Sample records for chemical sensor array

  1. Improved chemical identification from sensor arrays using intelligent algorithms

    NASA Astrophysics Data System (ADS)

    Roppel, Thaddeus A.; Wilson, Denise M.

    2001-02-01

    Intelligent signal processing algorithms are shown to improve identification rates significantly in chemical sensor arrays. This paper focuses on the use of independently derived sensor status information to modify the processing of sensor array data by using a fast, easily-implemented "best-match" approach to filling in missing sensor data. Most fault conditions of interest (e.g., stuck high, stuck low, sudden jumps, excess noise, etc.) can be detected relatively simply by adjunct data processing, or by on-board circuitry. The objective then is to devise, implement, and test methods for using this information to improve the identification rates in the presence of faulted sensors. In one typical example studied, utilizing separately derived, a-priori knowledge about the health of the sensors in the array improved the chemical identification rate by an artificial neural network from below 10 percent correct to over 99 percent correct. While this study focuses experimentally on chemical sensor arrays, the results are readily extensible to other types of sensor platforms.

  2. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    PubMed Central

    Lorwongtragool, Panida; Sowade, Enrico; Watthanawisuth, Natthapol; Baumann, Reinhard R.; Kerdcharoen, Teerakiat

    2014-01-01

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities. PMID:25340447

  3. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  4. Polymer-based sensor array for phytochemical detection

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.

    2012-05-01

    Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.

  5. Blood monitoring systems and methods thereof

    NASA Technical Reports Server (NTRS)

    Zander, Dennis (Inventor); Mir, Jose (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  6. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    1996-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  7. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    PubMed

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  8. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    PubMed Central

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%. PMID:20221484

  9. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.

    PubMed

    Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P

    2015-12-15

    A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates.

  10. Application of the Solubility Parameter Concept to the Design of Chemiresistor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, M.P.; Hughes, R.C.; Jenkins, M.W.

    1999-01-11

    Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low-power-consumption sensors with simple read-out electronics. We report here results on carbon-loaded polymer composites, as well as polymeric ionic conductors, as chemiresistor sensors. We use the volubility parameter concept to understand and categorize the chemiresistor responses and, in particular, we compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB-coated acoustic wave sensors. One goal is to examine the possibility that a small number of diverse chemiresistors can sense all possible solvents-the "Universal Solvent Sensor Array". keywords: chemiresistor, volubility parameter, chemical sensor

  11. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for temperature control and signal conditioning, and packaging designed for high temperatures is necessary for the array to survive the engine environment.

  12. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.

    PubMed

    Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R

    2017-11-22

    A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.

  13. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. Microsensor research

    NASA Astrophysics Data System (ADS)

    Hughes, R. C.; Drebing, C. G.

    1990-04-01

    The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.

  15. Electrophoretic and field-effect graphene for all-electrical DNA array technology.

    PubMed

    Xu, Guangyu; Abbott, Jeffrey; Qin, Ling; Yeung, Kitty Y M; Song, Yi; Yoon, Hosang; Kong, Jing; Ham, Donhee

    2014-09-05

    Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.

  16. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  17. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    PubMed

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  18. Fabrication and characterization of nano-gas sensor arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com; Morsi, I., E-mail: drimanmorsi@yahoo.com

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al undermore » different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.« less

  19. Integrated chemiresistor array for small sensor platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES,ROBERT C.; CASALNUOVO,STEPHEN A.; WESSENDORF,KURT O.

    2000-04-13

    Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabricationmore » and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.« less

  20. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1998-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  1. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Severin, Erik (Inventor); Lewis, Nathan S. (Inventor)

    2001-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  2. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1999-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  3. Extraction of spatiotemporal response information from sorption-based cross-reactive sensor arrays for the identification and quantification of analyte mixtures

    NASA Astrophysics Data System (ADS)

    Woodka, Marc D.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2008-03-01

    Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream to various degrees. Similar to gas chromatography, species having high vapor pressures were separated from species having low vapor pressures. Instead of producing typical sensor responses representative of thermodynamic equilibrium between each sensor and an unchanging vapor phase, sensor responses varied depending on the position of the sensor in the chamber and the time from the beginning of the analyte exposure. This spatiotemporal (ST) array response provided information that was a function of time as well as of the position of the sensor in the chamber. The responses to pure analytes and to multi-component analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each of the sensor arrays. Use of a non-negative least squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of 2-, 3-, 4- and 5-component mixtures from arrays using only 4 chemically different sorbent films and sensor training on pure vapors only. In contrast, when traditional time- and position-independent sensor response information was used, significant errors in mixture identification were observed. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.

  4. Selection of a battery of rapid toxicity sensors for drinking water evaluation.

    PubMed

    van der Schalie, William H; James, Ryan R; Gargan, Thomas P

    2006-07-15

    Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sensors that could rapidly identify toxicity in water samples containing one of 12 industrial chemicals. The ideal sensor would respond at a concentration just exceeding the Military Exposure Guideline (MEG) level for the chemical (an estimated threshold for adverse effects) but below the human lethal concentration. Chemical solutions were provided to testing laboratories as blind samples. No sensors responded to deionized water blanks, and only one sensor responded to a hard water blank. No single toxicity sensor responded to more than six chemicals in the desired response range, and one chemical (nicotine) was not detected by any sensor with the desired sensitivity. A combination of three sensors (Microtox, the Electric Cell Substrate Impedance Sensing (ECIS) test, and the Hepatocyte low density lipoprotein (LDL) uptake test) responded appropriately to nine of twelve chemicals. Adding a fourth sensor (neuronal microelectrode array) to the test battery allowed detection of two additional chemicals (aldicarb and methamidophos), but the neuronal microelectrode array was overly sensitive to paraquat. Evaluating sensor performance using a standard set of chemicals and a desired sensitivity range provides a basis both for selecting among available toxicity sensors and for evaluating emerging sensor technologies. Recommendations for future toxicity sensor evaluations are discussed.

  5. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.

  6. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  7. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  8. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.

  9. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  10. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    PubMed

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  11. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    PubMed Central

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  12. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics.

    PubMed

    Le, Ngoc D B; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis.

  13. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  14. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  15. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  16. Solubility Interactions and the Design of Chemically Selective Sorbent Coatings for Chemical Sensors and Arrays

    DTIC Science & Technology

    1990-07-27

    sorptionpiezoelectric sorption 63 detector, surface acoustic wave, pattern recognition, array, 16. PRICE CODE molecular recognition , 17. SECURITY...1 PIEZOELECTRIC SORPTION DETECTORS ........................................................... 6 SOLUBILITY... SORPTION AND LINEAR SOLVATION ENERGY RELATIONSHIPS (LSER) ................................................................................... 9

  17. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    NASA Astrophysics Data System (ADS)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a chemiresistor device and used as a chemical sensor, where its resistance is temporarily modified while exposed to chemical compounds. The inherent, broad selective nature of graphene is demonstrated by testing a sensor against a diverse set of volatile organic compounds and also against a set of chemically similar compounds. The sensor exhibits excellent selectivity and is capable of achieving high classification accuracies. The kinetics of the sensor's response are further investigated revealing a relationship between the transient behavior of the response curve and physiochemical properties of the compounds, such as the molar mass and vapor pressure. This kinetic information is also shown to provide important information for further pattern recognition and classification, which is demonstrated by increased classification accuracy of very similar compounds. Covalent modification of the graphene surface is demonstrated by means of plasma treatment and free radical exchange, and sensing performance compared to an unmodified graphene sensor. Finally, the first example of a graphene-based, cross-reactive chemical sensor array is demonstrated by applying various polymers as coatings over an array of graphene sensors. The sensor array is tested against a variety of compounds, including the complex odor of Scotch whiskies, where it is capable of perfect classification of 10 Scotch whiskey variations.

  18. Frontiers in Chemical Sensors: Novel Principles and Techniques

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Moreno-Bondi, Maria Cruz

    This third volume of Springer Series on Chemical Sensors and Biosensors aims to enable the researcher or technologist to become acquainted with the latest principles and techniques that keep on enlarging the applications in this fascinating field. It deals with the novel luminescence lifetime-based techniques for interrogation of sensor arrays in high-throughput screening, cataluminescence, chemical sensing with hollow waveguides, new ways in sensor design and fabrication by means of either combinatorial methods or engineered indicator/support couples.

  19. The Nose Knows: Developing Advanced Chemical Sensors for the Remote Detection of Improvised Explosive Devices in 2030

    DTIC Science & Technology

    2009-04-01

    noses”, High Frequency Quartz Crystal Microbalance (HF- QCM ), and fluorescent polymer based sensors . The combination of the chemical binding of molecules...nose and uses HF- QCM technology. The hand-held product consists of a sampling unit and analyzer and contains an array of sensors and coatings which...i AU/ACSC/2763/2008-09 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY THE NOSE KNOWS: DEVELOPING ADVANCED CHEMICAL SENSORS FOR THE REMOTE

  20. The use of colorimetric sensor arrays to discriminate between pathogenic bacteria.

    PubMed

    Lonsdale, Claire L; Taba, Brian; Queralto, Nuria; Lukaszewski, Roman A; Martino, Raymond A; Rhodes, Paul A; Lim, Sung H

    2013-01-01

    A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention's list of potential biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to identify pathogenic bacteria.

  1. The Use of Colorimetric Sensor Arrays to Discriminate between Pathogenic Bacteria

    PubMed Central

    Lonsdale, Claire L.; Taba, Brian; Queralto, Nuria; Lukaszewski, Roman A.; Martino, Raymond A.; Rhodes, Paul A.; Lim, Sung H.

    2013-01-01

    A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention’s list of potential biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to identify pathogenic bacteria. PMID:23671629

  2. Toward wearable sensors: optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM.

    PubMed

    Sheykhi, Sara; Mosca, Lorenzo; Anzenbacher, Pavel

    2017-05-04

    Increasing security needs require compact and portable detection tools for the rapid and reliable identification of explosives used in improvised explosive devices (IEDs). We report of an easy-to-use optical sensor for both vapour-phase and solution-phase identification of explosive mixtures that uses a cross-reactive fluorimetric sensor array comprising chemically responsive fluorimetric indicators composed of aromatic aldehydes and polyethyleneimine. Ammonium nitrate-nitromethane (ANNM) was analyzed by paper microzone arrays and nanofiber sensor mats. Progress toward wearable sensors based on electrospun nanofiber mats is outlined.

  3. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  4. Strongly hydrogen-bond acidic polymer and methods of making and using

    DOEpatents

    Grate, Jay W.; Kaganove, Steven N.

    2000-01-01

    The present invention is a sorbent polymer with the (AB)n sequence where the fluorinated interactive A segment is fluoroalkyl-substituted bisphenol and the oligosiloxane B segment is an oligodimethylsiloxane. More specifically, the fluoroalkyl-substituted bisphenol contains two allyl groups and the oligodimethylsiloxane has terminal Si--H groups. The sorbent polymer may be used as thin films on a variety of chemical sensors, or as a component of a thin film on a chemical sensor. Crosslinked sorbent polymers are processable into stable thin films on sensor devices. Sorbent polymers are also useful in sensor arrays, in surface acoustic wave sensors, and in cladding of optical fibers. Sensor arrays provide better selectivity than single sensors and permit identification and quantification of more than one species in a mixture. The sorbent polymer is synthesized by hydrosilylation polymerization which is achieved by catalyzed heating.

  5. JPL Electronic Nose: From Sniffing Brain Cancer to Trouble in Space

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.

    2011-01-01

    What Is An Electronic Nose? An array of non-specific chemical sensors, controlled and analyzed electronically, which mimics the action of the mammalian nose by recognizing patterns of response. An Enose: (1.) ENose measures background resistance in each sensor and establishes a baseline. (2.) Contaminant comes in contact with sensors on the sensing head. (3.) The sensing films, change physical properties, such as thickness or color, as air composition changes. (4.) Sensor response is recorded by a computer, the change in resistance is computed, and the distributed response pattern of the sensor array is used to identify gases and mixtures of gases. (5. Responses of the sensor array are analyzed and quantified using software developed for the task.

  6. Application of gas sensor arrays in assessment of wastewater purification effects.

    PubMed

    Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej

    2014-12-23

    A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  7. Detection of the Odor Signature of Ovarian Cancer using DNA-Decorated Carbon Nanotube Field Effect Transistor Arrays

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher; Kybert, Nicholas; Yodh, Jeremy; Johnson, A. T. Charlie

    Carbon nanotubes are low-dimensional materials that exhibit remarkable chemical and bio-sensing properties and have excellent compatibility with electronic systems. Here, we present a study that uses an electronic olfaction system based on a large array of DNA-carbon nanotube field effect transistors vapor sensors to analyze the VOCs of blood plasma samples collected from patients with malignant ovarian cancer, patients with benign ovarian lesions, and age-matched healthy subjects. Initial investigations involved coating each CNT sensor with single-stranded DNA of a particular base sequence. 10 distinct DNA oligomers were used to functionalize the carbon nanotube field effect transistors, providing a 10-dimensional sensor array output response. Upon performing a statistical analysis of the 10-dimensional sensor array responses, we showed that blood samples from patients with malignant cancer can be reliably differentiated from those of healthy control subjects with a p-value of 3 x 10-5. The results provide preliminary evidence that the blood of ovarian cancer patients contains a discernable volatile chemical signature that can be detected using DNA-CNT nanoelectronic vapor sensors, a first step towards a minimally invasive electronic diagnostic technology for ovarian cancer.

  8. An Optoelectronic Nose for Detection of Toxic Gases

    PubMed Central

    Lim, Sung H.; Feng, Liang; Kemling, Jonathan W.; Musto, Christopher J.; Suslick, Kenneth S.

    2009-01-01

    We have developed a simple colorimetric sensor array (CSA) for the detection of a wide range of volatile analytes and applied it to the detection of toxic gases. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Although no single chemically responsive pigment is specific for any one analyte, the pattern of color change for the array is a unique molecular fingerprint. Clear differentiation among 19 different toxic industrial chemicals (TICs) within two minutes of exposure at IDLH (immediately dangerous to life or health) concentration has been demonstrated. Quantification of each analyte is easily accomplished based on the color change of the array, and excellent detection limits have been demonstrated, generally below the PELs (permissible exposure limits). Identification of the TICs was readily achieved using a standard chemometric approach, i.e., hierarchical clustering analysis (HCA), with no misclassifications over 140 trials. PMID:20160982

  9. An optoelectronic nose for the detection of toxic gases.

    PubMed

    Lim, Sung H; Feng, Liang; Kemling, Jonathan W; Musto, Christopher J; Suslick, Kenneth S

    2009-10-01

    We have developed a simple colorimetric sensor array that detects a wide range of volatile analytes and then applied it to the detection of toxic gases. The sensor consists of a disposable array of cross-responsive nanoporous pigments with colours that are changed by diverse chemical interactions with analytes. Although no single chemically responsive pigment is specific for any one analyte, the pattern of colour change for the array is a unique molecular fingerprint. Clear differentiation among 19 different toxic industrial chemicals (TICs) within two minutes of exposure at concentrations immediately dangerous to life or health were demonstrated. Based on the colour change of the array, quantification of each analyte was accomplished easily, and excellent detection limits were achieved, generally below the permissible exposure limits. Different TICs were identified readily using a standard chemometric approach (hierarchical clustering analysis), with no misclassifications over 140 trials.

  10. Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays

    PubMed Central

    Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor

    2006-01-01

    A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.

  11. Method and system for gathering a library of response patterns for sensor arrays

    DOEpatents

    Zaromb, Solomon

    1992-01-01

    A method of gathering a library of response patterns for one or more sensor arrays used in the detection and identification of chemical components in a fluid includes the steps of feeding samples of fluid with time-spaced separation of known components to the sensor arrays arranged in parallel or series configurations. Modifying elements such as heating filaments of differing materials operated at differing temperatures are included in the configurations to duplicate operational modes designed into the portable detection systems with which the calibrated sensor arrays are to be used. The response patterns from the known components are collected into a library held in the memory of a microprocessor for comparison with the response patterns of unknown components.

  12. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    PubMed Central

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  13. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  14. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  15. High-performance optical projection controllable ZnO nanorod arrays for microweighing sensors.

    PubMed

    Wang, Hongbo; Jiang, Shulan; Zhang, Lei; Yu, Bingjun; Chen, Duoli; Yang, Weiqing; Qian, Linmao

    2018-03-08

    Optical microweighing sensors are an essential component of micro-force measurements in physical, chemical, and biological detection fields, although, their limited detection range (less than 15°) severely hinders their wide application. Such a limitation is mainly attributed to the essential restrictions of traditional light reflection and optical waveguide modes. Here, we report a high-performance optical microweighing sensor based on the synergistic effects of both a new optical projection mode and a ZnO nanorod array sensor. Ascribed to the unique configuration design of this sensing method, this optical microweighing sensor has a wide detection range (more than 80°) and a high sensitivity of 90 nA deg -1 , which is much larger than that of conventional microcantilever-based optical microweighing sensors. Furthermore, the location of the UV light source can be adjusted within a few millimeters, meaning that the microweighing sensor does not need repetitive optical calibration. More importantly, for low height and small incident angles of the UV light source, we can obtain highly sensitive microweighing properties on account of the highly sensitive ZnO nanorod array-based UV sensor. Therefore, this kind of large detection range, non-contact, and non-destructive microweighing sensor has potential applications in air quality monitoring and chemical and biological detection.

  16. Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.

    PubMed

    Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado

    2017-04-01

    Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.

  17. Nonlinear estimation for arrays of chemical sensors

    NASA Astrophysics Data System (ADS)

    Yosinski, Jason; Paffenroth, Randy

    2010-04-01

    Reliable detection of hazardous materials is a fundamental requirement of any national security program. Such materials can take a wide range of forms including metals, radioisotopes, volatile organic compounds, and biological contaminants. In particular, detection of hazardous materials in highly challenging conditions - such as in cluttered ambient environments, where complex collections of analytes are present, and with sensors lacking specificity for the analytes of interest - is an important part of a robust security infrastructure. Sophisticated single sensor systems provide good specificity for a limited set of analytes but often have cumbersome hardware and environmental requirements. On the other hand, simple, broadly responsive sensors are easily fabricated and efficiently deployed, but such sensors individually have neither the specificity nor the selectivity to address analyte differentiation in challenging environments. However, arrays of broadly responsive sensors can provide much of the sensitivity and selectivity of sophisticated sensors but without the substantial hardware overhead. Unfortunately, arrays of simple sensors are not without their challenges - the selectivity of such arrays can only be realized if the data is first distilled using highly advanced signal processing algorithms. In this paper we will demonstrate how the use of powerful estimation algorithms, based on those commonly used within the target tracking community, can be extended to the chemical detection arena. Herein our focus is on algorithms that not only provide accurate estimates of the mixture of analytes in a sample, but also provide robust measures of ambiguity, such as covariances.

  18. Parylene C-Based Flexible Electronics for pH Monitoring Applications

    PubMed Central

    Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M.; Toumazou, Christofer; Prodromakis, Themistoklis

    2014-01-01

    Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H+ sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26–0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues. PMID:24988379

  19. Parylene C-based flexible electronics for pH monitoring applications.

    PubMed

    Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M; Toumazou, Christofer; Prodromakis, Themistoklis

    2014-07-01

    Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.

  20. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    NASA Astrophysics Data System (ADS)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  1. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  2. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  3. Disposable microfluidic sensor arrays for discrimination of antioxidants.

    PubMed

    Park, Seong H; Maruniak, Autumn; Kim, Jisun; Yi, Gi-Ra; Lim, Sung H

    2016-06-01

    A microfluidic colorimetric sensor array was developed for detection and identification of various antioxidants. The sensor was fabricated by a photolithographic method, and consists of an array of printed cross-responsive indicators. The microfluidic design also incorporates pre-activation spots to allow printing of chemically incompatible components separately. Separately printed oxidizer allowed an oxidation of adjacent redox indicators only when aqueous sample was added to the sensor cartridge. Antioxidants were primarily detected by measuring the extent of inhibition of this oxidation reaction. Using this flow-based technique, a clear differentiation of 8 different antioxidants and 4 different teas has been demonstrated with 98.5% sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Recent developments in OLED-based chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth

    2007-09-01

    Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.

  5. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.

    PubMed

    Zhong, Xianhua; Li, Dan; Du, Wei; Yan, Mengqiu; Wang, You; Huo, Danqun; Hou, Changjun

    2018-06-01

    Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

  6. Combined imaging and chemical sensing using a single optical imaging fiber.

    PubMed

    Bronk, K S; Michael, K L; Pantano, P; Walt, D R

    1995-09-01

    Despite many innovations and developments in the field of fiber-optic chemical sensors, optical fibers have not been employed to both view a sample and concurrently detect an analyte of interest. While chemical sensors employing a single optical fiber or a noncoherent fiberoptic bundle have been applied to a wide variety of analytical determinations, they cannot be used for imaging. Similarly, coherent imaging fibers have been employed only for their originally intended purpose, image transmission. We herein report a new technique for viewing a sample and measuring surface chemical concentrations that employs a coherent imaging fiber. The method is based on the deposition of a thin, analyte-sensitive polymer layer on the distal surface of a 350-microns-diameter imaging fiber. We present results from a pH sensor array and an acetylcholine biosensor array, each of which contains approximately 6000 optical sensors. The acetylcholine biosensor has a detection limit of 35 microM and a fast (< 1 s) response time. In association with an epifluorescence microscope and a charge-coupled device, these modified imaging fibers can display visual information of a remote sample with 4-microns spatial resolution, allowing for alternating acquisition of both chemical analysis and visual histology.

  7. Utilization of biosensors and chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  8. Nanoelectrode array for electrochemical analysis

    DOEpatents

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  9. Preparation of high-aspect-ratio ZnO nanorod arrays for the detection of several organic solvents at room working temperature

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Mu; Zheng, Min-Ren

    2013-11-01

    Chemical sensors based on ZnO nanorod arrays were prepared using chemical bath deposition (CBD) to investigate the sensing performance for the detection of several organic solvents with low concentrations (0.1%, 0.5%, 1%, v/v) at room temperature. High quality and high aspect-ratio (value ˜28) ZnO nanorods have a diameter of about 74 nm and average length of 2.1 μm. Nyquist plots and Bode plots of the ZnO sensors under different organic solvents were obtained by electrical impedance spectroscopy (EIS). The sensing properties such as charge-transfer resistance, double-layer capacitance and dielectric parameters were determined from the impedance spectra to explore the charge transport in low-concentration aqueous solutions. The decreasing trend of the charge-transfer resistance (Rct) as decreasing solvent concentrations is observed, and a straight line at low frequency regime indicates adsorption of water molecules on the oxide surface. The sensitivity of the ZnO sensors was calculated from the resistance variation in target solvents and in deionized water. We demonstrated the use of ZnO nanorod arrays as a chemical sensor capable of generating a different response upon exposure to methanol, ethanol, isopropyl alcohol, acetone and water, wherein the methanol sensing exhibited highest sensitivity. In addition, the ZnO sensor also demonstrates good stability and reproducibility for detection of methanol and ethanol.

