Science.gov

Sample records for chemical shift conformational

  1. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  2. Contribution of high-energy conformations to NMR chemical shifts, a DFT-BOMD study.

    PubMed

    Goursot, A; Mineva, T; Vásquez-Pérez, J M; Calaminici, P; Köster, A M; Salahub, D R

    2013-01-21

    This paper highlights the relevance of including the high-energy conformational states sampled by Born-Oppenheimer molecular dynamics (BOMD) in the calculation of time-averaged NMR chemical shifts. Our case study is the very flexible glycerol molecule that undergoes interconversion between conformers in a nonrandom way. Along the sequence of structures from one backbone conformer to another, transition states have been identified. The three (13)C NMR chemical shifts of the molecule were estimated by averaging their calculated values over a large set of BOMD snapshots. The simulation time needed to obtain a good agreement with the two signals present in the experimental spectrum is shown to be dependent on the atomic orbital basis set used for the dynamics, with a necessary longer trajectory for the most extended basis sets. The large structural deformations with respect to the optimized conformer geometries that occur along the dynamics are related to a kinetically driven conformer distribution. Calculated conformer type populations are in good agreement with experimental gas phase microwave results.

  3. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.

    PubMed

    Shindo, H; Wooten, J B; Pheiffer, B H; Zimmerman, S B

    1980-02-05

    31P nuclear magnetic resonance of highly oriented DNA fibers has been observed for three different conformations, namely, the A, B, and C forms of DNA. At a parallel orientation of the fiber axis with respect to the magnetic field, DNA fibers in both the A and B forms exhibit a single, abnormally broad resonance; in contrast, fibers in the C form show almost the full span of the chemical shift anisotropy (170 ppm). The spectra of the fibers oriented perpendicular indicate that the DNA molecules undergo a considerable rotational motion about the helical axis, with a rate of greater than 2 x 10(3) s-1 for the B-form DNA. Theoretical considerations indicate that the 31P chemical shift data for the B-form DNA fibers are consistent with the atomic coordinates of the phosphodiester group proposed by Langridge et al. [Langridge, R., Wilson, H. R. Hooper, C. W., Wilkins, M. H. F., & Hamilton, L. D. (1960) J. Mol. Biol. 2, 19--37] but not with the corresponding coordinates proposed by Arnott and Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Coomun. 47, 1504--1509], and also lead to the conclusion that the phosphodiester orientation must vary significantly along the DNA molecule. The latter result suggests that DNA has significant variations in its backbone conformation along the molecule.

  4. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    PubMed

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein.

  5. Determination of individual side-chain conformations, tertiary conformations, and molecular topography of tyrocidine A from scalar coupling constants and chemical shifts.

    PubMed

    Kuo, M C; Gibbons, W A

    1979-12-25

    We report for the decapeptide tyrocidine A: (a) H alpha and H beta chemical shifts and scalar coupling constants for most residues of tyrocidine A in methanol-d4 and dimethyl-d6 sulfoxide (Me2so-d6) and the H alpha and H beta chemical shifts for other residues; (b) scalar coupling constants 3J alpha beta for nine side chains in methanol-d4 but only seven side chains in Me2SO-d6, due to chemical shift degeneracy; the Gln9 and Tyr10 side chains in methanol-d4 were only approximately analyzed; (c) a total spin-spin analysis of Pro5 in Me2SO-d6 and, partly by comparison, also in methanol-d4; (d) conversion of 3J alpha beta values to side-chain conformations for all residues in methanol-d4; comparisons, where possible, led to the conclusion that side-chain conformations are similar in methanol-d4 and Me2SO-d6; (e) an absolute conformational analysis of Pro5 from 3J values and a method of assigning all pro-R,S protons; Pro5 has a Ramachandran B, C2-Cexo-Cendo conformation; (f) chi 1, chi 2 conformations of several aromatic residues based upon proton-chromophore distance measurement from anomalous chemical shifts and Johnson-Bovey diagrams; (g) pro-R and pro-S assignments of H beta's from anomalous chemical shifts, high-temperature dependence of anomalous chemical shifts, and backbone side-chain nuclear Overhauser effects; (h) most tertiary conformations of the whole tyrocidine A molecule possessing residues 4--8 and 10 in highly preferred (ca. 90%) chi 1 conformations, but residues 1--3 and 9 having at least two chi 1 rotamers; (2) description of three topographical regions of the molecule--a hydrophobic region, a flat hydrophilic surface on the other side of the molecule, and a hydrophilic region consisting of two peptide backbone units and the side chains of Asn8, Gln9, and Tyr10; (j) proposed side chain, beta-turn, and beta-pleated sheet conformations that readily account for all "normal" and anomalous chemical shifts.

  6. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    PubMed

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  7. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  8. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    PubMed

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  9. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    PubMed Central

    Hong, Mei

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command

  10. Theoretical study on conformation dynamics of three-station molecular shuttle in different environments and its influence on NMR chemical shifts and binding interactions.

    PubMed

    Liu, Pingying; Li, Wei; Liu, Li; Wang, Leyong; Ma, Jing

    2014-10-02

    Microscopic information on conformational flexibility and macrocycle-thread binding interactions is helpful in rational design of novel multistation molecular shuttles with interesting topology and functions. Molecular dynamics (MD) was applied to simulate conformational changes of thread and macrocycle of a three-station molecular shuttle in different chemical environments (vacuum, CD3CN-CDCl3 solution, and crystal). In contrast with the highly distorted thread conformation in the gas phase and nonpolar CDCl3 solution, the solvated thread in CD3CN-CDCl3 (1:1) mix solvents exhibited a relatively rigid structure. Experimental observations of preferential binding at the protonated dibenzylammonium group (station I) were rationalized by quantum chemical calculations of macrocycle-thread binding energies at three different stations. The orthogonality of site-specific binding interactions at three different stations was also revealed by the nearly constant binding energy obtained at each specific recognition center with the replacement of different neighboring groups and terminal stoppers on the thread. Conformational flexibility has little effect on NMR signals of binding sites, but for some protons that are close to the solvent molecules in the first solvent shell, their chemical shifts are sensitive to the local electrostatic environment caused by nearby solvents. In crystal, π stacking induced evident upfield shifts of NMR signals in comparison with the isolated monomer.

  11. Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts.

    PubMed

    Hansen, D Flemming; Neudecker, Philipp; Kay, Lewis E

    2010-06-09

    A simple method is presented for quantifying Ile chi(2) rotamer distributions in proteins based on the measurement of Ile (13)C(delta1) chemical shifts. The methodology is well suited for applications involving very high molecular weight protein complexes, where other NMR parameters such as side-chain scalar coupling constants that report on dihedral angles cannot be measured or for studies of invisible, excited protein states, where chemical shifts are obtained from analysis of CPMG relaxation dispersion profiles. The utility of the approach is demonstrated by an application to the folding reaction of a mutant Fyn SH3 domain, where Ile side-chain structure and dynamics of an on-folding pathway intermediate state are studied.

  12. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy.

    PubMed

    Xu, Yimin; Lorieau, Justin; McDermott, Ann E

    2010-03-19

    Microcrystalline uniformly (13)C,(15)N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.

  14. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  15. Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations

    PubMed Central

    Michielssens, Servaas; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes. PMID:25992736

  16. The anisotropic effect of functional groups in 1H NMR spectra is the molecular response property of spatial nucleus independent chemical shifts (NICS)--conformational equilibria of exo/endo tetrahydrodicyclopentadiene derivatives.

    PubMed

    Kleinpeter, Erich; Lämmermann, Anica; Kühn, Heiner

    2011-02-21

    The inversion of the flexible five-membered ring in tetrahydrodicyclopentadiene (TH-DCPD) derivatives remains fast on the NMR timescale even at 103 K. Since the intramolecular exchange process could not be sufficiently slowed for spectroscopic evaluation, the conformational equilibrium is thus inaccessible by dynamic NMR. Fortunately, the spatial magnetic properties of the aryl and carbonyl groups attached to the DCPD skeleton can be employed in order to evaluate the conformational state of the system. In this context, the anisotropic effects of the functional groups in the (1)H NMR spectra prove to be the molecular response property of spatial nucleus independent chemical shifts (NICS).

  17. Protein structure determination from NMR chemical shifts.

    PubMed

    Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M; Vendruscolo, Michele

    2007-06-05

    NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 angstroms or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

  18. Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell.

    PubMed

    Morag, Omry; Abramov, Gili; Goldbourt, Amir

    2014-02-12

    The fd bacteriophage is a filamentous virus consisting of a circular single-stranded DNA (ssDNA) wrapped by thousands of copies of a major coat protein subunit (the capsid). The coat protein subunits are mostly α-helical and curved, and are arranged in the capsid in consecutive pentamers related by a translation along the main viral axis and a rotation of ~36° (C5S2 symmetry). The DNA is right-handed and helical, but information on its structure and on its interface with the capsid is incomplete. We present here an approach for assigning the DNA nucleotides and studying its interactions with the capsid by magic-angle spinning solid-state NMR. Capsid contacts with the ssDNA are obtained using a two-dimensional (13)C-(13)C correlation experiment and a proton-mediated (31)P-(13)C polarization transfer experiment, both acquired on an aromatic-unlabeled phage sample. Our results allow us to map the residues that face the interior of the capsid and to show that the ssDNA-capsid interactions are sustained mainly by electrostatic interactions between the positively charged lysine side chains and the phosphate backbone. The use of natural abundance aromatic amino acids in the growth media facilitated the complete assignment of the four nucleotides and the observation of internucleotide contacts. Using chemical shift analysis, our study shows that structural features of the deoxyribose carbons reporting on the sugar pucker are strikingly similar to those observed recently for the Pf1 phage. However, the ssDNA-protein interface is different, and chemical shift markers of base pairing are different. This experimental approach can be utilized in other filamentous and icosahedral bacteriophages, and also in other biomolecular complexes involving structurally and functionally important DNA-protein interactions.

  19. Mapping of protein structural ensembles by chemical shifts.

    PubMed

    Baskaran, Kumaran; Brunner, Konrad; Munte, Claudia E; Kalbitzer, Hans Robert

    2010-10-01

    Applying the chemical shift prediction programs SHIFTX and SHIFTS to a data base of protein structures with known chemical shifts we show that the averaged chemical shifts predicted from the structural ensembles explain better the experimental data than the lowest energy structures. This is in agreement with the fact that proteins in solution occur in multiple conformational states in fast exchange on the chemical shift time scale. However, in contrast to the real conditions in solution at ambient temperatures, the standard NMR structural calculation methods as well chemical shift prediction methods are optimized to predict the lowest energy ground state structure that is only weakly populated at physiological temperatures. An analysis of the data shows that a chemical shift prediction can be used as measure to define the minimum size of the structural bundle required for a faithful description of the structural ensemble.

  20. Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation

    PubMed Central

    Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131

  1. NMR chemical shifts. Substituted acetylenes.

    PubMed

    Wiberg, Kenneth B; Hammer, Jack D; Zilm, Kurt W; Keith, Todd A; Cheeseman, James R; Duchamp, James C

    2004-02-20

    The MPW1PW91/6-311+G(2d,p) and MP2/6-311+G(2d,p) GIAO nuclear shieldings for a series of monosubstituted acetylenes have been calculated using the MP2/6-311G(2d,p) geometries. Axially symmetric substituents such as fluorine may lead to large changes in the isotropic shielding but have little effect on the tensor component (zz) about the C[triple bond]C bond axis. On the other hand, substituents such as vinyl and aldehyde groups lead to essentially no difference in the isotropic shielding but are calculated to give a large zz paramagnetic shift to the terminal carbon of the acetylene group, without having much effect on the inner carbon. The tensor components of the chemical shifts for trimethylsilylacetylene, methoxyacetylene, and propiolaldehyde have been measured and are in reasonable agreement with the calculations. The downfield shift at the terminal carbon of propiolaldehyde along with a small upfield shift at the adjacent carbon has been found to result from the coupling of the in-plane pi MO of the acetylene with the pi* orbital that has a node near the central carbon. The tensor components for acetonitrile also have been measured, and the shielding of cyano and acetylenic carbons are compared.

  2. Conformational change and biocatalysis-triggered spectral shift of single Au nanoparticles.

    PubMed

    Zhao, Yun; He, Ya-Kai; Zhang, Jing; Wang, Feng-Bin; Wang, Kang; Xia, Xing-Hua

    2014-05-28

    Spectral shift of localized plasmon resonance scattering of guanine-rich DNA modified single Au nanoparticles is observed under a dark field microscope equipped with a spectrometer. The spectra continuously red-shift with the conformational change of the guanine-rich DNA upon associating with K(+), hemin and the biocatalytic growth of the polymer. The scattering spectrum of single nanoparticles is proved to be sensitive both to a subtle conformational change and the biocatalysis process. 20 mM K(+) or 100 μM H2O2 can trigger a detectable peak shift. The present study paves a new and efficient way to extract chemical information from micro/nanospace.

  3. Chemical Shift Anisotropy Selective Inversion*

    PubMed Central

    Caporini, Marc. A.; Turner, Christopher. J.; Bielecki, Anthony; Griffin, Robert G.

    2009-01-01

    Magic Angle Spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of the radio frequency field through a multiple of the spinning frequency. The selectivity of this inversion mechanism is determined by the size of the CSA. We develop a theoretical framework to describe this process and demonstrate the CSA selective inversion with numerical simulations and experimental data. We combine this approach with cross polarization (CP) for potential applications in multi-dimensional MAS NMR. PMID:19648036

  4. NMR Chemical Shift Mapping of SH2 Peptide Interactions.

    PubMed

    McKercher, Marissa A; Wuttke, Deborah S

    2017-01-01

    Heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) experiments offer a rapid and high resolution approach to gaining binding and conformational insights into a protein-peptide interaction. By tracking (1)H and (15)N chemical shift changes over the course of a peptide titration into isotopically labeled protein, amide NH pairs of amino acids whose chemical environment changes upon peptide binding can be identified. When mapped onto a structure of the protein, this approach can identify the peptide-binding interface or regions undergoing conformation changes within a protein upon ligand binding. Monitoring NMR chemical shift changes can also serve as a screening technique to identify novel interaction partners for a protein or to determine the binding affinity of a weak protein-peptide interaction. Here, we describe the application of NMR chemical shift mapping to the study of peptide binding to the C-terminal SH2 domain of PLCγ1.

  5. A Short History of Three Chemical Shifts

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  6. A Short History of Three Chemical Shifts

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  7. 1H, 13C NMR spectral and single crystal structural studies of toxaphene congeners. Quantum chemical calculations for preferred conformers of 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene and their DFT/GIAO 13C chemical shifts

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Valkonen, A.; Kolehmainen, E.; Suontamo, R.; Nissinen, M.; Nikiforov, V.; Selivanov, S.

    2005-11-01

    The 1H and 13C NMR chemical shifts for six toxaphene congeners: 2- exo,3- endo,6- exo,8,9,10-hexachloro- ( 1), 2- exo,3- endo,5- exo,9,9,10,10-heptachloro- ( 2), 2- exo,3- endo,6- exo,8,9,10,10-heptachloro- ( 3), 2- exo,3- endo,5- exo,6- endo,8,9,10-heptachloro- ( 4), 2- exo,3- endo,5- exo,6- endo,8,9,9,10-octachlorobornane ( 5) and 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene ( 6) are reported. Their chemical shift assignments have been obtained by means of Pulsed Field Gradient (PFG) Double Quantum Filtered (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H, 13C Heteronuclear Multiple Bond Correlation (HMBC) experiments. A single crystal X-ray structural analysis was made for compounds 1, 3, 4 and 6. The prevalences of two octachlorobornene rotamers ( 6 a, 6 b) were elucidated by ab initio MO method and single point DFT/GIAO calculations for 13C chemical shifts. Theoretical calculations proved that the single crystal structure of 6 corresponds its most stable conformer in solution.

  8. Using chemical shifts to determine structural changes in proteins upon complex formation.

    PubMed

    Cavalli, Andrea; Montalvao, Rinaldo W; Vendruscolo, Michele

    2011-08-04

    Methods for determining protein structures using only chemical shift information are progressively becoming more accurate and reliable. A major problem, however, in the use of chemical shifts for the determination of the structures of protein complexes is that the changes in the chemical shifts upon binding tend to be rather limited and indeed often smaller than the standard errors made in the predictions of chemical shifts corresponding to given structures. We present a procedure that, despite this problem, enables one to use of chemical shifts to determine accurately the conformational changes that take place upon complex formation.

  9. A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA

    PubMed Central

    2014-01-01

    We introduce a simple and fast approach for predicting RNA chemical shifts from interatomic distances that performs with an accuracy similar to existing predictors and enables the first chemical shift-restrained simulations of RNA to be carried out. Our analysis demonstrates that the applied restraints can effectively guide conformational sampling toward regions of space that are more consistent with chemical shifts than the initial coordinates used for the simulations. As such, our approach should be widely applicable in mapping the conformational landscape of RNAs via chemical shift-guided molecular dynamics simulations. The simplicity and demonstrated sensitivity to three-dimensional structure should also allow our method to be used in chemical shift-based RNA structure prediction, validation, and refinement. PMID:25255209

  10. Conformal chemically resistant coatings for microflow devices

    DOEpatents

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  11. Evaluating amber force fields using computed NMR chemical shifts.

    PubMed

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the (1) H, (15) N, and (13) C(a) atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  12. Chemical Shift Prediction for Denatured Proteins

    PubMed Central

    Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-01-01

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in 1H-15N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report 1H and 15N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated. PMID:23297019

  13. Chemical shift prediction for denatured proteins.

    PubMed

    Prestegard, James H; Sahu, Sarata C; Nkari, Wendy K; Morris, Laura C; Live, David; Gruta, Christian

    2013-02-01

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in (1)H-(15)N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report (1)H and (15)N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  14. NMR crystallography: the use of chemical shifts

    NASA Astrophysics Data System (ADS)

    Harris, Robin K.

    2004-10-01

    Measurements of chemical shifts obtained from magic-angle spinning NMR spectra (together with quantum mechanical computations of shielding) can provide valuable information on crystallography. Examples are given of the determination of crystallographic asymmetric units, of molecular symmetry in the solid-state environment, and of crystallographic space group assignment. Measurements of full tensor components for 199Hg have given additional coordination information. The nature of intermolecular hydrogen bonding in cortisone acetate polymorphs and solvates is obtained from chemical shift information, also involving measurement of the full tensor parameters. The resulting data have been used as restraints, built into the computation algorithm, in the analysis of powder diffraction patterns to give full crystal structures. A combination of quantum mechanical computation of shielding and measurement of proton chemical shifts (obtained by high-speed MAS) leads to the determination of the position of a proton in an intermolecular hydrogen bond. A recently-developed computer program specifically based on crystallographic repetition has been shown to give acceptable results. Moreover, NMR chemical shifts can distinguish between static and dynamic disorder in crystalline materials and can be used to determine modes and rates of molecular exchange motion.

  15. Sigmatropic proton shifts: a quantum chemical study.

    PubMed

    Wang, Yi; Yu, Zhi-Xiang

    2017-09-13

    A quantum chemical study of [1,j] sigmatropic proton shifts in polyenyl anions and related conjugated systems has been performed. We found that the Woodward-Hoffmann rules can be applied to understand the stereochemical outcome of these sigmatropic rearrangements, showing that [1,j] sigmatropic proton shift occurs antarafacially when j = 4n + 2, while suprafacial proton shift is symmetry-allowed when j = 4n. The activation barriers for [1,j] proton shifts in polyenyl anions CjHj+3(-) are 48.2 (j = 2), 32.8 (j = 4), 21.0 (j = 6), 40.5 (j = 8), and 49.1 (j = 10) kcal mol(-1), respectively. This trend can be explained by the trade-off between stereoelectronic requirement and ring strain in the proton shift transition structure. Among these reactions, only the [1,6] proton shift with the lowest activation barrier can occur intramolecularly under mild reaction conditions. The others are unlikely to take place in a direct manner. Consequently, proton shuttles are generally required to facilitate these sigmatropic proton shifts through a protonation/deprotonation mechanism.

  16. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  17. Pressure response of (31)P chemical shifts of adenine nucleotides.

    PubMed

    Karl, Matthias; Spoerner, Michael; Pham, Thuy-Vy; Narayanan, Sunilkumar Puthenpurackal; Kremer, Werner; Kalbitzer, Hans Robert

    2017-03-30

    High pressure NMR spectroscopy is a powerful method for identifying rare conformational states of proteins from the pressure response of their chemical shifts. Many proteins have bound adenine nucleotides at their active centers, in most cases in a complex with Mg(2+)-ions. The (31)P NMR signals of phosphate groups of the nucleotides can be used as probes for conformational transitions in the proteins themselves. For distinguishing protein specific pressure effects from trivial pressure responses not due to the protein interaction, data of the pressure response of the free nucleotides must be available. Therefore, the pressure response of (31)P chemical shifts of the adenine nucleotides AMP, ADP, and ATP and their Mg(2+)-complexes has been determined at pH values several units distant from the respective pK-values. It is clearly non-linear for most of the resonances. A negative first order pressure coefficient B1 was determined for all (31)P resonances except Mg(2+)·AMP indicating an upfield shift of the resonances with pressure. The smallest and largest negative values are obtained for the α-phosphate group of ADP and β-phosphate group of Mg(2+)·ATP with -0.32 and -4.59ppm/GPa, respectively. With exception of the α-phosphate group of Mg(2+)·AMP the second order pressure coefficients are positive leading to a saturation like behaviour. The pressure response of the adenine nucleotides is similar but not identical to that observed earlier for guanine nucleotides. The obtained data show that the chemical shift pressure response of the different phosphate groups is rather different dependent on the position of phosphate group in the nucleotide and the nucleotide used. Copyright © 2016. Published by Elsevier B.V.

  18. Accessible surface area from NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  19. Recent progress in understanding chemical shifts.

    PubMed

    de Dios, A C; Oldfield, E

    1996-04-01

    In the past three or four years computer hardware and software developments have reached the stage where the nuclear magnetic resonance (NMR) spectra of many molecular systems can now be accurately evaluated. Detailed analysis of chemical shifts may soon become a routine part of solid (and liquid) state NMR structure prediction in chemistry and biology, and this Article covers the development of the topic from its earliest beginnings.

