the confinement and accelerated a projectile down the gun barrel. High bandwidth pressure and volume measurements were made and a first-law analysis was used to obtain enthalpy and power from the raw data. These results were then used to quantify reaction violence. Enthalpy change and power ranged from 0-1.8 kJ and 0-12 MW for 300 mg charges, respectively. Below a confinement strength of 20 MPa, violence was found to decline precipitously with decreasing confinement, while the violence for the heaviest confinement experiments was found to be relatively constant. Both pressure and pressurization rate were found to have critical values to induce and sustain violent reaction.

  17. Characterization of the Thermal and Photoinduced Reactions of Photochromic Spiropyrans in Aqueous Solution

    PubMed Central

    2013-01-01

    Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reaction mechanism were supplemented by calculations using quantum mechanical (QM) models employing density functional theory. The results show that (1) the substitution pattern dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas the corresponding protonated form is stable toward hydrolytic degradation. PMID:24143951

  18. The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation.

    PubMed

    Zhang, Xinchen; Tao, Ningping; Wang, Xichang; Chen, Feng; Wang, Mingfu

    2015-02-01

    Nonenzymatic browning reactions proceed with the starting reactants of sugar and/or protein during thermal processing and storage of food. In addition to food color formation, the process also contributes to the loss of essential nutrients, generation of beneficial antioxidants, and production of toxicants, including 5-hydroxymethylfurfural (5-HMF), reactive carbonyl species, advanced glycation end products (AGEs), and heterocyclic amines (HAs). Recent research has demonstrated that dietary polyphenols can actively participate in nonenzymatic browning reactions, contributing to the generation of new colorants and antioxidants. More importantly, polyphenol addition has been found to be an effective approach to mitigate heat-induced formation of toxicants, mainly through inhibiting oxidative pathways and trapping reactive intermediates. In the matrix of polyphenol-fortified foods, a complex array of chemical interactions happen among polyphenols, traditional nutritional components, and neo-formed compounds they are thermally converted to. These reactions play a significant role in the colorants, antioxidants as well as toxicants production. Our findings support the potential of dietary polyphenols for increasing the antioxidant content and for reducing the level of toxicants when they participate in nonenzymatic browning reactions in fortified food products. PMID:25468403

  19. The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation.

    PubMed

    Zhang, Xinchen; Tao, Ningping; Wang, Xichang; Chen, Feng; Wang, Mingfu

    2015-02-01

    Nonenzymatic browning reactions proceed with the starting reactants of sugar and/or protein during thermal processing and storage of food. In addition to food color formation, the process also contributes to the loss of essential nutrients, generation of beneficial antioxidants, and production of toxicants, including 5-hydroxymethylfurfural (5-HMF), reactive carbonyl species, advanced glycation end products (AGEs), and heterocyclic amines (HAs). Recent research has demonstrated that dietary polyphenols can actively participate in nonenzymatic browning reactions, contributing to the generation of new colorants and antioxidants. More importantly, polyphenol addition has been found to be an effective approach to mitigate heat-induced formation of toxicants, mainly through inhibiting oxidative pathways and trapping reactive intermediates. In the matrix of polyphenol-fortified foods, a complex array of chemical interactions happen among polyphenols, traditional nutritional components, and neo-formed compounds they are thermally converted to. These reactions play a significant role in the colorants, antioxidants as well as toxicants production. Our findings support the potential of dietary polyphenols for increasing the antioxidant content and for reducing the level of toxicants when they participate in nonenzymatic browning reactions in fortified food products.

  20. Thermal and chemical effects of turkey feathers pyrolysis.

    PubMed

    Kluska, Jacek; Kardaś, Dariusz; Heda, Łukasz; Szumowski, Mateusz; Szuszkiewicz, Jarosław

    2016-03-01

    This study examines the thermal and chemical effects of the pyrolysis of turkey feathers. Research of feathers pyrolysis is important because of their increasing production and difficulties of their utilization. The experiments were carried out by means of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and two pyrolytic reactors. The experimental investigation indicated that the feather material liquefies at temperatures between 210 and 240°C. This liquefaction together with the agglomeration of various dispersed and porous elements of the feathers into larger droplets leads to the volume reduction. Moreover, this work presents characteristics of the composition of the solid, liquid and gaseous products of turkey feathers pyrolysis at different temperatures. The higher heating value (HHV) of gaseous products in temperature 900°C equals 19.28 MJ/Nm(3) making the gases suitable for use as a fuel. The thermochemical conversion of turkey feathers leads to the formation of poisonous compounds such as hydrogen cyanide (HCN) in the liquid (0.13%) and gaseous (88 mg/Nm(3)) products. The phenomenon of liquefaction of feathers is important because it can lead to rapid degradation of the walls of reactors, and the formation of deposits. PMID:26783100

  1. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    In this paper, surface cracking and interface reactions of a ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions that were largely enhanced by the coating surface cracking in the water vapor environment were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions. The coating design issues will also be discussed based on the observed failure mechanisms under the high-heat-flux test conditions.