  10. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors.

    PubMed

    Lewis, Nathan S

    2004-09-01

    Arrays of broadly cross-reactive vapor sensors provide a man-made implementation of an olfactory system, in which an analyte elicits a response from many receptors and each receptor responds to a variety of analytes. Pattern recognition methods are then used to detect analytes based on the collective response of the sensor array. With the use of this architecture, arrays of chemically sensitive resistors made from composites of conductors and insulating organic polymers have been shown to robustly classify, identify, and quantify a diverse collection of organic vapors, even though no individual sensor responds selectively to a particular analyte. The properties and functioning of these arrays are inspired by advances in the understanding of biological olfaction, and in turn, evaluation of the performance of the man-made array provides suggestions regarding some of the fundamental odor detection principles of the mammalian olfactory system.

  11. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  12. High performance flexible pH sensor based on polyaniline nanopillar array electrode.

    PubMed

    Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-03-15

    Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Graphene Chemical Sensor for Heliophysics Applications

    NASA Technical Reports Server (NTRS)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  14. Chemical, biochemical, and environmental fiber sensors IV; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992

    NASA Astrophysics Data System (ADS)

    Lieberman, Robert A.

    Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.

  15. Distributed optical microsensors for hydrogen leak detection and related applications

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton

    2010-04-01

    Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.

  16. Cyrano "Nose" The Smell of Success

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cyrano Sciences, Inc. has commercialized a simple, accurate, non- invasive tool that enables "machines to smell". The Cyranose 320 is used for quality control purposes in the food and chemical industries. Using a sensor array and onboard pattern recognition algorithms, the lightweight, portable device works by exposing an array of polymer composite sensors to the chemical components in a vapor. When the sensors come in contact with the vapor, the polymer expands like a sponge, changing the resistance of the composites. The change in resistance is measured, and from that measurement, the presence of a pre-trained substance is determined with a quick and accurate diagnosis. This real-time, portable device enables food companies to spot test raw materials for batch-to-batch consistency, spoilage, or contamination. The Cyranose 320 is also used by chemical and petrochemical companies for quick assessment of the chemical status associated with various industrial processes. Profiling a chemical environment in a hazardous materials situation allows emergency crews to accurately select fire retardants, containment strategies, and protective gear. Future applications for the Cyranose 320 are fast growing and other uses of this technology are on the horizon.

  17. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    PubMed

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

  18. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    PubMed

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  19. Development of an IrO x micro pH sensor array on flexible polymer substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding; Wang, Jianqun; Ativanichayaphong, Thermpon; Chiao, Mu; Chiao, J. C.

    2008-03-01

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages in specific applications. It is difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to size limitation and no deformability. In this paper, we present design and fabrication processes of a miniature iridium oxide thin film pH sensor array on flexible polymer substrates. The amorphous iridium oxide thin film was used as the sensing material. A sol-gel dip-coating process of iridium oxide film was demonstrated in this paper. A super-Nernstian response has been measured on individual sensors of the array with a slope of -71.6+/-3 mV/pH at 25°C within the pH range between 2.83 and 11.04.

  20. Portable SERS sensor for malachite green and other small dye molecules

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.

  1. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    PubMed

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  2. Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection

    NASA Astrophysics Data System (ADS)

    Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.

    2015-05-01

    There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.

  3. Optical fiber-based sensors: application to chemical biology.

    PubMed

    Brogan, Kathryn L; Walt, David R

    2005-10-01

    Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.

  4. Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays.

    PubMed

    Wang, Lanfang; Zhu, Weiqi; Lu, Wenbo; Qin, Xiufang; Xu, Xiaohong

    2018-07-15

    A novel plasmon aided non-enzymatic glucose sensor was first constructed based on the unique half-rough Au/NiAu multilayered nanowire arrays. These multilayered and half-rough nanowires provide high chemical activity and large surface area for glucose oxidation in an alkaline solution. Under visible light irradiation, the surface plasmons originated from Au part enhance the electron transfer in the vertically aligned nanowires, leading to high sensitivity and wide detection range. The resulting sensor exhibits a wide glucose detection concentration range, low detection limit, and high sensitivity for plasmon aided non-enzymatic glucose sensor. Moreover, the detection sensitivity is enhanced by almost 2 folds compared to that in the dark, which significantly enhanced the performance of Au/NiAu multilayered nanowire arrays sensor. An excellent selectivity and acceptable stability were also achieved. These results indicate that surface plasmon aided nanostructures are promising new platforms for the construction of non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Performance of a compact, hybrid optical evanescent-wave sensor for chemical and biological applications

    NASA Astrophysics Data System (ADS)

    Helmers, H.; Greco, Pierre; Benech, Pierre; Rustad, Rolf; Kherrat, Rochdi; Bouvier, Gérard

    1996-02-01

    We describe a hybrid evanescent-wave sensor component that we fabricated by using an integrated optical interferometer with a specially adapted photodetector array. The design of the interferometer is based on the use of tapered waveguides to obtain two intersecting collimated beams. Phase shifts can be measured with an angular precision of better than 10-3 rad, which corresponds to a superstrate index change inferior of 10-6 with our structure. The interest in the device as a chemical sensor is experimentally demonstrated. The same optical component could be used in a variety of other sensor applications, e.g., biological and immunological sensors.

  6. Analyzing Responses of Chemical Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  7. Detection of contamination of municipal water distribution systems

    DOEpatents

    Cooper, John F [Oakland, CA

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  8. Array of Love-wave sensors to detect CWA low-levels

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Fontecha, J.; Fernández, M. J.; Gràcia, I.; Cané, C.; Horrillo, M. C.

    2011-11-01

    Different Love-wave sensors have been developed in order to detect low-levels of chemical warfare agents for security applications. The different types of sensors have been realized using quartz and LiTaO3, as piezoelectric substrates, and SiO2 and Novolac, as guiding layers. Excellent results have been achieved with the sensors fabricated, measuring up to 200 ppb of DMMP.

  9. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  10. IR-Sensography™—expanding the scope of contact-free sensing methods

    NASA Astrophysics Data System (ADS)

    Klein, Jens; Schunk, Stephan A.

    2005-01-01

    Capturing the response of one or more sensor materials is conventionally performed by the direct transformation of a chemical or physico-chemical signal into an electrical one. With an increasing number of sensor materials within an arrangement of sensor elements or a sensor array, problems such as contacting each single sensor, signal processing and resistance against cross-talk, harsh conditions such as corrosive atmospheres, etc are limiting factors for the further development of so-called 'chemical noses'. State-of-the-art and commercially available are arrays of eight different sensor materials, literature known in another context are sensor arrays with 256 materials on a silicon wafer, which are contacted via electrical conduits. We present here the concept of the IR-Sensography™, the use of an IR-camera as an external detector system for sensor libraries. Acting like an optical detection method, the IR-camera detects small temperature changes due to physisorption, chemisorption or other forms of interaction or reaction as an output signal in the form of radiation emitted by the multiplicity of sensor materials simultaneously. The temperature resolution of commercially available IR-camera systems can be tuned to the range below 0.1 K. Due to the separation of sensors and the detector device, reaction conditions at the sensor locus can be adapted to the analytical problem and do not need to take care of other boundary conditions which come into play with the analytical device, e.g. the IR-camera. Calibration or regeneration steps can as well be performed over the multiplicity of all sensor materials. Any given chemical compound that comes into contact with the sensor through the passing fluids will result in a specific activity pattern on a spatially fixed library of sensor materials that is unique for the given compound. While the pattern therefore serves as an identifier, the intensity of the pattern represents the quantitative amount of this compound in the mixture. For proof-of-concept experiments we used a 96-fold-sensing device. The sensor library consists of seven different material classes, all synthesized via classical impregnation techniques in different compositions on multihole monolithic ceramic supports (93 different materials based on different concentrations of binary/ternary mixtures of transition metals, three inert materials). We demonstrate with these results the wide range of capabilities for the IR-Sensography™. Both the qualitative and the quantitative determinations of molecules in the gas phase can be performed with this new methodology.

  11. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    PubMed

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  12. An independently addressable microbiosensor array: what are the limits of sensing element density?

    PubMed

    Yu, P; Wilson, G S

    2000-01-01

    A microdisc sensor array, prepared by thin film technology, has been used as a model for miniaturized multi-functional biosensors. It consists of a series of wells, 20 microns in diameter, possessing a 1000 A Pt layer at the bottom that serves as the indicating electrode. The depth of the wells ranged from 2.3-24 microns, depending on the photoresist employed and the spinning speed used to coat the electrode interconnect grid. Ten such wells were arranged in a circular array within an area of radius 130 microns. The center to center distance between any two of the discs ranged from 30 to 155 microns. Each disc is connected by a conductive film line to corresponding pads on the side of the sensor chip. A cylinder placed on top of the chip array formed the electrochemical cell into which a common reference and counter electrode were placed. The reference electrode was operated at ground potential. Prior to the evaluation of enzyme sensors, an assessment of "chemical cross-talk", the perturbation of sensor response resulting from the overlap of proximal diffusion layers, was made using Fe(CN)6(4-). The preliminary conclusion is that the sensing elements probably must be separated by about 100 microns in order to avoid interference from adjacent sensors. A technique was developed for the precision delivery of enzyme and cross-linking agent to the 2.3 microns cavity, having a capacity of 4 pL. This procedure makes possible the preparation of sensor arrays capable of detecting different analytes by employing different enzymes. The sensors gave reasonably rapid (2-4 s) response with linearity (up to about 10 mM. However, the sensors in the center of the array clearly showed the effects of depletion of substrates by the surrounding sensors.

  13. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Freund, Michael S. (Inventor); Lewis, Nathan S. (Inventor)

    2000-01-01

    A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.

  14. Chemiresistor urea sensor

    DOEpatents

    Glass, Robert S.

    1997-01-01

    A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

  15. Chemiresistor urea sensor

    DOEpatents

    Glass, R.S.

    1997-12-16

    A sensor is disclosed to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects. 16 figs.

  16. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  17. A MEMS Based Hybrid Preconcentrator/Chemiresistor Chemical Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES,ROBERT C.; PATEL,SANJAY V.; MANGINELL,RONALD P.

    2000-06-12

    A hybrid of a microfabricated planar preconcentrator and a four element chemiresistor array chip has been fabricated and the performance as a chemical sensor system has been demonstrated. The close proximity of the chemiresistor sensor to the preconcentrator absorbent layer allows for fast transfer of the preconcentrated molecules during the heating and resorption step. The hybrid can be used in a conventional flow sampling system for detection of low concentrations of analyte molecules or in a pumpless/valveless mode with a grooved lid to confine the desorption plume from the preconcentrator during heating.

  18. Application of the solubility parameter concept to the design of chemiresistor arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.C.; Yelton, W.G.; Ricco, A.J.

    1998-04-01

    Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low power consumption sensors with simple read out electronics. Most work has focused on the exotic polymeric organic metals, but here the authors report new results on carbon loaded polymer composites, as well as polymeric ionic conductors. They use the solubility parameter concept to understand and categorize the chemiresistor responses and, in particular, they compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB coated acoustic wave sensors.

  19. A novel hydrogel based piezoresistive pressure sensor platform for chemical sensing

    NASA Astrophysics Data System (ADS)

    Orthner, Michael P.

    New hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2x2) measure approximately 3 x 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 muV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M. Chemical testing showed sensors with perforated diaphragms have higher sensitivity than those with solid diaphragms, and sensitivities ranging from 53.3+/-6.5 to 271.47+/-27.53 mV/V-M, depending on diaphragm size. Additionally, recent experiments show sensors utilizing Ultra Violet (UV) polymerized glucose sensitive hydrogels respond reversibly to physiologically relevant glucose concentrations from 0 to 20 mM.

  20. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    PubMed

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  1. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  2. Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor

    PubMed Central

    Wang, Rui; Tsow, Francis; Zhang, Xuezhi; Peng, Jhih-Hong; Forzani, Erica S.; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo; Tao, Nongjian

    2009-01-01

    A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm2 and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. PMID:22346720

  3. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  4. Colorimetric Recognition of Aldehydes and Ketones.

    PubMed

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

    PubMed

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

  6. Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    PubMed Central

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. PMID:22319492

  7. Electronic Tongue Containing Redox and Conductivity Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  8. Design and test of a biosensor-based multisensorial system: a proof of concept study.

    PubMed

    Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano

    2013-12-04

    Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1-7 ppm) and as a liquid sensor array (concentration range 73-98 μM).

  9. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    NASA Astrophysics Data System (ADS)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  10. Proposal for a broadband THz refractive-index sensor based on quantum-cascade laser arrays.

    PubMed

    Zhao, Le; Khanal, Sudeep; Wu, Chongzhao; Kumar, Sushil

    2015-02-23

    Many molecules have strong and characteristic rotational and vibrational transitions at terahertz (THz) frequencies, which makes this frequency range unique for applications in spectroscopic sensing of chemical and biological species. Here, we propose a broadband THz sensor based on arrays of single-mode QCLs, which could be utilized for sensing of the refractive-index of solids or liquids in reflection geometry. The proposed scheme does not require expensive THz detectors and consists of no movable parts. A recently developed antenna-feedback geometry is utilized to enhance optical coupling between two single-mode QCLs, which facilitates optical downconversion of the THz frequency signal to microwave regime. Arrays of THz QCLs emitting at discrete frequencies could be utilized to provide more than 2 THz of spectral coverage to realize a broadband, low-cost, and portable THz sensor.

  11. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  12. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.

    PubMed

    Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong

    2011-11-01

    Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.

  13. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  14. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  15. 78 FR 44164 - Notice of Intent To Grant Partially Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... ``Chemical Sensors Using Coated Or Doped Carbon Nanotube Networks''; U.S. Patent No. 7,623,972 entitled... and Transmission of Gas Data; U.S. Patent No. 8,000,903 entitled ``Coated or Doped Carbon Nanotube Network Sensors as Affected by Environmental Parameters; ARC-16902-1, entitled ``Nanosensor Array for...

  16. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk.

    PubMed

    Mottram, Toby; Rudnitskaya, Alisa; Legin, Andrey; Fitzpatrick, Julie L; Eckersall, P David

    2007-05-15

    Automatic detection of clinical mastitis is an essential part of high performance and robotic milking. Currently available technology (conductivity monitoring) is unable to achieve acceptable specificity or sensitivity of detection of clinical mastitis or other clinical diseases. Arrays of sensors with high cross-sensitivity have been successfully applied for recognition and quantitative analysis of other multicomponent liquids. An experiment was conducted to determine whether a multisensor system ("electronic tongue") based on an array of chemical sensors and suitable data processing could be used to discriminate between milk secretions from infected and healthy glands. Measurements were made with a multisensor system of milk samples from two different farms in two experiments. A total of 67 samples of milk from both mastitic and healthy glands were in two sets. It was demonstrated that the multisensor system could distinguish between control and clinically mastitic milk samples (p=0.05). The sensitivity and specificity of the sensor system (93 and 96% correspondingly) showed an improvement over conductivity (56 and 82% correspondingly). The multisensor system offers a novel method of improving mastitis detection.

  17. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    PubMed

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  18. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil.

    PubMed

    Kounaves, Samuel P; Lukow, Stefan R; Comeau, Brian P; Hecht, Michael H; Grannan-Feldman, Sabrina M; Manatt, Ken; West, Steven J; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-07-25

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  19. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil

    NASA Technical Reports Server (NTRS)

    Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-01-01

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  20. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  1. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  2. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  3. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements.

    PubMed

    Mascini, Marcello; Pizzoni, Daniel; Perez, German; Chiarappa, Emilio; Di Natale, Corrado; Pittia, Paola; Compagnone, Dario

    2017-07-15

    A semi-combinatorial virtual approach was used to prepare peptide-based gas sensors with binding properties towards five different chemical classes (alcohols, aldehydes, esters, hydrocarbons and ketones). Molecular docking simulations were conducted for a complete tripeptide library (8000 elements) versus 58 volatile compounds belonging to those five chemical classes. By maximizing the differences between chemical classes, a subset of 120 tripeptides was extracted and used as scaffolds for generating a combinatorial library of 7912 tetrapeptides. This library was processed in an analogous way to the former. Five tetrapeptides (IHRI, KSDS, LGFD, TGKF and WHVS) were chosen depending on their virtual affinity and cross-reactivity for the experimental step. The five peptides were covalently bound to gold nanoparticles by adding a terminal cysteine to each tetrapeptide and deposited onto 20MHz quartz crystal microbalances to construct the gas sensors. The behavior of peptides after this chemical modification was simulated at the pH range used in the immobilization step. ΔF signals analyzed by principal component analysis matched the virtually screened data. The array was able to clearly discriminate the 13 volatile compounds tested based on their hydrophobicity and hydrophilicity molecules as well as the molecular weight. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers

    PubMed Central

    Pemberton, Roy M.; Cox, Timothy; Tuffin, Rachel; Drago, Guido A.; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C.; Davies, Rhodri; Jackson, Simon K.; Kenna, Gerry; Luxton, Richard; Hart, John P.

    2014-01-01

    This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies. PMID:25360580

  5. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  6. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    PubMed

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Integration of Biological Specificity with Solid-State Devices for Selective Chemical Sensing

    DTIC Science & Technology

    2016-01-29

    materials onto a single sensor chip. We demonstrate a path to combine a large number of DNA aptamers with nanoscale device arrays to achieve integrated...solid-state, sensor chips with specificity. 15. SUBJECT TERMS DNA sensors aptamers chemiresistors nanosensors LSER specificity vapor 16. SECURITY...and engineering. In particular, DNA and RNA aptamers are a class of man- made receptors with a high degree of specificity that rivals proteins. DNA

  8. Chemicapacitive microsensors for detection of explosives and TICs

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  9. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  10. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns.

    PubMed

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-07-31

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow-was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors.

  11. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  12. Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications

    PubMed Central

    Hunter, Gary W; Dweik, Raed A

    2010-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933

  13. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  14. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.

    PubMed

    McAlpine, Michael C; Ahmad, Habib; Wang, Dunwei; Heath, James R

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a 'nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  15. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a `nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  16. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    PubMed Central

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2013-01-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a ‘nano-electronic nose’ library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors. PMID:17450146

  17. A magnetostatic-coupling based remote query sensor for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.

    1999-01-01

    A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.

  18. Fish freshness detection by a computer screen photoassisted based gas sensor array.

    PubMed

    Alimelli, Adriano; Pennazza, Giorgio; Santonico, Marco; Paolesse, Roberto; Filippini, Daniel; D'Amico, Arnaldo; Lundström, Ingemar; Di Natale, Corrado

    2007-01-23

    In the last years a large number of different measurement methodologies were applied to measure the freshness of fishes. Among them the connection between freshness and headspace composition has been considered by gas chromatographic analysis and from the last two decades by a number of sensors and biosensors aimed at measuring some characteristic indicators (usually amines). More recently also the so-called artificial olfaction systems gathering together many non-specific sensors have shown a certain capability to transduce the global composition of the fish headspace capturing the differences between fresh and spoiled products. One of the main objectives related to the introduction of sensor systems with respect to the analytical methods is the claimed possibility to distribute the freshness control since sensors are expected to be "portable" and "simple". In spite of these objectives, until now sensor systems did not result in any tool that may be broadly distributed. In this paper, we present a chemical sensor array where the optical features of layers of chemicals, sensitive to volatile compounds typical of spoilage processes in fish, are interrogated by a very simple platform based on a computer screen and a web cam. An array of metalloporphyrins is here used to classify fillets of thawed fishes according to their storage days and to monitor the spoilage in filleted anchovies for a time of 8 h. Results indicate a complete identification of the storage days of thawed fillets and a determination of the storage time of anchovies held at room temperature with a root mean square error of validation of about 30 min. The optical system produces a sort of spectral fingerprint containing information about both the absorbance and the emission of the sensitive layer. The system here illustrated, based on computer peripherals, can be easily scaled to any device endowed with a programmable screen and a camera such as cellular phones offering for the first time the possibility to fulfil the sensor expectation of diffused and efficient analytical capabilities.

  19. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  20. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).

  1. Smart medical systems with application to nutrition and fitness in space

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.

    2002-01-01

    Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiologic status in real time. In a smart medical system, sensor arrays assess subject status, which is interpreted by computer processors that analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, thus closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend inflight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near-infrared spectroscopy can be used to non-invasively measure several blood and tissue parameters that are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The non-invasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors is also described.

  2. Smart Medical Systems with Application to Nutrition and Fitness in Space

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.

    2002-01-01

    Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiological status in real time. In a smart medical system sensor arrays assess subject status, which are interpreted by computer processors which analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared spectroscopy can be used to noninvasively measure several blood and tissue parameters which are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors are also described.

  3. Fabrication and optimization of a conducting polymer sensor array using stored grain model volatiles.

    PubMed

    Hossain, Md Eftekhar; Rahman, G M Aminur; Freund, Michael S; Jayas, Digvir S; White, Noel D G; Shafai, Cyrus; Thomson, Douglas J

    2012-03-21

    During storage, grain can experience significant degradation in quality due to a variety of physical, chemical, and biological interactions. Most commonly, these losses are associated with insects or fungi. Continuous monitoring and an ability to differentiate between sources of spoilage are critical for rapid and effective intervention to minimize deterioration or losses. Therefore, there is a keen interest in developing a straightforward, cost-effective, and efficient method for monitoring of stored grain. Sensor arrays are currently used for classifying liquors, perfumes, and the quality of food products by mimicking the mammalian olfactory system. The use of this technology for monitoring of stored grain and identification of the source of spoilage is a new application, which has the potential for broad impact. The main focus of the work described herein is on the fabrication and optimization of a carbon black (CB) polymer sensor array to monitor stored grain model volatiles associated with insect secretions (benzene derivatives) and fungi (aliphatic hydrocarbon derivatives). Various methods of statistical analysis (RSD, PCA, LDA, t test) were used to select polymers for the array that were optimum for distinguishing between important compound classes (quinones, alcohols) and to minimize the sensitivity for other parameters such as humidity. The performance of the developed sensor array was satisfactory to demonstrate identification and separation of stored grain model volatiles at ambient conditions.