  20. A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method.

    PubMed

    Shahab, Yosif A; Khalil, Rabah A

    2006-10-01

    A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method has been introduced. Three general nitrogen-15 NMR chemical shift additivity parameters with physical significance for aliphatic amines in methanol and cyclohexane and their hydrochlorides in methanol have been derived. A characteristic feature of these additivity parameters is the individual equation can be applied to both open-chain and rigid systems. The factors that influence the (15)N chemical shift of these substances have been determined. A new method for evaluating conformational equilibria at nitrogen in these compounds using the derived additivity parameters has been developed. Conformational analyses of these substances have been worked out. In general, the results indicate that there are four factors affecting the (15)N chemical shift of aliphatic amines; paramagnetic term (p-character), lone pair-proton interactions, proton-proton interactions, symmetry of alkyl substituents and molecular association.

  1. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2016-11-07

    Non-coding RNAs play important roles in cellular homeostasis and are involved in many human diseases including cancer. Intermolecular RNA-RNA interactions are the basis for the diverse functions of many non-coding RNAs. Herein, we show how the presence of tRNA influences the equilibrium between hairpin and G-quadruplex conformations in the 5' untranslated regions of oncogenes and model sequences. Kinetic and equilibrium analyses of the hairpin to G-quadruplex conformational transition of purified RNA as well as during co-transcriptional folding indicate that tRNA significantly shifts the equilibrium toward the hairpin conformer. The enhancement of relative translation efficiency in a reporter gene assay is shown to be due to the tRNA-mediated shift in hairpin-G-quadruplex equilibrium of oncogenic mRNAs. Our findings suggest that tRNA is a possible therapeutic target in diseases in which RNA conformational equilibria is dysregulated.

  2. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.

    PubMed

    Kono, Hiroyuki; Hashimoto, Hisaho; Shimizu, Yuuichi

    2015-03-15

    A series of cellulose acetates (CA) with degrees of substitution (DS) ranging from 2.92-0.92 dissolved in dimethylsulfoxide (DMSO)-d6 and cellulose dissolved in tetrabutylammonium fluoride (TBAF)/DMSO-d6 were investigated by two-dimensional NMR spectroscopy. The NMR spectroscopic analysis allowed the determination of the (1)H and (13)C NMR chemical shifts of the eight anhydroglucose units (AGUs) that contain CA: 2,3,6-tri-, 2,3-di-, 2,6-di-, 3,6-di-, 2-mono-, 3-mono-, 6-mono-, and unacetylated AGUs. A comparative analysis of the chemical shift data revealed the substituent effect of acetyl groups at the 2-, 3-, and 6-positions on the (1)H and (13)C nuclei in the same AGU. In addition, chemical shift additivity could be applied to the (1)H and (13)C chemical shifts of CA because the chemical shifts of the diacetylated and triacetylated AGUs could be almost completely explained by the acetyl substituent effects at the 2-, 3-, and 6-positions.

  3. The NMR Chemical Shift: - and Intermolecular Effects

    NASA Astrophysics Data System (ADS)

    de Dios, Angel Cagandahan

    1992-01-01

    Gas phase NMR measurements were performed to provide a more accurate description of the shielding. These experiments were aimed to provide the finer details of shielding: its dependence on the geometry of the molecule and intermolecular factors. Together with these experiments were ab initio calculations of the shielding designed to deepen our understanding of how the shielding is affected by the internal motions of the molecule as well as interactions among the molecules. The exceptional cases of ^{15 }N in NH_3 and ^{31}P in PH_3 were rigorously studied. The deuterium-induced isotope shifts were found to be dominated by contributions arising from bond extension. The temperature dependence is found to be a combination of contributions coming from centrifugal stretching and bond angle distortion. These cases were compared with ^{13}C in CH_4 and ^{17 }O in H_2O revealing some general characteristics of shielding surfaces. As a model for the intermolecular shift for rare gas atoms, the argon dimer was used. Through a scaling scheme, measured second virial coefficients of the shielding of ^{129}Xe in various collision partners were satisfactorily reproduced from the ab initio shielding function of the argon dimer. The intermolecular shielding function also helped in interpreting gas-to-solution shifts of rare gases and the ^ {129}Xe NMR results from adsorption studies. Lastly, an attempt was made to develop a theory that would explain both intramolecular and intermolecular effects on the chemical shifts. It was discovered that a general shape for the shielding function was possible.

  4. Factors affecting the use of 13Cα chemical shifts to determine, refine, and validate protein structures

    PubMed Central

    Vila, Jorge A.; Scheraga, Harold A.

    2008-01-01

    Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13Cα chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13Cα chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13Cα chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13Cα chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2ξ possible ionization states of the whole molecule, with ξ being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshield-ing of the 13Cα nucleus, indicated that: (i) there is a significant difference in the computed 13Cα chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13Cα nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13Cα chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13Cα chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13Cα chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the

  5. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    PubMed

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  6. Vicinal deuterium perturbations on hydrogen NMR chemical shifts in cyclohexanes.

    PubMed

    O'Leary, Daniel J; Allis, Damian G; Hudson, Bruce S; James, Shelly; Morgera, Katherine B; Baldwin, John E

    2008-10-15

    The substitution of a deuterium for a hydrogen is known to perturb the NMR chemical shift of a neighboring hydrogen atom. The magnitude of such a perturbation may depend on the specifics of bonding and stereochemical relationships within a molecule. For deuterium-labeled cyclohexanes held in a chair conformation at -80 degrees C or lower, all four possible perturbations of H by D as H-C-C-H is changed to D-C-C-H have been determined experimentally, and the variations seen, ranging from 6.9 to 10.4 ppb, have been calculated from theory and computational methods. The predominant physical origins of the NMR chemical shift perturbations in deuterium-labeled cyclohexanes have been identified and quantified. The trends defined by the Delta delta perturbation values obtained through spectroscopic experiments and by theory agree satisfactorily. They do not match the variations typically observed in vicinal J(H-H) coupling constants as a function of dihedral angles.

  7. Blue shifted intramolecular C-H···O improper hydrogen bonds in conformers of zidovudine

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Selvam, Lalitha; Wang, Feng

    2010-06-01

    Blue shifted C-H stretch vibrations caused by C-H···O intramolecular improper hydrogen bonds in zidovudine (or AZT) conformers are employed to differentiate its conformers. Two sugar-sugar C-H···O (5') improper hydrogen bonds, existing in conformers of AZT with apparent drug potency, are related to their unique sugar puckering, showing C (3')- exo or - endo orientations. Aqueous solution causes a global red shift in IR spectra, but remains reduced blue shifted C-H stretch frequencies. Molecular electrostatic potentials (MEPs) of the conformers and orbitals such as 40a of AZT-B and 37a of AZT-C, which are found to be responsible for the intramolecular improper hydrogen bonds, are also given in this study.

  8. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    PubMed Central

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination. PMID:23625364

  9. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    PubMed

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (Ea), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. Ea, k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  10. Using chemical shift perturbation to characterise ligand binding.

    PubMed

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  11. Empirical NMR Chemical Shift Correlations for Methyl and Methylene Protons.

    ERIC Educational Resources Information Center

    Friedrich, Edwin C.; Runkle, Katherine Gates

    1984-01-01

    Presents an internally consistent set of 63 substituent constants developed for use with the Schoolery Relationship to predict the chemical shifts of methylene protons of acyclic compounds. Chemical shift data used in deriving the constants were taken mainly from primary sources of HNMR (nuclear magnetic resonance) spectra. (JN)

  12. Relative Configuration of Natural Products Using NMR Chemical Shifts

    USDA-ARS?s Scientific Manuscript database

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  13. An isotropic chemical shift-chemical shift anisotropic correlation experiment using discrete magic angle turning.

    PubMed

    Hu, Jian Zhi; Sears, Jesse A; Kwak, Ja Hun; Hoyt, David W; Wang, Yong; Peden, Charles H F

    2009-05-01

    An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees , with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. For any spin-interaction of rank-2 such as chemical shift anisotropy, isotropic magnetic susceptibility interaction, and residual homo-nuclear dipolar interaction in biological fluid samples, the projection along the isotropic dimension is a high resolution spectrum. Since a less than 360 degrees sample rotation is involved, the design potentially allows for in situ control over physical parameters such as pressure, flow conditions, feed compositions, and temperature so that true in situ NMR investigations can be carried out.

  14. Probabilistic Validation of Protein NMR Chemical Shift Assignments

    PubMed Central

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect (NOE) data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/. PMID:26724815

  15. Sequential nearest-neighbor effects on computed 13Cα chemical shifts

    PubMed Central

    Vila, Jorge A.; Serrano, Pedro; Wüthrich, Kurt

    2010-01-01

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical 13Cα chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed 13Cα chemical shifts, Δca,i, for the individual residues along the sequence. This indicates that the Δca,i -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures. PMID:20644980

  16. Sequential nearest-neighbor effects on computed 13Calpha chemical shifts.

    PubMed

    Vila, Jorge A; Serrano, Pedro; Wüthrich, Kurt; Scheraga, Harold A

    2010-09-01

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of (13)C(alpha) chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue alpha/beta protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed (13)C(alpha) chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical (13)C(alpha) chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed (13)C(alpha) chemical shifts, Delta(ca,i), for the individual residues along the sequence. This indicates that the Delta(ca,i)-values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  17. 2D-3D MIGRATION AND CONFORMATIONAL MULTIPLICATION OF CHEMICALS IN LARGE CHEMICAL INVENTORIES

    EPA Science Inventory

    Chemical interactions are three-dimensional (3D) in nature and require modeling chemicals as 3D entities. In turn, using 3D models of chemicals leads to the realization that a single 2D structure can have hundreds of different conformations, and the electronic properties of these...

  18. 2D-3D MIGRATION AND CONFORMATIONAL MULTIPLICATION OF CHEMICALS IN LARGE CHEMICAL INVENTORIES

    EPA Science Inventory

    Chemical interactions are three-dimensional (3D) in nature and require modeling chemicals as 3D entities. In turn, using 3D models of chemicals leads to the realization that a single 2D structure can have hundreds of different conformations, and the electronic properties of these...

  19. A chemical chaperone induces inhomogeneous conformational changes in flexible proteins.

    PubMed

    Hamdane, Djemel; Velours, Christophe; Cornu, David; Nicaise, Magali; Lombard, Murielle; Fontecave, Marc

    2016-07-27

    Organic osmolytes also known as chemical chaperones are major cellular compounds that favor, by an unclear mechanism, protein's compaction and stabilization of the native state. Here, we have examined the chaperone effect of the naturally occurring trimethylamine N-oxide (TMAO) osmolyte on a loosely packed protein (LPP), known to be a highly flexible form, using an apoprotein mutant of the flavin-dependent RNA methyltransferase as a model. Thermal and chemical denaturation experiments showed that TMAO stabilizes the structural integrity of the apoprotein dramatically. The denaturation reaction is irreversible indicating that the stability of the apoprotein is under kinetic control. This result implies that the stabilization is due to a TMAO-induced reconfiguration of the flexible LPP state, which leads to conformational limitations of the apoprotein likely driven by favorable entropic contribution. Evidence for the conformational perturbation of the apoprotein had been obtained through several biophysical approaches notably analytical ultracentrifugation, circular dichroism, fluorescence spectroscopy, labelling experiments and proteolysis coupled to mass spectrometry. Unexpectedly, TMAO promotes an overall elongation or asymmetrical changes of the hydrodynamic shape of the apoprotein without alteration of the secondary structure. The modulation of the hydrodynamic properties of the protein is associated with diverse inhomogenous conformational changes: loss of the solvent accessible cavities resulting in a dried protein matrix; some side-chain residues initially buried become solvent exposed while some others become hidden. Consequently, the TMAO-induced protein state exhibits impaired capability in the flavin binding process. Our study suggests that the nature of protein conformational changes induced by the chemical chaperones may be specific to protein packing and plasticity. This could be an efficient mechanism by which the cell controls and finely tunes the

  20. Is the Lamb shift chemically significant?

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  1. Homology modeling of larger proteins guided by chemical shifts.

    PubMed

    Shen, Yang; Bax, Ad

    2015-08-01

    We describe an approach to the structure determination of large proteins that relies on experimental NMR chemical shifts, plus sparse nuclear Overhauser effect (NOE) data if available. Our alignment method, POMONA (protein alignments obtained by matching of NMR assignments), directly exploits pre-existing bioinformatics algorithms to match experimental chemical shifts to values predicted for the crystallographic database. Protein templates generated by POMONA are subsequently used as input for chemical shift-based Rosetta comparative modeling (CS-RosettaCM) to generate reliable full-atom models.

  2. Use of 13Cα Chemical-Shifts in Protein Structure Determination

    PubMed Central

    Vila, Jorge A.; Ripoll, Daniel R.; Scheraga, Harold A.

    2008-01-01

    A physics-based method, aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts, is proposed. The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Cα chemical shifts match the experimental ones. A test is carried out on a 76-amino acid all-α-helical protein, namely the B. Subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Cα chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank. PMID:17516673

  3. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution.

    PubMed

    Kjaergaard, Magnus; Poulsen, Flemming M

    2011-06-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve the identification of small populations of transient structure in disordered proteins.

  4. Unraveling the meaning of chemical shifts in protein NMR.

    PubMed

    Berjanskii, Mark V; Wishart, David S

    2017-07-15

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017. Published by Elsevier B.V.

  5. Can Holo NMR Chemical Shifts be Directly Used to Resolve RNA-Ligand Poses?

    PubMed

    Frank, Aaron T

    2016-02-22

    Using a set of machine learning based predictors that are capable of predicting ligand-induced shielding effects on (1)H and (13)C nonexchangeable nuclei, it was discovered that holo NMR chemical shifts can be used to resolve RNA-ligand poses. This was accomplished by quantitatively comparing measured and predicted holo chemical shifts in conformationally diverse "decoy" pools for three test cases and then, for each, comparing the native pose to the pose in the decoy pool that exhibited the lowest error. For three test cases, the poses in the decoy pools that exhibited the best agreement between measured and predicted holo chemical shifts were within 0.28, 1.12, and 2.38 Å of the native poses. Interestingly, the predictors used in this study were trained on a database containing, only, apo RNA data. The agreement between the chemical shift-selected poses and the native NMR poses suggests that the predictors used in this study were able to "learn" general chemical shift-structure relationships from apo RNA data that could be used to account for ligand-induced shielding effects on RNA nuclei for the test cases studied.

  6. Bayesian inference of protein structure from chemical shift data.

    PubMed

    Bratholm, Lars A; Christensen, Anders S; Hamelryck, Thomas; Jensen, Jan H

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  7. Bayesian inference of protein structure from chemical shift data

    PubMed Central

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  8. Counterion influence on chemical shifts in strychnine salts

    SciTech Connect

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  9. Counterion influence on chemical shifts in strychnine salts.

    PubMed

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-10-29

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.

  11. Frequency Response of Multipoint Chemical Shift Based Spectral Decomposition

    PubMed Central

    Brodsky, Ethan K.; Chebrolu, Venkata V.; Block, Walter F.; Reeder, Scott B.

    2010-01-01

    PURPOSE To provide a framework for characterizing the frequency response of multi-point chemical shift based species separation techniques. MATERIALS AND METHODS Multi-point chemical shift based species separation techniques acquire complex images at multiple echo times and perform maximum likelihood estimation to decompose signal from different species into separate images. In general, after a non-linear process of estimating and demodulating the field map, these decomposition methods are linear transforms from the echo-time domain to the chemical-shift-frequency domain, analogous to the Discrete Fourier Transform (DFT). In this work, we describe a technique for finding the magnitude and phase of chemical shift decomposition for input signals over a range of frequencies using numerical and experimental modeling and examine several important cases of species separation. RESULTS Simple expressions can be derived to describe the response to a wide variety of input signals. Agreement between numerical modeling and experimental results is very good. CONCLUSION Chemical shift based species separation is linear, and therefore can be fully described by the magnitude and phase curves of the frequency response. The periodic nature of the frequency response has important implications for the robustness of various techniques for resolving ambiguities in field inhomogeneity. PMID:20882625

  12. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  13. Shifting the equilibrium mixture of gramicidin double helices toward a single conformation with multivalent cationic salts.

    PubMed Central

    Doyle, D A; Wallace, B A

    1998-01-01

    The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165

  14. NMR Chemical Shifts in Hard Carbon Nitride Compounds

    SciTech Connect

    Yoon, Y.; Yoon, Y.; Pfrommer, B.G.; Pfrommer, B.G.; Louie, S.G.; Louie, S.G.; Mauri, F.

    1998-04-01

    We show that NMR chemical shift spectroscopy could help to identify the crystalline phases of hard carbon nitride compounds. To this purpose we compute the NMR chemical shifts of defect zinc-blende, cubic, {alpha}{minus} , {beta}{minus} , and graphitic C{sub 3}N{sub 4} with a newly developed {ital ab initio} method. The C shifts can be used to identify the CN bonds and to characterize C hybridization. The N shifts distinguish the {alpha}-C{sub 3}N{sub 4} from the {beta}-C{sub 3}N{sub 4} phases, and indicate the presence of the graphitic phase. {copyright} {ital 1998} {ital The American Physical Society}

  15. Protein Structure Refinement Using 13Cα Chemical Shift Tensors

    PubMed Central

    Wylie, Benjamin J.; Schwieters, Charles D.; Oldfield, Eric; Rienstra, Chad M.

    2009-01-01

    We have obtained the 13Cα chemical shift tensors for each amino acid in the protein GB1. We then developed a CST force field and incorporated this into the Xplor-NIH structure determination program. GB1 structures obtained by using CST restraints had improved precision over those obtained in the absence of CST restraints, and were also more accurate. When combined with isotropic chemical shifts, distance and vector angle restraints, the root-mean squared error with respect to existing x-ray structures was better than ~1.0 Å. These results are of broad general interest since they show that chemical shift tensors can be used in protein structure refinement, improving both structural accuracy and precision, opening up the way to accurate de novo structure determination. PMID:19123862

  16. Analysis of 7-Membered Lactones by Computational NMR Methods. Proton NMR Chemical Shift Data are More Discriminating than Carbon

    PubMed Central

    Marell, Daniel J.; Emond, Susanna J.; Kulshrestha, Aman; Hoye, Thomas R.

    2014-01-01

    We report an NMR chemical shift study of conformationally challenging seven-membered lactones (1–11); computed and experimental data sets are compared. The computations involved full conformational analysis of each lactone, Boltzmann-weighted averaging of the chemical shifts across all conformers, and linear correction of the computed chemical shifts. DFT geometry optimizations [M06-2X/6-31+G(d,p)] and GIAO NMR chemical shift calculations [B3LYP/6-311+G(2d,p)] provide the computed chemical shifts. The corrected-mean absolute error (CMAE), the average of the differences between the computed and experimental chemical shifts for each of the eleven lactones, is encouragingly small (0.02–0.08 ppm for 1H or 0.8–2.2 ppm for 13C). Three pairs of cis vs. trans diastereomeric lactones were used to assess the ability of the method to distinguish between stereoisomers. The experimental shifts were compared with the computed shifts for each of the two possible isomers. We introduce the use of a “match ratio”—the ratio of the larger (worse fit) to the smaller (better fit) CMAE. A greater match ratio value indicates better distinguishing ability. The match ratios are larger for proton data [2.4–4.0 (ave = 3.2)] than for carbon [1.1–2.3 (ave = 1.6)], indicating that the former provide a better basis for discriminating these diastereomers. PMID:24354614

  17. Molecular dynamics averaging of Xe chemical shifts in liquids

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Sears, Devin N.; Murad, Sohail

    2004-11-01

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  18. Analysis of 13Cα and 13Cβ chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    PubMed Central

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A.

    2010-01-01

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the 13Cα and 13Cβ chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed 13Cα chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed 13Cα chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced –SH 13Cβ, but not for the 13Cα, chemical shifts, in good agreement with the observation of 375 13Cα and 337 13Cβ resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of 13Cα and 13Cβ chemical shifts of cysteines in cystines. PMID:20091207

  19. Chemical shift and coupling constant analysis of dibenzyloxy disulfides

    NASA Astrophysics Data System (ADS)

    Stoutenburg, Eric G.; Gryn'ova, Ganna; Coote, Michelle L.; Priefer, Ronny

    2015-02-01

    Dialkoxy disulfides have found applications in the realm of organic synthesis as an S2 or alkoxy donor, under thermal and photolytic decompositions conditions, respectively. Spectrally, dibenzyloxy disulfides possess an ABq in the 1H NMR, which can shift by over 1.1 ppm depending on the substituents present on the aromatic ring, as well as the solvent employed. The effect of the said substituents and solvent were analyzed and compared to the center of the ABq, geminal coupling, and the differences in chemical shifts of the individual doublets. Additionally, quantum-chemical calculations demonstrated the intramolecular H-bonding arrangement, found within the dibenzyloxy disulfides.

  20. Chemical vapor deposition of conformal, functional, and responsive polymer films.

    PubMed

    Alf, Mahriah E; Asatekin, Ayse; Barr, Miles C; Baxamusa, Salmaan H; Chelawat, Hitesh; Ozaydin-Ince, Gozde; Petruczok, Christy D; Sreenivasan, Ramaswamy; Tenhaeff, Wyatt E; Trujillo, Nathan J; Vaddiraju, Sreeram; Xu, Jingjing; Gleason, Karen K

    2010-05-11

    Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques. Commonality with inorganic CVD methods facilitates the fabrication of hybrid devices. CVD polymers bridge microfabrication technology with chemical, biological, and nanoparticle systems and assembly. Robust interfaces can be achieved through covalent grafting enabling high-resolution (60 nm) patterning, even on flexible substrates. Utilizing only low-energy input to drive selective chemistry, modest vacuum, and room-temperature substrates, CVD polymerization is compatible with thermally sensitive substrates, such as paper, textiles, and plastics. CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents. Quantitative models aid the development of large-area and roll-to-roll CVD polymer reactors. Relevant background, fundamental principles, and selected applications are reviewed.

  1. Blue Native PAGE and Antibody Gel Shift to Assess Bak and Bax Conformation Change and Oligomerization.

    PubMed

    Dewson, Grant

    2015-05-01

    Blue native PAGE (BN-PAGE) uses Coomassie dye rather than denaturing SDS to provide a negative charge to proteins for electrophoresis. As such, it is a useful assay for investigating native supramolecular membrane complexes without the need for cross-linking. As Bak and Bax oligomers form in the mitochondrial outer membrane, and they can be efficiently monitored by BN-PAGE. Furthermore, BN-PAGE performed in conjunction with gel-shift using conformation-specific antibodies can provide additional information regarding the activation state of Bak or Bax in specific membrane complexes. © 2015 Cold Spring Harbor Laboratory Press.