  2. Thermal proton transfer reactions in ultraviolet matrix-assisted laser desorption/ionization.

    PubMed

    Chu, Kuan Yu; Lee, Sheng; Tsai, Ming-Tsang; Lu, I-Chung; Dyakov, Yuri A; Lai, Yin Hung; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-03-01

    One of the reasons that thermally induced reactions are not considered a crucial mechanism in ultraviolet matrix-assisted laser desorption ionization (UV-MALDI) is the low ion-to-neutral ratios. Large ion-to-neutral ratios (10(-4)) have been used to justify the unimportance of thermally induced reactions in UV-MALDI. Recent experimental measurements have shown that the upper limit of the total ion-to-neutral ratio is approximately 10(-7) at a high laser fluence and less than 10(-7) at a low laser fluence. Therefore, reexamining the possible contributions of thermally induced reactions in MALDI may be worthwhile. In this study, the concept of polar fluid was employed to explain the generation of primary ions in MALDI. A simple model, namely thermal proton transfer, was used to estimate the ion-to-neutral ratios in MALDI. We demonstrated that the theoretical calculations of ion-to-neutral ratios exhibit the same trend and similar orders of magnitude compared with those of experimental measurements. Although thermal proton transfer may not generate all of the ions observed in MALDI, the calculations demonstrated that thermally induced reactions play a crucial role in UV-MALDI.

  3. The hydroperoxyl radical in atmospheric chemical dynamics - Reaction with carbon monoxide.

    NASA Technical Reports Server (NTRS)

    Davis, D. D.; Payne, W. A.; Stief, L. J.

    1973-01-01

    Discussion of laboratory measurements which indicate that the reaction of the thermalized HO(2) radical with CO is exceedingly slow and that this reaction should not, therefore, be of any significance in atmospheric chemistry. The large discrepancy between the new results and data obtained earlier by Westenberg and de Haas (1972) is explained in terms of the reacting hydroperoxyl radical being in a non-Boltzmann distribution in the former study. It appears that the most important reactions of thermalized HO(2) in the atmosphere are those involving the trace gases of NO and sulfur dioxide.

  4. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  5. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  6. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  7. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  8. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    PubMed

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  9. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination.

  10. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  11. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  12. Theoretical study of the reaction mechanisms involved in the thermal intramolecular reactions of 1,6-fullerenynes.

    PubMed

    Güell, Mireia; Martín, Nazario; Altable, Margarita; Filippone, Salvatore; Martín-Domenech, Angel; Solà, Miquel

    2007-06-21

    Substitution of a H atom by an alkyl group on the terminal carbon of the alkyne moiety of 1,6-fullerenynes has a strong impact on the products of the reaction undergone by this species after thermal treatment. While the reaction of 1,6-fullerenynes bearing an unsubstituted alkyne moiety results in the cycloaddition of the alkyne group to the fullerene double bond leading to cyclobutene-fused derivatives, the presence of an alkyl substituent leads to the formation of allenes. In the present work, we have performed an exhaustive theoretical analysis of all possible reaction mechanisms leading to cyclobutene-fused derivatives and allenes to offer an explanation of the reactivity differences observed. The results obtained show that formation of cyclobutene-fused derivatives occurs through a stepwise diradical reaction mechanism, while allene formation proceeds through a concerted way involving an uncommon intramolecular ene process. For the 1,6-fullerenynes bearing a substituted alkyne, the ene reaction path leading to allenes has an energy barrier somewhat lower than the stepwise diradical mechanism for the cyclobutene-fused derivative formation, thus explaining the outcome of the reaction.

  13. Effect of Coriolis coupling in chemical reaction dynamics.

    PubMed

    Chu, Tian-Shu; Han, Ke-Li

    2008-05-14

    It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.