  4. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  5. Colorimetric detection and identification of natural and artificial sweeteners.

    PubMed

    Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S

    2009-08-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.

  6. Non-specific monitoring to resolve intermittent pollutant problems associated with wastewater treatment and potable supply.

    PubMed

    Stuetz, R M

    2004-01-01

    An online monitoring system based on an array of non-specific sensors was used for the detection of chemical pollutants in wastewater and water. By superimposing sensor profiles for defined sampling window, the identification of data points outside these normal sensor response patterns was used to represent potential pollution episodes or other abnormalities within the process stream. Principle component analysis supported the detection of outliers or rapid changes in the sensor responses as an indicator of chemical pollutants. A model based on the comparison of sensor relative responses to a moving average for a defined sample window was tested for detecting and identifying sudden changes in the online data over a 6-month period. These results show the technical advantages of using a non-specific based monitoring system that can respond to a range of chemical species, due to broad selectivity of the sensor compositions. The findings demonstrate how this non-invasive technique could be further developed to provide early warning systems for application at the inlet of wastewater treatment plants.

  7. MEMS device for mass market gas and chemical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air in the house. Internet grocery delivery services could check for spoiled foods in their clients' refrigerators. City emissions regulators could monitor the various emissions sources throughout the area from their desk to predict how many pollution vouchers they will need to trade in the next week. We describe a new component architecture for mass-market sensors based on silicon microelectromechanical systems (MEMS) technology. MEMS are micrometer-scale devices that can be fabricated as discrete devices or large arrays, using the technology of integrated circuit manufacturing. These new photonic bandgap and MEMS fabricataion technologies will simplify the component technology to provide high-quality gas and chemical sensors at consumer prices.

  8. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  9. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns

    PubMed Central

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-01-01

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow—was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors. PMID:26263994

  10. A colorimetric sensor array of porous pigments.

    PubMed

    Lim, Sung H; Kemling, Jonathan W; Feng, Liang; Suslick, Kenneth S

    2009-12-01

    The development of a low-cost, simple colorimetric sensor array capable of the detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically-responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Brønsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health) concentration, at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials.

  11. A colorimetric sensor array of porous pigments

    PubMed Central

    Lim, Sung H.; Kemling, Jonathan W.; Feng, Liang

    2010-01-01

    The development of a low-cost, simple colorimetric sensor array capable of detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Bronsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health), at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials. PMID:19918616

  12. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  13. Standoff chemical D and Id with extended LWIR hyperspectral imaging spectroradiometer

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2013-05-01

    Standoff detection and identification (D and Id) of unknown volatile chemicals such as chemical pollutants and consequences of industrial incidents has been increasingly desired for first responders and for environmental monitoring. On site gas detection sensors are commercially available and several of them can even detect more than one chemical species, however only few of them have the capabilities of detecting a wide variety of gases at long and safe distances. The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system. The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.

  14. Plume-tracking robots: a new application of chemical sensors.

    PubMed

    Ishid, H; Nakamoto, T; Moriizumi, T; Kikas, T; Janata, J

    2001-04-01

    Many animals have the ability to search for odor sources by tracking their plumes. Some of the key features of this search behavior have been successfully transferred to robot platforms, although the capabilities of animals are still beyond the current level of sensor technologies. The examples described in this paper are (1) incorporating into a wheeled robot the upwind surges and casting used by moths in tracking pheromone plumes, (2) extracting useful information from the response patterns of a chemical sensor array patterned after the spatially distributed chemoreceptors of some animals, and (3) mimicking the fanning behavior of silkworm moths to enhance the reception of chemical signals by drawing molecules from one direction. The achievements so far and current efforts are reviewed to illustrate the steps to be taken toward future development of this technology.

  15. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    PubMed

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for clean air. The cermet sensor arrays used in this analysis are rugged, low cost, reusable, and show promise for multiple compound detection at parts-per-million (ppm) levels.

  16. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (<50 nm) layer-by-layer (LbL) polymer multilayers. In second section, we fabricated 3D nano-canal arrays of porous alumina membranes decorated with gold nanoparticles for prospective SERS sensors. We showed extraordinary SERS enhancement and suggested that the high performance is associated with the combined effects of Raman-active hot spots of nanoparticle aggregates and the optical waveguide properties of nano-canals. We demonstrated the ability of this SERS substrate for trace level sensing of nitroaromatic explosives by detecting down to 100 zeptogram (˜330 molecules) of DNT.

  17. Revealing the properties of oils from their dissolved hydrocarbon compounds in water with an integrated sensor array system.

    PubMed

    Qi, Xiubin; Crooke, Emma; Ross, Andrew; Bastow, Trevor P; Stalvies, Charlotte

    2011-09-21

    This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the oil samples. By grouping the samples based on the level of viscosity and density we were able to reveal the correlation between the oil extracts' sensor array responses and their original oils' feature properties. The equipment and method developed in this study have promising potential to be readily applied in field studies and marine surveys for oil exploration or oil spill monitoring.

  18. Optochemical sensor based on screenprinted fluorescent sensorspots surrounded by organic photodiodes for multianalyte detection

    NASA Astrophysics Data System (ADS)

    Kraker, E.; Lamprecht, B.; Haase, A.; Jakopic, G.; Abel, T.; Konrad, C.; Köstler, S.; Tscherner, M.; Stadlober, B.; Mayr, T.

    2010-08-01

    A compact, integrated photoluminescence based oxygen sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The detection system of the sensor array consists of an array of circular screen-printed fluorescent sensor spots surrounded by organic photodiodes as integrated fluorescence detectors. The OPD originates from the well-known Tang photodiode, consisting of a stacked layer of copper phthalocyanine (CuPc, p-type material) and perylene tetracarboxylic bisbenzimidazole (PTCBi, n-type material). An additional layer of tris-8-hydroxyquinolinatoaluminium (Alq3, n-type material) was inserted between the PTCBi layer and cathode. An ORMOCERR layer was used as encapsulation layer. For excitation an organic light emitting diode is used. The sensor spot and the detector are processed on the same flexible substrate. This approach not only simplifies the detection system by minimizing the numbers of required optical components - no optical filters have to be used for separating the excitation light and the luminescent emission-, but also has a large potential for low-cost sensor applications. The feasibility of the concept is demonstrated by an integrated oxygen sensor, indicating good performance. Sensor schemes for other chemical parameters are proposed.

  19. Software Compensates Electronic-Nose Readings for Humidity

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    A computer program corrects for the effects of humidity on the readouts of an array of chemical sensors (an "electronic nose"). To enable the use of this program, the array must incorporate an independent humidity sensor in addition to sensors designed to detect analytes other than water vapor. The basic principle of the program was described in "Compensating for Effects of Humidity on Electronic Noses" (NPO-30615), NASA Tech Briefs, Vol. 28, No. 6 (June 2004), page 63. To recapitulate: The output of the humidity sensor is used to generate values that are subtracted from the outputs of the other sensors to correct for contributions of humidity to those readings. Hence, in principle, what remains after corrections are the contributions of the analytes only. The outputs of the non-humidity sensors are then deconvolved to obtain the concentrations of the analytes. In addition, the humidity reading is retained as an analyte reading in its own right. This subtraction of the humidity background increases the ability of the software to identify such events as spills in which contaminants may be present in small concentrations and accompanied by large changes in humidity.

  20. Electro-chemical sensors, sensor arrays and circuits

    DOEpatents

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  1. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  2. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study

    PubMed Central

    Wyszynski, Bartosz; Yatabe, Rui; Nakao, Atsuo; Nakatani, Masaya; Oki, Akio; Oka, Hiroaki; Toko, Kiyoshi

    2017-01-01

    Mimicking the biological olfaction, large odor-sensor arrays can be used to acquire a broad range of chemical information, with a potentially high degree of redundancy, to allow for enhanced control over the sensitivity and selectivity of artificial olfaction systems. The arrays should consist of the largest possible number of individual sensing elements while being miniaturized. Chemosensitive resistors are one of the sensing platforms that have a potential to satisfy these two conditions. In this work we test viability of fabricating a 16-element chemosensitive resistor array for detection and recognition of volatile organic compounds (VOCs). The sensors were fabricated using blends of carbon black and gas chromatography (GC) stationary-phase materials preselected based on their sorption properties. Blends of the selected GC materials with carbon black particles were subsequently coated over chemosensitive resistor devices and the resulting sensors/arrays evaluated in exposure experiments against vapors of pyrrole, benzenal, nonanal, and 2-phenethylamine at 150, 300, 450, and 900 ppb. Responses of the fabricated 16-element array were stable and differed for each individual odorant sample, proving the blends of GC materials with carbon black particles can be effectively used for fabrication of large odor-sensing arrays based on chemosensitive resistors. The obtained results suggest that the proposed sensing devices could be effective in discriminating odor/vapor samples at the sub-ppm level. PMID:28696353

  3. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives

    PubMed Central

    Kangas, Michael J.; Burks, Raychelle M.; Atwater, Jordyn; Lukowicz, Rachel M.; Williams, Pat; Holmes, Andrea E.

    2017-01-01

    ABSTRACT There is a significant demand for devices that can rapidly detect chemical–biological–explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances. PMID:27636675

  4. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bioinspired Methodology for Artificial Olfaction

    PubMed Central

    Raman, Baranidharan; Hertz, Joshua L.; Benkstein, Kurt D.; Semancik, Steve

    2008-01-01

    Artificial olfaction is a potential tool for noninvasive chemical monitoring. Application of “electronic noses” typically involves recognition of “pretrained” chemicals, while long-term operation and generalization of training to allow chemical classification of “unknown” analytes remain challenges. The latter analytical capability is critically important, as it is unfeasible to pre-expose the sensor to every analyte it might encounter. Here, we demonstrate a biologically inspired approach where the recognition and generalization problems are decoupled and resolved in a hierarchical fashion. Analyte composition is refined in a progression from general (e.g., target is a hydrocarbon) to precise (e.g., target is ethane), using highly optimized response features for each step. We validate this approach using a MEMS-based chemiresistive microsensor array. We show that this approach, a unique departure from existing methodologies in artificial olfaction, allows the recognition module to better mitigate sensor-aging effects and to better classify unknowns, enhancing the utility of chemical sensors for real-world applications. PMID:18855409

  6. Highly sensitive refractive index sensor based on a TiO2 nanowire array.

    PubMed

    Li, Qiu-Shun; Xiang, Dong; Chang, Zhi-Min; Shi, Jian-Guo; Ma, Yao-Hong; Cai, Lei; Feng, Dong; Dong, Wen-Fei

    2017-03-01

    We propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO2 nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range. There was a very good linear relationship between resonant wavelength and RI in the range of 1.3330 to 1.3546. More importantly, in contrast to the surface plasmon resonance (SPR) sensor, the interferometric sensors showed higher sensitivity to the external RI. In the case of the transverse magnetic mode, the RI sensitivity is up to 320,700.93 a.u./RIU (refractive index unit) by expression of light intensity, which is 9.55 times that of the SPR sensor. As for the transverse electric mode, it achieves 4371.76 nm/RIU by expression of the resonant wavelength, which is increased by a factor of 1.4 in comparison with the SPR sensor. Moreover, the experimental results have favorable repeatability. A TiO2 nanowire array sensor has also other advantages, such as easy manufacturing, low cost, and in situ determination, etc. To our knowledge, this fact is reported for the first time. It has great potential applications in the field of biological and chemical sensing.

  7. Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.

    PubMed

    Wu, Xiaohan; Mao, Shun; Chen, Junhong; Huang, Jia

    2018-04-01

    Organic semiconductors (OSCs) have been extensively studied as sensing channel materials in field-effect transistors due to their unique charge transport properties. Stimulation caused by its environmental conditions can readily change the charge-carrier density and mobility of OSCs. Organic field-effect transistors (OFETs) can act as both signal transducers and signal amplifiers, which greatly simplifies the device structure. Over the past decades, various sensors based on OFETs have been developed, including physical sensors, chemical sensors, biosensors, and integrated sensor arrays with advanced functionalities. However, the performance of OFET-based sensors still needs to be improved to meet the requirements from various practical applications, such as high sensitivity, high selectivity, and rapid response speed. Tailoring molecular structures and micro/nanofilm structures of OSCs is a vital strategy for achieving better sensing performance. Modification of the dielectric layer and the semiconductor/dielectric interface is another approach for improving the sensor performance. Moreover, advanced sensory functionalities have been achieved by developing integrated device arrays. Here, a brief review of strategies used for improving the performance of OFET sensors is presented, which is expected to inspire and provide guidance for the design of future OFET sensors for various specific and practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Wireless event-recording device with identification codes

    NASA Technical Reports Server (NTRS)

    Watters, David G. (Inventor); Huestis, David L. (Inventor); Bahr, Alfred J. (Inventor)

    2004-01-01

    A wireless recording device can be interrogated to determine its identity and its state. The state indicates whether a particular physical or chemical event has taken place. In effect, the physical or chemical event is recorded by the device. The identity of the device allows it to be distinguished from a number of similar devices. Thus the sensor device may be used in an array of devices that can be probed by a wireless interrogation unit. The device tells the interrogator who it is and what state it is in. The interrogator can thus easily identify particular items in an array that have reached a particular condition.

  9. Portable system and method combining chromatography and array of electrochemical sensors

    DOEpatents

    Zaromb, Solomon; Stetter, Joseph R.

    1989-01-01

    A portable system for analyzing a fluid sample includes a small, portable, low-pressure and low-power chromatographic analyzer and a chemical parameter spectrometry monitor including an array of sensors for detecting, identifying and measuring the concentrations of a variety of components in the eluent from the chromatographic analyzer. The monitor includes one or more operating condition controllers which may be used to change one or more of the operating conditions during exposure of the sensors to the eluent from the chromatography analyzer to form a response pattern which is then compared with a library of previously established patterns. Gas and liquid chromatographic embodiments are disclosed. In the gas embodiment, the operating condition controllers include heated filaments which may convert electrochemically inactive components to electrochemically active products. In the liquid chromatography embodiment, low-power, liquid-phase equivalents of heated filaments are used with appropriate sensors. The library response patterns may be divided into subsets and the formed pattern may be assigned for comparison only with the patterns of a particular subset.

  10. Perovskite nanoparticle-sensitized Ga 2O 3 nanorod arrays for CO detection at high temperature

    DOE PAGES

    Lin, Hui -Jan; Baltrus, John P.; Gao, Haiyong; ...

    2016-04-04

    Here, noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La 0.8Sr 0.2FeO 3 (LSFO) nanoparticle surface decoration on Ga 2O 3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts wasmore » of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga 2O 3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga 2O 3 nanorod surfaces with faster surface CO oxidation reactions.« less

  11. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.

    PubMed

    Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian

    2016-04-13

    Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.

  12. Colorimetric Sensor Array for White Wine Tasting.

    PubMed

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  13. Colorimetric Sensor Array for White Wine Tasting

    PubMed Central

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-01-01

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry. PMID:26213946

  14. Improved fiber-optic chemical sensor for penicillin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healy, B.G.; Walt, D.R.

    An optical penicillin biosensor is described, based on the enzyme penicillinase. The sensor is fabricated by selective photodeposition of analyte-sensitive polymer matrices on optical imaging fibers. The penicillin-sensitive matrices are fabricated by immobilizing the enzyme as micrometer-sized particles in a polymer hydrogel with a covalently bound pH indicator. An array of penicillin-sensitive and pH-sensitive matrices are fabricated on the same fiber. This array allows for the simultaneous, independent measurement of pH and penicillin. Independent measurement of the two analytes allows penicillin to be quantitated in the presence of a concurrent pH change. An analysis was conducted of enzyme kinetic parametersmore » in order to model the penicillin response of the sensor at all pH values. This analysis accounts for the varying activity of the immobilized penicillinase at different pH values. The sensor detects penicillin in the range 0.25-10.0 mM in the pH range 6.2-7.5. The sensor was used to quantify penicillin concentration produced during a Penicillium chrysogenum fermentation. 27 refs., 7 figs., 1 tab.« less

  15. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    PubMed

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  16. Porous Silicon Structures as Optical Gas Sensors.

    PubMed

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  17. Microfabricated Gas Sensors Demonstrated in Fire and Emission Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2003-01-01

    A range of microfabricated chemical sensors are being developed to meet the needs of fire detection and emission monitoring in aerospace applications. These sensors have the advantages over traditional technology of minimal size, weight, and power consumption as well as the ability to be placed closer to where the measurements need to be made. Sensor arrays are being developed to address detection needs in environments where multiple species need to be measured. For example, the monitoring of chemical species such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons, and other species is important in the detection of fires on airplanes and spacecraft. In contrast, different sensors are necessary for characterizing some aircraft engine designs where the monitoring of nitrogen oxides (NO(x)) and CO is of high interest. Demonstration of both fire and emission microsensor technology was achieved this year in a collaborative effort undertaken by the NASA Glenn Research Center, Case Western Reserve University, and Makel Engineering, Inc.

  18. A sensor-type application of a self-oscillating dynamic system with a fiber optic feedback line, including chemical sensors and biosensors

    NASA Astrophysics Data System (ADS)

    Rabinovich, Emmanuel M.

    2004-05-01

    We present an overview of research, conducted and published by the author and colleagues during the preceding decade, with self-oscillating dynamic systems. Special attention has been addressed to sensor type applications that allow one to design a new type of sensors of different physical parameters as well as using system for chemical and biosensors. Many detection methods exploit self-oscillating systems, such as lasers and RF or microwave oscillators, and use changes introduced into a feedback mechanism (for instance laser inter-cavity spectroscopy) for evaluation of different physical parameters such as refractive indices or absorption coefficients. Typically, that approach is very efficient, is easy to implement, and gives high sensitivity. We have demonstrated that a similar method can be used in the case of an RF optoelectronic self-oscillating system (OSOS) with a fiber-optic feedback line. Using fiber as an element of a positive feedback line allows one to design a new family of fiber-optic sensors each of which can be integrated into a fiber-optic feedback line. Changes introduced into the feedback line of an OSOS typically cause an RF frequency shift that can be measured very precisely with an RF frequency counter or spectrum analyzer. For some types of sensors an OSOS can easily incorporate and utilize advantages of well-developed modern inexpensive light sources (VCSELs, LEDs) and opto-electronic components that have been designed for communication purposes. A single closed loop OSOS can be easily duplicated for sensor array measurement via the use of parallel fiber-optics (for example VCSEL arrays and fiber ribbon cables) that have been well developed for telecommunication systems.

  19. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the sensing material within resistive-type chemical sensor platforms was to increase the sensitivity (as shown for room temperature applications). Unfortunately, nanomaterials are not stable at high temperatures due to sintering and coarsening processes that are driven by their high surface to volume ratio. Therefore, new hydrogen and sulfur selective nanomaterial systems with high selectivity and stability properties in the proposed harsh environment were investigated. Different nano-morphologies of zirconate, molybdate, and tungstate compounds were investigated. The fabrication of the microsensors consisted of the deposition of the selective nanomaterial systems over metal based interconnects on an inert substrate. This work utilized the chemi-resistive (resistive- type) microsensor architecture where the chemically and structurally stable, high temperature compatible electrodes were sputtered onto a ceramic substrate. The nanomaterial sensing systems were deposited over the electrodes using a lost mold method patterned by conventional optical lithography. The microsensor configuration with optimized nanomaterial system was tested and compared to a millimeter-size sensor e outcomes of this research will contribute to the economical application of sensor arrays for simultaneous sensing of H 2, H 2S, and SO 2.« less

  20. Transmission of olfactory information for tele-medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-01-01

    While the inclusion of visual, aural, and tactile senses into virtual reality systems is widespread, the sense of smell has been largely ignored. We have developed a chemical vapor sensing system for the automated identification of chemical vapors (smells). Our prototype chemical vapor sensing system is composed of an array of tin-oxide vapor sensors coupled to an artificial neural net-work. The artificial neural network is used in the recognition of different smells and is constructed as a standard multilayer feed-forward network trained with the backpropagation algorithm. When a chemical sensor array is combined with an automated pattern identifier, it ismore » often referred to as an electronic or artificial nose. Applications of electronic noses include monitoring food and beverage odors, automated flavor control, analyzing fuel mixtures, and quantifying individual components in gas mixtures. Our prototype electronic nose has been used to identify odors from common household chemicals. An electronic nose will potentially be a key component in an olfactory input to a telepresent virtual reality system. The identified odor would be electronically transmitted from the electronic nose at one site to an odor generation system at another site. This combination would function as a mechanism for transmitting olfactory information for telepresence. This would have direct applicability in the area of telemedicine since the sense of smell is an important sense to the physician and surgeon. In this paper, our chemical sensing system (electronic nose) is presented along with a proposed method for regenerating the transmitted olfactory information.« less

  1. Porous Silicon Structures as Optical Gas Sensors

    PubMed Central

    Levitsky, Igor A.

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  2. Measuring the Chemical Potential of the Martian Regolith to Generate and Sustain Life

    NASA Technical Reports Server (NTRS)

    Kounaves, S. P.; Buehler, M. G.; Kuhlman, K. R.