  2. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    PubMed

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  3. Innovative chemical synthesis and conformational hints on the lipopeptide liraglutide.

    PubMed

    Guryanov, Ivan; Bondesan, Alex; Visentini, Dario; Orlandin, Andrea; Biondi, Barbara; Toniolo, Claudio; Formaggio, Fernando; Ricci, Antonio; Zanon, Jacopo; Cabri, Walter

    2016-07-01

    Liraglutide is a new generation lipopeptide drug used for the treatment of type II diabetes. In this work, we describe new approaches for its preparation fully by chemical methods. The key step of these strategies is the synthesis in solution of the Lys/γ-Glu building block, Fmoc-Lys-(Pal-γ-Glu-OtBu)-OH, in which Lys and Glu residues are linked through their side chains and γ-Glu is N(α) -palmitoylated. This dipeptide derivative is then inserted into the peptide sequence on solid phase. As liraglutide is obtained with great purity and high yield, our approach can be particularly attractive for an industrial production. We also report here the results of a circular dichroism conformational analysis in a membrane mimetic environment that offers new insights into the mechanism of action of liraglutide. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  4. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Liu, Jin; Wavrik, Kathryn

    1999-09-27

    This report describes work performed during the first year of the project, ''Using Chemicals to Optimize Conformance Control in Fractured Reservoirs.'' This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. Our work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  5. Aromatic interactions in model peptide β-hairpins: ring current effects on proton chemical shifts.

    PubMed

    Rajagopal, Appavu; Aravinda, Subrayashastry; Raghothama, Srinivasarao; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2012-01-01

    Crystal structures of eight peptide β-hairpins in the sequence Boc-Leu-Phe-Val-Xxx-Yyy-Leu-Phe-Val-OMe revealed that the Phe(2) and Phe(7) aromatic rings are in close spacial proximity, with the centroid-centroid distance (R(cen)) of 4.4-5.4 Å between the two phenyl rings. Proton NMR spectra in chloroform and methanol solution reveal a significant upfield shift of the Phe(7) C(δ,δ') H(2) protons (6.65-7.04 ppm). Specific assignments of the aromatic protons have been carried out in the peptide Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (6). The anticipated ring current shifts have been estimated from the aromatic ring geometrics observed in crystals for all eight peptides. Only one of the C(δ,δ') H proton lies in the shielding zone with rapid ring flipping, resulting in averaging between the two extreme chemical shifts. An approximate estimate of the population of conformations, which resemble crystal state orientation, may be obtained. Key nuclear Overhauser effects (NOEs) between facing Phe side chains provide support for close similarity between the solid state and solution conformation. Temperature dependence of aromatic ring proton chemical shift and line widths for peptide 6 (Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe) and the control peptide Boc-Leu-Val-Val-(D)Pro-Gly-Leu-Phe-Val-OMe establish an enhanced barrier to ring flipping when the two Phe rings are in proximity. Modeling studies suggest that small, conformational adjustment about C(α)-C(β) (χ(1) ) and C(β)-C(γ) (χ(2) ) bonds of both the Phe residues may be required in order to permit unhindered, uncorrelated flipping of both the Phe rings. The maintenance of the specific aromatic ring orientation in organic solvents provides evidence for significant stabilizing interaction. Copyright © 2012 Wiley Periodicals, Inc.

  6. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion.

    PubMed

    Winsor, James; Hackney, David D; Lee, Tina H

    2017-05-01

    The homotypic fusion of endoplasmic reticulum membranes is catalyzed by the atlastin GTPase. The mechanism involves trans-dimerization between GTPase heads and a favorable crossover conformational shift, catalyzed by GTP hydrolysis, that converts the dimer from a "prefusion" to "postfusion" state. However, whether crossover formation actually energizes fusion remains unclear, as do the sequence of events surrounding it. Here, we made mutations in atlastin to selectively destabilize the crossover conformation and used fluorescence-based kinetic assays to analyze the variants. All variants underwent dimerization and crossover concurrently, and at wild-type rates. However, certain variants were unstable once in the crossover dimer conformation, and crossover dimer stability closely paralleled lipid-mixing activity. Tethering, however, appeared to be unimpaired in all mutant variants. The results suggest that tethering and lipid mixing are catalyzed concurrently by GTP hydrolysis but that the energy requirement for lipid mixing exceeds that for tethering, and the full energy released through crossover formation is necessary for fusion. © 2017 Winsor et al.

  7. Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban

    PubMed Central

    Gustavsson, Martin; Verardi, Raffaello; Mullen, Daniel G.; Mote, Kaustubh R.; Traaseth, Nathaniel J.; Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    The membrane protein complex between the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLN) controls Ca2+ transport in cardiomyocytes, thereby modulating cardiac contractility. β-Adrenergic-stimulated phosphorylation of PLN at Ser-16 enhances SERCA activity via an unknown mechanism. Using solid-state nuclear magnetic resonance spectroscopy, we mapped the physical interactions between SERCA and both unphosphorylated and phosphorylated PLN in membrane bilayers. We found that the allosteric regulation of SERCA depends on the conformational equilibrium of PLN, whose cytoplasmic regulatory domain interconverts between three different states: a ground T state (helical and membrane associated), an excited R state (unfolded and membrane detached), and a B state (extended and enzyme-bound), which is noninhibitory. Phosphorylation at Ser-16 of PLN shifts the populations toward the B state, increasing SERCA activity. We conclude that PLN’s conformational equilibrium is central to maintain SERCA’s apparent Ca2+ affinity within a physiological window. This model represents a paradigm shift in our understanding of SERCA regulation by posttranslational phosphorylation and suggests strategies for designing innovative therapeutic approaches to enhance cardiac muscle contractility. PMID:24101520

  8. Estimation of optical chemical shift in nuclear spin optical rotation

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Yao, Guo-hua; He, Tian-jing; Chen, Dong-ming; Liu, Fan-chen

    2014-05-01

    A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.

  9. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    PubMed Central

    Shen, Yang; Bax, Ad

    2010-01-01

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C′, δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2–10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts. PMID:20628786

  10. Mapping allostery through the covariance analysis of NMR chemical shifts

    PubMed Central

    Selvaratnam, Rajeevan; Chowdhury, Somenath; VanSchouwen, Bryan; Melacini, Giuseppe

    2011-01-01

    Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical shift changes caused by a set of covalently modified analogs of the allosteric effector (i.e., agonists and antagonists) reveals extended networks of coupled residues. Unexpectedly, such networks reach not only sites subject to effector-dependent structural variations, but also regions that are controlled by dynamically driven allostery. In these regions the allosteric signal is propagated mainly by dynamic rather than structural modulations, which result in subtle but highly correlated chemical shift variations. The proposed chemical shift covariance analysis (CHESCA) identifies interresidue correlations based on the combination of agglomerative clustering (AC) and singular value decomposition (SVD). AC results in dendrograms that define functional clusters of coupled residues, while SVD generates score plots that provide a residue-specific dissection of the contributions to binding and allostery. The CHESCA approach was validated by applying it to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC) and the CHESCA results are in full agreement with independent mutational data on EPAC activation. Overall, CHESCA is a generally applicable method that utilizes a selected chemical library of effector analogs to quantitatively decode the binding and allosteric information content embedded in chemical shift changes. PMID:21444788

  11. Ligand binding analysis and screening by chemical denaturation shift.

    PubMed

    Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto

    2013-12-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.

  12. Chemical-shift MRI of exogenous lipoid pneumonia

    SciTech Connect

    Cox, J.E.; Choplin, R.H.; Chiles, C.

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  13. Heuristic overlap-exchange model of noble gas chemical shifts

    NASA Astrophysics Data System (ADS)

    Adrian, Frank J.

    2004-05-01

    It is now generally recognized that overlap-exchange interactions are the primary cause of the medium-dependent magnetic shielding (chemical shift) in all noble gases except helium, although the attractive electrostatic-dispersion (van der Waals) interactions play an indirect role in determining the penetration of the interacting species into the repulsive overlap-exchange region. The short-range nature of these overlap-exchange interactions, combined with the fact that they often can be approximated by simple functions of the overlap of the wave functions of the interacting species, suggests a useful semiempirical model of these chemical shifts. In it the total shielding is the sum of shieldings due to pairwise interactions of the noble gas atom with the individual atoms of the medium, with the "atomic" shielding terms either estimated by simple functions of the atomic overlap integrals averaged over their Boltzmann-weighted separations, or determined by fits to experimental data in systems whose complexity makes the former procedure impractical. Results for 129Xe chemical shifts in the noble gases and in a variety of molecular and condensed systems, including families of n-alkanes, straight-chain alcohols, and the endohedral compounds Xe@C60 and Xe@C70 are encouraging for the applicability of the model to systems of technical and biomedical interest.

  14. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect

    Seright, R.S.

    1999-06-08

    This technical progress report describes work performed from October 1, 1998 through December 31, 1998, for the project, ''Using Chemicals to Optimize Conformance in Fractured Reservoirs.'' In our first task area, disproportionate permeability reduction, a literature survey and analysis are underway to identify options for reducing permeability to water much more than that to oil. In our second task area, we are encouraging the use of our recently developed software for sizing gelant treatments in hydraulically fractured production wells. In several field applications, we noted the importance of obtaining accurate values of the static reservoir pressure before using our program. In our third task area, we examined gel properties as they extruded through fractures. We found stable pressure gradients during injection of a large volume of a one-day-old Cr(III)-acetate-HPAM gel into a 0.04-in.-wide, four-ft-long fracture. This finding confirms that gel injection (under our specific circumstances) did not lead to continuously increasing pressure gradients and severely limited gel propagation. Our experiments also provided insights into the mechanism for gel propagation during extrusion through fractures.

  15. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts.

    PubMed

    Camilloni, Carlo; De Simone, Alfonso; Vranken, Wim F; Vendruscolo, Michele

    2012-03-20

    One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aβ peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.

  16. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates

    PubMed Central

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. PMID:27636092

  17. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  18. Development of (19)F-NMR chemical shift detection of DNA B-Z equilibrium using (19)F-NMR.

    PubMed

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using (19)F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on (19)F-NMR chemical shift change.

  19. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    NASA Astrophysics Data System (ADS)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  20. Ultrahigh resolution protein structures using NMR chemical shift tensors

    PubMed Central

    Wylie, Benjamin J.; Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Franks, W. Trent; Oldfield, Eric; Rienstra, Chad M.

    2011-01-01

    NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13Cα and 15N (peptide backbone) groups in a protein, the β1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13Cα and 15N CSTs were measured using synchronously evolved recoupling experiments in which 13C and 15N tensors were projected onto the 1H-13C and 1H-15N vectors, respectively, and onto the 15N-13C vector in the case of 13Cα. The orientations of the 13Cα CSTs to the 1H-13C and 13C-15N vectors agreed well with the results of ab initio calculations, with an rmsd of approximately 8°. In addition, the measured 15N tensors exhibited larger reduced anisotropies in α-helical versus β-sheet regions, with very limited variation (18 ± 4°) in the orientation of the z-axis of the 15N CST with respect to the 1H-15N vector. Incorporation of the 13Cα CST restraints into structure calculations, in combination with isotropic chemical shifts, transferred echo double resonance 13C-15N distances and vector angle restraints, improved the backbone rmsd to 0.16 Å (PDB ID code 2LGI) and is consistent with existing X-ray structures (0.51 Å agreement with PDB ID code 2QMT). These results demonstrate that chemical shift tensors have considerable utility in protein structure refinement, with the best structures comparable to 1.0-Å crystal structures, based upon empirical metrics such as Ramachandran geometries and χ1/χ2 distributions, providing solid-state NMR with a powerful tool for de novo structure determination. PMID:21969532

  1. Systemic bone marrow disorders: Characterization with proton chemical shift imaging

    SciTech Connect

    Gueckel, F.B.; Brix, G.; Semmler, W.; Zuna, I.; Knauf, W.; Ho, A.D.; van Kaick, G. )

    1990-07-01

    In a prospective clinical study, 26 patients (22 with malignant lymphoma and 4 with myelofibrosis) and 9 healthy volunteers were examined by conventional magnetic resonance and proton chemical shift imaging (CSI; modified Dixon method). On the basis of the CSI data, a quantitative evaluation of the relative fat and water signal fractions in regions of interest of the femur, pelvis, and spine was performed. In 16 of 17 patients with biopsy-proven bone marrow disorders, CSI revealed a significant reduction in the fat fraction of the bone marrow relative to that of normal volunteers. The visual assessment could detect only 14 of the 17 pathological cases.

  2. [Thermometry by measuring the chemical shift of lanthanide complex].

    PubMed

    Konstanczak, P; Wust, P; Sander, B; Schründer, S; Frenzel, T; Wlodarczyk, W; Vogl, T; Müller, G; Felix, R

    1997-02-01

    In the long-term, non-invasive thermometry is vital for the continued clinical and technological development of regional hyperthermia. In magnetic resonance tomography. T1 relaxation time, diffusion and proton resonance frequency are used to measure temperature distributions. When used clinically in the pelvic region, all of these methods are plagued with errors and artefacts on account of the tissue relationships, tissue changes under hyperthermia, physiological and stochastic movements, inhomogeneities, drift phenomena and instabilities. We tested the relationship between the temperature and the chemical shift of a methyl group of a lanthanide complex with central atom praseodymium (Pr-MOE-DO3A. Schering AG). To do this we used cylindrical phantoms containing a 5-mmol-solution of this temperature-sensitive substance. High resolution spectra and relaxation times were determined in a Bruker AMX at 11.5 T. A calibration curve was then recorded by a Siemens Magnetom SP63 at 1.5 T. Local temperature distributions were determined using the chemical shift imaging method, with a matrix size of 16 x 8 and a narrow-band excitation pulse. The temperature distribution was created using a Nd:YAG laser applicator. At a distance of -25.7 ppm from the water line, we found a singlet line with a temperature-dependent chemical shift of 0.13 ppm/C. In the phantom experiment we found that the chemical shift had a linear relationship with a gradient independent of the surroundings, and a temperature resolution of +/-0.6 degree C. With a concentration of 1 mmol/l, a matrix size of 8 x 8 and a measurement period of 5 s per acquisition, phantom measurements using the CSI method produced a signal to noise ratio of 3.5 per acquisition, i.e a measurement period of 10 to 20 s per spectrum. Our in vitro data show that spectroscopic temperature measurement using a temperature-sensitive praseodymium complex with a therapeutically practical concentration of 1 mmol/l already appears to be

  3. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  4. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  5. Ab initio study of {sup 13}C NMR chemical shifts for the chromophores of rhodopsin and bacteriorhodopsin. 2. Comprehensive analysis of the {sup 13}C chemical shifts of protonated all-trans-retinylidene Schiff base

    SciTech Connect

    Sakurai, Minoru; Wada, Mitsuhito; Inoue, Yoshio; Tamura, Yusuke; Watanabe, Yoichi

    1996-02-01

    Theoretical analysis was performed for the {sup 13}C chemical shifts of the retinal chromophore in bacteriorhodopsin (bR) by means of ab initio NMR shielding calculation, based on the localized orbital/ local origin method. In order to comprehensively investigate the correlation between the {sup 13}C chemical shieldings of the unsaturated carbons and physicochemical perturbations relating to the spectral tuning of bacteriorhodopsin, the following three factors are taken into account in the present calculation: (1) change in strength of the hydrogen bonding between protonated retinylidene Schiff base and its counterion, (2) conformational changes about single bonds of the conjugated chain, and (3) electrostatic interactions between the Schiff base and electric dipoles. On the basis of these calculations, we successfully find a molecular model for which the shielding calculation almost completely reproduces the observed chemical shift data for the chromophore of bR. 47 refs., 13 figs.

  6. Chemical shift-based water/fat separation in the presence of susceptibility-induced fat resonance shift

    PubMed Central

    Karampinos, Dimitrios C.; Yu, Huanzhou; Shimakawa, Ann; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Chemical shift-based water/fat separation methods have been emerging due to the growing clinical need for fat quantification in different body organs. Accurate quantification of proton-density fat fraction requires the assessment of many confounding factors, including the need of modeling the presence of multiple peaks in the fat spectrum. Most recent quantitative chemical shift-based water/fat separation approaches rely on a multi-peak fat spectrum with pre-calibrated peak locations and pre-calibrated or self-calibrated peak relative amplitudes. However, water/fat susceptibility differences can induce fat spectrum resonance shifts depending on the shape and orientation of the fatty inclusions. The effect is of particular interest in the skeletal muscle due to the anisotropic arrangement of extracellular lipids. In the present work, the effect of susceptibility-induced fat resonance shift on the fat fraction is characterized in a conventional complex-based chemical shift-based water/fat separation approach that does not model the susceptibility-induced fat resonance shift. A novel algorithm is then proposed in order to quantify the resonance shift in a complex-based chemical shift-based water/fat separation approach that considers the fat resonance shift in the signal model, aiming to extract information about the orientation/geometry of lipids. The technique is validated in a phantom and preliminary in vivo results are shown in the calf musculature of healthy and diabetic subjects. PMID:22247024

  7. Determination of amyloid core structure using chemical shifts.

    PubMed

    Skora, Lukasz; Zweckstetter, Markus

    2012-12-01

    Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS-Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid-state NMR chemical shifts and taking into account the polymeric nature of fibrils CS-Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left-handed β-helix.

  8. Conformational properties of penicillins: quantum chemical calculations and molecular dynamics simulations of benzylpenicillin.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L

    2003-11-30

    Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.

  9. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    SciTech Connect

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  10. A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin

    PubMed Central

    Brown, Leonid S.; Kamikubo, Hironari; Zimányi, László; Kataoka, Mikio; Tokunaga, Fumio; Verdegem, Peter; Lugtenburg, Johan; Lanyi, Janos K.

    1997-01-01

    During light-driven proton transport bacteriorhodopsin shuttles between two protein conformations. A large-scale structural change similar to that in the photochemical cycle is produced in the D85N mutant upon raising the pH, even without illumination. We report here that (i) the pKa values for the change in crystallographic parameters and for deprotonation of the retinal Schiff base are the same, (ii) the retinal isomeric configuration is nearly unaffected by the protein conformation, and (iii) preventing rotation of the C13—C14 double bond by replacing the retinal with an all-trans locked analogue makes little difference to the Schiff base pKa. We conclude that the direct cause of the conformational shift is destabilization of the structure upon loss of interaction of the positively charged Schiff base with anionic residues that form its counter-ion. PMID:9144186

  11. Natural Linewidth Chemical Shift Imaging (NL-CSI)

    PubMed Central

    Bashir, Adil; Yablonskiy, Dmitriy A.

    2007-01-01

    The discrete Fourier transform (FT) is a conventional method for spatial reconstruction of chemical shifting imaging (CSI) data. Due to point spread function (PSF) effects, FT reconstruction leads to intervoxel signal leakage (Gibbs ringing). Spectral localization by imaging (SLIM) reconstruction was previously proposed to overcome this intervoxel signal contamination. However, the existence of magnetic field inhomogeneities creates an additional source of intervoxel signal leakage. It is demonstrated herein that even small field inhomogeneities substantially amplify intervoxel signal leakage in both FT and SLIM reconstruction approaches. A new CSI data acquisition strategy and reconstruction algorithm (natural linewidth (NL) CSI) is presented that eliminates effects of magnetic field inhomogeneity-induced intervoxel signal leakage and intravoxel phase dispersion on acquired data. The approach is based on acquired CSI data, high-resolution images, and magnetic field maps. The data are reconstructed based on the imaged object structure (as in the SLIM approach) and a reconstruction matrix that takes into account the inhomogeneous field distribution inside anatomically homogeneous compartments. Phantom and in vivo results show that the new method allows field inhomogeneity effects from the acquired MR signal to be removed so that the signal decay is determined only by the “natural”R2 relaxation rate constant (hence the term “natural linewidth” CSI). PMID:16721752

  12. Chemical shift assignments of the connexin37 carboxyl terminal domain.

    PubMed

    Li, Hanjun; Spagnol, Gaelle; Pontifex, Tasha K; Burt, Janis M; Sorgen, Paul L

    2017-03-01

    Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the (1)H, (15)N, and (13)C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the (1)H-(15)N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis-trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.

  13. Applications of Chemical Shift Imaging to Marine Sciences

    PubMed Central

    Lee, Haakil; Tikunov, Andrey; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The successful applications of magnetic resonance imaging (MRI) in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT) or positron emission (PET) scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS). MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H) including carbon (13C) or phosphorus (31P). In vivo MR spectra can be obtained from single region of interest (ROI or voxel) or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI). Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism. PMID:20948912

  14. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    NASA Astrophysics Data System (ADS)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  15. Novel Self-Thickening Chemicals for Improved Conformance Control

    SciTech Connect

    Patrick J. Shuler, Ph.D.

    2011-07-18

    The objective of this project is to identify single chemical agents that exhibit a desirable rheological property whereby if such a chemical is dissolved in salt water it increases the solution viscosity significantly with time. We term that behavior as 'self-thickening' and have nicknamed this as 'T85 technology'. As detailed in the original project proposal, such single chemical products can be applied to advantage as agents for selectively slowing or blocking high flow water channels in subsurface oil reservoirs. The net effect is a decrease in water and an increase in oil flow and production. The initial testing has focused on five different synthetic co-polymers that have two or more chemical groups. These chemicals were dissolved at a concentration of 2500 ppm into different salt solutions (sodium chloride, potassium chloride, and calcium chloride) that encompass a range of dissolved salt concentrations. For the sodium chloride and potassium chloride solutions the salt concentration ranged from 1-5 wt%. The calcium chloride dihydrate sample concentrations ranged from 0.1-1 wt%. One set of samples being aged at 25 C and a second set at 50 C. Viscosity measurements versus aging time show two of these agents may exhibit apparent self-thickening behavior under certain salinity and temperature conditions. Generally the effect is greater in lower salinity NaCl brines and at 25 C. Preliminary flow experiments confirm that the aged fluids exhibit increased effective viscosity while flowing through a porous medium (sand pack). These flow tests include the case of the chemical fluid being aged on the bench before injection into a sand pack, and also a second series of sand packs where fresh chemical fluid is injected and allowed to age in-situ. Thus, the results of the static ageing tests together with the flow tests are a technical validation of the T85 concept.