  14. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2012-10-01

    During the operation of vanadium redox flow battery, the vanadium ions diffuse across the membrane as a result of concentration gradients between the two half-cells in the stack, leading to self-discharge reactions in both half-cells that will release heat to the electrolyte and subsequently increase the electrolyte temperature. In order to avoid possible thermal precipitation in the electrolyte solution and prevent possible overheating of the cell components, the electrolyte temperature needs to be known. In this study, the effect of the self-discharge reactions was incorporated into a thermal model based on energy and mass balances, developed for the purpose of electrolyte temperature control. Simulations results have shown that the proposed model can be used to investigate the thermal effect of the self-discharge reactions on both continuous charge-discharge cycling and during standby periods, and can help optimize battery designs and fabrication for different applications.

  15. Rheological monitoring of phase separation induced by chemical reaction in thermoplastic-modified epoxy

    SciTech Connect

    Vinh-Tung, C.; Lachenal, G.; Chabert, B.

    1996-12-31

    The phase separation induced by chemical reaction in blends of tetraglycidyl-diaminodiphenylmethane epoxy resin with an aromatic diamine hardener and a thermoplastic was monitored. Rheological measurements and morphologies are described.

  16. The Determination of Molecular Quantities from Measurements on Macroscopic Systems IV. Phases with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Liptay, Wolfgang; Wehning, Detlev; Becker, Jürgen; Rehm, Torsten

    1982-12-01

    A general method for the determination of molecular quantities from measurements in dense phases without chemical reactions has been presented in a previous paper [1], The method is extended to phases where chemical reactions may occur. The intimate relationship between the investigation of chemical equilibria and the determination of model molar quantities is shown. Some particular reactions have to be assumed as hypothesis. A scheme is developed, by which in favorable cases it is possible to falsify the assumed hypothesis or to estimate corresponding equilibrium constants and model molar quantities. Some special chemical reactions are treated, where observable quantities are insensitive to any variation of the concentrations of solutions and therefore such methods cannot contribute to the investigation of the systems.

  17. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal

  18. Hot or not? Thermal reactions to social contact

    PubMed Central

    Hahn, Amanda C.; Whitehead, Ross D.; Albrecht, Marion; Lefevre, Carmen E.; Perrett, David I.

    2012-01-01

    Previous studies using thermal imaging have suggested that face and body temperature increase during periods of sexual arousal. Additionally, facial skin temperature changes are associated with other forms of emotional arousal, including fear and stress. This study investigated whether interpersonal social contact can elicit facial temperature changes. Study 1: infrared images were taken during a standardized interaction with a same- and opposite-sex experimenter using skin contact in a number of potentially high–intimate (face and chest) and low–intimate (arm and palm) locations. Facial skin temperatures significantly increased from baseline during the face and chest contact, and these temperature shifts were larger when contact was made by an opposite-sex experimenter. Study 2: the topography of facial temperature change was investigated in five regions: forehead, periorbital, nose, mouth and cheeks. Increased temperature in the periorbital, nose and mouth regions predicted overall facial temperature shifts to social contact. Our findings demonstrate skin temperature changes are a sensitive index of arousal during interpersonal interactions. PMID:22647931

  19. Reformulation and solution of the master equation for multiple-well chemical reactions.

    PubMed

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.

  20. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  1. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip.

    PubMed

    Shen, Feng; Davydova, Elena K; Du, Wenbin; Kreutz, Jason E; Piepenburg, Olaf; Ismagilov, Rustem F

    2011-05-01

    In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader

  2. Exact probability distributions of selected species in stochastic chemical reaction networks.

    PubMed

    López-Caamal, Fernando; Marquez-Lago, Tatiana T

    2014-09-01

    Chemical reactions are discrete, stochastic events. As such, the species' molecular numbers can be described by an associated master equation. However, handling such an equation may become difficult due to the large size of reaction networks. A commonly used approach to forecast the behaviour of reaction networks is to perform computational simulations of such systems and analyse their outcome statistically. This approach, however, might require high computational costs to provide accurate results. In this paper we opt for an analytical approach to obtain the time-dependent solution of the Chemical Master Equation for selected species in a general reaction network. When the reaction networks are composed exclusively of zeroth and first-order reactions, this analytical approach significantly alleviates the computational burden required by simulation-based methods. By building upon these analytical solutions, we analyse a general monomolecular reaction network with an arbitrary number of species to obtain the exact marginal probability distribution for selected species. Additionally, we study two particular topologies of monomolecular reaction networks, namely (i) an unbranched chain of monomolecular reactions with and without synthesis and degradation reactions and (ii) a circular chain of monomolecular reactions. We illustrate our methodology and alternative ways to use it for non-linear systems by analysing a protein autoactivation mechanism. Later, we compare the computational load required for the implementation of our results and a pure computational approach to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors.