    1999-01-01

    A critical component for identifying chemical biosignatures is the ability to assess in-situ the potential of an aqueous geochemical environment to generate and sustain life. On Mars or other solar bodies, in-situ chemical characterization could provide evidence as to whether the chemical composition of the regolith or evaporites in suspected ancient water bodies have been biologically influenced or possess the chemical parameters within which life may have existed, or may still exist. A variety of analytical techniques have been proposed for use in detecting and identify signatures of past or present life. These techniques fall into two groups; visual observation with instruments such as cameras or optical/atomic-force microscopes; or elemental chemical analysis with such instruments as X-ray fluorescence (XRF) and diffraction (XRD), a-proton backscatter (APX), y-ray, Mossbauer, Raman, IR, UV/VIS spectroscopies, gas chromatography (GC), or mass spectrometry (MS). Direct observation of an identifiable lifeform by the first set of instruments in a single sample is highly unlikely, especially for extinct organisms or on the surface. The later instruments can provide vital data as to the elemental mineralogy and geological history of the planet, but are highly inadequate for understanding the chemistry of the planet in terms of indigenous life or interactions with human explorers. Techniques such as XRD, XRF, and APX, provide elemental composition at high limits of detection. Some of this data can be extrapolated or interpolated to provide chemical parameters such as oxidation state or composition. Gas chromatography (GC) without standards and non-specific detectors, has little chance of identifying a mixture of unknown components. Combined with GC or by itself, mass spectrometry (MS) can provide identification of compounds, but in both cases the sample must be appropriately prepared for accurate and reliable analysis. Life as we know it, and probably identify it as such, requires an aqueous environment. Deciphering die chemical speciation of this aqueous environment is the key to recognizing therein the biosignatures of any extinct or present life forms. Identifying the soluble (ionic and nonionic) components by reacting a currently dormant environment can provide a "picture" of the thermodynamics and chemical components of a possibly bioactive environment. The only devices which can provide such information are electrochemical sensors based on the potentiometric ion selective electrodes (ISEs) and on dynamic techniques such as cyclic voltammetry (CV) and stripping voltammetry (SV). Such an array of devices can provide not only the chemical composition of a water-soluble Martian soil sample, but also several other vital chemical parameters such as pH, conductivity, redox potential, and dissolved gases. To address these issues we have been investigating the possible use of an electrochemically-based ion sensor array as a new integrated approach to quantitative analytical and chemometric electrochemical measurements. The sensor array will consist of specific and semispecific ion selective and amperometric transducers, which can simultaneously and continuously identify and semiquantitatively determine over 50 organic and inorganic analytes in water-based environments. Several individual sensors, based on the same principle, have been flight-tested and have been installed as part of the MECA instrumentation on the Mars 2001 Lander for in-situ analyses. However, the microfabrication, integration and multiplexing of such a large number of these sensors on a single substrate have not been previously attempted.

  3. Volatile Emissions from Compressed Tissue

    PubMed Central

    Dini, Francesca; Capuano, Rosamaria; Strand, Tillan; Ek, Anna-Christina; Lindgren, Margareta; Paolesse, Roberto; Di Natale, Corrado; Lundström, Ingemar

    2013-01-01

    Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers. PMID:23874929

  4. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  5. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  6. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  7. Miniaturized spectrometer for stand-off chemical detection

    NASA Astrophysics Data System (ADS)

    Henning, Patrick F.; Chadha, Suneet; Damren, Richard; Rowe, Rebecca C.; Stevenson, Chuck; Curtiss, Lawrence E.; DiGiuseppe, Thomas G.

    2002-02-01

    Advanced autonomous detection of both chemical warfare agents and toxic industrial chemicals has long been of major military concern and is becoming an increasingly realistic need. Foster-Miller has successfully designed and demonstrated a high spectral throughput monolithic wedge spectrometer capable of providing early, stand-off detection of chemical threats. Recent breakthrough innovations in IR source technologies, high D* multispectral array detectors, and IR waveguide materials has allowed for the development of a robust, miniature, monolithic infrared spectrometer. Foster-Miller recently demonstrated a high resolution spectrometer operating in the 8 to 12 micron region for chemical agent detection. Results will be presented demonstrating the feasibility of adapting the wedge spectrometer to operate as an upward looking ground sensor for stand-off chemical detection. Our miniaturized spectrometer forms the basis for deploying low cost, lightweight sensors which may be used for reconnaissance missions or delivered to remote locations for unattended operation. The ability of perform passive stand-off infrared chemical agent and chemical emissions detection with a low cost, compact device that can operate autonomously in remote environments has broad applications in both the military and commercial marketplace.

  8. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  9. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

    PubMed

    Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A

    2005-11-01

    A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.

  10. Nanoimprinting on optical fiber end faces for chemical sensing

    NASA Astrophysics Data System (ADS)

    Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.

    2008-04-01

    Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.

  11. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  12. Simultaneous detection of multiple chemical residues in milk using broad-specifity antibodies in a hybrid immunosorbent assay

    USDA-ARS?s Scientific Manuscript database

    The wide array of applications using quantum dots (QDs) for detection of multiple analytes reflects the versatility of the technology. In this study, a novel immunoassay using 2 types of sensors (QDs and an enzyme) were simultaneously used for detecting multiple structurally different low-molecular...

  13. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    PubMed

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  14. Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors

    DOEpatents

    Chaiken, Alison

    2000-01-01

    A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.

  15. NASA Tech Briefs, October 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Insect-Inspired Optical-Flow Navigation Sensors; Chemical Sensors Based on Optical Ring Resonators; A Broad-Band Phase-Contrast Wave-Front Sensor; Progress in Insect-Inspired Optical Navigation Sensors; Portable Airborne Laser System Measures Forest-Canopy Height; Deployable Wide-Aperture Array Antennas; Faster Evolution of More Multifunctional Logic Circuits; Video-Camera-Based Position-Measuring System; N-Type delta Doping of High-Purity Silicon Imaging Arrays; Avionics System Architecture Tool; Updated Chemical Kinetics and Sensitivity Analysis Code; Predicting Flutter and Forced Response in Turbomachinery; Upgrades of Two Computer Codes for Analysis of Turbomachinery; Program Facilitates CMMI Appraisals; Grid Visualization Tool; Program Computes Sound Pressures at Rocket Launches; Solar-System Ephemeris Toolbox; Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras; Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating; Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts; Making Activated Carbon for Storing Gas; System Regulates the Water Contents of Fuel-Cell Streams; Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig; Modifications of Fabrication of Vibratory Microgyroscopes; Chamber for Growing and Observing Fungi; Electroporation System for Sterilizing Water; Thermoelectric Air/Soil Energy-Harvesting Device; Flexible Metal-Fabric Radiators; Actuated Hybrid Mirror Telescope; Optical Design of an Optical Communications Terminal; Algorithm for Identifying Erroneous Rain-Gauge Readings; Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads; Lightweight Thermal Insulation for a Liquid-Oxygen Tank; Stellar Gyroscope for Determining Attitude of a Spacecraft; and Lifting Mechanism for the Mars Explorer Rover.

  16. Freely suspended nanocomposite membranes as highly sensitive sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V.

    2004-10-01

    Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

  17. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  18. Rapid Diagnosis of Tuberculosis from Analysis of Urine Volatile Organic Compounds

    PubMed Central

    Lim, Sung H.; Martino, Raymond; Anikst, Victoria; Xu, Zeyu; Mix, Samantha; Benjamin, Robert; Schub, Herbert; Eiden, Michael; Rhodes, Paul A.; Banaei, Niaz

    2017-01-01

    The World Health Organization has called for simple, sensitive, and non-sputum diagnostics for tuberculosis. We report development of a urine tuberculosis test using a colorimetric sensor array (CSA). The sensor comprised of 73 different indicators captures high-dimensional, spatiotemporal signatures of volatile chemicals emitted by human urine samples. The sensor responses to 63 urine samples collected from 22 tuberculosis cases and 41 symptomatic controls were measured under five different urine test conditions. Basified testing condition yielded the best accuracy with 85.5% sensitivity and 79.5% specificity. The CSA urine assay offers desired features needed for tuberculosis diagnosis in endemic settings. PMID:29057329

  19. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.

    2006-10-17

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  20. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    DOEpatents

    Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  1. Stable Odor Recognition by a neuro-adaptive Electronic Nose

    PubMed Central

    Martinelli, Eugenio; Magna, Gabriele; Polese, Davide; Vergara, Alexander; Schild, Detlev; Di Natale, Corrado

    2015-01-01

    Sensitivity, selectivity and stability are decisive properties of sensors. In chemical gas sensors odor recognition can be severely compromised by poor signal stability, particularly in real life applications where the sensors are exposed to unpredictable sequences of odors under changing external conditions. Although olfactory receptor neurons in the nose face similar stimulus sequences under likewise changing conditions, odor recognition is very stable and odorants can be reliably identified independently from past odor perception. We postulate that appropriate pre-processing of the output signals of chemical sensors substantially contributes to the stability of odor recognition, in spite of marked sensor instabilities. To investigate this hypothesis, we use an adaptive, unsupervised neural network inspired by the glomerular input circuitry of the olfactory bulb. Essentially the model reduces the effect of the sensors’ instabilities by utilizing them via an adaptive multicompartment feed-forward inhibition. We collected and analyzed responses of a 4 × 4 gas sensor array to a number of volatile compounds applied over a period of 18 months, whereby every sensor was sampled episodically. The network conferred excellent stability to the compounds’ identification and was clearly superior over standard classifiers, even when one of the sensors exhibited random fluctuations or stopped working at all. PMID:26043043

  2. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  3. Review of Recent Metamaterial Microfluidic Sensors

    PubMed Central

    Salim, Ahmed

    2018-01-01

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions. PMID:29342953

  4. Review of Recent Metamaterial Microfluidic Sensors.

    PubMed

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  5. Sensing a Changing Chemical Mixture Using an Electronic Nose

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Ryan, Margaret

    2008-01-01

    A method of using an electronic nose to detect an airborne mixture of known chemical compounds and measure the temporally varying concentrations of the individual compounds is undergoing development. In a typical intended application, the method would be used to monitor the air in an inhabited space (e.g., the interior of a building) for the release of solvents, toxic fumes, and other compounds that are regarded as contaminants. At the present state of development, the method affords a capability for identifying and quantitating one or two compounds that are members of a set of some number (typically of the order of a dozen) known compounds. In principle, the method could be extended to enable monitoring of more than two compounds. An electronic nose consists of an array of sensors, typically made from polymer carbon composites, the electrical resistances of which change upon exposure to a variety of chemicals. By design, each sensor is unique in its responses to these chemicals: some or all of the sensitivities of a given sensor to the various vapors differ from the corresponding sensitivities of other sensors. In general, the responses of the sensors are nonlinear functions of the concentrations of the chemicals. Hence, mathematically, the monitoring problem is to solve the set of time-dependent nonlinear equations for the sensor responses to obtain the time dependent concentrations of individual compounds. In the present developmental method, successive approximations of the solution are generated by a learning algorithm based on independent-component analysis (ICA) an established information theoretic approach for transforming a vector of observed interdependent signals into a set of signals that are as nearly statistically independent as possible.

  6. Fiber optic systems for colorimetry and scattered colorimetry

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Mencaglia, Andrea A.; Ciaccheri, Leonardo

    2005-09-01

    An innovative series of optical fiber sensors based on spectroscopic interrogation is presented. The sensors are custom-designed for a wide range of applications, including gasoline colorimetry, chromium monitoring of sewage, museum lighting control, for use with a platform for interrogating an array of absorption-based chemical sensors, as well as for color and turbidity measurements. Two types of custom-design instrumentation have been developed, both making use of LED light sources and a low-cost optical fiber spectrometer to perform broadband spectral measurements in the visible spectral range. The first was designed especially to address color-based sensors, while the second assessed the combined color and turbidity of edible liquids such as olive oil. Both are potentially exploitable in other industrial and environmental applications.

  7. Micro-Electronic Nose System

    NASA Astrophysics Data System (ADS)

    Zee, Frank C.

    2011-12-01

    The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one at low gas concentrations between 100 and 600 ppm for two gas vapors and the other at high gas concentrations between 2000 ppm and the saturated vapor pressure of three gas vapors. The array of sensors and circuits were able to uniquely detect and measure these gas vapors and showed a linear response to their concentration levels for both experiments. The results also demonstrated that a reduction in the sensor area by two orders of magnitude (from 4.32 mm² to 0.0625 mm²) did not affect the sensor response. By applying pattern-recognition algorithms, the electronic nose system was able to correctly identify the different gas vapors from the pattern responses of the sensor array.

  8. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery

    NASA Astrophysics Data System (ADS)

    Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.

    2014-08-01

    A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.

  9. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    PubMed

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  10. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.

  11. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids.

    PubMed

    Zhang, Haijuan; Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Wu, Jianmin

    2017-02-08

    A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0-60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive "fingerprint" in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  13. Differential temperature stress measurement employing array sensor with local offset

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    1993-01-01

    The instrument has a focal plane array of infrared sensors of the integrating type such as a multiplexed device in which a charge is built up on a capacitor which is proportional to the total number of photons which that sensor is exposed to between read-out cycles. The infrared sensors of the array are manufactured as part of an overall array which is part of a micro-electronic device. The sensor achieves greater sensitivity by applying a local offset to the output of each sensor before it is converted into a digital word. The offset which is applied to each sensor will typically be the sensor's average value so that the digital signal which is periodically read from each sensor of the array corresponds to the portion of the signal which is varying in time. With proper synchronization between the cyclical loading of the test object and the frame rate of the infrared array the output of the A/D converted signal will correspond to the stress field induced temperature variations. A digital lock-in operation may be performed on the output of each sensor in the array. This results in a test instrument which can rapidly form a precise image of the thermoelastic stresses in an object.

  14. Using Bayesian Inference Framework towards Identifying Gas Species and Concentration from High Temperature Resistive Sensor Array Data

    DOE PAGES

    Liu, Yixin; Zhou, Kai; Lei, Yu

    2015-01-01

    High temperature gas sensors have been highly demanded for combustion process optimization and toxic emissions control, which usually suffer from poor selectivity. In order to solve this selectivity issue and identify unknown reducing gas species (CO, CH 4 , and CH 8 ) and concentrations, a high temperature resistive sensor array data set was built in this study based on 5 reported sensors. As each sensor showed specific responses towards different types of reducing gas with certain concentrations, based on which calibration curves were fitted, providing benchmark sensor array response database, then Bayesian inference framework was utilized to process themore » sensor array data and build a sample selection program to simultaneously identify gas species and concentration, by formulating proper likelihood between input measured sensor array response pattern of an unknown gas and each sampled sensor array response pattern in benchmark database. This algorithm shows good robustness which can accurately identify gas species and predict gas concentration with a small error of less than 10% based on limited amount of experiment data. These features indicate that Bayesian probabilistic approach is a simple and efficient way to process sensor array data, which can significantly reduce the required computational overhead and training data.« less

  15. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed

    2004-01-01

    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  16. Autonomous chemical and biological miniature wireless-sensor

    NASA Astrophysics Data System (ADS)

    Goldberg, Bar-Giora

    2005-05-01

    The presentation discusses a new concept and a paradigm shift in biological, chemical and explosive sensor system design and deployment. From large, heavy, centralized and expensive systems to distributed wireless sensor networks utilizing miniature platforms (nodes) that are lightweight, low cost and wirelessly connected. These new systems are possible due to the emergence and convergence of new innovative radio, imaging, networking and sensor technologies. Miniature integrated radio-sensor networks, is a technology whose time has come. These network systems are based on large numbers of distributed low cost and short-range wireless platforms that sense and process their environment and communicate data thru a network to a command center. The recent emergence of chemical and explosive sensor technology based on silicon nanostructures, coupled with the fast evolution of low-cost CMOS imagers, low power DSP engines and integrated radio chips, has created an opportunity to realize the vision of autonomous wireless networks. These threat detection networks will perform sophisticated analysis at the sensor node and convey alarm information up the command chain. Sensor networks of this type are expected to revolutionize the ability to detect and locate biological, chemical, or explosive threats. The ability to distribute large numbers of low-cost sensors over large areas enables these devices to be close to the targeted threats and therefore improve detection efficiencies and enable rapid counter responses. These sensor networks will be used for homeland security, shipping container monitoring, and other applications such as laboratory medical analysis, drug discovery, automotive, environmental and/or in-vivo monitoring. Avaak"s system concept is to image a chromatic biological, chemical and/or explosive sensor utilizing a digital imager, analyze the images and distribute alarm or image data wirelessly through the network. All the imaging, processing and communications would take place within the miniature, low cost distributed sensor platforms. This concept however presents a significant challenge due to a combination and convergence of required new technologies, as mentioned above. Passive biological and chemical sensors with very high sensitivity and which require no assaying are in development using a technique to optically and chemically encode silicon wafers with tailored nanostructures. The silicon wafer is patterned with nano-structures designed to change colors ad patterns when exposed to the target analytes (TICs, TIMs, VOC). A small video camera detects the color and pattern changes on the sensor. To determine if an alarm condition is present, an on board DSP processor, using specialized image processing algorithms and statistical analysis, determines if color gradient changes occurred on the sensor array. These sensors can detect several agents simultaneously. This system is currently under development by Avaak, with funding from DARPA through an SBIR grant.

  17. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  18. Quaternized magnetic nanoparticles-fluorescent polymer system for detection and identification of bacteria.

    PubMed

    Wan, Yi; Sun, Yan; Qi, Peng; Wang, Peng; Zhang, Dun

    2014-05-15

    Nanomaterial-based 'chemical nose' sensor with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. A sensor array containing three quaternized magnetic nanoparticles (q-MNPs)-fluorescent polymer systems has been designed to identify and quantify bacteria. The bacterial cell membranes disrupt the q-MNP-fluorescent polymer, generating unique fluorescence response array. The response intensity of the array is dependent on the level of displacement determined by the relative q-MNP-fluorescent polymer binding strength and bacteria cells-MNP interaction. These characteristic responses show a highly repeatable bacteria cells and can be differentiated by linear discriminant analysis (LDA). Based on the array response matrix from LDA, our approach has been used to measure bacteria with an accuracy of 87.5% for 10(7) cfu mL(-1) within 20 min. Combined with UV-vis measurement, the method can be successfully performed to identify and detect eight different pathogen samples with an accuracy of 96.8%. The measurement system has a potential for further applications and provides a facile and simple method for the rapid analysis of protein, DNA, and pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  20. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Homer, Margie (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Vasquez, Richard (Inventor); Yun, Minhee (Inventor); Myung, Nosang (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  1. Remote magneto-elastic analyte, viscosity and temperature sensing apparatus and associated methods of sensing

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Stoyanov, Plamen G. (Inventor)

    2002-01-01

    An analyte, viscosity, or temperature sensing apparatus for operative arrangement within a time-varying magnetic field, including a sensor with an outer surface that is chemically, frictionally, or thermally responsive and adhered to a base magnetostrictive element, and a receiver to measure a first and second value for magneto-elastic emission intensity of the sensor taken at, respectively, a first and second interrogation frequency. A change in mass or a change in material stiffness of the sensor due to the responsiveness, the viscosity and mass density of a fluid therearound, or the temperature, can be identified. The receiver, alternatively, measures a plurality of successive values for magneto-elastic emission intensity of the sensor taken over an operating range of successive interrogation frequencies to identify a value for the sensor's magneto-elastic resonant frequency (a fundamental frequency or harmonic thereof). Several sensors in an ordered array will provide a package of information.

  2. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  3. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  4. Thermal and Optical Activation Mechanisms of Nanospring-Based Chemiresistors

    PubMed Central

    Dobrokhotov, Vladimir; Oakes, Landon; Sowell, Dewayne; Larin, Alexander; Hall, Jessica; Barzilov, Alexander; Kengne, Alex; Bakharev, Pavel; Corti, Giancarlo; Cantrell, Timothy; Prakash, Tej; Williams, Joseph; Bergman, Leah; Huso, Jesse; McIlroy, David

    2012-01-01

    Chemiresistors (conductometric sensor) were fabricated on the basis of novel nanomaterials—silica nanosprings ALD coated with ZnO. The effects of high temperature and UV illumination on the electronic and gas sensing properties of chemiresistors are reported. For the thermally activated chemiresistors, a discrimination mechanism was developed and an integrated sensor-array for simultaneous real-time resistance scans was built. The integrated sensor response was tested using linear discriminant analysis (LDA). The distinguished electronic signatures of various chemical vapors were obtained at ppm level. It was found that the recovery rate at high temperature drastically increases upon UV illumination. The feasibility study of the activation method by UV illumination at room temperature was conducted. PMID:22778604

  5. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  6. Investigation of Exhaled Breath Samples from Patients with Alzheimer's Disease Using Gas Chromatography-Mass Spectrometry and an Exhaled Breath Sensor System.

    PubMed

    Lau, Hui-Chong; Yu, Joon-Boo; Lee, Ho-Won; Huh, Jeung-Soo; Lim, Jeong-Ok

    2017-08-03

    Exhaled breath is a body secretion, and the sampling process of this is simple and cost effective. It can be non-invasively collected for diagnostic procedures. Variations in the chemical composition of exhaled breath resulting from gaseous exchange in the extensive capillary network of the body are proposed to be associated with pathophysiological changes. In light of the foreseeable potential of exhaled breath as a diagnostic specimen, we used gas chromatography and mass spectrometry (GC-MS) to study the chemical compounds present in exhaled breath samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), and from healthy individuals as a control group. In addition, we also designed and developed a chemical-based exhaled breath sensor system to examine the distribution pattern in the patient and control groups. The results of our study showed that several chemical compounds, such as 1-phenantherol and ethyl 3-cyano-2,3-bis (2,5,-dimethyl-3-thienyl)-acrylate, had a higher percentage area in the AD group than in the PD and control groups. These results may indicate an association of these chemical components in exhaled breath with the progression of disease. In addition, in-house fabricated exhaled breath sensor systems, containing several types of gas sensors, showed significant differences in terms of the normalized response of the sensitivity characteristics between the patient and control groups. A subsequent clustering analysis was able to distinguish between the AD patients, PD patients, and healthy individuals using principal component analysis, Sammon's mapping, and a combination of both methods, in particular when using the exhaled breath sensor array system A consisting of eight sensors. With this in mind, the exhaled breath sensor system could provide alternative option for diagnosis and be applied as a useful, effective tool for the screening and diagnosis of AD in the near future.

  7. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro)

    PubMed Central

    Orthner, M.P.; Lin, G.; Avula, M.; Buetefisch, S.; Magda, J.; Rieth, L.W.; Solzbacher, F.

    2010-01-01

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling (τswelling) and contracting (τcontracting) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3–5 cycles with values of approximately 9 and 7 min for τswelling and τcontracting. For all sensors tested τswelling > τcontracting. This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τcontracting. Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS). PMID:23750073

  8. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    PubMed

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling ( τ swelling ) and contracting ( τ contracting ) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3-5 cycles with values of approximately 9 and 7 min for τ swelling and τ contracting . For all sensors tested τ swelling > τ contracting . This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τ contracting . Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS).

  9. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    PubMed Central

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  10. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  11. Sensor-integrated polymer actuators for closed-loop drug delivery system

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  12. WO{sub 3} thin film based multiple sensor array for electronic nose application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  13. Dual-transduction-mode sensing approach for chemical detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Swensen, James S.