  16. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  17. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed Central

    Lebedev, A V; Rezvukhin, A I

    1984-01-01

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered. PMID:6087290

  18. Temperature dependence of (1)H NMR chemical shifts and its influence on estimated metabolite concentrations.

    PubMed

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-07-06

    Temperature dependent chemical shifts of important brain metabolites measured by localised (1)H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10(-4) ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If (1)H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  19. Autophosphorylation Activity of a Soluble Hexameric Histidine Kinase Correlates with the Shift in Protein Conformational Equilibrium

    PubMed Central

    Wojnowska, Marta; Yan, Jun; Sivalingam, Ganesh N.; Cryar, Adam; Gor, Jayesh; Thalassinos, Konstantinos; Djordjevic, Snezana

    2013-01-01

    Summary In a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal “receiver domain” that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the “compact” form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG. PMID:24210218

  20. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.

    PubMed

    Vila, Jorge A; Scheraga, Harold A

    2009-10-20

    Two major techniques have been used to determine the three-dimensional structures of proteins: X-ray diffraction and NMR spectroscopy. In particular, the validation of NMR-derived protein structures is one of the most challenging problems in NMR spectroscopy. Therefore, researchers have proposed a plethora of methods to determine the accuracy and reliability of protein structures. Despite these proposals, there is a growing need for more sophisticated, physics-based structure validation methods. This approach will enable us to (a) characterize the "quality" of the NMR-derived ensemble as a whole by a single parameter, (b) unambiguously identify flaws in the sequence at a residue level, and (c) provide precise information, such as sets of backbone and side-chain torsional angles, that we can use to detect local flaws. Rather than reviewing all of the existing validation methods, this Account describes the contributions of our research group toward a solution of the long-standing problem of both global and local structure validation of NMR-derived protein structures. We emphasize a recently introduced physics-based methodology that makes use of observed and computed (13)C(alpha) chemical shifts (at the density functional theory (DFT) level of theory) for an accurate validation of protein structures in solution and in crystals. By assessing the ability of computed (13)C(alpha) chemical shifts to reproduce observed (13)C(alpha) chemical shifts of a single structure or ensemble of structures in solution and in crystals, we accomplish a global validation by using the conformationally averaged root-mean-square deviation, ca-rmsd, as a scoring function. In addition, the method enables us to provide local validation by identifying a set of individual amino acid conformations for which the computed and observed (13)C(alpha) chemical shifts do not agree within a certain error range and may represent a nonreliable fold of the protein model. Although it is computationally

  1. The conformational analysis of push-pull enaminoketones using Fourier transform IR and NMR spectroscopy, and quantum chemical calculations: II. Beta-dimethylaminoacrolein.

    PubMed

    Vdovenko, Sergey I; Gerus, Igor I; Fedorenko, Elena A

    2009-12-01

    IR Fourier and (1)H NMR spectra of beta-dimethylaminoacrolein (DMAA) were investigated in various pure solvents. Quantum chemical calculations by the method AM1 also was carried out to evaluate relative energy and dipole moment of each conformer. On the basis of NMR and IR-spectra we showed that the (DMAA) presented in solutions as equilibrium of two conformers, (E-s-Z) <==> (E-s-E). Constant of this equilibrium, K(eq) = C(E-s-E)/C(E-s-Z), depended strongly on the total (DMAA) concentration: ln K(eq) = ln K(eq0) + a(1 - e(-bC) total). Besides, (E-s-Z) conformer of the (DMAA) was more polar and more stable than the (E-s-E) conformer. Correlation of the out-of-phase nu(C=O) and in-phase nu(C=C) vibrations with solvatochromic parameters of Kamlet, Abbot, and Taft (KAT) revealed that the main contribution to the shift of the out-of-phase nu(C=O) vibrations of the both conformers made solvent's hydrogen bond acceptor (HBA) (beta) term, whereas hydrogen bond donor (HBD) acidity (alpha) term influenced predominantly on the shift of the in-phase nu(C=C) vibrations of the conformers. Moreover, influence of these dominated terms was more pronounced for the (E-s-Z) conformer in comparison with the (E-s-E) conformer, hence the first conformer was more polarized than the last. Investigations of the enthalpies of the (E-s-Z) <==> (E-s-E) equilibrium in carbon tetrachloride, 1,4-dioxane and their mixtures showed that these enthalpies depended predominantly on the solvent's atomic and electronic polarization and dispersive interactions.

  2. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.

    PubMed

    Villegas, Myriam E; Vila, Jorge A; Scheraga, Harold A

    2007-02-01

    The dependence of the (13)C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel beta-sheet model peptide represented by the amino acid sequence Ac-(Ala)(3)-X-(Ala)(12)-NH(2) where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel beta-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the (13)C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel beta-sheet, there is (i) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed (13)C(alpha) and (13)C(beta) chemical shifts as a function of chi(1) for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed (13)C(alpha) chemical shifts on chi(xi) (with xi > or = 2) compared to chi(1) for eleven out of seventeen residues. Our results suggest that predicted (13)C(alpha) and (13)C(beta) chemical shifts, based only on backbone (phi,psi) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

  3. ¹H, ¹⁵N and ¹³C chemical shifts of the D. melanogaster myosin VI light chain androcam in high calcium.

    PubMed

    Joshi, Mehul K; Moran, Sean; MacKenzie, Kevin R

    2013-10-01

    Androcam is a calmodulin-like protein that acts as a testis-specific light chain to myosin VI during spermatogenesis in D. melanogaster. Modest, localized chemical shift changes that accompany Ca(2+) binding to the androcam N-terminal lobe indicate that unlike calmodulin, androcam does not undergo a dramatic conformational change upon binding calcium. Here we report the (1)H, (15)N and (13)C resonances of androcam in the high calcium (10 mM) state and show the extent of chemical shift changes for backbone resonances relative to the low calcium state.

  4. Competitive 1,2-C Atom Shifts in the Strained Carbene Spiro[3.3]hept-1-ylidene Explained by Distinct Ring-Puckered Conformers.

    PubMed

    Rosenberg, Murray G; Schrievers, Theodor; Brinker, Udo H

    2016-12-16

    Spiro[3.3]hept-1-ylidene is a markedly strained carbene reaction intermediate that was generated by high-vacuum flash pyrolysis (HVFP) of the corresponding p-tosylhydrazone sodium salt. Five hydrocarbons were produced from the Bamford-Stevens reactant in 82% overall yield. The carbene undergoes two [1,2]-sigmatropic rearrangements via competing 1,2-C atom shifts. Ring-contraction yields cyclopropylidenecyclobutane, while ring-expansion affords bicyclo[3.2.0]hept-1(5)-ene. The ring contraction is regiospecific despite the formation of some 1-methylenespiro[2.3]hexane. It does not originate from the carbene under HVFP conditions. Instead, it comes from a methylenecyclopropane-type rearrangement of chemically activated cyclopropylidenecyclobutane. Similarly, some chemically activated bicyclo[3.2.0]hept-1(5)-ene rearranges to 1,2-dimethylenecyclopentane via electrocyclic ring-opening. Accounting for the conversion of primary products to secondary ones, relative yields indicate that ring-contraction within the carbene prevails over ring-expansion by a factor of 6.7:1. Computational chemistry was used to assess the structures, conformations, energies, strain energies, transition states, and activation energies of these rearrangements with the goal of explaining product selectivities. The dual-ringed carbene is predicted to assume four distinct geometric conformations that have a bearing on transition-state selection. The reactive cyclobutylidene units of two conformers are significantly puckered, like cyclobutylidene itself, while those of the other two are flatter. The selectivity of the title carbene is compared with that of spiro[2.3]hex-4-ylidene.

  5. A probabilistic model for secondary structure prediction from protein chemical shifts.

    PubMed

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts. Copyright © 2013 Wiley Periodicals, Inc.

  6. Pressure dependence of side chain (13)C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-09-14

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of (13)C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H(N), N and C(α) the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically (13)C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  7. Hydrophobic clustering in nonnative states of a protein: Interpretation of chemical shifts in NMR spectra of denatured states of lysozyme

    SciTech Connect

    Evans, P.A.; Topping, K.D.; Woolfson, D.N.; Dobson, C.M. )

    1991-01-01

    Chemical shifts of resonances of specific protons in the 1H NMR spectrum of thermally denatured hen lysozyme have been determined by exchange correlation with assigned native state resonances in 2D NOESY spectra obtained under conditions where the two states are interconverting. There are subtle but widespread deviations of the measured shifts from the values which would be anticipated for a random coil; in the case of side chain protons these are virtually all net upfield shifts and it is shown that this may be the averaged effect of interactions with aromatic rings in a partially collapsed denatured state. In a very few cases, notably that of two sequential tryptophan residues, it is possible to interpret these effects in terms of specific, local interresidue interactions. Generally, however, there is no correlation with either native state shift perturbations or with sequence proximity to aromatic groups. Diminution of most of the residual shift perturbations on reduction of the disulfide cross-links confirms that they are not simply effects of residues adjacent in the sequence. Similar effects of chemical denaturants, with the disulfides intact, demonstrate that the shift perturbations reflect an enhanced tendency to side chain clustering in the thermally denatured state. The temperature dependences of the shift perturbations suggest that this clustering is noncooperative and is driven by small, favorable enthalpy changes. While the extent of conformational averaging is clearly much greater than that observed for a homologous protein, alpha-lactalbumin, in its partially folded molten globule state, the results clearly show that thermally denatured lysozyme differs substantially from a random coil, principally in that it is partially hydrophobically collapsed.

  8. Type I and II β-turns prediction using NMR chemical shifts.

    PubMed

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2014-07-01

    A method for predicting type I and II β-turns using nuclear magnetic resonance (NMR) chemical shifts is proposed. Isolated β-turn chemical-shift data were collected from 1,798 protein chains. One-dimensional statistical analyses on chemical-shift data of three classes β-turn (type I, II, and VIII) showed different distributions at four positions, (i) to (i + 3). Considering the central two residues of type I β-turns, the mean values of Cο, Cα, H(N), and N(H) chemical shifts were generally (i + 1) > (i + 2). The mean values of Cβ and Hα chemical shifts were (i + 1) < (i + 2). The distributions of the central two residues in type II and VIII β-turns were also distinguishable by trends of chemical shift values. Two-dimensional cluster analyses on chemical-shift data show positional distributions more clearly. Based on these propensities of chemical shift classified as a function of position, rules were derived using scoring matrices for four consecutive residues to predict type I and II β-turns. The proposed method achieves an overall prediction accuracy of 83.2 and 84.2% with the Matthews correlation coefficient values of 0.317 and 0.632 for type I and II β-turns, indicating that its higher accuracy for type II turn prediction. The results show that it is feasible to use NMR chemical shifts to predict the β-turn types in proteins. The proposed method can be incorporated into other chemical-shift based protein secondary structure prediction methods.

  9. A script for automated 3-dimentional structure generation and conformer search from 2- dimentional chemical drawing.

    PubMed

    Ishikawa, Yoshinobu

    2013-01-01

    Building 3-dimensional (3D) molecules is the starting point in molecular modeling. Conformer search and identification of a global energy minimum structure are often performed computationally during spectral analysis of data from NMR, IR, and VCD or during rational drug design through ligand-based, structure-based, and QSAR approaches. I herein report a convenient script that allows for automated building of 3D structures and conformer searching from 2-dimensional (2D) drawing of chemical structures. With this Bash shell script, which runs on Mac OS X and the Linux platform, the tasks are consecutively and iteratively executed without a 3D molecule builder via the command line interface of the free (academic) software OpenBabel, Balloon, and MOPAC2012. A large number of 2D chemical drawing files can be processed simultaneously, and the script functions with stereoisomers. Semi-empirical quantum chemical calculation ensures reliable ranking of the generated conformers on the basis of energy. In addition to an energy-sorted list of file names of the conformers, their Gaussian input files are provided for ab initio and density functional theory calculations to predict rigorous electronic energies, structures, and properties. This script is freely available to all scientists.

  10. A Script for Automated 3-Dimentional Structure Generation and Conformer Search from 2- Dimentional Chemical Drawing

    PubMed Central

    Ishikawa, Yoshinobu

    2013-01-01

    Building 3-dimensional (3D) molecules is the starting point in molecular modeling. Conformer search and identification of a global energy minimum structure are often performed computationally during spectral analysis of data from NMR, IR, and VCD or during rational drug design through ligand-based, structure-based, and QSAR approaches. I herein report a convenient script that allows for automated building of 3D structures and conformer searching from 2-dimensional (2D) drawing of chemical structures. With this Bash shell script, which runs on Mac OS X and the Linux platform, the tasks are consecutively and iteratively executed without a 3D molecule builder via the command line interface of the free (academic) software OpenBabel, Balloon, and MOPAC2012. A large number of 2D chemical drawing files can be processed simultaneously, and the script functions with stereoisomers. Semi-empirical quantum chemical calculation ensures reliable ranking of the generated conformers on the basis of energy. In addition to an energy-sorted list of file names of the conformers, their Gaussian input files are provided for ab initio and density functional theory calculations to predict rigorous electronic energies, structures, and properties. This script is freely available to all scientists. PMID:24391363

  11. A robust algorithm for optimizing protein structures with NMR chemical shifts.

    PubMed

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S

    2015-11-01

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and "PDB worthy". The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.

  12. 1H NMR spectroscopic investigations on the conformation of amphiphilic aromatic amino acid derivatives in solution: effect of chemical architecture of amphiphiles and polarity of solvent medium.

    PubMed

    Vijay, R; Mandal, A B; Baskar, Geetha

    2010-11-04

    In this study, the conformation of the amphiphilic lauryl esters of L-tyrosine (LET) and L-phenylalanine (LEP) in water and dimethyl sulfoxide is established. The alkyl chain protons of LEP in D(2)O appear at δ 1.010-1.398 and show an upfield shift and large line width, suggesting the proximity of the phenyl ring to the alkyl chain in contrast to that of LET. Quite interestingly, in DMSO-d(6), the (1)H NMR spectra of LET and LEP show a strong similarity that is suggestive of an orientation that positions the aromatic ring and aliphatic chain away from each other. These results are substantiated with two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOSEY). Theoretical molecular models of the conformation at the interface corroborate the experimental findings. Investigations of the solvent polarity and chemical structure-dependent conformation are discussed.

  13. Growth inhibition to enhance conformal coverage in thin film chemical vapor deposition.

    PubMed

    Kumar, Navneet; Yanguas-Gil, Angel; Daly, Scott R; Girolami, Gregory S; Abelson, John R

    2008-12-31

    We introduce the use of a growth inhibitor to enhance thin film conformality in low temperature chemical vapor deposition. Films of TiB(2) grown from the single source precursor Ti(BH(4))(3)(dme) are much more highly conformal when grown in the presence of one of the film growth byproducts, 1,2-dimethoxyethane (dme). This effect can be explained in terms of two alternative inhibitory mechanisms: one involving blocking of surface reactive sites, which is equivalent to reducing the rate of the forward reaction leading to film growth, the other analogous to Le Chatelier's principle, in which the addition of a reaction product increases the rate of the back reaction. The reduction in growth rate corresponds to a reduction in the sticking probability of the precursor, which enhances conformality by enabling the precursor to diffuse deeper into a recessed feature before it reacts.

  14. Improved Quantum Chemical NMR Chemical Shift Prediction of Metabolites in Aqueous Solution toward the Validation of Unknowns.

    PubMed

    Hoffmann, Felix; Li, Da-Wei; Sebastiani, Daniel; Brüschweiler, Rafael

    2017-04-27

    A quantum-chemistry based protocol, termed MOSS-DFT, is presented for the prediction of (13)C and (1)H NMR chemical shifts of a wide range of organic molecules in aqueous solution, including metabolites. Molecular motif-specific linear scaling parameters are reported for five different density functional theory (DFT) methods (B97-2/pcS-1, B97-2/pcS-2, B97-2/pcS-3, B3LYP/pcS-2, and BLYP/pcS-2), which were applied to a large set of 176 metabolite molecules. The chemical shift root-mean-square deviations (RMSD) for the best method, B97-2/pcS-3, are 1.93 and 0.154 ppm for (13)C and (1)H chemical shifts, respectively. Excellent results have been obtained for chemical shifts of methyl and aromatic (13)C and (1)H that are not directly bonded to a heteroatom (O, N, S, or P) with RMSD values of 1.15/0.079 and 1.31/0.118 ppm, respectively. This study not only demonstrates how NMR chemical shift in aqueous environment can be improved over the commonly used global linear scaling approach, but also allows for motif-specific error estimates, which are useful for an improved chemical shift-based verification of metabolite candidates of metabolomics samples containing unknown components.

  15. Chemical shift assignments of two oleanane triterpenes from Euonymus hederaceus *

    PubMed Central

    Hu, He-jiao; Wang, Kui-wu; Wu, Bin; Sun, Cui-rong; Pan, Yuan-jiang

    2005-01-01

    1H-NMR and 13C-NMR assignments of 12-oleanene-3,11-dione (compound 1) were completely described for the first time through conventional 1D NMR and 2D shift-correlated NMR experiments using 1H-1HCOSY, HMQC, HMBC techniques. Based on its NMR data, the assignments of 28-hydroxyolean-12-ene-3,11-dione (compound 2) were partially revised. PMID:16052702

  16. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis.

    PubMed

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert

    2017-02-01

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H(δ21) and H(ε21), respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  17. Conformational Properties of Helical Protein Polymers with Varying Densities of Chemically Reactive Groups.

    PubMed

    Farmer, Robin S; Argust, Lindsey M; Sharp, Jared D; Kiick, Kristi L

    2006-01-01

    Protein engineering strategies have proven valuable for the production of a variety of well-defined macromolecular materials with controlled properties that have enabled their use in a range of materials and biological applications. In this work, such biosynthetic strategies have been employed in the production of monodisperse alanine-rich, helical protein polymers with the sequences [AAAQEAAAAQAAAQAEAAQAAQ](3) and [AAAQAAQAQAAAEAAAQAAQAQ](6). The composition of these protein polymers is similar to that of a previously reported family of alanine-rich protein polymers, but the density and placement of chemically reactive residues has been varied to facilitate the future use of these macromolecules in elucidating polymeric structure-function relationships in biological recognition events. Both protein polymers are readily expressed from E. coli and purified to homogeneity; characterization of their conformational behavior via circular dichroic spectroscopy (CD) indicates that they adopt highly helical conformations under a range of solution conditions. Differential scanning calorimetry, in concert with CD, demonstrates that the conformational transition from helix to coil in these macromolecules can be well-defined, with helicity, conformational transitions, T(m) values, and calorimetric enthalpies that vary with the molecular weight of the protein polymers. A combination of infrared spectroscopy and CD also reveals that the macromolecules can adopt beta-sheet structures at elevated temperatures and concentrations and that the existence and kinetics of this conformational transition appear to be related to the density of charged groups on the protein polymer.

  18. Conformational Properties of Helical Protein Polymers with Varying Densities of Chemically Reactive Groups

    PubMed Central

    Farmer, Robin S.; Argust, Lindsey M.; Sharp, Jared D.; Kiick, Kristi L.

    2008-01-01

    Protein engineering strategies have proven valuable for the production of a variety of well-defined macromolecular materials with controlled properties that have enabled their use in a range of materials and biological applications. In this work, such biosynthetic strategies have been employed in the production of monodisperse alanine-rich, helical protein polymers with the sequences [AAAQEAAAAQAAAQAEAAQAAQ]3 and [AAAQAAQAQAAAEAAAQAAQAQ]6. The composition of these protein polymers is similar to that of a previously reported family of alanine-rich protein polymers, but the density and placement of chemically reactive residues has been varied to facilitate the future use of these macromolecules in elucidating polymeric structure-function relationships in biological recognition events. Both protein polymers are readily expressed from E. coli and purified to homogeneity; characterization of their conformational behavior via circular dichroic spectroscopy (CD) indicates that they adopt highly helical conformations under a range of solution conditions. Differential scanning calorimetry, in concert with CD, demonstrates that the conformational transition from helix to coil in these macromolecules can be well-defined, with helicity, conformational transitions, Tm values, and calorimetric enthalpies that vary with the molecular weight of the protein polymers. A combination of infrared spectroscopy and CD also reveals that the macromolecules can adopt β-sheet structures at elevated temperatures and concentrations and that the existence and kinetics of this conformational transition appear to be related to the density of charged groups on the protein polymer. PMID:19180254

  19. Monitoring Shifts in the Conformation Equilibrium of the Membrane Protein Cytochrome P450 Reductase (POR) in Nanodiscs*

    PubMed Central

    Wadsäter, Maria; Laursen, Tomas; Singha, Aparajita; Hatzakis, Nikos S.; Stamou, Dimitrios; Barker, Robert; Mortensen, Kell; Feidenhans'l, Robert; Møller, Birger Lindberg; Cárdenas, Marité

    2012-01-01

    Nanodiscs are self-assembled ∼50-nm2 patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction. PMID:22891242

  20. Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs.

    PubMed

    Wadsäter, Maria; Laursen, Tomas; Singha, Aparajita; Hatzakis, Nikos S; Stamou, Dimitrios; Barker, Robert; Mortensen, Kell; Feidenhans'l, Robert; Møller, Birger Lindberg; Cárdenas, Marité

    2012-10-05

    Nanodiscs are self-assembled ∼50-nm(2) patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction.

  1. An Improved Experiment to Illustrate the Effect of Electronegativity on Chemical Shift.

    ERIC Educational Resources Information Center

    Boggess, Robert K.

    1988-01-01

    Describes a method for using nuclear magnetic resonance to observe the effect of electronegativity on the chemical shift of protons in similar compounds. Suggests the use of 1,3-dihalopropanes as samples. Includes sample questions. (MVL)

  2. Gauge-including projector augmented-wave NMR chemical shift calculations with DFT+U

    NASA Astrophysics Data System (ADS)

    Shih, Bi-Ching; Yates, Jonathan R.

    2017-07-01

    We adapt the DFT+U method in the gauge-including projector augmented-wave NMR chemical shift calculations within the plane wave pseudopotential implementation. The nonlocal Hubbard correction potential has been reexamined in order to comply with the gauge-including projector augmented-wave transformation under an external uniform magnetic field. The resulting expression is suitable for chemical shift calculations using both norm-conserving and ultrasoft pseudopotentials in the proector augmented-wave scheme. The implementation is applied to the 17O solid-state NMR chemical shift calculations for transition-metal and rare-earth oxides, including TiO2, ZnO, Ti2O3 , La2O3 , and CeO2. A comparison between the DFT and DFT+U NMR chemical shifts for the selected materials is presented.

  3. An Improved Experiment to Illustrate the Effect of Electronegativity on Chemical Shift.

    ERIC Educational Resources Information Center

    Boggess, Robert K.