  3. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-12-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

  4. Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Gao, Qingqing; Fu, Yuwei; Yang, Aijun; Rong, Mingzhe; Wu, Yi; Niu, Chunping; Murphy, Anthony B.

    2016-03-01

    This paper is devoted to the computation of the non-equilibrium composition of an SF6 plasma, and determination of the dominant particles and reactions, at conditions relevant to high-voltage circuit breakers after current zero (temperatures from 12 000 K to 1000 K and a pressure of 4 atm). The non-equilibrium composition is characterized by departures from both thermal and chemical equilibrium. In thermal non-equilibrium process, the electron temperature (T e) is not equal to the heavy-particle temperature (T h), while for chemical non-equilibrium, a chemical kinetic model is adopted. In order to evaluate the reasonableness and reliability of the non-equilibrium composition, calculation methods for equilibrium composition based on Gibbs free energy minimization and kinetic composition in a one-temperature kinetic model are first considered. Based on the one-temperature kinetic model, a two-temperature kinetic model with the ratio T e/T h varying as a function of the logarithm of electron density ratio (n e/n\\text{e}\\max ) was established. In this model, T* is introduced to allow a smooth transition between T h and T e and to determine the temperatures for the rate constants. The initial composition in the kinetic models is obtained from the asymptotic composition as infinite time is approached at 12 000 K. The molar fractions of neutral particles and ions in the two-temperature kinetic model are consistent with the equilibrium composition and the composition obtained from the one-temperature kinetic model above 10 000 K, while significant differences appear below 10 000 K. Based on the dependence of the particle distributions on temperature in the two-temperature kinetic model, three temperature ranges, and the dominant particles and reactions in the respective ranges, are determined. The full model is then simplified into three models and the accuracy of the simplified models is assessed. The simplified models reduce the number of species and

  5. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to

  6. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  7. Fractional electron number, temperature, and perturbations in chemical reactions.

    PubMed

    Miranda-Quintana, Ramón Alain; Ayers, Paul W

    2016-06-01

    We provide a perspective on the role of non-integer electron number in the density functional theory approach to chemical reactivity (conceptual DFT), emphasizing that it is important to not only treat reagents as open systems, but also as non-isolated systems, in contact with their surroundings. The special case of well-separated reagents is treated in some detail, as is the case where reagents interact strongly. The resulting expressions for the chemical potential of an acid, μacid = -(αI + A)/(1 + α), and a base, μbase = -(I + αA)/(1 + α), elucidate and generalize the assumptions inherent in the chemical potential models of Mulliken (α = 1) and Gazquez, Cedillo, and Vela (α = 3). In the strongly-interacting limit, it is appropriate to model the effects of the environment as a state-specific effective temperature, thereby providing a rigorous justification for the phenomenological effective-temperature model one of the authors previously proposed. The framework for the strongly interacting limit subsumes our model for weakly-interacting subsystems at nonzero temperature, the case of open but otherwise noninteracting subsystems, and the zero-temperature limit.

  8. Photothermal-reaction-assisted two-photon lithography of silver nanocrystals capped with thermally cleavable ligands

    SciTech Connect

    Kim, Won Jin; Vidal, Xavier; Baev, Alexander; Jee, Hong Sub; Swihart, Mark T.; Prasad, Paras N.

    2011-03-28

    We report an alternative approach to produce micropatterns of metallic nanoparticles using photothermal-reaction-assisted two-photon direct laser writing. The patterns are achieved using a facile surface treatment of silver nanoparticles (Ag NPs) functionalized with thermally cleavable ligands; N-(tert-butoxycarbonyl)-L-cysteine methyl ester. The ligand cleavage initiated by pulsed laser-induced thermal reaction results in a significant change in dispersiblility of the nanocrystals, thereby enabling a solvent-selective development process after photopatterning. We demonstrated that Ag NP patterns with submicron linewidths can be achieved using near infrared pulsed laser illumination.

  9. Non-stationary filtration mode during chemical reactions with the gas phase

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  10. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.

    PubMed

    Rueda-Ordóñez, Yesid Javier; Tannous, Katia

    2016-07-01

    The aim of this work was to analyze the thermal decomposition, kinetics and heat of reaction of sugarcane straw in synthetic air by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG and DSC experiments were carried out using heating rates of 2.5°C/min, 5°C/min, and 10°C/min, and particle diameter of 0.250mm. In the study of the smoldering reaction were identified three consecutive stages, drying, oxidative pyrolysis, and combustion. Thus, the kinetic pathway was composed by six independent parallel reactions, three for each stage after drying, in which the activation energies were 176, 313, 150, 80, 150, and 100kJ/mol. The heat of reaction in synthetic air was completely exothermic releasing 8MJ/kg. The modeled curves of thermal decomposition of sugarcane straw presented good agreement with experimental data. Then, the kinetic parameters obtained could be used to analyze different processes involving smoldering.