    2012-11-01

    Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by amore » set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.« less

  14. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edgemore » sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.« less

  15. Batch-processed semiconductor gas sensor array for the selective detection of NOx in automotive exhaust gas

    NASA Astrophysics Data System (ADS)

    Jang, Hani; Kim, Minki; Kim, Yongjun

    2016-12-01

    This paper reports on a semiconductor gas sensor array to detect nitrogen oxides (NOx) in automotive exhaust gas. The proposed semiconductor gas sensor array consisted of one common electrode and three individual electrodes to minimize the size of the sensor array, and three sensing layers [TiO2 + SnO2 (15 wt%), SnO2, and Ga2O3] were deposited using screen printing. In addition, sensing materials were sintered under the same conditions in order to take advantage of batch processing. The sensing properties of the proposed sensor array were verified by experimental measurements, and the selectivity improved by using pattern recognition.

  16. A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Wood, Mark; Crites, Sarah T.; Akagi, Jason

    2012-06-01

    LWIR hyperspectral imaging has a wide range of civil and military applications with its ability to sense chemical compositions at standoff ranges. Most recent implementations of this technology use spectrographs employing varying degrees of cryogenic cooling to reduce sensor self-emission that can severely limit sensitivity. We have taken an interferometric approach that promises to reduce the need for cooling while preserving high resolution. Reduced cooling has multiple benefits including faster system readiness from a power off state, lower mass, and potentially lower cost owing to lower system complexity. We coupled an uncooled Sagnac interferometer with a 256x320 mercury cadmium telluride array with an 11 micron cutoff to produce a spatial interferometric LWIR hyperspectral imaging system operating from 7.5 to 11 microns. The sensor was tested in ground-ground applications, and from a small aircraft producing spectral imagery including detection of gas emission from high vapor pressure liquids.

  17. A neural approach for improving the measurement capability of an electronic nose

    NASA Astrophysics Data System (ADS)

    Chimenti, M.; DeRossi, D.; Di Francesco, F.; Domenici, C.; Pieri, G.; Pioggia, G.; Salvetti, O.

    2003-06-01

    Electronic noses, instruments for automatic recognition of odours, are typically composed of an array of partially selective sensors, a sampling system, a data acquisition device and a data processing system. For the purpose of evaluating the quality of olive oil, an electronic nose based on an array of conducting polymer sensors capable of discriminating olive oil aromas was developed. The selection of suitable pattern recognition techniques for a particular application can enhance the performance of electronic noses. Therefore, an advanced neural recognition algorithm for improving the measurement capability of the device was designed and implemented. This method combines multivariate statistical analysis and a hierarchical neural-network architecture based on self-organizing maps and error back-propagation. The complete system was tested using samples composed of characteristic olive oil aromatic components in refined olive oil. The results obtained have shown that this approach is effective in grouping aromas into different categories representative of their chemical structure.

  18. Evaluation of sensor arrays for engine oils using artificial oil alteration

    NASA Astrophysics Data System (ADS)

    Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.

    2011-06-01

    With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.

  19. Array Simulation at the Bearing Stake Sites

    DTIC Science & Technology

    1981-04-01

    C) The array was generally towed at 300 m depth. Four depth sensors on the array gave depth and tilt. With the exception of Site 1B the array was...Site 2, weights were added to the array to overcome its apparent buoyancy. The depth sensors failed on this run and the actual *ilt is not known. Data...horizontal axis title, " Sensor Group Separation," refers to posicion along che array. It .s equivalent to our simulated receiver depth with shallower

  20. A remotely interrogatable sensor for chemical monitoring

    NASA Technical Reports Server (NTRS)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  1. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  2. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    PubMed

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  3. Transparent Fingerprint Sensor System for Large Flat Panel Display

    PubMed Central

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk

    2018-01-01

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array. PMID:29351218

  4. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  5. Rapid prototyping of carbon-based chemiresistive gas sensors on paper

    PubMed Central

    Mirica, Katherine A.; Azzarelli, Joseph M.; Weis, Jonathan G.; Schnorr, Jan M.; Swager, Timothy M.

    2013-01-01

    Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and the subsequent integration of these materials into devices. This manuscript describes a solvent-free procedure for rapid prototyping of selective chemiresistors from CNTs and graphite on the surface of paper. This procedure enables fabrication of functional gas sensors from commercially available starting materials in less than 15 min. The first step of this procedure involves the generation of solid composites of CNTs or graphite with small molecule selectors—designed to interact with specific classes of gaseous analytes—by solvent-free mechanical mixing in a ball mill and subsequent compression. The second step involves deposition of chemiresistive sensors by mechanical abrasion of these solid composites onto the surface of paper. Parallel fabrication of multiple chemiresistors from diverse composites rapidly generates cross-reactive arrays capable of sensing and differentiating gases and volatile organic compounds at part-per-million and part-per-thousand concentrations. PMID:23942132

  6. An impedimetric chemical sensor for determination of detergents residues.

    PubMed

    Bratov, Andrey; Abramova, Natalia; Ipatov, Andrey; Merlos, Angel

    2013-03-15

    A new impedimetric sensor based on an interdigitated electrode array with electrode digits located at the bottom of microcapillaries formed in silicon dioxide is presented. Microcapillaries are opened at the top, so that in contact with an electrolyte solution the ac current flows close to the surface of the capillary wall from one electrode to another and is significantly affected by changes in the surface conductance at the SiO2/electrolyte interface. Adsorption of detergents on the sensor surface affects the charge distribution in the electrical double layer and thus the surface conductance. These changes are registered by measuring impedance. Effect of surface adsorption of ionic and non-ionic surfactants on the sensor impedance is studied. The sensor is shown to be able to measure commercial detergents residues in a tap water starting from 5 ppm even in solutions with high electrolyte conductivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Gardner, Charles W.

    2014-05-01

    In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.

  8. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  9. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  10. Advanced Fiber-optic Monitoring System for Space-flight Applications

    NASA Technical Reports Server (NTRS)

    Hull, M. S.; VanTassell, R. L.; Pennington, C. D.; Roman, M.

    2005-01-01

    Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration s Marshall Space Flight Center (NASA MSFC) have developed an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies with atomic force microscopy (AFM) and long-period grating (LPG) technology to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.

  11. Structurally Integrated Photoluminescent Chemical and Biological Sensors: An Organic Light-Emitting Diode-Based Platform

    NASA Astrophysics Data System (ADS)

    Shinar, J.; Shinar, R.

    The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.

  12. Compact multispectral photodiode arrays using micropatterned dichroic filters

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production. Additional customization options are explored for application-specific OEM sensors integrated into portable devices using multispectral photodiode arrays.

  13. Propulsion and perception in intermediate Re regimes: aquatic microcrustacean copepod responses to wake structures.

    NASA Astrophysics Data System (ADS)

    Yen, J.; Pender Healy, L. A.; Heaphy, M.

    2016-02-01

    Flow sensing by the mechanoreceptive cuticular arrays of sensors on copepods has been shaped by over 400 million years of evolution and plays an important role in predator avoidance, foraging, mating, and rheotaxis. These 3D wakes are produced by animal propulsive activities and contain cues that guide these key survival responses. We have demonstrated that the fluid mechanical and chemical information retained in the hydrodynamic envelope can be interpreted by suitable sensor arrays; copepod sensor arrays are capable of perceiving minute differences in wake structures. Temora longicornis, a coastal marine copepod, and Hesperodiaptomus shoshone, a high-alpine freshwater lake copepod, track laminar trails. High-speed videography coupled with high-magnification Schlieren optics enabled us to visualize the deformation of the trail signal and the propulsive movements of the male copepod. Males followed the trail mimic and our observations show clear differences between the marine and freshwater species. Comparative analyses reveal tracking mechanisms that differ in sensor location with respect to the trail and locomotory kinematics. Copepods perform directed motions that lead them to a stimulus source in the absence of other collimating stimuli. Tracking by the copepod around the trail allows it to have one or numerous sensors inside and outside the trail to facilitate edge detection using spatial sampling. The advantage of this remarkable behavior of following trails fast and accurately is to encounter mates or food patches more frequently, thus contributing to population recruitment and energy transfer up the trophic food web. Precise mate and food finding strategies found for pelagic copepods may be a key adaptation, promoting survival in these open-ocean planktonic populations.

  14. Compliant tactile sensor for generating a signal related to an applied force

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2012-01-01

    Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.

  15. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  16. Evaluation of sensitivity and selectivity of piezoresistive cantilever-array sensors

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Genki; Lang, Hans-Peter; Staufer, Urs; Vettiger, Peter; Sakurai, Toshio; Gerber, Christoph

    2008-03-01

    Microfabricated cantilever-array sensors have attracted much attention in recent years due to their real-time detection of low concentration of molecules. Since the piezoresistive cantilever-array sensors do not require a bulky and expensive optical read-out system, they possess many advantages compared with optical read-out cantilever-array sensors. They can be miniaturized and integrated into a match-box sized device. In this study, we present the piezoresistive cantilever-array sensor system and evaluate its sensitivity and selectivity using various vapors of molecules, including alkane molecules with different chain length from 5 (n-pentane) to 12 (n-dodecane). Piezoresistive cantilevers were coated with different polymers (PVP, PAAM, PEI, and PVA) using an inkjet spotter. Each cantilever has a reference cantilever, constituting a Wheatstone-bridge. Each vapor was mixed with a constant nitrogen gas flow and introduced into the measurement chamber. According to the principle component analysis of data obtained, each molecule can be clearly distinguished from others. We also confirmed that this piezoresistive cantilever-array sensor system has sub-ppm sensitivity.

  17. Direction-of-arrival estimation for a uniform circular acoustic vector-sensor array mounted around a cylindrical baffle

    NASA Astrophysics Data System (ADS)

    Yang, DeSen; Zhu, ZhongRui

    2012-12-01

    This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.

  18. Lightweight autonomous chemical identification system (LACIS)

    NASA Astrophysics Data System (ADS)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  19. Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator

    DTIC Science & Technology

    1992-12-01

    Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the

  20. Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis

    NASA Astrophysics Data System (ADS)

    Rabner, Arthur; Belkin, Shimshon; Rozen, Rachel; Shacham, Yosi

    2006-01-01

    A novel water chemical toxin sensor has been successfully developed and evaluated as a working portable laboratory prototype. This sensor relies on a disposable plastic biochip prepared with a 4x4 micro-laboratory (μLab) chambers array of Escherichia coli reporter cells and micro-fluidic channels for liquids translocation. Each bacterial strain has been genetically modified into a bioluminescent reporter that responds to a pre-determined class of chemical agents. When challenged with a water sample containing a toxic chemical, the sensor responds with an increased bioluminescent signal from the biochip that is monitored over time. The signal is received by a motorized photomultiplier-based analyzer and interpreted by signal processing software. We have performed several levels of analysis: (i) the change in the bioluminescent signal from the sensor bacteria serves as a rapid indication for the presence of toxic chemicals in the water sample; (ii) the intensity of the change indicates the toxin concentration level; and (iii) the pattern of the responses for the different members of the bacterial panel on the biochip characterizes the biological origin of the toxin. The analyzer contains housing mechanics, electro-optics for signal acquisition, motorized readout calibration accessories, hydro-pneumatics modules for water sample translocation into biochip micro laboratories, electronics for overall control and communication with the host computer. This prototype has a demonstrated sensitivity for broad classes of water-borne toxic chemicals including naladixic acid (a model genotoxic agent), botulinum and acetylcholine esterase inhibitors. This work has initiated an investigation of a novel handheld field-deployable Water Toxicity Analysis (WTA) device.

  1. Advances in Bio-Tactile Sensors for Minimally Invasive Surgery Using the Fibre Bragg Grating Force Sensor Technique:A Survey

    PubMed Central

    Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.

    2014-01-01

    The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774

  2. Development of a versatile intra-articular pressure sensing array.

    PubMed

    Welcher, J B; Popovich, J M; Hedman, T P

    2011-10-01

    A new sensor array intended to accurately and directly measure spatial and time-dependent pressures within a highly curved biological intra-articular joint was developed and tested. To evaluate performance of the new sensor array for application within intra-articular joints generally, and specifically to fit within the relatively restrictive space of the lumbar spine facet joint, geometric constraints of length, width, thickness and sensor spatial resolution were evaluated. Additionally, the effects of sensor array curvature, frequency response, linearity, drift, hysteresis, repeatability, and total system cost were assessed. The new sensor array was approximately 0.6mm in thickness, scalable to below the nominal 12 mm wide by 15 high lumbar spine facet joint size, offered no inherent limitations on the number or spacing of the sensors with less than 1.7% cross talk with sensor immediately adjacent to one another. No difference was observed in sensor performance down to a radius of curvature of 7 mm and a 0.66±0.97% change in sensor sensitivity was observed at a radius of 5.5mm. The sensor array had less than 0.07 dB signal loss up to 5.5 Hz, linearity was 0.58±0.13% full scale (FS), drift was less than 0.2% FS at 250 s and less than 0.6% FS at 700 s, hysteresis was 0.78±0.18%. Repeatability was excellent with a coefficient of variation less than 2% at pressures between 0 and 1.000 MPa. Total system cost was relatively small as standard commercially available data acquisition systems could be utilized, with no specialized software, and individual sensors within an array can be replaced as needed. The new sensor array had small and scalable geometry and very acceptable intrinsic performance including minimal to no alteration in performance at physiologically relevant ranges of joint curvature. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  4. Determination of the Pressure Equivalent Noise Signal of Vector Sensors in a Hybrid Array

    DTIC Science & Technology

    2012-12-01

    pressure sensors for acoustic signals raises the possibility of increased sonar array performance with smaller arrays. Caulk successfully...contribution of the preamplifier in the circuit was estimated as . So the Johnson noise of the sensor wires themselves is expected to dominate

  5. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-09-17

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  6. Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.

    2016-12-01

    The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.

  7. Compliant tactile sensor that delivers a force vector

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2010-01-01

    Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.

  8. Chemiresistive Electronic Nose toward Detection of Biomarkers in Exhaled Breath.

    PubMed

    Moon, Hi Gyu; Jung, Youngmo; Han, Soo Deok; Shim, Young-Seok; Shin, Beomju; Lee, Taikjin; Kim, Jin-Sang; Lee, Seok; Jun, Seong Chan; Park, Hyung-Ho; Kim, Chulki; Kang, Chong-Yun

    2016-08-17

    Detection of gas-phase chemicals finds a wide variety of applications, including food and beverages, fragrances, environmental monitoring, chemical and biochemical processing, medical diagnostics, and transportation. One approach for these tasks is to use arrays of highly sensitive and selective sensors as an electronic nose. Here, we present a high performance chemiresistive electronic nose (CEN) based on an array of metal oxide thin films, metal-catalyzed thin films, and nanostructured thin films. The gas sensing properties of the CEN show enhanced sensitive detection of H2S, NH3, and NO in an 80% relative humidity (RH) atmosphere similar to the composition of exhaled breath. The detection limits of the sensor elements we fabricated are in the following ranges: 534 ppt to 2.87 ppb for H2S, 4.45 to 42.29 ppb for NH3, and 206 ppt to 2.06 ppb for NO. The enhanced sensitivity is attributed to the spillover effect by Au nanoparticles and the high porosity of villi-like nanostructures, providing a large surface-to-volume ratio. The remarkable selectivity based on the collection of sensor responses manifests itself in the principal component analysis (PCA). The excellent sensing performance indicates that the CEN can detect the biomarkers of H2S, NH3, and NO in exhaled breath and even distinguish them clearly in the PCA. Our results show high potential of the CEN as an inexpensive and noninvasive diagnostic tool for halitosis, kidney disorder, and asthma.

  9. Reduced signal crosstalk multi neurotransmitter image sensor by microhole array structure

    NASA Astrophysics Data System (ADS)

    Ogaeri, Yuta; Lee, You-Na; Mitsudome, Masato; Iwata, Tatsuya; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-06-01

    A microhole array structure combined with an enzyme immobilization method using magnetic beads can enhance the target discernment capability of a multi neurotransmitter image sensor. Here we report the fabrication and evaluation of the H+-diffusion-preventing capability of the sensor with the array structure. The structure with an SU-8 photoresist has holes with a size of 24.5 × 31.6 µm2. Sensors were prepared with the array structure of three different heights: 0, 15, and 60 µm. When the sensor has the structure of 60 µm height, 48% reduced output voltage is measured at a H+-sensitive null pixel that is located 75 µm from the acetylcholinesterase (AChE)-immobilized pixel, which is the starting point of H+ diffusion. The suppressed H+ immigration is shown in a two-dimensional (2D) image in real time. The sensor parameters, such as height of the array structure and measuring time, are optimized experimentally. The sensor is expected to effectively distinguish various neurotransmitters in biological samples.

  10. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    PubMed Central

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636

  11. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    PubMed

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-12-13

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  12. Low-Cost Nested-MIMO Array for Large-Scale Wireless Sensor Applications.

    PubMed

    Zhang, Duo; Wu, Wen; Fang, Dagang; Wang, Wenqin; Cui, Can

    2017-05-12

    In modern communication and radar applications, large-scale sensor arrays have increasingly been used to improve the performance of a system. However, the hardware cost and circuit power consumption scale linearly with the number of sensors, which makes the whole system expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output (MIMO) array, which is capable of providing O ( 2 N 2 ) degrees of freedom (DOF) with O ( N ) physical sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture size and number of DOF can be predicted as a function of the total number of sensors. Additionally, with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is required for sampling the signals received by all of the sensors, which is conducive to reducing the hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness and superiority of the proposed array.

  13. Low-Cost Nested-MIMO Array for Large-Scale Wireless Sensor Applications

    PubMed Central

    Zhang, Duo; Wu, Wen; Fang, Dagang; Wang, Wenqin; Cui, Can

    2017-01-01

    In modern communication and radar applications, large-scale sensor arrays have increasingly been used to improve the performance of a system. However, the hardware cost and circuit power consumption scale linearly with the number of sensors, which makes the whole system expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output (MIMO) array, which is capable of providing O(2N2) degrees of freedom (DOF) with O(N) physical sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture size and number of DOF can be predicted as a function of the total number of sensors. Additionally, with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is required for sampling the signals received by all of the sensors, which is conducive to reducing the hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness and superiority of the proposed array. PMID:28498329

  14. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays.

    PubMed

    Ferreira, Nuno R; Ledo, Ana; Laranjinha, João; Gerhardt, Greg A; Barbosa, Rui M

    2018-06-01

    Nanocomposite sensors consisting of carbon fiber microelectrodes modified with Nafion® and carbon nanotubes, and ceramic-based microelectrode biosensor arrays were used to measure ascorbate and glutamate in the brain with high spatial, temporal and chemical resolution. Nanocomposite sensors displayed electrocatalytic properties towards ascorbate oxidation, translated into a negative shift from +0.20V to -0.05V vs. Ag/AgCl, as well as a significant increase (10-fold) of electroactive surface area. The estimated average basal concentration of ascorbate in vivo in the CA1, CA3 and dentate gyrus (DG) sub regions of the hippocampus were 276±60μM (n=10), 183±30μM (n=10) and 133±42μM (n=10), respectively. The glutamate microbiosensor arrays showed a high sensitivity of 5.3±0.8pAμM -1 (n=18), and LOD of 204±32nM (n=10), and t 50% response time of 0.9±0.02s (n=6) and high selectivity against major interferents. The simultaneous and real-time measurements of glutamate and ascorbate in the hippocampus of anesthetized rats following local stimulus with KCl or glutamate revealed a dynamic interaction between the two neurochemicals. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Electronic Tongue for Quantitation of Contaminants in Water

    NASA Technical Reports Server (NTRS)

    Buehler, Marlin; Kuhlman, Gregory

    2004-01-01

    An assembly of sensors, denoted an electronic tongue, is undergoing development as a prototype of compact devices for use in measuring concentrations of contaminants in water. Thus far, the electronic tongue has been tested on ions of Cu, Zn, Pb, and Fe and shown to respond to concentrations as low as about 10 parts per million. This electronic tongue is expected to be capable of measuring concentrations of other metal ions and organic compounds. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings; detecting micro-organisms indirectly by measuring microbially influenced corrosion; and characterizing compounds of interest to the pharmaceutical and food industries. This version of the electronic tongue includes a heater, a temperature sensor, an array of ion-specific electrodes, an oxidation/ reduction sensor pair, an electrical-conductivity sensor, and an array of galvanic cells, all on one compact ceramic substrate. Special-purpose electronic excitation and readout circuitry for the sensors has also been constructed. The main advantage of the electronic tongue, relative to electrodes of this type used traditionally to assess water quality, is extreme ruggedness. The types of measurements that can be performed by use of the sensors on the electronic tongue are quite varied. The best combination of types of measurements for a given application depends on the specific contaminants that one seeks to detect. Experimental studies to identify such combinations were in progress at the time of reporting the information for this article.

  16. Measurement of Fluctuations in the Tilt of Arctic Ice at the Cearex Oceanography Camp: Experiment Review, Data Catalog and Preliminary Results

    DTIC Science & Technology

    1989-09-01

    enables a study of the internal wave field simultaneously using tiltmeters , strainmeters, and oceanographic sensors . It offers the chance to determine...Williams, personal communication]. Their sensors include a bubble level tiltmeter installed near the instrument hut, as well as a triangular array of...Plan Three sensor arrays are deployed near each other, as shown in Figure 2.3: our tiltmeter array, the SPRI strainmeter array, and the array of moored

  17. Metal oxide based multisensor array and portable database for field analysis of antioxidants

    PubMed Central

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-01-01

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993

  18. Superconducting transition edge sensors and methods for design and manufacture thereof

    NASA Technical Reports Server (NTRS)

    Sadleir, John E. (Inventor)

    2013-01-01

    Methods for forming sensors using transition edge sensors (TES) and sensors therefrom are described. The method includes forming a plurality of sensor arrays includes at least one TES device. The TES device includes a TES device body, a first superconducting lead contacting a first portion of the TES device body, and a second superconducting lead contacting of a second portion of the TES device body, where the first and second superconducting leads separated on the TES device body by a lead spacing. The lead spacing can be selected to be different for at least two of the plurality of sensor arrays. The method also includes determining a transition temperature for each of the plurality of sensor arrays and generating a signal responsive to detecting a change in the electrical characteristics of one of the plurality of sensor arrays meeting a transition temperature criterion.

  19. Low-cost scalable quartz crystal microbalance array for environmental sensing

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Anazagasty, Cristain; Jacobs, Christopher B.; Hianik, Tibor; Ivanov, Ilia N.