    1988-01-01

    Describes a method for using nuclear magnetic resonance to observe the effect of electronegativity on the chemical shift of protons in similar compounds. Suggests the use of 1,3-dihalopropanes as samples. Includes sample questions. (MVL)

  4. Calculation of NMR chemical shifts in organic solids: accounting for motional effects.

    PubMed

    Dumez, Jean-Nicolas; Pickard, Chris J

    2009-03-14

    NMR chemical shifts were calculated from first principles for well defined crystalline organic solids. These density functional theory calculations were carried out within the plane-wave pseudopotential framework, in which truly extended systems are implicitly considered. The influence of motional effects was assessed by averaging over vibrational modes or over snapshots taken from ab initio molecular dynamics simulations. It is observed that the zero-point correction to chemical shifts can be significant, and that thermal effects are particularly noticeable for shielding anisotropies and for a temperature-dependent chemical shift. This study provides insight into the development of highly accurate first principles calculations of chemical shifts in solids, highlighting the role of motional effects on well defined systems.

  5. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    PubMed Central

    Brown, Joshua D.; Summers, Michael F.

    2015-01-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the recalibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  6. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    PubMed

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  7. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules.

    PubMed

    Swails, Jason; Zhu, Tong; He, Xiao; Case, David A

    2015-10-01

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson-Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  8. Automated and assisted RNA resonance assignment using NMR chemical shift statistics.

    PubMed

    Aeschbacher, Thomas; Schmidt, Elena; Blatter, Markus; Maris, Christophe; Duss, Olivier; Allain, Frédéric H-T; Güntert, Peter; Schubert, Mario

    2013-10-01

    The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and (1)H and (13)C chemical shifts. Statistics of resonances from regularly Watson-Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1'/C1' chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92-100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding (13)C resonances, which provides an important step toward automated structure determination of RNAs.

  9. Automated and assisted RNA resonance assignment using NMR chemical shift statistics

    PubMed Central

    Aeschbacher, Thomas; Schmidt, Elena; Blatter, Markus; Maris, Christophe; Duss, Olivier; Allain, Frédéric H.-T.; Güntert, Peter; Schubert, Mario

    2013-01-01

    The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and 1H and 13C chemical shifts. Statistics of resonances from regularly Watson–Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1′/C1′ chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92–100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding 13C resonances, which provides an important step toward automated structure determination of RNAs. PMID:23921634

  10. Density functional theory study of (13)C NMR chemical shift of chlorinated compounds.

    PubMed

    Li, Songqing; Zhou, Wenfeng; Gao, Haixiang; Zhou, Zhiqiang

    2012-02-01

    The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl-bonded carbons in standard DFT functionals and to show a good performance in the prediction of (13)C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas-phase GIAO/WC04/6-311+G(2d,p)//B3LYP/6-31+G(d,p) was found to be specifically suitable for the prediction of (13)C NMR chemical shifts of chlorides in both chlorinated and non-chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting (13) C NMR chemical shifts of chlorinated organic compounds.

  11. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.

    2015-08-01

    Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  12. Chemical shift imprint of intersubunit communication in a symmetric homodimer

    PubMed Central

    Falk, Bradley T.; Sapienza, Paul J.; Lee, Andrew L.

    2016-01-01

    Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein–ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state (“lig1”) of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers. PMID:27466406

  13. Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts

    PubMed Central

    Wang, Xianlong; Wang, Chengfei; Zhao, Hui

    2012-01-01

    Computational chemistry is an important tool for signal assignment of 27Al nuclear magnetic resonance spectra in order to elucidate the species of aluminum(III) in aqueous solutions. The accuracy of the popular theoretical models for computing the 27Al chemical shifts was evaluated by comparing the calculated and experimental chemical shifts in more than one hundred aluminum(III) complexes. In order to differentiate the error due to the chemical shielding tensor calculation from that due to the inadequacy of the molecular geometry prediction, single-crystal X-ray diffraction determined structures were used to build the isolated molecule models for calculating the chemical shifts. The results were compared with those obtained using the calculated geometries at the B3LYP/6-31G(d) level. The isotropic chemical shielding constants computed at different levels have strong linear correlations even though the absolute values differ in tens of ppm. The root-mean-square difference between the experimental chemical shifts and the calculated values is approximately 5 ppm for the calculations based on the X-ray structures, but more than 10 ppm for the calculations based on the computed geometries. The result indicates that the popular theoretical models are adequate in calculating the chemical shifts while an accurate molecular geometry is more critical. PMID:23203134

  14. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    PubMed Central

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  15. Carbon-13 chemical shifts in solid metal sandwich compounds

    SciTech Connect

    Wemmer, D. E.; Pines, A.

    1981-01-01

    Chemical shielding parameters are reported, here in this paper, for the metallocenes of Fe, Ru, Mg, bis(cyclopentadionyl) complexes Cp2TiCl2, (CpMe5)2CoCl, and (CpMe5)2Fe and bis(benzene)chromium. The shielding tensor anisotropy seems to reflect the character of bonding. Also, motion detected in many of these compounds and has been used in some cases to assign the shielding tensor principle directions.

  16. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  17. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  18. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    NASA Astrophysics Data System (ADS)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  19. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    PubMed Central

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  20. 93Nb and 17O NMR chemical shifts of niobiophosphate compounds.

    PubMed

    Flambard, A; Montagne, L; Delevoye, L; Steuernagel, S

    2007-10-01

    Niobiophosphate compounds with a large range of niobium and oxygen environments were studied with (93)Nb and (17)O solid-state NMR. (93)Nb isotropic chemical shift of pure niobate Nb(ONb)(6), pure phosphate Nb(OP)(6) and mixed phosphate-niobate Nb(OP)(x)(ONb)((6-x)) (1chemical shifts were found to be sensitive to the variation of local charge on Nb, but not to the local bond geometry (i.e. crystallographic site and edge or corner connectivity). A systematic shift to high field of the (93)Nb chemical shift is measured when x increases. Then, (17)O NMR spectra of a series of enriched samples provided the chemical shift and quadrupolar parameters for 4 types of oxygen environment (P-O-P, P-O-Na, P-O-Nb and Nb-O-Nb). Finally, Nb-O-Nb sites were characterized by a large (17)O chemical shift anisotropy.

  1. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field.

    PubMed

    Nielsen, Jakob T; Eghbalnia, Hamid R; Nielsen, Niels Chr

    2012-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.

  2. Measurement of large /sup 19/F chemical shifts with the RYa-2305 spectrometer

    SciTech Connect

    Iorga, E.V.; Kucheryaev, A.G.; Lebedev, V.A.; Leont'eva, I.N.

    1985-06-01

    In order to extend the range of F-19 resonant frequencies in the RYa-2305 high-resolution NMR spectrometer, the authors have replaced the generator 9 by a tunable generator. This allows recording of the spectra together or to measure the chemical shifts exactly. The chemical shifts for MeF/sub 6/ in solutions of the hexafluorides of Mo, W, and U in organic solvents are shown, as measured at +20 degrees C. The upgrades in the RYa-2305 not only extend the range of measurable F-19 chemical shifts, but also enable one to measure large shifts with high accuracy. This principle for recording and measuring can be applied to other nuclides with the RYa2305 spectrometer.

  3. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  4. The Projection Analysis of NMR Chemical Shifts Reveals Extended EPAC Autoinhibition Determinants

    PubMed Central

    Selvaratnam, Rajeevan; VanSchouwen, Bryan; Fogolari, Federico; Mazhab-Jafari, Mohammad T.; Das, Rahul; Melacini, Giuseppe

    2012-01-01

    EPAC is a cAMP-dependent guanine nucleotide exchange factor that serves as a prototypical molecular switch for the regulation of essential cellular processes. Although EPAC activation by cAMP has been extensively investigated, the mechanism of EPAC autoinhibition is still not fully understood. The steric clash between the side chains of two conserved residues, L273 and F300 in EPAC1, has been previously shown to oppose the inactive-to-active conformational transition in the absence of cAMP. However, it has also been hypothesized that autoinhibition is assisted by entropic losses caused by quenching of dynamics that occurs if the inactive-to-active transition takes place in the absence of cAMP. Here, we test this hypothesis through the comparative NMR analysis of several EPAC1 mutants that target different allosteric sites of the cAMP-binding domain (CBD). Using what to our knowledge is a novel projection analysis of NMR chemical shifts to probe the effect of the mutations on the autoinhibition equilibrium of the CBD, we find that whenever the apo/active state is stabilized relative to the apo/inactive state, dynamics are consistently quenched in a conserved loop (β2-β3) and helix (α5) of the CBD. Overall, our results point to the presence of conserved and nondegenerate determinants of CBD autoinhibition that extends beyond the originally proposed L273/F300 residue pair, suggesting that complete activation necessitates the simultaneous suppression of multiple autoinhibitory mechanisms, which in turn confers added specificity for the cAMP allosteric effector. PMID:22325287

  5. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2012-06-21

    Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.

  6. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine.

    PubMed

    Douis, H; Davies, A M; Jeys, L; Sian, P

    2016-04-01

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. • Differentiating benign from malignant skeletal lesions of the spine can be challenging. • Utility of chemical shift MRI in characterising indeterminate spinal lesion is unreported. • This study demonstrates sensitivity 91.7 %, specificity 73.3 %, diagnostic accuracy 82.5 % for CSI. • CSI is useful in differentiating benign from malignant skeletal spine lesions. • Biopsy can potentially be avoided in some patients with benign skeletal lesions.

  7. Conformational shift in the closed state of GroEL induced by ATP-binding triggers a transition to the open state

    PubMed Central

    Suzuki, Yuka; Yura, Kei

    2016-01-01

    We investigated the effect of ATP binding to GroEL and elucidated a role of ATP in the conformational change of GroEL. GroEL is a tetradecamer chaperonin that helps protein folding by undergoing a conformational change from a closed state to an open state. This conformational change requires ATP, but does not require the hydrolysis of the ATP. The following three types of conformations are crystalized and the atomic coordinates are available; closed state without ATP, closed state with ATP and open state with ADP. We conducted simulations of the conformational change using Elastic Network Model from the closed state without ATP targeting at the open state, and from the closed state with ATP targeting at the open state. The simulations emphasizing the lowest normal mode showed that the one started with the closed state with ATP, rather than the one without ATP, reached a conformation closer to the open state. This difference was mainly caused by the changes in the positions of residues in the initial structure rather than the changes in “connectivity” of residues within the subunit. Our results suggest that ATP should behave as an insulator to induce conformation population shift in the closed state to the conformation that has a pathway leading to the open state. PMID:27924266

  8. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin

    NASA Astrophysics Data System (ADS)

    De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.

    2017-05-01

    In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.

  9. Correlation between the covalency and the thallium-205 nuclear magnetic resonance chemical shift in oxides and halides

    NASA Astrophysics Data System (ADS)

    Jouini, N.

    1986-07-01

    205Tl chemical shift measurements were carried out on thallium(I) oxides and halides. A correlation between the chemical shift and the stereochemical activity of the 6 s2 lone pair of Tl I was established; the greater this activity, the greater the absolute value of the chemical shift. For the halides, optical and chemical shift measurements gave access to the Tl- X bond ionicity via Ramsey's equation. In thallium(I) halides the absolute value of the chemical shift increases with the covalency. The work of Glaser on thallium(III) halides showed the chemical shift to decrease with increasing covalency. An explication of this difference is proposed. The hyperfine coupling constant A of the paramagnetic compound Tl 4MnI 6 was determined by the study of the chemical shift as a function of the susceptibility. This constant A is seen to be weak (-7 KG/μ B).

  10. Correlation between the covalency and the thallium-205 nuclear magnetic resonance chemical shift in oxides and halides

    SciTech Connect

    Jouini, N.

    1986-07-15

    /sup 205/Tl chemical shift measurements were carried out on thallium(I) oxides and halides. A correlation between the chemical shift and the stereochemical activity of the 6s/sup 2/ lone pair of Tl/sup I/ was established; the greater this activity, the greater the absolute value of the chemical shift. For the halides, optical and chemical shift measurements gave access to the Tl-X bond ionicity via Ramsey's equation. In thallium(I) halides the absolute value of the chemical shift increases with the covalency. The work of Glaser on thallium(III) halides showed the chemical shift to decrease with increasing covalency. An explication of this difference is proposed. The hyperfine coupling constant A of the paramagnetic compound Tl/sub 4/MnI/sub 6/ was determined by the study of the chemical shift as a function of the susceptibility. This constant A is seen to be weak (-7 KG/..mu../sub B/).

  11. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  12. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  13. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    PubMed

    Christensen, Anders S; Linnet, Troels E; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3)J(NC')) spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  14. Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Murphy, Patrick F.; Morton, Keith J.; Fu, Zengli; Chou, Stephen Y.

    2007-05-01

    The authors present a technique for the replication of molds for nanoimprint lithography (NIL) without solvents or etching. A thin hard amorphous silicon film is deposited onto imprinted or self-assembled polymer nanostructures by room-temperature conformal plasma-enhanced chemical vapor deposition. After attachment to another substrate and separation from the polymer original, the thin hard film forms a NIL mold that is the inverse of the polymer original. Using this technology, the authors demonstrate the replication of a 200nm pitch grating mold and sub-50-nm features over wafer-scale areas without introducing additional line edge roughness associated with conventional replication methods.

  15. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds.

    PubMed

    Hansen, Poul Erik

    2015-01-30

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between "static" and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N-. The paper will be deal with both secondary and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles.

  16. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  17. Carbon-13 Chemical-Shift Tensors in Polycyclic Aromatic Compounds: Fluoranthene and Decacyclene

    SciTech Connect

    Barich, Dewey H.; Hu, Jian Zhi; Pugmire, Ronald J.; Grant, David M.

    2002-06-18

    The measurement of 13C chemical-shift tensors (CSTs) of polycyclic aromatic hydrocarbons (PAHs) has received considerable attention in recent years.1-7 Challenges to measuring CSTs in aromatic microcrystalline powders include spectral complexity due to the spinning sideband patterns, the relatively close isotropic chemical shifts of the various carbons in the molecule (typically 120-140 ppm), and coincidental overlap of equivalent molecular positions in crystallographically inequivalent sites. Spectral complexity is reduced in this work by application of the FIREMAT experiment, a two-dimensional (2D) magic angle turning (MAT) experiment that isolates individual sideband patterns associated with different isotropic chemical shifts.8 Recent advances in such methods have made possible the isolation of several dozen sideband patterns from a composite spectrum.

  18. Correlation of fast and slow chemical shift spinning sideband patterns under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Eléna, Bénédicte; Hediger, Sabine; Emsley, Lyndon

    2003-01-01

    A new two-dimensional solid-state NMR experiment, which correlates slow and fast chemical shift anisotropy sideband patterns is proposed. The experiment, dubbed ROSES, is performed under fast magic-angle spinning and leads to an isotropic spectrum in the directly detected ω2 dimension. In the evolution dimension ω1, the isotropic chemical shift is reduced by a factor S, and spinning sidebands are observed spaced by a scaled effective spinning speed ωR/ S. These spinning sidebands patterns are not identical to those observed with standard slow magic-angle spinning experiments. Chemical shift anisotropy parameters can be accurately extracted with standard methods from these spinning sideband patterns. The experiment is demonstrated with carbon-13 experiments on powdered samples of a dipeptide and a cyclic undecapeptide, cyclosporin-A.

  19. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  20. Ab-initio Study of NMR Chemical Shifts in Hydrogen-bonded Systems

    NASA Astrophysics Data System (ADS)

    Pfrommer, Bernd G.; Mauri, Francesco; Louie, Steven G.

    1997-03-01

    We present first applications of a recently developed method to compute NMR chemical shifts of periodic systems[1]. The method is based on density functional theory in the local density approximation, and utilizes pseudopotentials and a plane-wave basis set. Using second order perturbation theory, we can compute the chemical shift tensor, which gives the shielding of an applied magnetic field. This new method is applied to two important hydrogen-bonded systems with short, strong hydrogen bonds: hexagonal ice Ih and hydrogen fluoride. For ice, we reproduce the large anisotropy of the chemical shift tensor observed in experiment[2], and find the isotropic shift to be very sensitive to the geometry of the crystal. For hydrogen fluoride, we calculate the isotropic shift between the solid and the gas phase, and find it similar to the liquid-gas phase shifts reported in experiments. *[0cm] [1] F. Mauri, B.G. Pfrommer, S.G. Louie, Phys. Rev. Lett., to be published. *[0cm] [2] A. Pines, D.J. Ruben, S. Vega, and M. Mehring, Phys. Rev. Lett. 36, 110 (1976)

  1. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.

    PubMed

    Karlo, Christoph A; Donati, Olivio F; Burger, Irene A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz

    2013-06-01

    To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours. A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SI(IP), SI(OP)) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference. A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P < 0.05). Median chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P < 0.001). Interobserver agreement was fair for visual (kappa, 0.4) and excellent for quantitative analysis (concordance correlation coefficient, 0.80). A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs. • Chemical shift MRI offers new information about fat within renal tumours. • Opposed-phase signal decrease can be observed in all renal cortical tumours. • A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs.

  2. CSI 2.0: a significantly improved version of the Chemical Shift Index.

    PubMed

    Hafsa, Noor E; Wishart, David S

    2014-11-01

    Protein chemical shifts have long been used by NMR spectroscopists to assist with secondary structure assignment and to provide useful distance and torsion angle constraint data for structure determination. One of the most widely used methods for secondary structure identification is called the Chemical Shift Index (CSI). The CSI method uses a simple digital chemical shift filter to locate secondary structures along the protein chain using backbone (13)C and (1)H chemical shifts. While the CSI method is simple to use and easy to implement, it is only about 75-80% accurate. Here we describe a significantly improved version of the CSI (2.0) that uses machine-learning techniques to combine all six backbone chemical shifts ((13)Cα, (13)Cβ, (13)C, (15)N, (1)HN, (1)Hα) with sequence-derived features to perform far more accurate secondary structure identification. Our tests indicate that CSI 2.0 achieved an average identification accuracy (Q3) of 90.56% for a training set of 181 proteins in a repeated tenfold cross-validation and 89.35% for a test set of 59 proteins. This represents a significant improvement over other state-of-the-art chemical shift-based methods. In particular, the level of performance of CSI 2.0 is equal to that of standard methods, such as DSSP and STRIDE, used to identify secondary structures via 3D coordinate data. This suggests that CSI 2.0 could be used both in providing accurate NMR constraint data in the early stages of protein structure determination as well as in defining secondary structure locations in the final protein model(s). A CSI 2.0 web server (http://csi.wishartlab.com) is available for submitting the input queries for secondary structure identification.

  3. Quantum chemical analysis of reaction paths in chorismate mutase: Conformational effects and electrostatic stabilization

    NASA Astrophysics Data System (ADS)

    Szefczyk, Borys; Claeyssens, Frederik; Mulholland, Adrian J.; Sokalski, W. Andrzej

    We have performed a detailed, quantum chemical, decomposition analysis of the physical nature of key interactions in the model enzyme chorismate mutase (CM), for several active conformations produced by high level combined quantum mechanics/molecular mechanics (QM/MM) modeling. In opposition to our previous study, interactions between selected residues in the active site of CM were analysed along the whole reaction path, for several paths. The interaction energy is calculated up to Møller-Plesset second order level of theory and decomposed into physically meaningful components (electrostatic, exchange, delocalization, and electron correlation). This analysis shows, that the dominant interaction is differential stabilization by Arg90: this residue significantly stabilizes the transition state (TS) relative to the substrate in all the paths studied. Interactions in the active site of CM are dominated by the electrostatic component, whereas other components, for example electron correlation, are constant during reaction. Electrostatic effects alone are found to be responsible for lowering the barrier for reaction at the active site. Analysis of four reaction paths derived from QM/MM modeling shows that differences in the height of the barrier are due to differences in the electrostatic interactions of several weakly interacting residues. The influence of conformational effects, such as hydroxyl group rotation in the chorismate/TS, and the distance between Arg90 and the reacting chorismate, have also been analysed. The results show that specific conformations provide better activation barrier lowering. Even small changes in the conformation, like rotation of the hydroxyl group in chorismate (substrate), can significantly alter the activation barrier.0

  4. Work function shifts of catalytic metals under hydrogen gas visualized by terahertz chemical microscopy.

    PubMed

    Kiwa, Toshihiko; Hagiwara, Takafumi; Shinomiya, Mitsuhiro; Sakai, Kenji; Tsukada, Keiji

    2012-05-21

    Terahertz chemical microscopy (TCM) was applied to visualize the distribution of the work function shift of catalytic metals under hydrogen gas. TCM measures the chemical potential on the surface of a SiO(2)/Si/sapphire sensing plate without any contact with the plate. By controlling the bias voltage between an electrode on the SiO(2)/ surface and the Si layer, the relationship between the voltage and the THz amplitude from the sensing plate can be obtained. As a demonstration, two types of structures were fabricated on the sensing plate, and the work function shifts due to catalytic reactions were visualized.

  5. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

    PubMed Central

    Sripakdeevong, Parin; Cevec, Mirko; Chang, Andrew T.; Erat, Michèle C.; Ziegeler, Melanie; Zhao, Qin; Fox, George E.; Gao, Xiaolian; Kennedy, Scott D.; Kierzek, Ryszard; Nikonowicz, Edward P.; Schwalbe, Harald; Sigel, Roland K. O.; Turner, Douglas H.; Das, Rhiju

    2014-01-01

    Structured non-coding RNAs underline fundamental cellular processes, but determining their 3D structures remains challenging. We demonstrate herein that integrating NMR 1H chemical shift data with Rosetta de novo modeling can consistently return high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 blind targets, Chemical-Shift-ROSETTA for RNA (CS-ROSETTA-RNA) recovered the experimental structures with high accuracy (0.6 to 2.0 Å all-heavy-atom rmsd) in 18 cases. PMID:24584194

  6. Grand canonical Monte Carlo simulations of the distribution and chemical shifts of xenon in the cages of zeolite NaA. I. Distribution and 129Xe chemical shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Jameson, A. Keith; Baello, Bernoli I.; Lim, Hyung-Mi

    1994-04-01

    The equilibrium distribution of the Xe atoms among the alpha cages of the zeolite NaA have been measured directly by nuclear magnetic resonance (NMR) in ten samples ranging from very low xenon loading up to saturation. These distributions are simulated by a grand canonical Monte Carlo (GCMC) method which reproduces the experimental data quantitatively for all ten samples at 296 K and also at 360 K. The adsorption isotherm of the high loading samples has been determined directly from the chemical shift of the gas in equilibrium with the adsorbed xenon. The data compare favorably with the adsorption isotherms resulting from the simulations. The previously reported 129Xe chemical shifts of the individual Xen clusters and their temperature dependences in the range 188-420 K are reproduced quantitatively by the GCMC simulation which makes use of pairwise additive ab initio intermolecular shielding functions. These cluster shifts and their temperature dependence encode the distribution of configurations for a given Xen cluster in an alpha cage. Quantitative agreement with the three experimental measures of the distribution of Xe atoms in NaA (partitioning between the adsorbed phase and the gas phase, distribution of the intrazeolitic atoms among the alpha cages, and the distribution of Xe atoms within an alpha cage containing Xen) as a function of temperature has been achieved for the first time.