  11. Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars.

    PubMed

    Borzenkov, Mykola; Chirico, Giuseppe; D'Alfonso, Laura; Sironi, Laura; Collini, Maddalena; Cabrini, Elisa; Dacarro, Giacomo; Milanese, Chiara; Pallavicini, Piersandro; Taglietti, Angelo; Bernhard, Claire; Denat, Franck

    2015-07-28

    The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 °C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of α-mercapto-ω-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs.

  12. Thermal and chemical evolution of The Geysers geothermal system, California

    SciTech Connect

    Moore, J.N.

    1992-01-01

    Fluid inclusions and mineral assemblages provide a reward of the thermal and chemical changes that occurred during the evolution of The Geysers geothermal system. The data document the presence of an extensive liquid dominated geothermal system that developed in response to felsite intrusion and its evolution to a vapor-dominated regime. Temperatures within the early liquid-dominated system ranged from 175 C at a distance of 7200 feet from the felsite to more than 350 C near the contact while salinities varied from 5 equivalent weight percent NaCl (at a distance of 5500 feet) to more than 26 weight percent NaCl. As temperatures around the felsite declined, the liquid-dominated system collapsed upon itself. Downward migration of the low salinity waters resulted in dilution of the fluids present in regions now occupied by the caprock and normal vapor-dominated reservoir. In contrast, dilution was minor in rocks now hosting the high-temperature vapor-dominated reservoir. This suggests that low permeabilities are the primary reason for the development of the high-temperature reservoir. Boiling within the caprock produced late-stage veins of calcite and quartz. As the fluid boiled off, condensate was trapped as low salinity fluid inclusions. Within the main body of the reservoir, a liquid phase with salinities of up to 7 equivalent weight percent NaCl persisted to temperatures between 250 and 270 C. However, except for the presence of vapor-rich inclusions, little evidence of boiling within the reservoir rocks was preserved.

  13. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  14. Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes

    SciTech Connect

    Li, Yong; Zhang, Kai; Zheng, Bailin Zhang, Xiaoqian; Wang, Qi

    2015-06-28

    Composition-gradient electrode materials have been proven to be one of the most promising materials in lithium-ion battery. To study the mechanism of mechanical degradation in spherical composition-gradient electrodes, the finite deformation theory and reversible chemical theory are adopted. In homogeneous electrodes, reversible electrochemical reaction may increase the magnitudes of stresses. However, reversible electrochemical reaction has different influences on stresses in composition-gradient electrodes, resulting from three main inhomogeneous factors—forward reaction rate, backward reaction rate, and reaction partial molar volume. The decreasing transition form of forward reaction rate, increasing transition form of backward reaction rate, and increasing transition form of reaction partial molar volume can reduce the magnitudes of stresses. As a result, capacity fading and mechanical degradation are reduced by taking advantage of the effects of inhomogeneous factors.

  15. The modeling of chemical reactions and thermochemical nonequilibrium in particle simulation computations

    NASA Astrophysics Data System (ADS)

    Gallis, Michael A.; Harvey, John K.

    1998-06-01

    The treatment of chemical reactions and nonequilibrium energy exchange in Direct Simulation Monte Carlo calculations is examined. Details of a Maximum Entropy chemical reaction model are presented that is based on the classical scheme devised by Levine and Bernstein. Data are given for all of the significant reactions that occur in hypersonic reentry flight into the atmospheres of the Earth, Mars, and Venus. The method is an extension of that described and used previously by the authors (Gallis and Harvey [J. Fluid Mech. 312, 149 (1996); AIAA J. 34(7), 1378 (1996)]) and now includes carbon dioxide/nitrogen and ionic reactions. The model allows an appropriate dependence of each reaction on its controlling energy mode and avoids inappropriate use of equilibrium distributions to determine the reaction probabilities and post-collision energy reallocation. Sample flow solutions are given and comparisons are made with results obtained using continuum solvers.

  16. METHODOLOGICAL NOTES: Brusselator — an abstract chemical reaction?

    NASA Astrophysics Data System (ADS)

    Lavrova, Anastasiya I.; Postnikov, E. B.; Romanovsky, Yurii M.