    2016-09-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution ( 1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  20. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    PubMed

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  1. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  2. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  3. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  4. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    PubMed

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gas hydrate environmental monitoring program in the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Chun, Jong-Hwa; McLean, Scott

    2013-04-01

    As a part of the Korean National Gas Hydrate Program, the Korea Institute of Geoscience and Mineral Resources (KIGAM) has been planned and conducted the environmental monitoring program for the gas hydrate production test in the Ulleung Basin, East Sea of Korea in 2014. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates during the production test. The KIGAM also plans to conduct the geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well before and after the production test. During production test, release of gas dissociated from the gas hydrate to the water column, seafloor deformation, changes in chemical characteristics of bottom water, changes in seafloor turbidity, etc. will be monitored by using the various monitoring instruments. The KIMOS consists of a near-field observation array and a far-field array. The near-field array is constructed with four remote sensor platforms each, and cabled to the primary node. The far-field sensor array will consists of four autonomous instrument pods. A scientific Remotely Operated Vehicle (ROV) will be used to deploy the sensor arrays, and to connect the cables to each field instrument package and a primary node. A ROV will also be tasked to collect the water and/or gas samples, and to identify any gas (bubble) plumes from the seafloor using a high-frequency sector scanning sonar. Power to the near-field instrument packages will be supplied by battery units located on the seafloor near the primary node. Data obtained from the instruments on the near-field array will be logged and downloaded in-situ at the primary node, and transmitted real-time to the support vessel using a ROV. These data will also be transmitted real-time to the drilling vessel via satellite.

  6. TOPICAL REVIEW: Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Shinar, Ruth

    2008-07-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.

  7. Symmetry Induced Heteroclinic Cycles in Coupled Sensor Devices

    DTIC Science & Technology

    2012-01-01

    of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers inductively coupled through electronic circuits. c...cycle can significantly enhance the sensitivity of an array of magnetic sensors. In particular, we consider arrays made up of fluxgate magnetometers ...IUTAM 5 ( 2012 ) 144 – 150 4. A Cycle in A Coupled-Core Fluxgate Magnetometer 4.1. Modeling In its most basic form, a fluxgate magnetometer

  8. Investigation of optical/infrared sensor techniques for application satellites

    NASA Technical Reports Server (NTRS)

    Kaufman, I.

    1972-01-01

    A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.

  9. Development of a conformable electronic skin based on silver nanowires and PDMS

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng

    2017-06-01

    This paper presented the designed and tested a flexible and stretchable pressure sensor array that could be used to cover 3D surface to measure contact pressure. The sensor array is laminated into a thin film with 1 mm in thickness and can easily be stretched without losing its functionality. The fabricated sensor array contained 8×8 sensing elements, each could measure the pressure up to 180 kPa. An improved sandwich structure is used to build the sensor array. The upper and lower layers were PDMS thin films embedded with conductor strips formed by PDMS-based silver nanowires (AgNWs) networks covered with nano-scale thin metal film. The middle layer was formed a porous PDMS film inserted with circular conductive rubber. The sensor array could detect the contact pressure within 30% stretching rate. In this paper, the performance of the pressure sensor array was systematically studied. With the corresponding scanning power-supply circuit and data acquisition system, it is demonstrated that the system can successfully capture the tactile images induced by objects of different shapes. Such sensor system could be applied on complex surfaces in robots or medical devices for contact pressure detection and feedback.

  10. Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Hassib, Lamyaa

    2005-06-01

    Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.

  11. Multispectral linear array visible and shortwave infrared sensors

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Warren, F. B.; Pellon, L. E.; Strong, R.; Elabd, H.; Cope, A. D.; Hoffmann, D. M.; Kramer, W. M.; Longsderff, R. W.

    1984-08-01

    All-solid state pushbroom sensors for multispectral linear array (MLA) instruments to replace mechanical scanners used on LANDSAT satellites are introduced. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a buttable, two-spectral-band, linear-format, shortwave infrared CCD are described. These silicon integrated circuits may be butted end to end to provide multispectral focal planes with thousands of contiguous, in-line photosites. The visible CCD integrated circuit is organized as four linear arrays of 1024 pixels each. Each array views the scene in a different spectral window, resulting in a four-band sensor. The shortwave infrared (SWIR) sensor is organized as 2 linear arrays of 512 detectors each. Each linear array is optimized for performance at a different wavelength in the SWIR band.

  12. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  13. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  14. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2 and O2. This sensor is useful for monitoring bioprocesses such as (beer) fermentation and for clinical situations such as blood gas analysis. DNA sensors were created by attaching short single strands of DNA (probes) to the fiber tip. A matching single strand (target) forms a strong interacting pair with the probe upon contact. The target strands in a sample are labeled with a fluorescent dye. When a probe-target pair is formed and excitation light is sent down the fiber, the fiber bearing the pair emits light that is captured and detected. A high density DNA array was created by isolating thousands of discrete DNA sensors on the tip of an imaging optical fiber. This array was made possible by the formation of microwells on the imaging fiber tip. Microspheres functionalized with DNA were placed in the wells of the fiber and each microsphere was independently and simultaneously monitored. (Abstract shortened by UMI.)

  15. Mars surface chemistry investigated with the MOx probe: A 1-kg optical microsensor-based chemical analysis instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricco, A.J.; Butler, M.A.; Grunthaner, F.J.

    The authors have designed and built the prototype of an instrument that will use fiber optic micromirror-based chemical sensors to investigate the surprising reactivity of martian soil reported by several Viking Lander Experiments in the mid 1970s. The MOx (Mars Oxidant Experiment) Instrument, which will probe the reactivity of the near-surface martian atmosphere as well as soil, utilizes an array of chemically sensitive thin films including metals, organometallics, and organic dyes to produce a pattern of reflectivity changes characteristic of the species interacting with these sensing layers. The 850-g system includes LED light sources, optical fiber light guides, silicon micromachinedmore » fixtures, a line-array CCD detector, control-and-measurement electronics, microprocessor, memory, interface, batteries, and housing. This instrument monitors real-time reflectivities from an array of {approximately}200 separate micromirrors. The unmanned Russian Mars 96 mission is slated to carry the MOx Instrument along with experiments from several other nations. The principles of the chemically sensitive micromirror upon which this instrument is based will be described and preliminary data for reactions of micromirrors with oxidant materials believed to be similar to those on Mars will be presented. The general design of the instrument, including Si micromachined components, as well as the range of coatings and the rationale for their selection, will be discussed as well.« less

  16. Ultrasensitive sliver nanorods array SERS sensor for mercury ions.

    PubMed

    Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui

    2017-01-15

    With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg 2+ , which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    NASA Astrophysics Data System (ADS)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates were used to calculate sediment O2 demand. Episodic events yielding turbidity spikes produced episodic spikes in chimney methane concentrations and sediment-water fluxes. The robust data set reveals new capabilities for long-term monitoring of near-bottom processes in biogeochemically active, continental margin environments.

  18. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  19. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    NASA Astrophysics Data System (ADS)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  20. Label-free protein assay based on a nanomechanical cantilever array

    NASA Astrophysics Data System (ADS)

    Arntz, Y.; Seelig, J. D.; Lang, H. P.; Zhang, J.; Hunziker, P.; Ramseyer, J. P.; Meyer, E.; Hegner, M.; Gerber, Ch

    2003-01-01

    We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen-antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 µg ml-1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen-antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.

  1. Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers

    PubMed Central

    Ansari, Mohd. Zahid; Cho, Chongdu; Kim, Jooyong; Bang, Booun

    2009-01-01

    Arrays of microcantilevers are increasingly being used as physical, biological, and chemical sensors in various applications. To improve the sensitivity of microcantilever sensors, this study analyses and compares the deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Three models of each profile are investigated. The cantilevers are analyzed for maximum deflection, fundamental resonant frequency and maximum stress. The surface stress is modelled as in-plane tensile force applied on the top edge of the microcantilevers. A commercial finite element analysis software ANSYS is used to analyze the designs. Results show paddled trapezoidal profile microcantilevers have better sensitivity. PMID:22574041

  2. A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene.

    PubMed

    Li, Xiaohua; Zhang, Zhujun; Tao, Liang

    2013-09-15

    Triacetone triperoxide (TATP) is relatively easy to make and has been used in various terrorist acts. Early but easy detection of TATP is highly desired. We designed a new type sensor array for H2O2. The unique CL sensor array was based on CeO2 nanoparticles' membranes, which have an excellent catalytic effect on the luminol-H2O2 CL reaction in alkaline medium. It exhibits a linear range for the detection of H2O2 from 1.0×10(-8) to 5.0×10(-5)M (R(2)=0.9991) with a 1s response time. The detection limit is 1.0×10(-9)M. Notably, the present approach allows the design of CL sensor array assays in a more simple, time-saving, long-lifetime, high-throughput, and economical approach when compared with conventional CL sensor. It is conceptually different from conventional CL sensor assays. The novel sensor array has been successfully applied for the detection of TATP at the scene. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts

    PubMed Central

    Garcia-Hernandez, Celia; Medina-Plaza, Cristina; Garcia-Cabezon, Cristina; Martin-Pedrosa, Fernando; del Valle, Isabel; de Saja, Jose Antonio; Rodríguez-Méndez, Maria Luz

    2015-01-01

    An array of electrochemical quartz crystal electrodes (EQCM) modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo). The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC) was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS) evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately. PMID:26610494

  4. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.

    2018-06-01

    Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).

  5. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    PubMed Central

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892

  6. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  7. Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.

    PubMed

    Li, Shuang; Xie, Dongfeng

    2016-11-17

    In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.

  8. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices.

    PubMed

    Credo, Grace M; Su, Xing; Wu, Kai; Elibol, Oguz H; Liu, David J; Reddy, Bobby; Tsai, Ta-Wei; Dorvel, Brian R; Daniels, Jonathan S; Bashir, Rashid; Varma, Madoo

    2012-03-21

    We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.

  9. Optical devices for biochemical sensing in flame hydrolysis deposited glass

    NASA Astrophysics Data System (ADS)

    Ruano-Lopez, Jesus M.

    Previous research in the field of Flame Hydrolysis Deposition (FHD) of glasses has focused on the production of low cost optical devices for the field of telecommunications. The originality of this doctoral research resides in the exploration of this technology in the fabrication of optical bio-chemical sensors, with integrated "Lab-on-a-chip" devices. To achieve this goal, we have combined and applied different microfabrication processes for the manufacture of sensor platforms using FHD. These structures are unique in that they take advantage of the intrinsic benefits of the microfabrication process, such as, miniaturisation and mass production, and combine them with the properties of FHD glass, namely: low loss optical transducing mechanisms, planar technologies and monolithic integration. This thesis demonstrates that FHD is a suitable technology for biosensing and Lab- on-a-Chip applications. The objective is to provide future researchers with the necessary tools to accomplish an integrated analytical system based on FHD. We have designed, fabricated, and successfully tested a FHD miniaturised sensor, which comprised optical and microfluidic circuitry, in the framework of low volume fluorescence assays. For the first time, volumes as low as 570 pL were analysed with a Cyanine-5 fluorophore with a detection limit of 20 pM, or ca. 6000 molecules (+/-3sigma) for this platform. The fabrication of the sensor generated a compilation of processes that were then utilised to produce other possible optical platforms for bio-chemical sensors in FHD, e.g. arrays and microfluidics. The "catalogue" of methods used included new recipes for reactive ion etching, glass deposition and bonding techniques that enabled the development of the microfluidic circuitry, integrated with an optical circuitry. Furthermore, we developed techniques to implement new tasks such as optical signal treatment using integrated optical structures, planar arraying of sensors, a separating element for liquid chromatography, and finally a pumping system for delivering small amounts of liquid along the microfluidic channels. This thesis comprises six chapters. In Chapter 1, an overview of the topic was presented, offering a review of the various fields addressed, as well as a description of the motivation and originality of this work. Chapter 2 describes the processes developed to fabricate an optical sensor, and Chapter 3 assesses its performance. In Chapter 4, integrated optical circuit designs and their fabrication methods, as well as developing and testing of an array of sensors, are presented. The description of a separating element involved in a liquid chromatography system, and the pumping of liquids in a FHD optical device, were addressed in Chapter 5. Finally, Chapter 6 summarised the conclusions and suggested possible future work. Last but not least, the appendix, contains techniques for hybrid integration; recipes for etching of rare earth glasses; as well as instrumentation designs. This research has taken Flame Hydrolysis Deposition technique into the world of optical bio-chemical sensors, creating a bridge between analytical assays and FHD glass. In this respect, the demonstrated flexibility of the technology will enable a variety of configurations to be created and implemented, with the prospect of using the techniques for laboratory-on-a-chip technologies. The work has been patented by the University of Glasgow, for future exploitation in analytical biotechnology and Lab-on-a-Chip.

  10. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.

    PubMed

    Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong

    2012-01-01

    In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anazagasty, Cristain; Hianik, Tibor; Ivanov, Ilia N

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution (~1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrenemore » sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.« less

  12. Intra-Inversion Filtering for Use of Magnetic Fields to Locate and Characterize Magnetic Dipoles for Unexploded Ordnance (UXO) Cleanup

    DTIC Science & Technology

    2007-02-26

    IIGE Intra-Inversion Gradient Estimation JPG Jefferson Proving Ground (Indiana); www.jpgbrac.com MTADS Multi- sensor Towed Array Detection...wherein the Statement of Need sought development of algorithms to exploit data from current state-of-the-art geophysical sensors and advanced sensors ...profile direction using an array of magnetometers as in the Multi- sensor Towed Array Detection System (MTADS). In most instances, such data may be

  13. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  14. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torusa)

    NASA Astrophysics Data System (ADS)

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  16. Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring

    NASA Astrophysics Data System (ADS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.

    2018-05-01

    We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.

  17. Methods for determining infrasound phase velocity direction with an array of line sensors.

    PubMed

    Walker, Kristoffer T; Zumberge, Mark A; Hedlin, Michael A H; Shearer, Peter M

    2008-10-01

    Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters.

  18. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing.

    PubMed

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-09-07

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  19. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    PubMed Central

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings. PMID:27618045

  20. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    NASA Astrophysics Data System (ADS)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  1. Challenges and the state of the technology for printed sensor arrays for structural monitoring

    NASA Astrophysics Data System (ADS)

    Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory

    2017-04-01

    Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.

  2. Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications

    PubMed Central

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2017-01-01

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I−V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs. PMID:26348408

  3. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  4. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    PubMed

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  5. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    PubMed Central

    Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui

    2016-01-01

    Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765

  6. Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.

    PubMed

    Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F

    2017-08-01

    While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.

  7. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less

  8. Acoustic interference suppression of quartz crystal microbalance sensor arrays utilizing phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Yu; Huang, Li-Chung; Wang, Wei-Shan; Lin, Yu-Ching; Wu, Tsung-Tsong; Sun, Jia-Hong; Esashi, Masayoshi

    2013-04-01

    Acoustic interference suppression of quartz crystal microbalance (QCM) sensor arrays utilizing phononic crystals is investigated in this paper. A square-lattice phononic crystal structure is designed to have a complete band gap covering the QCM's resonance frequency. The monolithic sensor array consisting of two QCMs separated by phononic crystals is fabricated by micromachining processes. As a result, 12 rows of phononic crystals with band gap boost insertion loss between the two QCMs by 20 dB and also reduce spurious modes. Accordingly, the phononic crystal is verified to be capable of suppressing the acoustic interference between adjacent QCMs in a sensor array.

  9. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  10. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    NASA Astrophysics Data System (ADS)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  11. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    NASA Technical Reports Server (NTRS)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  12. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    PubMed

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  13. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    DTIC Science & Technology

    2016-01-20

    Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken

  14. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  15. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  16. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  17. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of "Smart" Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  18. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  19. Investigation on dielectrophoretic assembly of nanostructures and its application on chemical sensors

    NASA Astrophysics Data System (ADS)

    Tao, Quan

    Because of their extraordinary characteristics such as quantum confinement and large surface-tovolume ratio, semiconducting nanostructures such as nanowires or nanotubes hold great potential in sensing chemical vapors. Nanowire or nanotube based gas sensors usually possess appealing advantages such as high sensitivity, high stability, fast recovery time, and electrically controllable properties. To better predict the composition and concentration of target gas, nanostructures made from heterogeneous materials are employed to provide more predictors. In recent years, nanowires and nanotubes can be synthesized routinely through different methods. The techniques of fabricating nanowire or nanotube based sensor arrays, however, encounter obstacles and deserve further investigations. Dielectrophoresis (DEP), which refers to the motion of submicron particles inside a non-uniform electric field, has long been recognized as a nondestructive, easily implementable, and efficient approach to manipulate nanostructures onto electronic circuitries. However, due to our limited understandings, devices fabricated through DEP often end up with unpredictable number of arbitrarily aligned nanostructures. In this study, we first optimize the classical DEP formulas such that it can be applied to a more general case that a nanostructure is subjected to a non-uniform electric field with arbitrary orientation. A comprehensive model is then constructed to investigate the trajectory and alignment of DEP assembled nanostructures, which can be verified by experimental observations. The simulation results assist us to fabricate a gas sensor array with zinc oxide (ZnO) nanowires and carbon nanotubes (CNTs). It is then demonstrated that the device can well sense ammonia (NH3) at room temperature, which circumvents the usually required high temperature condition for nanowire based gas sensor application. An effective approach to recover the device using DC biases to locally heat up the nanostructures is then proposed and implemented to accelerate the recovery process of the device without the requirement of heating up the whole device. As the sensors are characterized under different NH3 concentrations, the outputs are analyzed using regression methods to estimate the concentration of NH3. The quadratic model with the lasso is demonstrated to provide best performance for the collected data.

  20. Enhanced processing in arrays of optimally tuned nonlinear biomimetic sensors: A coupling-mediated Ringelmann effect and its dynamical mitigation

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.

    2017-03-01

    Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.

  1. High-Accuracy Readout Electronics for Piezoresistive Tactile Sensors

    PubMed Central

    Vidal-Verdú, Fernando

    2017-01-01

    The typical layout in a piezoresistive tactile sensor arranges individual sensors to form an array with M rows and N columns. While this layout reduces the wiring involved, it does not allow the values of the sensor resistors to be measured individually due to the appearance of crosstalk caused by the nonidealities of the array reading circuits. In this paper, two reading methods that minimize errors resulting from this phenomenon are assessed by designing an electronic system for array reading, and the results are compared to those obtained using the traditional method, obviating the nonidealities of the reading circuit. The different models were compared by testing the system with an array of discrete resistors. The system was later connected to a tactile sensor with 8 × 7 taxels. PMID:29104229

  2. Electrochemical approaches for chemical and biological analysis on Mars

    NASA Technical Reports Server (NTRS)

    Kounaves, Samuel P.

    2003-01-01

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.

  3. Electrochemical approaches for chemical and biological analysis on Mars.

    PubMed

    Kounaves, Samuel P

    2003-02-17

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.

  4. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  5. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  6. Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays.

    PubMed

    Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X

    2015-11-21

    We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.

  7. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs

    PubMed Central

    Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang

    2017-01-01

    A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338

  8. Carbon Nanotube Based Nanotechnology for NASA Mission Needs and Societal Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Meyyappan, M.

    2011-01-01

    Carbon nanotubes (CNT) exhibit extraordinary mechanical properties and unique electronic properties and therefore, have received much attention for more than a decade now for a variety of applications ranging from nanoelectronics, composites to meeting needs in energy, environmental and other sectors. In this talk, we focus on some near term potential of CNT applications for both NASA and other Agency/societal needs. The most promising and successful application to date is a nano chem sensor at TRL 6 that uses a 16-256 sensor array in the construction of an electronic nose. Pristine, doped, functionalized and metal-loaded SWCNTs are used as conducting materials to provide chemical variation across the individual elements of the sensor array. This miniaturized sensor has been incorporated in an iPhone for homeland security applications. Gases and vapors relevant to leak detection in crew vehicles, biomedical, mining, chemical threats, industrial spills and others have been demonstrated. SWCNTs also respond to radiation exposure via a change in conductivity and therefore, a similar strategy is being pursued to construct a radiation nose to identify radiation sources (gamma, protons, neutrons, X-ray, etc.) with their energy levels. Carbon nanofibers (CNFs) grown using plasma enhanced CVD typically are vertical, individual, freestanding structures and therefore, are ideal for construction of nanoelectrodes. A nanoelectrode array (NEA) can be the basis for an affinity-based biosensor to meet the needs in applications such as lab-on-a-chip, environmental monitoring, cancer diagnostics, biothreat monitoring, water and food safety and others. A couple of demonstrations including detection of e-coli and ricin will be discussed. The NEA is also useful for implantation in the brain for deep brain stimulation and neuroengineering applications. Miniaturization of payload such as science instrumentation and power sources is critical to reduce launch costs. High current density (greater than 100 mA/per square centimeters) field emission capabilities of CNTs can be exploited for construction of electron gun for electron microscopy and X-ray tubes for spectrometers and baggage screening. A CNT pillar array configuration has been demonstrated, not only meeting the high current density needs but more importantly providing long term emitter stability. Finally, supercapacitors hold the promise to combine the high energy density of a battery with the high power density of capacitors. Traditional graphite electrodes have not delivered this promise yet. A novel design and processing approach using MWCNTs has shown a record 550 F/g capacitance along with significant device endurance. This supercapacitor is suitable for railgun launch application for NASA, powering rovers and robots, consumer electronics and future hybrid vehicles.

  9. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  10. Implementation of serial amplifying fluorescent polymer arrays for enhanced chemical vapor sensing of landmines

    NASA Astrophysics Data System (ADS)

    Fisher, Mark E.; la Grone, Marcus; Sikes, John

    2003-09-01

    A sensor (known as Fido) that utilizes amplification of fluorescence quenching as the transduction mechanism for ultra-trace detection of nitroaromatic compounds associated with landmines has been described previously. Previous sensor prototypes utilized a single band of amplifying polymer deployed inside a capillary waveguide to form the sensing element of the detector. A new prototype has been developed that incorporates multiple, discrete bands of different amplifying polymers deployed in a linear array inside the capillary. Vapor-phase samples are introduced into the sensor as a sharp pulse via a gated inlet. As the vapor pulse is swept through the capillary by flow of a carrier gas, the pulse of analyte encounters the bands of polymer sequentially. If the sample contains nitroaromatic explosives, the bands of polymer will respond with a reduction in emission intensity proportional to the mass of analyte in the sample. Because the polymer bands are deployed serially, the analyte pulse does not reach the bands of polymer simultaneously. Hence, a temporal response pattern will be observed as the analyte pulse traverses the length of the capillary. In addition, the intensity of response for each band will vary, producing a ratiometric response. The temporal and ratiometric responses are characteristic of a given analyte, enhancing discrimination of target analytes from potential interferents. This should translate into a reduction in sensor false alarm rates.