  7. Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with Coulomb-crystallized Ca+ ions

    NASA Astrophysics Data System (ADS)

    Rösch, Daniel; Willitsch, Stefan; Chang, Yuan-Pin; Küpper, Jochen

    2014-03-01

    Many molecules exhibit multiple conformers that often easily interconvert under thermal conditions. Therefore, single conformations are difficult to isolate which renders the study of their distinct chemical reactivities challenging. We have recently reported a new experimental method for the characterization of conformer-specific effects in chemical reactions [Y.-P. Chang, K. Długołęcki, J. Küpper, D. Rösch, D. Wild, and S. Willitsch, "Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions," Science 342, 98-101 (2013)]. Different conformers are spatially separated using inhomogeneous electric fields and reacted with a Coulomb crystal of cold, spatially localized ions in a trap. As a first application, we studied reactions between the two conformers of 3-aminophenol and Ca+. We observed a twofold larger rate constant for the cis compared to the trans conformer which was rationalized in terms of the differences in the long-range ion-molecule interactions. The present article provides a detailed description of the new method and a full account of the experimental results as well as the accompanying theoretical calculations.

  8. Effects of guanidinium ions on the conformational structure of glucose oxidase studied by electrochemistry, spectroscopy, and theoretical calculations: towards developing a chemical-induced protein conformation assay.

    PubMed

    Xu, Xiaoqing; Wu, Ping; Xu, Wang; Shao, Qian; An, Li; Zhang, Hui; Cai, Chenxin; Zhao, Bo

    2012-04-28

    Understanding conformation transitions of proteins in the presence of a chemical denaturant is a topic of great interest because the rich information contained in chemical unfolding is of fundamental importance for proteomic and pharmaceutical research. In this work, the conformational structure changes of glucose oxidase (GOx) induced by guanidinium ions (Gdm(+)) were studied in detail by a combination of electrochemical methods, various spectroscopic techniques including ultraviolet-visible (UV-vis) absorption, fluorescence, Fourier transform infrared (FTIR), and circular dichroism (CD) spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations with the purpose of revealing the mechanism of chemical unfolding of proteins. The results indicated that GOx underwent substantial conformational changes both at the secondary and tertiary structure levels after interacting with Gdm(+) ions. The interaction of GOx with the chemical denaturant resulted in a disturbance of the structure of the flavin prosthetic group (FAD moiety) that induced the moiety to become less exposed to solvent than that in the native protein molecule. The calculation from quantitative second-derivative infrared and CD spectra showed that Gdm(+) ions induced the conversion of α-helix to β-sheet structures. MD simulations and DFT calculations revealed that Gdm(+) ions could enter the active pocket of the GOx molecule and interact with the FAD group, leading to a significant alteration in the structural characteristics and hydrogen bond networks formed between FAD and the surrounding amino acid residues. These alterations in the conformational structure of GOx resulted in a significant decrease in the catalytic activity of the enzyme to glucose oxidation. The study essentially provides an effective way for investigating the mechanism of chemical denaturant-induced protein unfolding, and this approach can be used for assessing the effect of drug molecules on

  9. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    PubMed

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  10. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  11. Non-invasive MR thermography using the water proton chemical shift.

    PubMed

    Kuroda, Kagayaki

    2005-09-01

    Among various proton magnetic resonance (MR) parameters, such as longitudinal relaxation time, transverse relaxation time, diffusion coefficient and chemical shift, the chemical shift of water protons is recognized as the most reliable indicator of temperature. The chemical shift is the only frequency-based parameter and is independent of the other parameters, which are measured based on the intensity of the MR signal. In this paper, the basic principle and the recent progress in imaging temperature by spectroscopic techniques using the water proton chemical shift are discussed. The advantages of spectroscopic imaging over phase mapping for measuring temperature are that the former can distinguish water resonance from other resonances, and that another resonance can be used as an internal reference to reduce the effects of external magnetic field instability, tissue susceptibility and inter-scan tissue movement or deformation. Methods utilizing various magnetic resonance spectroscopy (MRS) techniques, such as single voxel spectroscopy, conventional magnetic resonance spectroscopic imaging (MRSI), echo planar spectroscopic imaging (EPSI) and line scan echo planar spectroscopic imaging (LSEPSI) are discussed.

  12. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign .

  13. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  14. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  15. Identification of helix capping and β-turn motifs from NMR chemical shifts

    PubMed Central

    Shen, Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702

  16. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    PubMed

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  17. A post-processing method for correction and enhancement of chemical shift images.

    PubMed

    Cheng, Yu-Che; Chen, Jyh-Horng; Wang, Tsu-Tsuen; Lin, Ta-Te

    2009-12-01

    Chemical shift imaging (CSI) relies on a strong and homogeneous main field. Field homogeneity ensures adequate coherence between the precessions of individual spins within each voxel. Variation of field strength between different voxels causes geometric distortion and intensity variation in chemical shift images, resulting in errors when analyzing the spatial distribution of specific chemical compounds. A post-processing method, based on detection of the spectral peak of water and baseline subtraction with Lorentzian functions, was developed in this study to automatically correct spectra offsets caused by field inhomogeneity, thus enhancing the contrast of the chemical shift images. Because this method does not require prior field plot information, it offers advantages over existing correction methods. Furthermore, the method significantly reduces geometric distortion and enhances signals of chemical compounds even when the water suppression protocol was applied during the CSI data acquisition. The experimental results of the water and glucose phantoms showed a considerable reduction of artifacts in the spectroscopic images when this post-processing method was employed. The significance of this method was also demonstrated by an analysis of the spatial distributions of sugar and water contents in ripe and unripe bananas.

  18. Chemically Linked Vemurafenib Inhibitors Promote an Inactive BRAFV600E Conformation

    PubMed Central

    Grasso, Michael; Estrada, Michelle A.; Ventocilla, Christian; Samanta, Minu; Maksimoska, Jasna; Villanueva, Jessie; Winkler, Jeffrey D.; Marmorstein, Ronen

    2016-01-01

    The BRAF kinase, within the mitogen activated protein kinase (MAPK) signaling pathway, harbors activating mutations in about half of melanomas and to a significant extent in many other cancers. A single valine to glutamic acid substitution at residue 600 (BRAFV600E) accounts for about 90% of these activating mutations. While BRAFV600E-selective small molecule inhibitors, such as debrafenib and vemurafenib, have shown therapeutic benefit, almost all patients develop resistance. Resistance often arises through reactivation of the MAPK pathway, typically through mutation of upstream RAS, downstream MEK or splicing variants. RAF kinases signal as homo- and hetero-dimers, and another complication associated with small molecule BRAFV600E inhibition is drug-induced allosteric activation of a wild-type RAF subunit (BRAF or CRAF) of the kinase dimer, a process called ‘transactivation’ or ‘paradoxical activation.’ Here we used BRAFV600E and vemurafenib as a model system to develop chemically linked kinase inhibitors to lock RAF dimers in an inactive conformation that cannot undergo transactivation. This structure-based design effort resulted in the development of Vem-BisAmide-2, a compound containing two vemurafenib molecules connected by a bis amide linker. We show that Vem-BisAmide-2 has comparable inhibitory potency as vemurafenib to BRAFV600E both in vitro and in cells, but promotes an inactive dimeric BRAFV600E conformation unable to undergo transactivation. The crystal structure of a BRAFV600E/Vem-BisAmide-2 complex and associated biochemical studies reveal the molecular basis for how Vem-BisAmide-2 mediates selectivity for an inactive over active dimeric BRAFV600E conformation. These studies have implications for targeting BRAFV600E/RAF heterodimers and other kinase dimers for therapy. PMID:27571413

  19. Consensus models of activity landscapes with multiple chemical, conformer, and property representations.

    PubMed

    Yongye, Austin B; Byler, Kendall; Santos, Radleigh; Martínez-Mayorga, Karina; Maggiora, Gerald M; Medina-Franco, José L

    2011-06-27

    We report consensus Structure-Activity Similarity (SAS) maps that address the dependence of activity landscapes on molecular representation. As a case study, we characterized the activity landscape of 54 compounds with activities against human cathepsin B (hCatB), human cathepsin L (hCatL), and Trypanosoma brucei cathepsin B (TbCatB). Starting from an initial set of 28 descriptors we selected ten representations that capture different aspects of the chemical structures. These included four 2D (MACCS keys, GpiDAPH3, pairwise, and radial fingerprints) and six 3D (4p and piDAPH4 fingerprints with each including three conformers) representations. Multiple conformers are used for the first time in consensus activity landscape modeling. The results emphasize the feasibility of identifying consensus data points that are consistently formed in different reference spaces generated with several fingerprint models, including multiple 3D conformers. Consensus data points are not meant to eliminate data, disregarding, for example, "true" activity cliffs that are not identified by some molecular representations. Instead, consensus models are designed to prioritize the SAR analysis of activity cliffs and other consistent regions in the activity landscape that are captured by several molecular representations. Systematic description of the SARs of two targets give rise to the identification of pairs of compounds located in the same region of the activity landscape of hCatL and TbCatB suggesting similar mechanisms of action for the pairs involved. We also explored the relationship between property similarity and activity similarity and found that property similarities are suitable to characterize SARs. We also introduce the concept of structure-property-activity (SPA) similarity in SAR studies.

  20. Magnetic Shift of the Chemical Freeze-out and Electric Charge Fluctuations

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2016-09-01

    We discuss the effect of a strong magnetic field on the chemical freeze-out points in ultrarelativistic heavy-ion collisions. As a result of inverse magnetic catalysis or magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freeze-out. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced, especially at high baryon density. The charge conservation partially cancels the enhancement, but our calculation shows that the electric charge fluctuation could serve as a magnetometer. We find that the fluctuation exhibits a crossover behavior rapidly increased for e B ≳(0.4 GeV )2, while the charge chemical potential has smoother behavior with an increasing magnetic field.

  1. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition.

    PubMed

    Hawker, Morgan J; Pegalajar-Jurado, Adoracion; Fisher, Ellen R

    2014-10-21

    Bioresorbable polymers such as poly(ε-caprolactone) (PCL) have a multitude of potential biomaterial applications such as controlled-release drug delivery and regenerative tissue engineering. For such biological applications, the fabrication of porous three-dimensional bioresorbable materials with tunable surface chemistry is critical to maximize their surface-to-volume ratio, mimic the extracellular matrix, and increase drug-loading capacity. Here, two different fluorocarbon (FC) precursors (octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO)) were used to deposit FC films on PCL scaffolds using plasma-enhanced chemical vapor deposition (PECVD). These two coating systems were chosen with the intent of modifying the scaffold surfaces to be bio-nonreactive while maintaining desirable bulk properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were deposited on both the exterior and interior of PCL scaffolds and that deposition behavior is PECVD system specific. Scanning electron microscopy data confirmed that FC film deposition yielded conformal rather than blanket coatings as the porous scaffold structure was maintained after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) demonstrate that the cells do not attach after 72 h and that the scaffolds are noncytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D polymeric scaffolds using PECVD to fabricate 3D bio-nonreactive materials.

  2. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition.

    PubMed

    Zuo, Haijie; Choi, Duk-Yong; Gai, Xin; Luther-Davies, Barry; Zhang, Baoping

    2017-02-20

    We present a novel CMOS-compatible fabrication technique for convex micro-nano lens arrays (MNLAs) with high packing density on the wafer scale. By means of conformal chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a-Si:H) following patterning of silicon pillars via electron beam lithography (EBL) and plasma etching, large areas of a close packed silicon lens array with the diameter from a few micrometers down to a few hundred nanometers was fabricated. The resulting structure shows excellent surface roughness and high uniformity. The optical focusing properties of the lenses at infrared wavelengths were verified by experimental measurements and numerical simulation. This approach provides a feasible solution for fabricating silicon MNLAs compatible for next generation large scale, miniaturized optical imaging detectors and related optical devices.

  3. Effects of chemical modification on the conformation and biological activity of peanut agglutinin.

    PubMed

    Nonnenmacher, D; Brossmer, R

    1981-03-27

    The effect of chemical modifications on the biological properties of peanut agglutinin was investigated. The free amino groups were modified with succinic anhydride and 1-isothiocyanato-4-benzenesulfonic acid. Though the extent of modification was 95 and 85%, respectively, these derivatives did not lose their sugar binding capacity. The agglutinating activity with neuraminidase-treated human erythrocytes and various tumor cells was reduced. The mitogenic activity tested with neuraminidase-treated human lymphocytes was also diminished The tyrosine residues were modified with tetranitromethane and further with 4-aminophenyl-alpha-D-glucopyranoside and the negatively charged 2-(4-amino-benzyl)-alpha-D-neuraminic acid. The extent of modification was 30, 28 and 6%, respectively. The agglutinating and mitogenic activities were in this case not severely changed. The influence of all these modifications on the conformation was investigated by means of CD studies in the far and near ultraviolet regions.

  4. Protein Structural Information Derived from NMR Chemical Shift with the Neural Network Program TALOS-N

    PubMed Central

    Shen, Yang; Bax, Ad

    2015-01-01

    Summary Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors and the artificial neural network based TALOS-N program has been trained to extract backbone and sidechain torsion angles from 1H, 15N and 13C shifts. The program is quite robust, and typically yields backbone torsion angles for more than 90% of the residues, and sidechain χ1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and 13Cβ nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  5. 13C NMR chemical shifts of the triclinic and monoclinic crystal forms of valinomycin.

    PubMed

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M; Grant, David M

    2004-07-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state (13)C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, delta(iso), for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, delta(22). Additionally it was found that the smallest shift component, delta(33), for the L -lactic acid ( L -Lac) and D -alpha-hydroxyisovaleric acid ( D -Hyi) C(alpha)-O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the delta(33) component that governs the behavior of delta(iso) in these alpha carbons.

  6. Characteristic chemical shifts of quasicrystalline Zn-Mg-Zr alloys studied by EELS and SXES

    NASA Astrophysics Data System (ADS)

    Koshiya, S.; Terauchi, M.; Ohhashi, S.; Tsai, A. P.

    2013-06-01

    Chemical shifts of the constituent atoms of primitive icosahedral quasicrystal (P-QC), face-centred icosahedral quasicrystal (F-QC) and 1/1-approximant (1/1-AP) of F-QC Zn-Mg-Zr alloys were investigated for the first time using high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Zn M-shell and Mg L-shell excitation EELS spectra of P-QC, F-QC and 1/1-AP alloys, only the quasicrystalline alloys showed a chemical shift towards the larger binding energy side. In Zn-L and Zr-L emission SXES spectra, the P-QC and F-QC alloys showed a chemical shift towards larger binding energy side. The magnitudes of the shifts in the Zn-L emission spectra of the quasicrystalline alloys were almost the same as for ZnO. These results strongly suggest a decrease in valence charge in quasicrystalline states. Therefore, it should be concluded that bonding in quasicrystalline states involves a characteristic increase in covalency compared with bonding in corresponding approximant and standard metal crystals.

  7. Carbon 13 chemical shift tensors in aromatic compounds. 3. Phenanthrene and triphenylene

    SciTech Connect

    Soderquist, A.; Hughes, C.D.; Horton, W.J.; Facelli, J.C.; Grant, D.M.

    1992-04-08

    Measurements of the principal values of the {sup 13}C chemical shift tensor are presented for the three carbons in triphenylene and for three different {alpha} carbons in phenanthrene. The measurements in triphenylene were made in natural abundance samples at room temperature, while the phenanthrene tensors were obtained from selectively labeled compounds (99% {sup 13}C) at low temperatures ({approx} 25 K). The principal values of the shift tensors were oriented in the molecular frame using ab initio LORG calculations. The steric compression at C{sub 4} in phenanthrene and in corresponding positions in triphenylene is manifested in sizable upfield shift in the {sigma} 33 component relative to the corresponding {sigma} 33 values at C{sub 1} and C{sub 9} in phenanthrene. The upfield shift in {sigma} 33 is mainly responsible for the well-known upfield shift of the isotropic chemical shifts of such sterically perturbed carbons. In phenanthrene c{sub 9} exhibits a unique {sigma} 22 value reflecting the greater localization of {pi}-electrons in the c{sub 9}-C{sub 10} bond. This localization of the {pi}-electrons at the C{sub 9}-C{sub 10} bond in the central ring of phenanthrene also corresponds with the most likely ordering of electrons described by the various Kekule structures in phenanthrene. The analysis of the {sup 13}C chemical shieldings of the bridgehead carbons in the triphenylene provides significant experimental information on bonding between rings in polycyclic aromatic compounds. 39 refs., 8 fig., 3 tab.

  8. Density Functional Studies of the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zurek, Eva; Autschbach, Jochen

    2007-12-01

    Density functional theory has been used to compute the electronic structure and 13C NMR chemical shifts of finite (9,0) single-walled carbon nanotubes (SWNTs) capped with fullerene hemispheres and with hydrogen atoms. The chemical shifts and HOMO-LUMO gaps were found to be dependent upon the mode of capping. The shifts of semiconducting and metallic tubes were estimated as being around 130 ppm and 141 ppm, respectively. Periodic boundary calculations on infinite zigzag (n,0) SWNTs with 7⩽n⩽17 were performed. These entities can be characterized by a family index, λ = mod(n,3), and the chemical shifts can be fitted well by a function inversely proportional to the diameter of the tube and proportional to a constant which depends on the nanotube family. Direct comparison of the molecular and periodic approaches can be made if benzene is used as the internal reference. Such a comparison indicates that capping may have a strong effect on the computed properties. Calculations on infinite zigzag (7⩽n⩽10) amine functionalized SWNTs have been performed. The functional group may react with a C-C bond which is parallel or diagonal to the tube axis and both sites have been considered. The shifts of the carbons directly attached to the group are sensitive to the bond which has been functionalized and may therefore be used to discriminate between the two products. Functionalization induces a significant line broadening of the NMR signals but it does not dramatically change the average shift of the unfunctionalized SWNT carbons.

  9. Thin films of protein (BSA, lysozyme) - Polyelectrolyte (PSS) complexes show larger red-shift in optical emissions irrespective of protein conformation

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2017-09-01

    Protein-polyelectrolyte complexes (PPC) are prepared using globular proteins (BSA, lysozyme) and optically active polyelectrolyte poly (sodium 4-styrenesulfonate) (PSS) in aqueous solutions and as thin films on solid substrates to explore their structures and optical behaviors. Out-of-plane structures of PPC films having ≈15-60 nm thicknesses are investigated from X-ray reflectivity and their relatively smooth surface morphologies are obtained from atomic force microscopy. ATR-FTIR spectroscopy confirms that the conformation of BSA proteins inside the films of PSSB (PSS+BSA) is nearly same with pure BSA but for lysozyme inside PSSL (PSS+lysozyme) conformation modifies which is evidenced from the shifting of the amide-I band of each protein. However, irrespective of the conformation variation of proteins larger red-shifts of ≈30 nm in optical emissions are obtained from the thin films of PPC. Relatively enhance dissipation of energy thorough non-radiative transition of the fluorophore residues in the dry state is the most probable reason for such larger optical red-shifts.

  10. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.

    PubMed

    Jose, K V Jovan; Raghavachari, Krishnan

    2017-03-14

    We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large biomolecules. Density functional techniques have been employed in conjunction with large basis sets and including the effects of the solvent environment in these calculations. The MIM-NMR method is initially benchmarked on a set of (alanine)10 conformers containing strong intramolecular interactions. The incorporation of a second low level of theory to recover the missing long-range interactions in the primary fragmentation scheme is critical to yield reliable chemical shifts, with a mean absolute deviation (MAD) from direct unfragmented calculations of 0.01 ppm for (1)H chemical shifts and 0.07 ppm for (13)C chemical shifts. In addition, the performance of MIM-NMR has been assessed on two large peptides: the helical portion of ubiquitin ( 1UBQ ) containing 12 residues where the X-ray structure is known, and E6-binding protein of papilloma virus ( 1RIJ ) containing 23 residues where the structure has been derived from solution-phase NMR analysis. The solvation environment is incorporated in these MIM-NMR calculations, either through an explicit, implicit, or a combination of both solvation models. Using an explicit treatment of the solvent molecules within the first solvation sphere (3 Å) and an implicit solvation model for the rest of the interactions, the (1)H and (13)C chemical shifts of ubiquitin show excellent agreement with experiment (mean absolute deviation of 0.31 ppm for (1)H and 1.72 ppm for (13)C), while the larger E6-binding protein yields a mean absolute deviation of 0.34 ppm for (1)H chemical shifts. The proposed MIM-NMR method is computationally cost-effective and provides a substantial speedup relative to conventional full calculations, the largest density functional NMR calculation included in this work involving more than 600 atoms and over 10,000 basis functions. The MIM

  11. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  12. Prediction of (1)H NMR chemical shifts for clusters of imidazolium-based ionic liquids.

    PubMed

    Chen, Su; Izgorodina, Ekaterina I

    2017-07-05

    Nuclear magnetic resonance (NMR) has been widely used to elucidate the bulk structure of ionic liquids. In this work, we calculated (1)H NMR chemical shifts of 1-ethyl-3-methylimidazolium (C2mim(+)) ionic liquids combined with various anions such as chloride (Cl), tetrafluoroborate (BF4), hexafluorophosphate (PF6), acetate (OAc), trifluoroacetate (TFA), and dicyanamide (DCA). The previously established level of theory, HF/6-311G+(3df,2p), was used for the accurate prediction of NMR chemical shifts both in gas phase and in solvents with varying dielectric constant such as CHCl3 and ethanol. The following factors affecting the predicted proton chemical shifts were considered. Firstly, ionic clusters consisting of 2, 8 and 16 ion pairs were optimized to model interionic interactions present in the bulk of ionic liquids. In larger clusters the distribution of the calculated chemical shifts of individual protons in the C2mim(+) cation was examined with respect to the position of the cation in the cluster. We further confirmed that electronic properties of ionic liquids such as magnetic shielding had local nature, thus allowing us to accurately predict proton NMR chemical shifts of ionic liquids from relatively small-sized clusters. Secondly, solvent effects in single ion pairs as well as larger ionic clusters were accounted through a Conductor-like Polarisable Continuum Model (CPCM). Solvent effects generated through a dielectric constant of either chloroform or ethanol were found to be important in single ion pairs due to improved description of interionic distances. With increasing cluster size the difference between gas-phase and CPCM optimized structures became minimal, thus resulting in similar values for calculated (1)H NMR chemical shifts. We also established that the model size that produced the best results for imidazolium ionic liquids strongly depended on the anion type. Strongly coordinating anions such as chloride and acetate require calculations of

  13. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  14. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    SciTech Connect

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  15. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    PubMed Central

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements. PMID:28067218

  16. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    NASA Astrophysics Data System (ADS)

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements.