    2009-12-01

    In this paper we consider the Brusselator and the Sel'kov model, which describes the irreversible reaction of glycolysis in the regime of self-sustained oscillations. We show that these two differently constructed models can be reduced to a single equation — a generalized Rayleigh equation. The physical basis for this generality is investigated. The advantages of this equation as a tool for qualitative and quantitative analyses, as well as the similarities and differences of the solutions realized for each of the two concrete models in the cases of almost harmonic and relaxation self-sustained oscillations, are discussed.

  17. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  18. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  19. Ca + HF - The anatomy of a chemical insertion reaction

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Pattengill, M. D.; Mascarello, F. G.; Zare, R. N.

    1987-01-01

    A comprehensive first-principles theoretical investigation of the gas phase reaction Ca + HF - CaF + H is reported. Ab initio potential energy calculations are first discussed, along with characteristics of the computed potential energy surface. Next, the fitting of the computed potential energy points to a suitable analytical functional form is described, and maps of the fitted potential surface are displayed. The methodology and results of a classical trajectory calculation utilizing the fitted potential surface are presented. Finally, the significance of the trajectory study results is discussed, and generalizations concerning dynamical aspects of Ca + HF scattering are drawn.

  20. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  1. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    PubMed

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model. PMID:26454587

  2. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    PubMed

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model.

  3. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.

  4. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information. PMID:25541888

  5. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2009-09-30

    The objective of this research was to develop and apply methods for more accurate predictions of reaction rates based on high-level quantum chemistry. We have developed and applied efficient, robust methods for fitting global ab initio potential energy surfaces (PESs) for both spectroscopy and dynamics calculations and for performing direct dynamics simulations. Our approach addresses the problem that high-level quantum calculations are often too costly in computer time for practical applications resulting in the use of levels of theory that are often inadequate for reactions. A critical objective was to develop practical methods that require the minimum number of electronic structure calculations for acceptable fidelity to the ab initio PES. Our method does this by a procedure that determines the optimal configurations at which ab initio points are computed, and that ensures that the final fitted PES is uniformly accurate to a prescribed tolerance. Our fitting methods can be done automatically, with little or no human intervention, and with no prior knowledge of the topology of the PES. The methods are based on local fitting schemes using interpolating moving least-squares (IMLS). IMLS has advantages over the very effective modified-Shepard methods developed by Collins and others in that higher-order polynomials can be used and does not require derivatives but can benefit from them if available.

  6. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.

    PubMed

    Horváth, Viktor; Epstein, Irving R; Kustin, Kenneth

    2016-03-31

    Existing models of the ferrocyanide-iodate-sulfite (FIS) reaction seek to replicate the oscillatory pH behavior that occurs in open systems. These models exhibit significant differences in the amplitudes and waveforms of the concentration oscillations of such intermediates as I(-), I3(-), and Fe(CN)6(3-) under identical conditions and do not include several experimentally found intermediates. Here we report measurements of sulfite concentrations during an oscillatory cycle. Knowing the correct concentration of sulfite over the course of a period is important because sulfite is the main component that determines the buffer capacity, the pH extrema, and the amount of oxidizer (iodate) required for the transition to low pH. On the basis of this new result and recent experimental findings on the rate laws and intermediates of component processes taken from the literature, we propose a mass action kinetics model that attempts to faithfully represent the chemistry of the FIS reaction. This new comprehensive mechanism reproduces the pH oscillations and the periodic behavior in [Fe(CN)6(3-)], [I3(-)], [I(-)], and [SO3(2-)]T with characteristics similar to those seen in experiments in both CSTR and semibatch arrangements. The parameter ranges at which stationary and oscillatory behavior is exhibited also show good agreement with those of the experiments.

  7. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    PubMed

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-01

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  8. Resonant Chemical Oscillations: Pattern Formation in Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Lin, Anna L.

    2003-03-01

    Using the Belousov-Zhabotinsky (BZ) chemical system we explore the resonant response of spatially-extended oscillatory and excitable media to periodic perturbation. Resonance in excitable media is particularly relevant to biological systems, where excitable dynamics (threshold response to stimulus and refractoriness) are common. Methods to quantify spatio-temporal patterns will be discussed and the resonant patterns in excitable and oscillatory media will be compared. Experimental observations are compared to the results from numerical simulations of the Brusselator and FitzHugh-Nagumo models and from a forced complex Ginzburg-Landau amplitude equation.

  9. Thermal reaction of the ionic liquid 1,2-dimethyl-(3-aminoethyl) imidazolium tetrafluoroborate: a kinetic and theoretical study.