  11. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  12. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  13. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  14. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  15. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can describe the concentrations of chemical species and of particulate matter as functions of time. A system of the present developmental type and a conventional fire detector were tested under both fire and false-alarm conditions in a Federal Aviation Administration cargo-compartment- testing facility. Both systems consistently detected fires. However, the conventional fire detector consistently generated false alarms, whereas the developmental system did not generate any false alarms.

  16. Suitability of E-tongue Sensors to Assess Taste-Masking of Pediatric Liquids by Different Beverages Considering Their Physico-chemical Properties.

    PubMed

    Immohr, Laura Isabell; Hedfeld, Claas; Lang, Artur; Pein-Hackelbusch, Miriam

    2017-02-01

    Manipulation of liquid oral drugs by mixing them into foodstuff is a common procedure for taste-masking of OTC pharmaceuticals when administered to children. However, the taste-masking capability of such application media is not systematically evaluated, and recommendations for suitable media are hardly published. In this study, a sensor array of commercially available and self-developed electronic tongue sensors was employed to assess the taste-masking efficiency of eight different beverages (tap water, apple juice, carrot juice, fennel tea, fruit tea, milk, cocoa, and Alete meal to drink) on the OTC pharmaceuticals Ambroxol-ratiopharm®, Cetirizin AL, and Laxoberal® by multivariate data analysis. The Euclidean distances between each pure application medium and its corresponding drug mixture were used as an indicator for the taste-masking efficiency and correlated to the physico-chemical properties of the beverages. Thus, the pH value, the viscosity, as well as the fat and sugar content of the beverages were included, whereas only the viscosity appeared to be insignificant in all cases. The sugar content as well as the fat content and pH value emerged to be a significant variable in taste-masking efficiency for some of the tested drug products. It was shown that the applied electronic tongue sensors were capable to demonstrate the impact of the physico-chemical properties of the application media on their taste-masking capacity regardless of their non-selectivity towards these characteristics.

  17. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.

  18. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  19. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    DTIC Science & Technology

    2015-07-01

    turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by

  20. Low Noise Infrasonic Sensor System with High Reduction of Natural Background Noise

    DTIC Science & Technology

    2006-05-01

    local processing allows a variety of options both in the array geometry and signal processing. A generic geometry is indicated in Figure 2. Geometric...higher frequency sound detected . Table 1 provides a comparison of piezocable and microbarograph based arrays . Piezocable Sensor Local Signal ...aliasing associated with the current infrasound sensors used at large spacing in the present designs of infrasound monitoring arrays , particularly in the

  1. Acoustic Vector-Sensor Array Processing

    DTIC Science & Technology

    2010-06-01

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) Massachusetts Institute...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public...section shows, vector-sensor arrays are more versatile than arrays of only pressure-sensors. Exploiting this versatility raises a number of ques

  2. Cross-coherent vector sensor processing for spatially distributed glider networks.

    PubMed

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  3. A New All Solid State Approach to Gaseous Pollutant Detection

    NASA Technical Reports Server (NTRS)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  4. Three-dimensional cross point readout detector design for including depth information

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

  5. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  6. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  7. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  8. Novel E-Field Sensor for Projectile Detection

    DTIC Science & Technology

    2012-10-22

    aircrafts. They used an array of three plate induction sensors and a simple algorithm to deter mine the direction of the planes [9]. In more recent...publications [10, 11, 12] researchers present increasingly more advanced algorithms and sensors. The techniques developed thus far have not received...the electric field pulse is being detected by a group of sensors in array with known distances between the sensors, so triangulation algorithms could

  9. A Large Area Tactile Sensor Patch Based on Commercial Force Sensors

    PubMed Central

    Vidal-Verdú, Fernando; Barquero, Maria Jose; Castellanos-Ramos, Julián; Navas-González, Rafael; Sánchez, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2011-01-01

    This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus. PMID:22163910

  10. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip

    DOE PAGES

    Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...

    2017-04-18

    Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less

  11. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Huang, Chao; Lin, Yi-Dong

    Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less

  12. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  13. Planar location of the simulative acoustic source based on fiber optic sensor array

    NASA Astrophysics Data System (ADS)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  14. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  15. Multisensor Arrays for Greater Reliability and Accuracy

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Eckhoff, Anthony; Lane, John; Perotti, Jose; Randazzo, John; Blalock, Norman; Ree, Jeff

    2004-01-01

    Arrays of multiple, nominally identical sensors with sensor-output-processing electronic hardware and software are being developed in order to obtain accuracy, reliability, and lifetime greater than those of single sensors. The conceptual basis of this development lies in the statistical behavior of multiple sensors and a multisensor-array (MSA) algorithm that exploits that behavior. In addition, advances in microelectromechanical systems (MEMS) and integrated circuits are exploited. A typical sensor unit according to this concept includes multiple MEMS sensors and sensor-readout circuitry fabricated together on a single chip and packaged compactly with a microprocessor that performs several functions, including execution of the MSA algorithm. In the MSA algorithm, the readings from all the sensors in an array at a given instant of time are compared and the reliability of each sensor is quantified. This comparison of readings and quantification of reliabilities involves the calculation of the ratio between every sensor reading and every other sensor reading, plus calculation of the sum of all such ratios. Then one output reading for the given instant of time is computed as a weighted average of the readings of all the sensors. In this computation, the weight for each sensor is the aforementioned value used to quantify its reliability. In an optional variant of the MSA algorithm that can be implemented easily, a running sum of the reliability value for each sensor at previous time steps as well as at the present time step is used as the weight of the sensor in calculating the weighted average at the present time step. In this variant, the weight of a sensor that continually fails gradually decreases, so that eventually, its influence over the output reading becomes minimal: In effect, the sensor system "learns" which sensors to trust and which not to trust. The MSA algorithm incorporates a criterion for deciding whether there remain enough sensor readings that approximate each other sufficiently closely to constitute a majority for the purpose of quantifying reliability. This criterion is, simply, that if there do not exist at least three sensors having weights greater than a prescribed minimum acceptable value, then the array as a whole is deemed to have failed.

  16. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  17. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  18. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  19. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  20. An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses

    NASA Astrophysics Data System (ADS)

    Lvova, Larisa; Mielle, Patrick; Salles, Christian; Denis, Sylvain; Vergoignan, Catherine; Barra, Aurélien; Di Natale, Corrado; Paolesse, Roberto; Temple-Boyer, Pierre; Feron, Gilles

    2011-09-01

    The commercial sensors and prototype ISEs array (Ion Selective Electrodes array) were utilized for NaCl concentration measurements in soft cheeses, in particular in vitro gut process and in commercial Italian mozzarella cheeses. The values obtained from the sensors were compared with HPLC analysis. The results showed the feasibility of the ISE array application to monitor NaCl in soft cheese during the breakdown in the digester. The best results were obtained with the use of ISEs array combining, in particular, Cl- and Na+ detections. The salinity of commercial mozzarella cheese samples and the originally utilized milk type (cow or buffalo) were also satisfactory determined with the developed ISE array.

  1. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.

    PubMed

    Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S

    2010-03-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.

  2. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas

    PubMed Central

    Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.

    2010-01-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838

  3. Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.

    PubMed

    Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang

    2015-03-01

    Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.

  4. Fabrication of polymerized crystalline colloidal array thin film modified β-cyclodextrin polymer for paraoxon-ethyl and parathion-ethyl detection.

    PubMed

    Bui, Minh-Phuong N; Seo, Seong S

    2014-01-01

    We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.

  5. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination

    NASA Astrophysics Data System (ADS)

    Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza

    2016-08-01

    Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.

  6. A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Gerling, John David

    This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a spectral range 400-900 nm and demonstrate its ability for spectral identification with 3 different phosphor powder samples. Finally, we conclude with suggestions for future areas of research.

  7. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis

    PubMed Central

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-01-01

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873

  8. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis.

    PubMed

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-07-15

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.

  9. Comparative Chemometric Analysis for Classification of Acids and Bases via a Colorimetric Sensor Array.

    PubMed

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E

    2018-02-01

    With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.

  10. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  11. Long range heliostat target using array of normal incidence pyranometers to evaluate a beam of solar radiation

    DOEpatents

    Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J

    2014-03-04

    Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.

  12. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  13. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  14. Protein recognition by a pattern-generating fluorescent molecular probe.

    PubMed

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  15. MOF-5 decorated hierarchical ZnO nanorod arrays and its photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yinmin; Lan, Ding; Wang, Yuren; Cao, He; Jiang, Heng

    2011-04-01

    The strategy to manipulate nanoscale materials into well-organized hierarchical architectures is very important to both material synthesis and nanodevice applications. Here, nanoscale MOF-5 crystallites were successfully fabricated onto ordered hierarchical ZnO arrays based on aqueous chemical synthesis and molecule self-assembly technology guided room temperature diffusion method, which has the advantages of energy saving and simple operation. The structures and morphologies of the samples were performed by X-ray powder diffraction and field emission scanning electronic microscopy. The MOF-5 crystallites have good quality and bind well to the hexagonal-patterned ZnO arrays. The photoluminescence spectrum shows that the emission of hybrid MOF-5-ZnO films displays a blue shift in green emission and intensity reduction in UV emission. This ordered hybrid semiconductor material is expected to exploit the great potentiality in sensors, micro/nanodevices, and screen displays.

  16. Protein recognition by a pattern-generating fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  17. Indoor air quality inspection and analysis system based on gas sensor array

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  18. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  19. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  20. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  1. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  2. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection.

    PubMed

    Nasri, Bayan; Wu, Ting; Alharbi, Abdullah; You, Kae-Dyi; Gupta, Mayank; Sebastian, Sunit P; Kiani, Roozbeh; Shahrjerdi, Davood

    2017-12-01

    We introduce a hybrid CMOS-graphene sensor array for subsecond measurement of dopamine via fast-scan cyclic voltammetry (FSCV). The prototype chip has four independent CMOS readout channels, fabricated in a 65-nm process. Using planar multilayer graphene as biologically compatible sensing material enables integration of miniaturized sensing electrodes directly above the readout channels. Taking advantage of the chemical specificity of FSCV, we introduce a region of interest technique, which subtracts a large portion of the background current using a programmable low-noise constant current at about the redox potentials. We demonstrate the utility of this feature for enhancing the sensitivity by measuring the sensor response to a known dopamine concentration in vitro at three different scan rates. This strategy further allows us to significantly reduce the dynamic range requirements of the analog-to-digital converter (ADC) without compromising the measurement accuracy. We show that an integrating dual-slope ADC is adequate for digitizing the background-subtracted current. The ADC operates at a sampling frequency of 5-10 kHz and has an effective resolution of about 60 pA, which corresponds to a theoretical dopamine detection limit of about 6 nM. Our hybrid sensing platform offers an effective solution for implementing next-generation FSCV devices that can enable precise recording of dopamine signaling in vivo on a large scale.

  3. An expandable crosstalk reduction method for inline fiber Fabry-Pérot sensor array based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming

    2016-07-01

    The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.

  4. Leak Detection in Spacecraft Using a 64-Element Multiplexed Passive Array to Monitor Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron

    2006-03-01

    We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.

  5. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  6. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor.

    PubMed

    Ouyang, Lei; Yao, Ling; Zhou, Taohong; Zhu, Lihua

    2018-10-16

    Malachite Green (MG) is a banned pesticide for aquaculture products. As a required inspection item, its fast and accurate determination before the products' accessing market is very important. Surface enhanced Raman scattering (SERS) is a promising tool for MG sensing, but it requires the overcoming of several problems such as fairly poor sensitivity and reproducibility, especially laser induced chemical conversion and photo-bleaching during SERS observation. By using a graphene wrapped Ag array based flexible membrane sensor, a modified SERS strategy was proposed for the sensitive and accurate detection of MG. The graphene layer functioned as an inert protector for impeding chemical transferring of the bioproduct Leucomalachite Green (LMG) to MG during the SERS detection, and as a heat transmitter for preventing laser induced photo-bleaching, which enables the separate detection of MG and LMG in fish extracts. The combination of the Ag array and the graphene cover also produced plentiful densely and uniformly distributed hot spots, leading to analytical enhancement factor up to 3.9 × 10 8 and excellent reproducibility (relative standard deviation low to 5.8% for 70 runs). The proposed method was easily used for MG detection with limit of detection (LOD) as low as 2.7 × 10 -11  mol L -1 . The flexibility of the sensor enable it have a merit for in-field fast detection of MG residues on the scale of a living fish through a surface extraction and paste transferring manner. The developed strategy was successfully applied in the analysis of real samples, showing good prospects for both the fast inspection and quantitative detection of MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dynamic Leading-Edge Stagnation Point Determination Utilizing an Array of Hot-Film Sensors with Unknown Calibration

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2017-01-01

    During flight-testing of the National Aeronautics and Space Administration (NASA) Gulfstream III (G-III) airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) SubsoniC Research Aircraft Testbed (SCRAT) between March 2013 and April 2015 it became evident that the sensor array used for stagnation point detection was not functioning as expected. The stagnation point detection system is a self calibrating hot-film array; the calibration was unknown and varied between flights, however, the channel with the lowest power consumption was expected to correspond with the point of least surface shear. While individual channels showed the expected behavior for the hot-film sensors, more often than not the lowest power consumption occurred at a single sensor (despite in-flight maneuvering) in the array located far from the expected stagnation point. An algorithm was developed to process the available system output and determine the stagnation point location. After multiple updates and refinements, the final algorithm was not sensitive to the failure of a single sensor in the array, but adjacent failures beneath the stagnation point crippled the algorithm.

  8. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  9. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells

    PubMed Central

    Zan, Xiaoli; Wang, Chenxu

    2016-01-01

    Abstract To circumvent the bottlenecks of non‐flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil–water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm−2 μm −1, up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nm, and a wide linear range of 87 nm to 100 μm. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well‐tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil–water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  10. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    PubMed

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-04

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Letourneau, Antoine; Sawan, Mohamad

    2017-04-01

    In this paper we present a CMOS capacitive sensor array as a compact and low-cost platform for high-throughput cell growth monitoring. The proposed biosensor, consists of an array of 8 × 8 CMOS fully differential charge-based capacitive measurement sensors. A DC-input Σ∆ modulator is used to convert the sensors' signals to digital values for reading out the biological/chemical data and further signal processing. To compensate the mismatch variations between the current mirror transistors, a calibration circuitry is proposed which removes the output voltage offset with less than 8.2% error. We validate the chip functionality using various organic solvents with different dielectric constants. Moreover, we show the response of the chip to different concentrations of Polystyrene beads that have the same electrical properties as the living cells. The experimental results show that the chip allows the detection of a wide range of Polystyrene beads concentrations from as low as 10 beads/ml to 100 k beads/ml. In addition, we present the experimental results from H1299 (human lung carcinoma) cell line where we show that the chip successfully allows the detection of cell attachment and growth over capacitive electrodes in a 30 h measurement time and the results are in consistency with the standard cell-based assays. The capability of proposed device for label-free and real-time detection of cell growth with very high sensitivity opens up the important opportunity for utilizing the device in rapid screening of living cells.

  12. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, Xiaohong; Ding, Mingjie; Peng, Gangding; Qi, Yongle; Wang, Yile; Ren, Jie

    2018-01-01

    An on-chip refractive index (RI) sensor, which is based on the localized surface plasmon resonance (LSPR) of periodic gold nanorings array, is presented. The structure parameters and performance of LSPR-based sensors are optimized by analyzing and comparing the LSPR extinction spectra. The mechanism of the enhancement of plasma resonance in a ring array is discussed by the simulation results. A feasible preparation scheme of the nanorings array is proposed and verified by coating a gold film and etching on the photonic crystals. Based on the optimum sensing structure, an RI sensor is constructed with a RI sensitivity of 577 nm/refractive index unit (RIU) and a figure of merit (FOM) of 6.1, which is approximately 2 times that of previous reports.

  13. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  14. Harmful Gas Recognition Exploiting a CTL Sensor Array

    PubMed Central

    Wang, Qihui; Xie, Lijun; Zhu, Bo; Zheng, Yao; Cao, Shihua

    2013-01-01

    In this paper, a novel cataluminescence (CTL)-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field. PMID:24113681

  15. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays

    PubMed Central

    Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri

    2017-01-01

    Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the invidual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively. PMID:28007515

  16. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

    PubMed Central

    2018-01-01

    Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364

  17. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    PubMed

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  18. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  19. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against cancer marker protein (Cancer Antigen, CA 125) using covalent immobilization for detection of CA 125 in buffer and human blood plasma. Third approach combined electrochemical deposition of conducting polymer and assembly steps into a single step fabrication & functionalization using e-beam lithographically patterned nano-channels. Using this method array of Ppy nanowires were fabricated. Further during fabrication step, by entrapping recognition molecule (avidin) biofunctionalization was achieved. Subsequently these sensors were used for detection of biotinylated single stranded DNA.

  20. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.

  1. Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.

    DOEpatents

    DiMeo, Jr., Frank; Baum, Thomas H.

    2003-07-22

    The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  2. Rational Design of QCM-D Virtual Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination.

    PubMed

    Speller, Nicholas C; Siraj, Noureen; Regmi, Bishnu P; Marzoughi, Hassan; Neal, Courtney; Warner, Isiah M

    2015-01-01

    Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.

  3. Nanostructure based EO/IR sensor development for homeland security applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Sood, Adam W.; Puri, Yash R.; Manzur, Tariq; Dhar, Nibir K.; Polla, Dennis L.; Wang, Zhong L.; Wijewarnasuriya, Priyalal S.; Anwar, A. F. M.

    2011-06-01

    Next Generation EO/IR focal plane arrays using nanostructure materials are being developed for a variety of Defense and Homeland Security Sensor Applications. Several different nanomaterials are being evaluated for these applications. These include ZnO nanowires, GaN Nanowires and II-VI nanowires, which have demonstrated large signal to noise ratio as a wide band gap nanostructure material in the UV band. Similarly, the work is under way using Carbon Nanotubes (CNT) for a high speed detector and focal plane array as two-dimensional array as bolometer for IR bands of interest, which can be implemented for the sensors for homeland security applications. In this paper, we will discuss the sensor design and model predicting performance of an EO/IR focal plane array and Sensor that can cover the UV to IR bands of interest. The model can provide a robust means for comparing performance of the EO/IR FPA's and Sensors that can operate in the UV, Visible-NIR (0.4- 1.8μ), SWIR (2.0-2.5μ), MWIR (3-5μ), and LWIR bands (8-14μ). This model can be used as a tool for predicting performance of nanostructure arrays under development. We will also discuss our results on growth and characterization of ZnO nanowires and CNT's for the next generation sensor applications. We also present several approaches for integrated energy harvesting using nanostructure based solar cells and Nanogenerators that can be used to supplement the energy required for nanostructure based sensors.

  4. Scalable fabric tactile sensor arrays for soft bodies

    NASA Astrophysics Data System (ADS)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.

  5. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    PubMed Central

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  6. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    PubMed

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-07-12

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  7. Remote Sensing of Aircraft Contrails Using a Field Portable Digital Array Scanned Interferometer

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden

    1997-01-01

    With a Digital Array Scanned Interferometer (DASI), we have obtained proof-of-concept observations with which we demonstrate DASI capabilities for the determination of contrail properties. These include the measurement of the cloud and soot microphysical parameters, as well, the abundances of specific pollutant species such as SO(sub x) or NO(sub x). From high quality hyperspectral data and using radiative transfer methods and atmospheric chemistry analysis in the data reduction and interpretation, powerful inferences concerning cloud formation, evolution and dissipation can be made. Under this sub-topic, we will integrate DASI with computer controlled scanning of the field-of-view to direct the sensor towards contrails and exhaust plumes for tracking the emitting vehicles. The optimum DASI wavelength sensitivity range for sensing contrails is 0.35 - 2.5 micron. DASI deploys on the ground or from aircraft to observe contrails in the vicinity. This enables rapid, accurate measurement of the temporal, spatial, and chemical evolution of contrails (or other plumes or exhaust sources) with a low cost, efficient sensor.

  8. Three dimensional stress vector sensor array and method therefor

    DOEpatents

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  9. Sparsely-Bonded CMOS Hybrid Imager

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor); Dickie, Matthew R. (Inventor); Hoenk, Michael E. (Inventor); Wrigley, Christopher J. (Inventor); Pain, Bedabrata (Inventor)

    2015-01-01

    A method and device for imaging or detecting electromagnetic radiation is provided. A device structure includes a first chip interconnected with a second chip. The first chip includes a detector array, wherein the detector array comprises a plurality of light sensors and one or more transistors. The second chip includes a Read Out Integrated Circuit (ROIC) that reads out, via the transistors, a signal produced by the light sensors. A number of interconnects between the ROIC and the detector array can be less than one per light sensor or pixel.

  10. Tests Of Array Of Flush Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  11. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.

    PubMed

    Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs

    2017-05-01

    Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  13. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  14. Optical characterization of nanoporous AAO sensor substrate

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  15. On the Fabrication and Behavior of Diamond Microelectromechanical Sensors (DMEMS)

    NASA Technical Reports Server (NTRS)

    Holmes, K.; Davidson, J. L.; Kang, W. P.; Howell, M.

    2001-01-01

    CVD (chemically vapor deposited) diamond films can be processed similar to "conventional" semiconductor device fabrication and as such can be used to achieve microelectromechanical structures (MEMS) also similar to, for example, silicon technology. Very small cantilever beams, membranes, stripes, tips, etc. can be constructed in doped and undoped diamond films and offer an array of choices in diamond with its known superior properties such as elastic modulus, high temperature semiconduction, high thermal conductivity, very low coefficient of expansion and numerous other diamond parameters. This paper will review the construction and behavior of the second generation DMEMS devices comprised as an accelerometer with a diamond diaphragm for use in very high G applications and a diamond pressure sensor for very high temperature and frequency response.

  16. Battery outgassing sensor for electric drive vehicle energy storage systems

    NASA Astrophysics Data System (ADS)

    Beshay, Manal; Chandra Sekhar, Jai Ganesh; Kempen, Lothar U.

    2011-06-01

    Lithium-ion batteries have been proven efficient as high power density and low self-discharge rate energy storage systems, specifically in electrical drive vehicles. An important safety factor associated with these systems is the potential hazardous release and outgassing of toxic chemical vapors such as hydrogen fluoride (HF) and hydrogen sulfides (H2S), and relatively elevated levels of carbon dioxide (CO2). The release and accumulation of such gases emphasizes an in-line monitoring need. Intelligent Optical Systems, Inc. (IOS) has identified a viable approach for the development of an onboard optical sensor array that can be used to monitor battery outgassing. This paper discusses the potential of developing a battery outgas sensing approach that will meet sensitivity and response time requirements.