  17. Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Brothers, Edward N.; van der Vaart, Arjan; Merz, Kenneth M.

    2004-06-01

    A new approach to calculate nuclear magnetic resonance chemical shifts has been implemented at the semiempirical modified neglect of diatomic overlap level using gauge-including atomic orbitals. The perturbed density matrix with respect to the magnetic field is obtained by the diagonalization of the complex Fock matrix using the divide and conquer (DC) method, instead of by solving the computationally expensive coupled perturbed Hartree-Fock equations. Adopting the Patchkovskii and Thiel parameters [S. Patchkovskii and W. Thiel J. Comput. Chem. 20, 1220 (1999)], we were able to reproduce their results for small organic molecules. The errors introduced by DC method are negligible, as shown by the calculations on a series of polyalaine structures. Test calculations on proteins have demonstrated that our approach makes it possible to calculate chemical shifts routinely on systems with hundreds of atoms with good accuracy.

  18. PACSY, a relational database management system for protein structure and chemical shift analysis.

    PubMed

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  19. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  20. Two-Dimensional Proton Chemical-Shift Imaging of Human Muscle Metabolites

    NASA Astrophysics Data System (ADS)

    Hu, Jiani; Willcott, M. Robert; Moore, Gregory J.

    1997-06-01

    Large lipid signals and strong susceptibility gradients introduced by muscle-bone interfaces represent major technical challenges forin vivoproton MRS of human muscle. Here, the demonstration of two-dimensional proton chemical-shift imaging of human muscle metabolites is presented. This technique utilizes a chemical-shift-selective method for water and lipid suppression and automatic shimming for optimal homogeneity of the magnetic field. The 2D1H CSI technique described facilitates the acquisition of high-spatial-resolution spectra, and allows one to acquire data from multiple muscle groups in a single experiment. A preliminary investigation utilizing this technique in healthy adult males (n= 4) revealed a highly significant difference in the ratio of the creatine to trimethylamine resonance between the fast and slow twitch muscle groups examined. The technique is robust, can be implemented on a commercial scanner with relative ease, and should prove to be a useful tool for both clinical and basic investigators.

  1. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  2. Deuterium isotope effects on ¹³C-NMR chemical shifts of 10-hydroxybenzo[h]quinolines.

    PubMed

    Hansen, Poul Erik; Kamounah, Fadhil S; Gryko, Daniel T

    2013-04-17

    Deuterium isotope effects on ¹³C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ's) The OH proton is deuteriated. The isotope effects on ¹³C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized.

  3. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  4. Crime Scene Investigation: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool

    DTIC Science & Technology

    2016-02-26

    MDW/SGVU SUBJECT: Professional Presentation Approva l 26 FEB 2016 1. Your paper, entitled Crime Scene Investigation: Clinical Aoolication of...or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.] Crime Scene Investiga...tion: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool 1. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED Crime Scene

  5. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  6. Investigation of 1H NMR chemical shifts of organic dye with hydrogen bonds and ring currents.

    PubMed

    Park, Sung Soo; Won, Yong Sun; Lee, Woojin; Kim, Jae Hong

    2011-04-07

    The (1)H NMR chemical shifts were theoretically computed for the organic dyes 2-(2,6-dimethyl-4H-pyran-4-ylidene)-malononitrile (1), cyano-(2,6-dimethyl-4H-pyran-4-ylidene)-acetic acid methyl ester (2), 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-malononitrile (3), and methyl 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate (4) at the GIAO/B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. Moreover, the intramolecular rotational barriers of the molecules were calculated to evaluate the internal flexibility with respect to the torsional degrees of freedom, and the nuclear-independent chemical shifts (NICS) were employed to analyze the ring currents. The difference was explained in terms of intramolecular hydrogen bonds and ring currents of the molecules. The (1)H NMR spectra were reproduced by experiments for the comparison with computationally constructed data. Our results suggest a good guideline in interpreting (1)H NMR chemical shifts using computational methods and furthermore a reliable perspective for designing molecular structures.

  7. Evaluation of cerebral 31-P chemical shift images utilizing statistical parametric mapping

    NASA Astrophysics Data System (ADS)

    Riehemann, Stefan; Gaser, Christian; Volz, Hans-Peter; Sauer, Heinrich

    1999-05-01

    We present an evaluation technique of two dimensional (2D) nuclear magnetic resonance (NMR) chemical shift images (CSI) to analyze spatial differences of metabolite distributions and/or concentrations between groups of probands. Thus, chemical shift imaging is not only used as localization technique for NMR-spectroscopy, but the information of the complete spectroscopic image is used for the evaluation process. 31P CSI of the human brain were acquired with a Philips Gyroscan ACSII whole-body scanner at 1.5 T. CSI for different phosphorus metabolites were generated, all representing the same anatomical location. For each metabolite the CSI of two groups of subjects were compared with each other using the general linear model implemented in the widely distributed SPM96 software package. With this approach, even covariates or confounding variables like age or medication can be considered. As an example for the application of this technique, variations in the distribution of the 31P metabolite phosphocreatin between unmedicated schizophrenic patients and healthy controls were visualized. To our knowledge, this is the first approach to analyze spatial variations in metabolite concentrations between groups of subjects on the basis of chemical shift images. The presented technique opens a new perspective in the evaluation of 2D NMR spectroscopic data.

  8. The (15)N NMR chemical shift in the characterization of weak halogen bonding in solution.

    PubMed

    Hakkert, Sebastiaan B; Gräfenstein, Jürgen; Erdelyi, Mate

    2017-07-21

    We have studied the applicability of (15)N NMR spectroscopy in the characterization of the very weak halogen bonds of nonfluorinated halogen bond donors with a nitrogenous Lewis base in solution. The ability of the technique to detect the relative strength of iodine-, bromine- and chlorine-centered halogen bonds, as well as solvent and substituent effects was evaluated. Whereas computations on the DFT level indicate that (15)N NMR chemical shifts reflect the diamagnetic deshielding associated with the formation of a weak halogen bond, the experimentally observed chemical shift differences were on the edge of detectability due to the low molar fraction of halogen-bonded complexes in solution. The formation of the analogous yet stronger hydrogen bond of phenols have induced approximately ten times larger chemical shift changes, and could be detected and correlated to the electronic properties of substituents of the hydrogen bond donors. Overall, (15)N NMR is shown to be a suitable tool for the characterization of comparably strong secondary interactions in solution, but not sufficiently accurate for the detection of the formation of thermodynamically labile, weak halogen bonded complexes.

  9. A predictive tool for assessing (13)C NMR chemical shifts of flavonoids.

    PubMed

    Burns, Darcy C; Ellis, David A; March, Raymond E

    2007-10-01

    Herein are presented the (1)H and (13)C NMR data for seven monohydroxyflavones (3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavone), five dihydroxyflavones (3,2'-, 3,3'-, 3,4'-, 3,6-, 2',3'-dihydroxyflavone), a trihydroxyflavone (apigenin; 5,7,4'-trihydroxyflavone), a tetrahydroxyflavone (luteolin; 5,7,3',4'-tetrahydroxyflavone), and three glycosylated hydroxyflavones (orientin; luteolin-6C-beta-D-glucoside, homoorientin; luteolin-8C-beta-D-glucoside, vitexin; apigenin-8C-beta-D-glucoside). When these NMR spectra are compared, it is possible to assess the impact of flavone modification and to elucidate detailed structural and electronic information for these flavonoids. A simple predictive tool for assigning flavonoid (13)C chemical shifts, which is based on the cumulative differences between the monohydroxyflavones and flavone (13)C chemical shifts, is demonstrated. The tool can be used to accurately predict (13)C flavonoid chemical shifts and it is expected to be useful for rapid assessment of flavonoid (13)C NMR spectra and for assigning substitution patterns in newly isolated flavonoids.

  10. Energy landscapes of a hairpin peptide including NMR chemical shift restraints.

    PubMed

    Carr, Joanne M; Whittleston, Chris S; Wade, David C; Wales, David J

    2015-08-21

    Methods recently introduced to improve the efficiency of protein structure prediction simulations by adding a restraint potential to a molecular mechanics force field introduce additional input parameters that can affect the performance. Here we investigate the changes in the energy landscape as the relative weight of the two contributions, force field and restraint potential, is systematically altered, for restraint functions constructed from calculated nuclear magnetic resonance chemical shifts. Benchmarking calculations were performed on a 12-residue peptide, tryptophan zipper 1, which features both secondary structure (a β-hairpin) and specific packing of tryptophan sidechains. Basin-hopping global optimization was performed to assess the efficiency with which lowest-energy structures are located, and the discrete path sampling approach was employed to survey the energy landscapes between unfolded and folded structures. We find that inclusion of the chemical shift restraints improves the efficiency of structure prediction because the energy landscape becomes more funnelled and the proportion of local minima classified as native increases. However, the funnelling nature of the landscape is reduced as the relative contribution of the chemical shift restraint potential is increased past an optimal value.

  11. Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein.

    PubMed

    Choy, W Y; Tollinger, M; Mueller, G A; Kay, L E

    2001-09-01

    The global fold of maltose binding protein in complex with beta-cyclodextrin has been determined using a CNS-based torsion angle molecular dynamics protocol involving direct refinement against dipolar couplings and carbonyl chemical shift changes that occur upon alignment. The shift changes have been included as structural restraints using a new module, CANI, that has been incorporated into CNS. Force constants and timesteps have been determined that are particularly effective in structure refinement applications involving high molecular weight proteins with small to moderate numbers of NOE restraints. Solution structures of the N- and C-domains of MBP calculated with this new protocol are within approximately 2 A of the X-ray conformation.

  12. The HSP90 binding mode of a radicicol-like E-oxime from docking, binding free energy estimations, and NMR 15N chemical shifts

    PubMed Central

    Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin

    2009-01-01

    We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409

  13. Chemical design enables the control of conformational polymorphism in functional 2,3-thieno(bis)imide-ended materials.

    PubMed

    Maini, Lucia; Gallino, Federico; Zambianchi, Massimo; Durso, Margherita; Gazzano, Massimo; Rubini, Katia; Gentili, Denis; Manet, Ilse; Muccini, Michele; Toffanin, Stefano; Cavallini, Massimiliano; Melucci, Manuela

    2015-02-07

    We report a successful chemical design strategy based on the even-odd alkyl end tailoring, which allows us to promote and control conformational polymorphism in single crystal and thin deposits of thienoimide-based molecular semiconductors (Cx-NT4N).

  14. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    SciTech Connect

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T{sup 2}, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T{sup n} with n = 2 and higher.

  15. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.

    PubMed

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher.

  16. An artificially evolved albumin binding module facilitates chemical shift epitope mapping of GA domain interactions with phylogenetically diverse albumins.

    PubMed

    He, Yanan; Chen, Yihong; Rozak, David A; Bryan, Philip N; Orban, John

    2007-07-01

    Protein G-related albumin-binding (GA) modules occur on the surface of numerous Gram-positive bacterial pathogens and their presence may promote bacterial growth and virulence in mammalian hosts. We recently used phage display selection to evolve a GA domain, PSD-1 (phage selected domain-1), which tightly bound phylogenetically diverse albumins. With respect to PSD-1's broad albumin binding specificity, it remained unclear how the evolved binding epitope compared to those of naturally occurring GA domains and whether PSD-1's binding mode was the same for different albumins. We investigate these questions here using chemical shift perturbation measurements of PSD-1 with rabbit serum albumin (RSA) and human serum albumin (HSA) and put the results in the context of previous work on structure and dynamics of GA domains. Combined, these data provide insights into the requirements for broad binding specificity in GA-albumin interactions. Moreover, we note that using the phage-optimized PSD-1 protein significantly diminishes the effects of exchange broadening at the binding interface between GA modules and albumin, presumably through stabilization of a ligand-bound conformation. The employment of artificially evolved domains may be generally useful in NMR structural studies of other protein-protein complexes.

  17. Entropy-enthalpy transduction caused by conformational shifts can obscure the forces driving protein-ligand binding.

    PubMed

    Fenley, Andrew T; Muddana, Hari S; Gilson, Michael K

    2012-12-04

    Molecular dynamics simulations of unprecedented duration now can provide new insights into biomolecular mechanisms. Analysis of a 1-ms molecular dynamics simulation of the small protein bovine pancreatic trypsin inhibitor reveals that its main conformations have different thermodynamic profiles and that perturbation of a single geometric variable, such as a torsion angle or interresidue distance, can select for occupancy of one or another conformational state. These results establish the basis for a mechanism that we term entropy-enthalpy transduction (EET), in which the thermodynamic character of a local perturbation, such as enthalpic binding of a small molecule, is camouflaged by the thermodynamics of a global conformational change induced by the perturbation, such as a switch into a high-entropy conformational state. It is noted that EET could occur in many systems, making measured entropies and enthalpies of folding and binding unreliable indicators of actual thermodynamic driving forces. The same mechanism might also account for the high experimental variance of measured enthalpies and entropies relative to free energies in some calorimetric studies. Finally, EET may be the physical mechanism underlying many cases of entropy-enthalpy compensation.

  18. Entropy–enthalpy transduction caused by conformational shifts can obscure the forces driving protein–ligand binding

    PubMed Central

    Fenley, Andrew T.; Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    Molecular dynamics simulations of unprecedented duration now can provide new insights into biomolecular mechanisms. Analysis of a 1-ms molecular dynamics simulation of the small protein bovine pancreatic trypsin inhibitor reveals that its main conformations have different thermodynamic profiles and that perturbation of a single geometric variable, such as a torsion angle or interresidue distance, can select for occupancy of one or another conformational state. These results establish the basis for a mechanism that we term entropy–enthalpy transduction (EET), in which the thermodynamic character of a local perturbation, such as enthalpic binding of a small molecule, is camouflaged by the thermodynamics of a global conformational change induced by the perturbation, such as a switch into a high-entropy conformational state. It is noted that EET could occur in many systems, making measured entropies and enthalpies of folding and binding unreliable indicators of actual thermodynamic driving forces. The same mechanism might also account for the high experimental variance of measured enthalpies and entropies relative to free energies in some calorimetric studies. Finally, EET may be the physical mechanism underlying many cases of entropy–enthalpy compensation. PMID:23150595

  19. Conformational changes in azurin from Pseudomona aeruginosa induced through chemical and physical protocols.

    PubMed

    Fuentes, Lymari; Oyola, Jessica; Fernández, Mónica; Quiñones, Edwin

    2004-09-01

    Azurin from Pseudomona aeruginosa is a small copper protein with a single tryptophan (Trp) buried in the structure. The Gibbs free energies associated with the folding of holo azurin, calculated monitoring Trp fluorescence and changes in absorbance on the ligand-to-metal band, are different because these techniques probe their local environments, thereby being able to probe different conformational changes. The presence of an intermediate state was observed during the chemical denaturation of the protein. Upon denaturation, a 30-fold increase is observed in the magnitude of the quenching constant of the tryptophan fluorescence by acrylamide, because this residue becomes more accessible to the quencher. Entrapping the protein in sol-gel materials lowers its stability possibly because the solvation properties of the macromolecule are changed. The thermal denaturation of azurin immobilized in a sol-gel monolith is irreversible, which tends to rule out an aggregation mechanism to account for the irreversibility of the denaturation of the protein free in solution. Unlike the Cu(II) ion, the Gd(III) ion accommodates in site B of azurin with high affinity and the folding free energy of Gd-azurin is larger than that of apo azurin.

  20. The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials

    NASA Astrophysics Data System (ADS)

    Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.

    2016-10-01

    The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  1. Complex, unusual conformational changes in kidney betaine aldehyde dehydrogenase suggested by chemical modification with disulfiram.

    PubMed

    Ayala-Castro, Hector G; Valenzuela-Soto, Elisa M; Figueroa-Soto, Ciria G; Muñoz-Clares, Rosario A

    2007-12-15

    The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 microM but only 50% at 5mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.

  2. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    PubMed

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C.

  3. Conformational study of arbutin by quantum chemical calculations and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Araujo-Andrade, Cuauhtémoc; Lopes, Susy; Fausto, Rui; Gómez-Zavaglia, Andrea

    2010-06-01

    A conformational study of the molecule of arbutin (4-hydroxyphenyl-β- D-glucopyranoside) has been undertaken. The molecule is composed by a glucopyranoside moiety bound to a phenol ring. It has eight conformationally relevant dihedral angles, five of them related with the orientation of the hydroxyl groups and the remaining three taking part in the skeleton of the molecule. A systematic search on the conformational space of arbutin was performed using molecular orbital methods, followed by the identification of structural similarities between the different conformers, using multivariate analyses. This approach allowed the grouping of conformers according to their structural affinity and the establishment of correlations between their structures and several properties. Intramolecular interactions involving OH groups were also investigated and correlations between spectroscopic, structural and thermodynamic properties established. The developed strategy might be useful to investigate the structure and structure/properties correlations in other conformationally flexible molecules.

  4. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  5. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  6. Xenon NMR: chemical shifts of a general anesthetic in common solvents, proteins, and membranes.

    PubMed Central

    Miller, K W; Reo, N V; Schoot Uiterkamp, A J; Stengle, D P; Stengle, T R; Williamson, K L

    1981-01-01

    The rare gas xenon contains two NMR-sensitive isotopes in high natural abundance. The nuclide 129Xe has a spin of 1/2: 131Xe is quadrupolar with a spin of 3/2. The complementary NMR characteristics of these nuclei provide a unique opportunity for probing their environment. The method is widely applicable because xenon interacts with a useful range of condensed phases including pure liquids, protein solutions, and suspensions of lipid and biological membranes. Although xenon is chemically inert, it does interact with living systems; it is an effective general anesthetic. We have found that the range of chemical shifts of 129Xe dissolved in common solvents is ca. 200 ppm, which is 30 times larger than that found for 13C in methane dissolved in various solvents. Resonances were also observed for 131Xe in some systems; they were broader and exhibited much greater relaxation rates than did 129Xe. The use of 129Xe NMR as a probe of biological systems was investigated. Spectra were obtained from solutions of myoglobin, from suspensions of various lipid bilayers, and from suspensions of the membranes of erythrocytes and of the acetylcholine receptor-rich membranes of Torpedo californica. These systems exhibited a smaller range of chemical shifts. In most cases there was evidence of a fast exchange of xenon between the aqueous and organic environments, but the exchange was slow in suspensions of dimyristoyl lecithin vesicles. PMID:6946442

  7. Conformational change of turkey-gizzard caldesmon induced by specific chemical modification with carbodiimide.

    PubMed

    Martin, F; Harricane, M C; Audemard, E; Pons, F; Mornet, D

    1991-01-30

    Water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to internally cross-link carboxyl and lysyl groups of caldesmon. The modification did not involve the two cysteines of the molecule which were previously labelled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine. The modified caldesmon exhibited a smaller Stokes radius (4.0 nm instead of 6.3 nm) and its electrophoretic mobility corresponded to an apparent molecular mass of approximately 82 kDa, appreciably lower than that of the native molecule (120 kDa), but more similar to the reported true molecular mass of 86,974 Da of chicken-gizzard caldesmon (Bryan, J., Imai, M., Lee, R., Moore, P., Cook. R. G. & Lin, W. (1989) J. Biol. Chem. 264, 13,873-13,879). Comparative circular dichroism analysis indicated a decrease of the alpha-helix content from 43% to 36% resulting from the chemical modification. The 1H-NMR spectra of the native and modified caldesmon showed that the covalent cross-linking affected mainly the central and N-terminal parts of the molecule. The C-terminal part, rich in aromatic amino acids, was unmodified by the carbodiimide treatment. This was also corroborated by the continued ability of the modified caldesmon to bind to actin and calmodulin, and by the property of the 90-kDa proteolytic N-terminal fragment to give an internally cross-linked species of 60 kDa. Using electron microscopy, the modified protein was shown to have a more compact shape and a reduced capacity to induce tight and long F-actin bundles. These conformational changes were obtained when the carbodiimide reaction was conducted at pH 6.0 and were not observed at pH 8.0. This suggests that local variation of the pH might affect the conformation of caldesmon which changes from an elongated to more compact shape, stabilized by electrostatic interactions. It is proposed that the flexibility of caldesmon might be involved in the regulatory function of this protein in the smooth muscle and might favour tightly

  8. Investigating lipids as a source of chemical exchange-induced MRI frequency shifts.

    PubMed

    Shmueli, K; Dodd, S J; van Gelderen, P; Duyn, J H

    2017-04-01

    While magnetic susceptibility is a major contributor to NMR resonance frequency variations in the human brain, a substantial contribution may come from the chemical exchange of protons between water and other molecules. Exchange-induced frequency shifts fe have been measured in tissue and protein solutions, but relatively lipid-rich white matter (WM) has a larger fe than gray matter, suggesting that lipids could contribute. Galactocerebrosides (GC) are a prime candidate as they are abundant in WM and susceptible to exchange. To investigate this, fe was measured in a model of WM lipid membranes in the form of multilamellar vesicles (MLVs), consisting of a 1:2 molar ratio of GC and phospholipids (POPC), and in MLVs with POPC only. Chemical shift imaging with 15% volume fraction of dioxane, an internal reference whose protons are assumed not to undergo chemical exchange, was used to remove susceptibility-induced frequency shifts in an attempt to measure fe in MLVs at several lipid concentrations. Initial analysis of these measurements indicated a necessity to correct for small unexpected variations in dioxane concentration due to its effect on the water frequency shift. To achieve this, the actual dioxane concentration was inferred from spectral analysis and its additional contribution to fe was removed through separate experiments which showed that the water-dioxane frequency shift depended linearly on the dioxane concentration at low concentrations with a proportionality constant of -0.021 ± 0.002 ppb/mM in agreement with published experiments. Contrary to expectations and uncorrected results, for GC + POPC vesicles, the dependence of the corrected fe on GC concentration was insignificant (0.023 ± 0.037 ppb/mM; r(2)  = 0.085, p > 0.57), whereas for the POPC-only vesicles a small but significant linear increase with POPC concentration was found: 0.044 ± 0.008 ppb/mM (r(2)  = 0.877, p < 0.01). These findings suggest that the

  9. Conformational changes in proteins recovered from jumbo squid (Dosidicus gigas) muscle through pH shift washing treatments.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Ramírez-Suárez, Juan C; Lugo-Sánchez, Maria E; García-Orozco, Karina D; Sotelo-Mundo, Rogerio R; Peña-Ramos, Aida

    2016-04-01

    Conformational and thermal-rheological properties of acidic (APC) and neutral (NPC) protein concentrates were evaluated and compared to those of squid (Dosidicus gigas) muscle proteins (SM). Surface hydrophobicity, sulfhydryl status, secondary structure profile, differential scanning calorimetry and oscillatory dynamic rheology were used to evaluate the effect of treatments on protein properties. Acidic condition during the washing process (APC) promoted structural and conformational changes in the protein present in the concentrate produced. These changes were enhanced during the heat setting of the corresponding sol. Results demonstrate that washing squid muscle under the proposed acidic conditions is a feasible technological alternative for squid-based surimi production improving its yield and gel-forming ability.