    PubMed

    Zhou, Xinming; Cao, Bobo; Liu, Shuangyue; Sun, Xuejun; Zhu, Xiao; Fu, Hu

    2016-06-01

    Since the thermal stabilities of ionic liquids (ILs) are of significance for their application, an amine-functionalized IL 1,2-dimethyl-(3-aminoethyl) imidazolium tetrafluoroborate [aEMMIM][BF4] was chosen to study thermal decomposition mechanisms via the methods of FT-IR, (1)H NMR, TGA, TGA-MS and density functional theory (DFT) calculations. Theoretical and experimental results indicated that amine-functionalization reduces the thermal stability of [aEMMIM][BF4] compared to its non-functionalized counterpart. Moreover, we found that [aEMMIM][BF4] follows a unimolecular nucleophilic substitution (SN1) decomposition (98.8 %), whereas the bimolecular nucleophilic substitution (SN2) decomposition (1.2 %) is unfavorable. The SN1 and SN2 reactions were fully optimized at B3LYP/6-311++G(d,p) level, and the energies of reactant (R), intermediates (IM), transition state (TS) and product (P) were obtained and analyzed by reaction mechanism. The energy of the intermediate is higher than that of the reactants by 18.92 kJ mol(-1), and the energy of the TS is higher than that of the IM by 155.23 kJ mol(-1). This result indicates that the IM are also more stable than the P2 product, thus the reaction is endothermic. The chemical nature of the covalent and hydrogen bonds was analyzed by vibrational modes analysis (VMA), nature bond orbital (NBO) and the theory of atoms in molecules (AIM). Graphical Abstract Proposed thermal decomposition of [aEMMIM][BF4] via unimolecular ( SN1) and bimolecular( SN2) nucleophilic substitution mechanisms. The electrostatic potential surface (ESP) of the transition state illustrates that hydrogen bonds are generated when [BF4](-) is close to [aEMMIM](+), and SN1 decomposition is much favorable than SN2 decomposition. PMID:27188725

  10. Atmospheric chemical and thermal structure evolution after one Titan year

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Bampasidis, Georgios; Achterberg, Richard; Lavvas, Panayiotis; Vinatier, Sandrine; Nixon, Conor; Jennings, Donald; Teanby, Nicolas; Flasar, F. Michael; Carlson, Ronald; Orton, Glenn; Romani, Paul; Guandique, Ever

    2013-04-01

    Our radiative transfer code (ARTT) was applied to Cassini Composite Infrared Spectrometer (CIRS) data taken during Titan flybys from 2004-2010 and to the 1980 Voyager 1 flyby values inferred from the re-analysis of the Infrared Radiometer Spectrometer (IRIS) spectra [1], as well as to the intervening ground- and space- based observations (such as with ISO, [2]), providing us with a new view of the stratospheric evolution over a Titanian year (V1 encounter Ls=9° was reached in mid-2010). CIRS nadir and limb spectral [3,4] show variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varied significantly with latitude during the 6 terrestrial years investigated here, with increased mixing ratios towards the northern latitudes. In particular, we find a maximum enhancement of several gases observed at northern latitudes up to 50°N around mid-2009, at the time of the NSE. We find that this raise is followed by a rapid decrease in chemical inventory in 2010 probably due to changes in the cross vortex mixing or northward migration of the vortex boundary [5,6,7] consistent with the weakening thermal gradient. The finding also ties into the location of the maximum temperature gradient, which appears to be moving northward over the winter/spring season. The return of today's abundances close to the Voyager values (at the same season) is an indication that, as for the Earth, the solar radiation dominates over the other energy sources even at 10AU [8]. Nevertheless, the differences observed for some complex hydrocarbons in the North pole indicate that the other processes could be at play as well