  17. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.

    PubMed

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-12-21

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  18. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    PubMed Central

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-01-01

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608

  19. In-Situ Ion Analysis of Fresh Waters via an ISE Multiprobe and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Mueller, A. V.; Hemond, H.

    2010-12-01

    The ecological and geochemical sciences stand to substantially gain from capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and in-lab analysis. In-situ chemical instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, by reducing the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. We have pursued in-situ measurement of all major ions contributing to the charge makeup (>99%) of oxic natural fresh waters via an instrument combining an array of ion-selective electrode (ISE) hardware with an appropriate multivariate signal processing architecture. Commercially available electrochemical sensors promote low cost and a fast development schedule, as well as easy maintenance and reproduction. Data processing techniques are adapted from artificial intelligence and chemometrics to extract accurate information from the corresponding in-situ data matrix. This architecture takes into account temperature, conductivity, and non-linearity effects, as well as taking advantage of sensor cross-selectivities traditionally considered as interferences. Chemical and mathematical constraints, e.g. charge balance and total ionic strength, provide further system-level information. Maximizing data recovery from the sensor array allows use of the instrument without the standard additions or ionic strength adjustment traditionally-required with use of ISEs. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (sodium, potassium, calcium, and ammonium ) and hydrogen ion in a simplified system containing only a single non-hydroxide anion (chloride), thus allowing charge neutrality to be easily and explicitly invoked. An array of 9 ISEs are calibrated relative to the seven ions of interest, and resulting curves are used to create a representative environmental data set based on historical USGS data for New England waters. Applicability of the developed signal processing methodology is demonstrated, including use of an extended feedback architecture based on conductivity measurements and charge neutrality calculations, with algorithms tuned to optimize performance when predicting actual concentrations from these simulated signals. Results are compared to use of component probes as stand-alone sensors. Future extension of this instrument for multiple anions (including carbonate/bicarbonate, nitrate, and sulfate) will ultimately provide rapid, accurate field measurements of the entire charge balance of natural waters at high resolution, improving sampling abilities while reducing costs and errors related to transport and analysis of grab samples.

  20. Flexible Microsensor Array for the Monitoring and Control of Plant Growth System

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.

  1. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.

    PubMed

    Hong, Jong Il; Chang, Byoung-Yong

    2014-05-21

    Here we report development of a smartphone app (application) that digitizes the colours of a colorimetric sensor array. A conventional colorimetric sensor array consists of multiple paper-based sensors, and reports the detection results in terms of colour change. Evaluation of the colour changes is normally done by the naked eye, which may cause uncertainties due to personal subjectivity and the surrounding conditions. Solutions have been particularly sought in smartphones as they are capable of spectrometric functions. Our report specifically focuses on development of a practical app for immediate point-of-care (POC) multi-analyte sensing without additional devices. First, the individual positions of the sensors are automatically identified by the smartphone; second, the colours measured at each sensor are digitized based on a correction algorithm; and third, the corrected colours are converted to concentration values by pre-loaded calibration curves. All through these sequential processes, the sensor array taken in a smartphone snapshot undergoes laboratory-level spectrometry. The advantages of inexpensive and convenient paper-based colorimetry and the ubiquitous smartphone are tied to achieve a ready-to-go POC diagnosis.

  2. Multifunctional Woven Structure Operating as Triboelectric Energy Harvester, Capacitive Tactile Sensor Array, and Piezoresistive Strain Sensor Array

    PubMed Central

    Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok

    2017-01-01

    This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363

  3. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  4. Quantum Sensing Beyond the Shot-Noise Limit with Plasmonic Sensors

    NASA Astrophysics Data System (ADS)

    Dowran, Mohammadjavad; Kumar, Ashok; Lawrie, Benjamin; Pooser, Raphael; Marino, Alberto

    2017-04-01

    The use of quantum resources offers the possibility of enhancing the sensitivity of a device beyond the shot noise limit and promises to revolutionize the field of metrology through the development of quantum enhanced sensors. In particular, plasmonic sensors, which are widely used in bio-chemical sensing applications, provide a unique opportunity to bring such an enhancement to real-life devices. Resonance plasmonic sensors respond to changes in refractive index through a shift of their characteristic transmission spectrum. We show that the use of quantum squeezed states to probe plasmonic sensors can enhance their sensitivity by lowering the noise floor and allowing the detection of smaller changes in refractive index. In our experiment, we use one of the beams of a two-mode squeezed state generated via four-wave-mixing in Rb atoms to probe the sensor. A squeezing level of 4 dB is obtained after transduction through the plasmonic sensor, which consists of a triangular nano-hole array in a thin silver film and exhibits a sensitivity of the order of 10-10 RIU /√{ Hz} . The use of quantum states leads to 40 % enhancement in the sensitivity of the plasmonic sensor with respect to the shot noise limit. Work supported by the W.M. Keck Foundation.

  5. Exploiting Cross-sensitivity by Bayesian Decoding of Mixed Potential Sensor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreller, Cortney

    LANL mixed-potential electrochemical sensor (MPES) device arrays were coupled with advanced Bayesian inference treatment of the physical model of relevant sensor-analyte interactions. We demonstrated that our approach could be used to uniquely discriminate the composition of ternary gas sensors with three discreet MPES sensors with an average error of less than 2%. We also observed that the MPES exhibited excellent stability over a year of operation at elevated temperatures in the presence of test gases.

  6. GIGAS: A set of microwave sensor arrays to detect molecular bremsstrahlung radiation from extensive air shower

    NASA Astrophysics Data System (ADS)

    Gaïor, R.; Al Samarai, I.; Berat, C.; Blanco Otano, M.; David, J.; Deligny, O.; Lebbolo, H.; Lecoz, S.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Mariş, I. C.; Montanet, F.; Repain, P.; Salamida, F.; Settimo, M.; Stassi, P.; Stutz, A.

    2018-04-01

    We present the GIGAS (Gigahertz Identification of Giant Air Shower) microwave radio sensor arrays of the EASIER project (Extensive Air Shower Identification with Electron Radiometers), deployed at the site of the Pierre Auger cosmic ray observatory. The aim of these novel arrays is to probe the intensity of the molecular bremsstrahlung radiation expected from the development of the extensive air showers produced by the interaction of ultra high energy cosmic rays in the atmosphere. In the designed setup, the sensors are embedded within the surface detector array of the Pierre Auger observatory allowing us to use the particle signals at ground level to trigger the radio system. A series of seven, then 61 sensors have been deployed in the C-band, followed by a new series of 14 higher sensitivity ones in the C-band and the L-band. The design, the operation, the calibration and the sensitivity to extensive air showers of these arrays are described in this paper.

  7. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.

    PubMed

    Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.

  8. Localizing on-scalp MEG sensors using an array of magnetic dipole coils

    PubMed Central

    Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486

  9. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  10. Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.

    PubMed

    Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul

    2017-08-31

    In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  11. High-density Schottky barrier IRCCD sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Tower, J. R.; McCarthy, B. M.

    1983-01-01

    It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.

  12. Carbon nanotubes based methanol sensor for fuel cells application.

    PubMed

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  13. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  15. Solid state image sensing arrays

    NASA Technical Reports Server (NTRS)

    Sadasiv, G.

    1972-01-01

    The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.

  16. Statistical generation of training sets for measuring NO3(-), NH4(+) and major ions in natural waters using an ion selective electrode array.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2016-05-18

    Knowledge of ionic concentrations in natural waters is essential to understand watershed processes. Inorganic nitrogen, in the form of nitrate and ammonium ions, is a key nutrient as well as a participant in redox, acid-base, and photochemical processes of natural waters, leading to spatiotemporal patterns of ion concentrations at scales as small as meters or hours. Current options for measurement in situ are costly, relying primarily on instruments adapted from laboratory methods (e.g., colorimetric, UV absorption); free-standing and inexpensive ISE sensors for NO3(-) and NH4(+) could be attractive alternatives if interferences from other constituents were overcome. Multi-sensor arrays, coupled with appropriate non-linear signal processing, offer promise in this capacity but have not yet successfully achieved signal separation for NO3(-) and NH4(+)in situ at naturally occurring levels in unprocessed water samples. A novel signal processor, underpinned by an appropriate sensor array, is proposed that overcomes previous limitations by explicitly integrating basic chemical constraints (e.g., charge balance). This work further presents a rationalized process for the development of such in situ instrumentation for NO3(-) and NH4(+), including a statistical-modeling strategy for instrument design, training/calibration, and validation. Statistical analysis reveals that historical concentrations of major ionic constituents in natural waters across New England strongly covary and are multi-modal. This informs the design of a statistically appropriate training set, suggesting that the strong covariance of constituents across environmental samples can be exploited through appropriate signal processing mechanisms to further improve estimates of minor constituents. Two artificial neural network architectures, one expanded to incorporate knowledge of basic chemical constraints, were tested to process outputs of a multi-sensor array, trained using datasets of varying degrees of statistical representativeness to natural water samples. The accuracy of ANN results improves monotonically with the statistical representativeness of the training set (error decreases by ∼5×), while the expanded neural network architecture contributes a further factor of 2-3.5 decrease in error when trained with the most representative sample set. Results using the most statistically accurate set of training samples (which retain environmentally relevant ion concentrations but avoid the potential interference of humic acids) demonstrated accurate, unbiased quantification of nitrate and ammonium at natural environmental levels (±20% down to <10 μM), as well as the major ions Na(+), K(+), Ca(2+), Mg(2+), Cl(-), and SO4(2-), in unprocessed samples. These results show promise for the development of new in situ instrumentation for the support of scientific field work.

  17. Using the sun analog sensor (SAS) data to investigate solar array yoke motion on the GOES-8 and -9 spacecraft

    NASA Astrophysics Data System (ADS)

    Phenneger, Milton; Knack, Jennifer L.

    1996-10-01

    The GOES-8 and -9 Sun analog sensor (SAS) flight data is analyzed to evaluate the attitude motion environment of payloads mounted on the solar array. The work was performed in part to extend analysis in progress to support the solar x-ray imager to be flown on the GOES-M. The SAS is a two axis sensor mounted on the x-ray sensor pointing (XRP) module to measure the east/west error angle between the SUn and the solar array normal and to provide a north south error angle for automatic solar pointing of the x-ray sensor by the XRP. The goal was to search for evidence of solar array vibrational modes in the 2 Hz and 0.5 Hz range and to test the predicted amplitudes. The results show that the solar array rotates at the rate of the mean Sun with unexpected oscillation periods of 5.6 minutes, 90 minutes, and 1440 minutes originating from the two 16.1 gear drive train stages between the solar array drive stepper motor and the solar array yoke. The higher frequency oscillations are detected as random noise at the 1/16 Hz telemetry sampling rate of the SAS. This supports the preflight predictions for the high frequency modes but provide s no detailed measurement of the frequency as expected for this data period. In addition to this the data indicates that the solar array is responding unexpectedly to GOES imager instrument blackbody calibration events.

  18. TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Kang, B. S.; Kim, Suku; Ren, F.; Gila, B. P.; Abernathy, C. R.; Lin, Jenshan; Chu, S. N. G.

    2004-07-01

    There is renewed emphasis on development of robust solid-state sensors capable of uncooled operation in harsh environments. The sensors should be capable of detecting chemical, gas, biological or radiation releases as well as sending signals to central monitoring locations. We discuss the advances in use of GaN-based solid-state sensors for these applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization-induced two-dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization-induced surface and interface charges can be used to develop very sensitive but robust sensors to detect gases, polar liquids and mechanical pressure. AlGaN/GaN HEMT structures have been demonstrated to exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2. Of particular interest is detection of ethylene (C2H4), which has strong double bonds and hence is difficult to dissociate at modest temperatures. Apart from combustion gas sensing, the AlGaN/GaN heterostructure devices can be used as sensitive detectors of pressure changes. In addition, large changes in source-drain current of the AlGaN/GaN HEMT sensors can be detected upon adsorption of biological species on the semiconductor surface. Finally, the nitrides provide an ideal platform for fabrication of surface acoustic wave (SAW) devices. The GaN-based devices thus appear promising for a wide range of chemical, biological, combustion gas, polar liquid, strain and high temperature pressure-sensing applications. In addition, the sensors are compatible with high bit-rate wireless communication systems that facilitate their use in remote arrays.

  19. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    NASA Astrophysics Data System (ADS)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same material. Essentially, we have formulated simple processes for improving current thin film sensors as well as a means of incorporating nanostructures directly into miniature sensing devices. Apart from gas sensing applications, the approaches described in this work are suitable for designing future nanoelectronic devices such as gas-ionization, capacitive and calorimetric sensors, miniature sensor arrays for electronic nose applications, field emitters, as well as photonic devices such as nanoscale LEDs and lasers.

  20. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  1. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  2. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.

    PubMed

    Vicente-Pérez, Eva M; Quinn, Helen L; McAlister, Emma; O'Neill, Shannon; Hanna, Lezley-Anne; Barry, Johanne G; Donnelly, Ryan F

    2016-12-01

    To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo. Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film. Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion. For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.

  3. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    PubMed

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  4. Performance evaluation of a conformal thermal monitoring sheet (TMS) sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments

    PubMed Central

    Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.

    2009-01-01

    Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416

  5. Beam characterization by wavefront sensor

    DOEpatents

    Neal, Daniel R.; Alford, W. J.; Gruetzner, James K.

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  6. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  7. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    PubMed Central

    Kampmann, Peter; Kirchner, Frank

    2014-01-01

    With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158

  8. SQUID (superconducting quantum interference device) arrays for simultaneous magnetic measurements: Calibration and source localization performance

    NASA Astrophysics Data System (ADS)

    Kaufman, Lloyd; Williamson, Samuel J.; Costaribeiro, P.

    1988-02-01

    Recently developed small arrays of SQUID-based magnetic sensors can, if appropriately placed, locate the position of a confined biomagnetic source without moving the array. The authors present a technique with a relative accuracy of about 2 percent for calibrating such sensors having detection coils with the geometry of a second-order gradiometer. The effects of calibration error and magnetic noise on the accuracy of locating an equivalent current dipole source in the human brain are investigated for 5- and 7-sensor probes and for a pair of 7-sensor probes. With a noise level of 5 percent of peak signal, uncertainties of about 20 percent in source strength and depth for a 5-sensor probe are reduced to 8 percent for a pair of 7-sensor probes, and uncertainties of about 15 mm in lateral position are reduced to 1 mm, for the configuration considered.

  9. Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres.

    PubMed

    Xu, Chao; Wygladacz, Katarzyna; Retter, Robert; Bell, Michael; Bakker, Eric

    2007-12-15

    Polymeric bulk optode microsphere ion sensors in combination with suspension array technologies such as analytical flow cytometry may become a power tool for measuring electrolytes in physiological samples. In this work, the methodology for the direct measurement of common blood electrolytes in physiological samples using bulk optode microsphere sensors was explored. The simultaneous determination of Na(+), K(+), and Ca(2+) in diluted sheep blood plasma was demonstrated for the first time, using a random suspension array containing three types of mixed microsphere bulk optodes of similar size, fabricated from the same chromoionophore without additional labeling. Sodium ionophore X, potassium ionophore III, and grafted AU-1 in poly(butyl acrylate) were the ionophores used in the bulk optode microsphere ion sensors for Na(+), K(+), and Ca(2+), respectively, in combination with the cation-exchanger NaTFPB (sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl]borate) and the same concentration of the chromoionophore ETH 5294 (9-(di-ethylamino)-5-octadecanoylimino-5H-benzo[a]phen-oxazine) in plasticized poly(vinyl chloride). Excellent reproducibility was achieved for the sensing of potassium ions. The effect of sample pH was relatively small at near-physiological pH and followed theoretical predictions, yet the sample temperature was found to influence the sensor response to a larger extent. Multiplexed ion sensing was achieved by taking advantage of the chemical tunability of the sensor response, adjusting the sensor compositions so that the three types of ion sensors responded with distinct levels of protonation of the chromoionophore. Consequently, three well-resolved peaks were simultaneously observed in the single-channel histogram during the multiplexed calibration as well as in the subsequent measurement of the three cations in 10-fold-diluted sheep plasma. The assigned peak positions corresponded very well to the physiological range of the measured ions.

  10. Role of the array geometry in multi-bilayer hair cell sensors

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Sarles, Stephen A.

    2014-03-01

    Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.

  11. 76 FR 53884 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Array Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS... conducting operations of Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) sonar...

  12. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.

    PubMed

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-11-20

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

  13. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    PubMed Central

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-01-01

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627

  14. Cantilever arrayed blood pressure sensor for arterial applanation tonometry.

    PubMed

    Lee, Byeungleul; Jeong, Jinwoo; Kim, Jinseok; Kim, Bonghwan; Chun, Kukjin

    2014-03-01

    The authors developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the non-invasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in the resistance of the piezoresistor on a 5-microm-thick-arrayed perforated membrane and 20-microm-thick metal pads. The length and the width of the unit membrane are 210 and 310 microm, respectively. The width of the insensible zone between the adjacent units is only 10 microm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the polydimethylsiloxane package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and the resolution of the fabricated blood pressure sensor were greater than 900 mmHg (= 120 kPa) and less than 1 mmHg (= 133.3 Pa), respectively.

  15. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs)

    PubMed Central

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved. PMID:29713626

  16. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs).

    PubMed

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  17. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  18. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    NASA Astrophysics Data System (ADS)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  19. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    PubMed

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  1. Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates.

    PubMed

    Meshot, Eric R; Zhao, Zhouzhou; Lu, Wei; Hart, A John

    2014-09-07

    Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.

  2. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  3. Phase discriminating capacitive array sensor system

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); Rahim, Wadi (Inventor)

    1993-01-01

    A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.

  4. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.

    PubMed

    Sheybani, Roya; Shukla, Anita

    2017-06-15

    Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10 2 colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  6. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  7. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.

  8. Vertical directivities of seismic arrays on the ground surface

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.

    2012-12-01

    Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.

  9. Beam characterization by wavefront sensor

    DOEpatents

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  10. Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.

    2004-09-01

    Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from amore » Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for chemiresistor sensors to meet desired detection {sm_bullet} A long-term stability test was conducted for a polymer-based chemresistor sensor array. Significant drifts were observed over the time duration of one month. Such drifts should be taken into account for long-term in-situ monitoring. {sm_bullet} Several techniques were explored to improve the performance of sensor polymers. It has been demonstrated that freeze deposition of black carbon (CB)-polymer composite can effectively eliminate the so-called 'coffee ring' effect and lead to a desirable uniform distribution of CB particles in sensing polymer films. The optimal ratio of CB/polymer has been determined. UV irradiation has been shown to improve sensor sensitivity. {sm_bullet} From a large set of commercially available polymers, five polymers were selected to form a sensor array that was able to provide optimal responses to six target-volatile organic compounds (VOCs). A series of tests on the response of sensor array to various VOC concentrations have been performed. Linear sensor responses have been observed over the tested concentration ranges, although the responses over a whole concentration range are generally nonlinear. {sm_bullet} Inverse models have been developed for identifying individual VOCs based on sensor array responses. A linear solvation energy model is particularly promising for identifying an unknown VOC in a single-component system. It has been demonstrated that a sensor array as such we developed is able to discriminate waste containers for their total VOC concentrations and therefore can be used as screening tool for reducing the existing headspace gas sampling rate. {sm_bullet} Various VOC preconcentrators have been fabricated using Carboxen 1000 as an absorbent. Extensive tests have been conducted in order to obtain optimal configurations and parameter ranges for preconcentrator performance. It has been shown that use of preconcentrators can reduce the detection limits of chemiresistors by two orders of magnitude. The life span of preconcentrators under various physiochemical conditions has also been evaluated. {sm_bullet} The performance of Pd film-based H2 sensors in the presence of VOCs has been evaluated. The interference of sensor readings by VOC has been observed, which can be attributed to the interference of VOC with the H2-O2 reaction on the Pd alloy surface. This interference can be eliminated by coating a layer of silicon dioxide on sensing film surface. Our work has demonstrated a wide range of applications of gas microsensors in radioactive waste management. Such applications can potentially lead to a significant cost saving and risk reduction for waste characterization.« less

  11. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  12. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  13. Method of measuring cross-flow vortices by use of an array of hot-film sensors

    NASA Technical Reports Server (NTRS)

    Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)

    1993-01-01

    The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.

  14. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong; Stein, Aaron

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  15. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE PAGES

    Nam, Chang-Yong; Stein, Aaron

    2017-11-15

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  16. Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.

    2016-02-01

    The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.

  17. 76 FR 56407 - Notice of Availability of a Draft Supplemental Environmental Impact Statement/Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice... analyses for the DoN's employment of Surveillance Towed Array Sensor System Low Frequency Active (SURTASS...

  18. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array.

    PubMed

    Choi, Changsoon; Choi, Moon Kee; Liu, Siyi; Kim, Min Sung; Park, Ok Kyu; Im, Changkyun; Kim, Jaemin; Qin, Xiaoliang; Lee, Gil Ju; Cho, Kyoung Won; Kim, Myungbin; Joh, Eehyung; Lee, Jongha; Son, Donghee; Kwon, Seung-Hae; Jeon, Noo Li; Song, Young Min; Lu, Nanshu; Kim, Dae-Hyeong

    2017-11-21

    Soft bioelectronic devices provide new opportunities for next-generation implantable devices owing to their soft mechanical nature that leads to minimal tissue damages and immune responses. However, a soft form of the implantable optoelectronic device for optical sensing and retinal stimulation has not been developed yet because of the bulkiness and rigidity of conventional imaging modules and their composing materials. Here, we describe a high-density and hemispherically curved image sensor array that leverages the atomically thin MoS 2 -graphene heterostructure and strain-releasing device designs. The hemispherically curved image sensor array exhibits infrared blindness and successfully acquires pixelated optical signals. We corroborate the validity of the proposed soft materials and ultrathin device designs through theoretical modeling and finite element analysis. Then, we propose the ultrathin hemispherically curved image sensor array as a promising imaging element in the soft retinal implant. The CurvIS array is applied as a human eye-inspired soft implantable optoelectronic device that can detect optical signals and apply programmed electrical stimulation to optic nerves with minimum mechanical side effects to the retina.

  19. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study.

    PubMed

    Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira

    2016-04-20

    The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  20. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study

    PubMed Central

    Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira

    2016-01-01

    The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C. PMID:28773423

Top