  11. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the Conceptual Landscape

    ERIC Educational Resources Information Center

    Yan, Fan; Talanquer, Vicente

    2015-01-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative…

  12. Thermal reaction norms can surmount evolutionary constraints: comparative evidence across leaf beetle species.

    PubMed

    Kutcherov, Dmitry

    2016-07-01

    One of the leitmotifs of the ecophysiological research on ectotherms is the variation and evolution of thermal reaction norms for biological rates. This long-standing issue is crucial both for our understanding of life-history diversification and for predicting the phenology of economically important species. A number of properties of the organism's thermal phenotype have been identified as potential constraints on the evolution of the rate-temperature relationship. This comparative study addresses several such constraints by testing whether the actual interspecific variation of thermal reaction norms across nearly hundred leaf beetle species agrees with the expected patterns. The results show that developmental rate and its temperature-dependent parameters are similar in closely related species and that the variation pattern depends on the taxonomic scale, the thermal reaction norms being mostly parallel for the representatives of distant subclades but intersecting more often farther down the phylogenetic tree. The parallel shift disagrees with the putative ubiquity of a positive slope-threshold relationship, whereby thermal reaction norms should normally intersect, and even more contradicts with the common-intersection hypothesis. The ability to develop in cooler conditions is not traded off at higher temperatures, which is an exception to the "warmer is better" principle. A comparison of high- and low-quality data indicates that some of these discrepancies with earlier findings may stem from a likely presence of noise in previous analyses, which may have affected the variation patterns observed. Overall, the failure to support the universality of the predicted patterns suggests that the evolution of thermal reaction norms in leaf beetles has largely overcome the hypothesized constraints.

  13. Thermal reaction norms can surmount evolutionary constraints: comparative evidence across leaf beetle species.

    PubMed

    Kutcherov, Dmitry

    2016-07-01

    One of the leitmotifs of the ecophysiological research on ectotherms is the variation and evolution of thermal reaction norms for biological rates. This long-standing issue is crucial both for our understanding of life-history diversification and for predicting the phenology of economically important species. A number of properties of the organism's thermal phenotype have been identified as potential constraints on the evolution of the rate-temperature relationship. This comparative study addresses several such constraints by testing whether the actual interspecific variation of thermal reaction norms across nearly hundred leaf beetle species agrees with the expected patterns. The results show that developmental rate and its temperature-dependent parameters are similar in closely related species and that the variation pattern depends on the taxonomic scale, the thermal reaction norms being mostly parallel for the representatives of distant subclades but intersecting more often farther down the phylogenetic tree. The parallel shift disagrees with the putative ubiquity of a positive slope-threshold relationship, whereby thermal reaction norms should normally intersect, and even more contradicts with the common-intersection hypothesis. The ability to develop in cooler conditions is not traded off at higher temperatures, which is an exception to the "warmer is better" principle. A comparison of high- and low-quality data indicates that some of these discrepancies with earlier findings may stem from a likely presence of noise in previous analyses, which may have affected the variation patterns observed. Overall, the failure to support the universality of the predicted patterns suggests that the evolution of thermal reaction norms in leaf beetles has largely overcome the hypothesized constraints. PMID:27547304

  14. Simulation of chemical reactions in solution by a combination of classical and quantum mechanical approach

    NASA Astrophysics Data System (ADS)

    Onida, Giovanni; Andreoni, Wanda

    1995-09-01

    A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.

  15. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  16. From chemical reactions to evolution: Emergence of species

    NASA Astrophysics Data System (ADS)

    Carletti, T.; Fanelli, D.

    2007-01-01

    The Chemoton model constitutes a minimalistic description of a protocell unit. The original formulation assumes three coupled chemical networks, representing a proto-metabolism, a template duplication and the membrane growth. An improved version is here proposed that explicitly incorporates the effects of the volume changes, due to the membrane growth. A stochastic mechanism is also introduced that mimics a stochastic source of error in the template duplication process. Numerical simulations are performed to monitor the time evolution of a family of protocells, under the chemoton hypothesis. An open-ended Darwinian evolution under the pressure of the environment is reproduced thus allowing to conclude that differentiation into species is an emergent property of the model.

  17. New physical-chemical reactions useful for TES

    NASA Astrophysics Data System (ADS)

    Johnson, J. S., Jr.; Westmoreland, C. G.

    New options in materials for heat storage is the aim of the program. Chemical systems, including those having equilibria with high temperature coefficients, are tested by differential scanning calorimetry for evidence of enhanced heat capacity. The approach is high-risk and exploratory; and in the search for new classes of storage systems, relatively little weight is given the costs of members of the classes that are at present apparent. Several possibilities have been tested in a preliminary way. These include concentrated aqueous solutions of a hydrolyzable metal ion; aqueous solutions of polyethylene oxide-polypropylene oxide polymers, which when cross-lindked take up or eject water in temperature cycles; and soluble partially fluorinated organic compounds, in hope that hydrates might be formed and be melted in temperature ranges of interest (analogous to clathrates). Certain petroleum ester waxes have also been tested. No promising embodiments have been found so far, but the survey is too incomplete as yet to rule any out.

  18. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins.

    PubMed

    Das, A K; Meuwly, M

    2016-01-01

    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed.

  19. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins.

    PubMed

    Das, A K; Meuwly, M

    2016-01-01

    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed. PMID:27498633

  20. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    PubMed

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.