  10. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  11. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    PubMed Central

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  12. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging.

    PubMed

    Inaoka, Tsutomu; Takahashi, Koji; Mineta, Masayuki; Yamada, Tomonori; Shuke, Noriyuki; Okizaki, Atsutaka; Nagasawa, Kenichi; Sugimori, Hiroyuki; Aburano, Tamio

    2007-06-01

    To prospectively evaluate chemical shift magnetic resonance (MR) imaging for differentiating thymic hyperplasia from tumors of the thymus gland. The institutional review board approved this study; informed consent was obtained and patient confidentiality was protected. The authors assessed 41 patients (17 male, 24 female; age range, 16-78 years) in whom thymic lesions were seen at chest computed tomography. Patients were assigned to a hyperplasia group (n=23) (18 patients with hyperplastic thymus associated with Graves disease and five with rebound thymic hyperplasia) and a tumor group (n=18) (seven patients with thymomas, four with invasive thymomas, five with thymic cancers, and two with malignant lymphomas). T2-weighted fast spin-echo and T1-weighted in-phase and opposed-phase MR images were obtained in all patients and visually assessed. A chemical shift ratio (CSR), determined by comparing the signal intensity of the thymus gland with that of the paraspinal muscle, was calculated for quantitative analysis. Mean CSRs for the patient groups and subgroups were analyzed by using Welch t and Newman-Keuls tests. P<.05 indicated a significant difference. The thymus gland had homogeneous signal intensity in all 23 patients in the hyperplasia group and in 12 of the 18 patients in the tumor group. The mean CSR (+/- standard deviation) was 0.614 +/- 0.130 in the hyperplasia group and 1.026 +/- 0.039 in the tumor group. Mean CSRs in the patients with a hyperplastic thymus and Graves disease, rebound thymic hyperplasia, thymoma, invasive thymoma, thymic cancer, and malignant lymphoma were 0.594 +/- 0.120, 0.688 +/- 0.154, 1.033 +/- 0.043, 1.036 +/- 0.040, 1.020 +/- 0.044, and 0.997 +/- 0.010, respectively. The difference in CSR between the hyperplasia and tumor groups was significant (P<.001). Mean CSRs in the hyperplasia subgroups were lower than those in the tumor subgroups (P<.001). All hyperplasia group patients had an apparent decrease in thymus gland signal intensity

  13. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  14. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-09-02

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  15. Sclerosing liposarcoma of epididymis: Role of chemical shift magnetic resonance imaging

    PubMed Central

    Ramanathan, Subramaniyan; Raghu, Vineetha; Kumar, Devendra; Sempiege, Venkata R P

    2016-01-01

    Sclerosing liposarcoma of epididymis is a rare extratesticular scrotal tumor with variable prognosis. Ultrasonography is the initial imaging modality of choice for the evaluation of scrotal mass and helps to differentiate testicular and extratesticular masses, thereby narrowing down the differential diagnosis. Magnetic resonance imaging with its excellent soft tissue resolution can help in the further characterization of the nature of the tumor. In this case report, we highlight the role of chemical shift imaging in making a confident preoperative diagnosis of liposarcoma thereby guiding optimal and timely management. PMID:27857462

  16. Role of chemical shift and Dixon based techniques in musculoskeletal MR imaging.

    PubMed

    Pezeshk, Parham; Alian, Ali; Chhabra, Avneesh

    2017-06-16

    Fat suppression technique is a valuable resource in musculoskeletal magnetic resonance (MR) imaging that is helpful in the diagnosis and differentiation of various pathologies. Multiple different techniques are available for fat suppression, including frequency selective pulse sequence, inversion recovery, hybrid technique, chemical shift imaging (CSI) and the related Dixon based approach. The utility of CSI and Dixon approach is not well recognized in the domain of musculoskeletal MR imaging. The aim of this article is to review the various options for fat suppression and present focused discussion of the role of CSI and Dixon techniques for musculoskeletal MR imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  18. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition.

    PubMed

    Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason

    2009-03-01

    The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo

  19. The chemical shift of deprotonated water dimer: Ab initio path integral simulation

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Suzuki, Kimichi; Tachikawa, Masanori

    2010-03-01

    The H1 NMR chemical shift in deprotonated water dimer H3O2- has been studied by ab initio path integral simulation. The simulation predicts that the isotropic shielding of hydrogen-bonded proton increases as a function of temperature by about 0.003 ppm/K. This change is about an order of magnitude larger than that of the nonhydrogen-bonded proton. It is concluded that this is caused by the significant difference in the quantum distribution of proton at high and low temperatures in the low barrier hydrogen bond.

  20. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Mikami, Shuji; Yoshida, Motoyuki; Ohba, Ichiro

    2007-11-01

    Yu, Brown and Chuang investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave insight into the role of entanglement in a liquid-state NMR quantum computer. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by employing the positive partial transposition (PPT) criterion with respect to any bipartition. The analysis taking account of the chemical shift reveals how the difference between quantum gates reflects on the physical parameter region where unitary transformed thermal states are entangled. In addition, we examine the distillability of unitary transformed thermal states and the effect of the chemical shifts on the boundary between the separability and the nonseparability.

  1. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  2. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices.

    PubMed

    Im, Sung Gap; Bong, Ki Wan; Lee, Chia-Hua; Doyle, Patrick S; Gleason, Karen K

    2009-02-07

    A novel high-strength nano-adhesive is demonstrated for fabricating nano- and microfluidic devices. While the traditional plasma sealing methods are specific for sealing glass to poly(dimethylsiloxane) (PDMS), the new method is compatible with a wide variety of polymeric and inorganic materials, including flexible substrates. Additionally, the traditional method requires that sealing occur within minutes after the plasma treatment. In contrast, the individual parts treated with the nano-adhesive could be aged for at least three months prior to joining with no measurable deterioration of post-cure adhesive strength. The nano-adhesive is comprised of a complementary pair of polymeric nanolayers. An epoxy-containing polymer, poly(glycidyl methacrylate) (PGMA) was grown via initiated chemical vapor deposition (iCVD) on the substrate containing the channels. A plasma polymerized polyallylamine (PAAm) layer was grown on the opposing flat surface. Both CVD monomers are commercially available. The PGMA nano-adhesive layer displayed conformal coverage over the channels and was firmly tethered to the substrate. Contacting the complementary PGMA and PAAm surfaces, followed by curing at 70 degrees C, resulted in nano- and micro-channel structures. The formation of the covalent tethers between the complementary surfaces produces no gaseous by-products which would need to outgas. The nano-adhesive layers did not flow significantly as a result of curing, allowing the cross-sectional profile of the channel to be maintained. This enabled fabrication of channels with widths as small as 200 nm. Seals able to withstand > 50 psia were fabricated employing many types of substrates, including silicon wafer, glass, quartz, PDMS, polystyrene petri dishes, poly(ethylene terephthalate) (PET), polycarbonate (PC), and poly(tetrafluoro ethylene) (PTFE).

  3. Four-bond deuterium isotope effects on the chemical shifts of amide nitrogens in proteins.

    PubMed

    Tugarinov, Vitali

    2013-11-01

    An approach towards precision NMR measurements of four-bond deuterium isotope effects on the chemical shifts of backbone amide nitrogen nuclei in proteins is described. Three types of four-bond (15) N deuterium isotope effects are distinguished depending on the site of proton-to-deuterium substitution: (4)ΔN(N(i-1)D), (4)ΔN(N(i+1)D) and (4)ΔN(Cβ,(i-1)D). All the three types of isotope shifts are quantified in the (partially) deuterated protein ubiquitin. The (4)ΔN(N(i+1)D) and (4)ΔN(C(β,i-1)D) effects are by far the largest in magnitude and vary between 16 and 75 ppb and -18 and 46 ppb, respectively. A semi-quantitative correlation between experimental (4)ΔN(N(i+1)D) and (4)ΔN(C(β,i-1)D) values and the distances between nitrogen nuclei and the sites of (1)H-to-D substitution is noted. The largest isotope shifts in both cases correspond to the shortest inter-nuclear distances. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Noninvasive temperature mapping with MRI using chemical shift water-fat separation.

    PubMed

    Soher, Brian J; Wyatt, Cory; Reeder, Scott B; MacFall, James R

    2010-05-01

    Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift-based water-fat separation methods, such as GE's iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water signal can be used to map temperature. Phase change of the lipid signal can be used to correct for non-temperature-dependent phase changes, such as amplitude of static field drift. In this work, an image acquisition and postprocessing method, called water and fat thermal MRI, is demonstrated in phantoms containing 30:70, 50:50, and 70:30 water-to-fat by volume. Noninvasive heating was applied in an Off1-On-Off2 pattern over 50 min, using a miniannular phased radiofrequency array. Temperature changes were referenced to the first image acquisition. Four fiber optic temperature probes were placed inside the phantoms for temperature comparison. Region of interest (ROI) temperature values colocated with the probes showed excellent agreement (global mean +/- standard deviation: -0.09 +/- 0.34 degrees C) despite significant amplitude of static field drift during the experiments.

  5. Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels?

    PubMed Central

    Buellesbach, Jan; Gadau, Jürgen; Beukeboom, Leo W.; Echinger, Felix; Raychoudhury, Rhitoban; Werren, John H.; Schmitt, Thomas

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitutes a key feature of chemical signaling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In the present study, we compare male and female cuticular hydrocarbon (CHC) profiles in the jewel wasp genus Nasonia, analyze their chemical divergence, and investigate their role as species-specific sexual signaling cues. Males and females of all four Nasonia species showed unique, non-overlapping CHC profiles unambiguously separating them. Surprisingly, male and female phylogenies based on the chemical distances between their CHC profiles differed dramatically, where only male CHC divergence parallels the molecular phylogeny of Nasonia. In particular, N. giraulti female CHC profiles were the most divergent from all other species and very different from its most closely related sibling species N. oneida. Furthermore, although our behavioural assays indicate that female CHC can generally be perceived as sexual cues attracting males in Nasonia, this function has apparently been lost in the highly divergent female N. giraulti CHC profiles. Curiously, N. giraulti males are still attracted to heterospecific, but not to conspecific female CHC profiles. We suggest that this striking discrepancy has been caused by an extensive evolutionary shift in female N. giraulti CHC profiles, which are no longer used as conspecific recognition cues. Our study constitutes the first report of an apparent abandonment of a sexual recognition cue that the receiver did not adapt to. PMID:24118588

  6. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    PubMed

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-05

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.

  7. The Effects of Dissolved Oxygen upon Amide Proton Relaxation and Chemical Shift in a Perdeuterated Protein

    NASA Astrophysics Data System (ADS)

    Ulmer, Tobias S.; Campbell, Iain D.; Boyd, Jonathan

    2002-08-01

    The effects of dissolved molecular oxygen upon amide proton ( 1H N) longitudinal and transverse relaxation rates and chemical shifts were studied for a small protein domain, the second type 2 module of fibronectin ( 2F2)—isotopically enriched to 99% 2H, 98% 15N. Longitudinal relaxation rate enhancements, R O 2( 1H N), of individual backbone 1H N nuclei varied up to 14 fold between a degassed and oxygenated (1 bar) solution, indicating that the oxygen distribution within the protein is inhomogeneous. On average, smaller relaxation rate enhancements were observed for 1H N nuclei associated with the core of the protein compared to 1H N nuclei closer to the surface, suggesting restricted oxygen accessibility to some regions. In agreement with an O 2- 1H N hyperfine interaction in the extreme narrowing limit, the 1H N transverse relaxation rates showed no significant change, up to an oxygen pressure of 9.5 bar (the maximum pressure used in this study). For most 1H N resonances, small Δδ O 2( 1H N) hyperfine chemical shifts could be detected between oxygen pressures of 1 bar and 9.5 bar.

  8. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy

    PubMed Central

    Chen, Kun; Wu, Tao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons and retrieving hidden/buried Raman signatures to take full advantage of its chemical specificity. Here, we demonstrate a multichannel acquisition framework based on shift-excitation and slit-modulation, followed by mathematical post-processing, which enables a significant improvement in the spectral specificity of Raman characterization. The present technique, termed shift-excitation blind super-resolution Raman spectroscopy (SEBSR), uses multiple degraded spectra to beat the dispersion-loss trade-off and facilitate high-resolution applications. It overcomes a fundamental problem that has previously plagued high-resolution Raman spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. Applicability is demonstrated by the perfect recovery of fine structure of the C-Cl bending mode as well as the clear discrimination of different polymorphs of mannitol. Due to its enhanced discrimination capability, this method offers a feasible route at encouraging a broader range of applications in analytical chemistry, materials and biomedicine. PMID:26350355

  9. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds.

  10. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  11. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of (1) H NMR chemical shifts.

    PubMed

    Lomas, John S; Joubert, Laurent; Maurel, François

    2016-05-31

    Proton nuclear magnetic resonance (NMR) shifts of the free diol and of its 1 : 1 and 1 : 2 hydrogen-bonded complexes with pyridine have been computed for five symmetrical alkane diols on the basis of density functional theory, by applying the gauge-including atomic orbital method to geometry-optimized conformers. For certain conformers, intramolecular OH···OH interactions, evidenced by high NMR OH proton shifts, are further enhanced on going from the free diol to the corresponding 1 : 1 diol/pyridine complex. This is confirmed by atoms-in-molecules and non-covalent interaction plots. The computed OH and CH proton shifts for the diol and the two complexes correlate well with values obtained by analysing data from the NMR titration of the diols in benzene against pyridine. Shift values for the diols in neat pyridine are calculated by weighting the shifts of the various protons in the three forms (free diol, 1 : 1 and 1 : 2 diol/pyridine complexes) according to the experimentally determined association constants. The results are in good agreement with those observed, and after empirical scaling, the root mean square difference is 0.18 ppm. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. 125Te NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys.

    PubMed

    Njegic, B; Levin, E M; Schmidt-Rohr, K

    2013-01-01

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in (125)Te NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the (125)Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS (125)Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the (125)Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  13. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    SciTech Connect

    Nagamura, Naoka Kitada, Yuta; Honma, Itaru; Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun; Horiba, Koji; Oshima, Masaharu

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  14. Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency

    PubMed Central

    Nam, Joo-Won; Phansalkar, Rasika S.; Lankin, David C.; Bisson, Jonathan; McAlpine, James B.; Leme, Ariene A.; Vidal, Cristina M. P.; Ramirez, Benjamin; Niemitz, Matthias; Bedran-Russo, Ana; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3–4.5 nm wide space via protein–polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven 1H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both 1H and 13C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules. PMID:26214362

  15. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  16. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  17. Relationship between nonlinear pressure-induced chemical shift changes and thermodynamic parameters.

    PubMed

    Beck Erlach, Markus; Koehler, Joerg; Moeser, Beate; Horinek, Dominik; Kremer, Werner; Kalbitzer, Hans Robert

    2014-05-29

    NMR chemical shift analysis is a powerful method to investigate local changes in the environment of the observed nuclear spin of a polypeptide that are induced by application of high hydrostatic pressure. Usually, in the fast exchange regime, the pressure dependence of chemical shifts is analyzed by a second order Taylor expansion providing the first- and second-order pressure coefficient B1 and B2. The coefficients then are interpreted in a qualitative manner. We show here that in a two-state model, the ratio of B2/B1 is related to thermodynamic parameters, namely the ratio of the difference of compressibility factors Δβ' and partial molar volumes ΔV. The analysis is applied to the random-coil model peptides Ac-Gly-Gly-Xxx-Ala-NH2, with Xxx being one of the 20 proteinogenic amino acids. The analysis gives an average Δβ'/ΔV ratio of 1.6 GPa(-1) provided the condition |ΔG(0)| ≪ 2RT holds for the difference of the Gibbs free energies (ΔG(0)) of the two states at the temperature (T0) and the pressure (p0). The amide proton and nitrogen B2/B1 of a given amino acid Xxx are strongly correlated, indicating that their pressure-dependent chemical shift changes are due to the same thermodynamic process. As a possible physical mechanism providing a two-state model, the hydrogen bonding of water with the corresponding amide protein was simulated for isoleucine in position Xxx. The obtained free energy could satisfy the relation |ΔG(0)| ≪ 2RT. The derived relation was applied to the β-amyloid peptide Aβ and the phosphocarrier protein HPr from S. carnosus. For the transition of state 1 to state 2' of Aβ, the derived relation of B2/B1 to Δβ'/ΔV can be confirmed experimentally. The HPr protein is characterized by substantially higher negative B2/B1 values than those found in the tetrapeptides with an average value of approximately -5.1 GPa(-1) (Δβ'/ΔV of 5.1 GPa(-1) provided |ΔG(0)| ≪ 2RT holds). Qualitatively, the B2/B1 ratio can be used to predict

  18. Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2.

    PubMed

    Wang, Bo; Buchman, Cameron D; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2014-07-28

    Molecular recognition is a complex process that involves a large ensemble of structures of the receptor and ligand. Yet, most structure-based virtual screening is carried out on a single structure typically from X-ray crystallography. Explicit-solvent molecular dynamics (MD) simulations offer an opportunity to sample multiple conformational states of a protein. Here we evaluate our recently developed scoring method SVMSP in its ability to enrich chemical libraries docked to MD structures of seven proteins from the Directory of Useful Decoys (DUD). SVMSP is a target-specific rescoring method that combines machine learning with statistical potentials. We find that enrichment power as measured by the area under the ROC curve (ROC-AUC) is not affected by increasing the number of MD structures. Among individual MD snapshots, many exhibited enrichment that was significantly better than the crystal structure, but no correlation between enrichment and structural deviation from crystal structure was found. We followed an innovative approach by training SVMSP scoring models using MD structures (SVMSPMD). The resulting models were applied to two difficult cases (p38 and CDK2) for which enrichment was not better than random. We found remarkable increase in enrichment power, particularly for p38, where the ROC-AUC increased by 0.30 to 0.85. Finally, we explored approaches for a priori identification of MD snapshots with high enrichment power from an MD simulation in the absence of active compounds. We found that the use of randomly selected compounds docked to the target of interest using SVMSP led to notable enrichment for EGFR and Src MD snapshots. SVMSP rescoring of protein-compound MD structures was applied for the search of small-molecule inhibitors of the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2). Rank-ordering of a commercial library of 50 000 compounds docked to MD structures of ALDH2 led to five small-molecule inhibitors. Four compounds had IC50s below 5

  19. Enrichment of Chemical Libraries Docked to Protein Conformational Ensembles and Application to Aldehyde Dehydrogenase 2

    PubMed Central

    2015-01-01

    Molecular recognition is a complex process that involves a large ensemble of structures of the receptor and ligand. Yet, most structure-based virtual screening is carried out on a single structure typically from X-ray crystallography. Explicit-solvent molecular dynamics (MD) simulations offer an opportunity to sample multiple conformational states of a protein. Here we evaluate our recently developed scoring method SVMSP in its ability to enrich chemical libraries docked to MD structures of seven proteins from the Directory of Useful Decoys (DUD). SVMSP is a target-specific rescoring method that combines machine learning with statistical potentials. We find that enrichment power as measured by the area under the ROC curve (ROC-AUC) is not affected by increasing the number of MD structures. Among individual MD snapshots, many exhibited enrichment that was significantly better than the crystal structure, but no correlation between enrichment and structural deviation from crystal structure was found. We followed an innovative approach by training SVMSP scoring models using MD structures (SVMSPMD). The resulting models were applied to two difficult cases (p38 and CDK2) for which enrichment was not better than random. We found remarkable increase in enrichment power, particularly for p38, where the ROC-AUC increased by 0.30 to 0.85. Finally, we explored approaches for a priori identification of MD snapshots with high enrichment power from an MD simulation in the absence of active compounds. We found that the use of randomly selected compounds docked to the target of interest using SVMSP led to notable enrichment for EGFR and Src MD snapshots. SVMSP rescoring of protein–compound MD structures was applied for the search of small-molecule inhibitors of the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2). Rank-ordering of a commercial library of 50 000 compounds docked to MD structures of ALDH2 led to five small-molecule inhibitors. Four compounds had IC50s below

  20. Conformational analysis of tert-butyl acetate using a combination of microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Yueyue; Mouhib, Halima; Li, Guohua; Kleiner, Isabelle; Stahl, Wolfgang

    2016-04-01

    tert-Butyl acetate was investigated using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy. The microwave spectrum was recorded in the frequency range from 8.00 to 15.75 GHz. Due to its rather rigid frame, the molecule possesses only two conformers: one of Cs symmetry and one of C1 symmetry that appears as a pair of enantiomers. The Cs conformer is the most abundant in the supersonic jet and according to ab initio calculations at the MP2/6-311++G(d, p) level of theory it is 46 kJ/mol lower in energy than the C1 conformer. Here, we report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, for which a set of rotational and centrifugal distortion constants, as well as the barrier to internal rotation of the acetyl methyl group were determined with high accuracy. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we were able to determine a barrier height of about 113 cm-1 and subsequently compare the molecular parameters obtained from these two codes.

  1. Identify five kinds of simple super-secondary structures with quadratic discriminant algorithm based on the chemical shifts.

    PubMed

    Kou, Gaoshan; Feng, Yonge

    2015-09-07

    The biological function of protein is largely determined by its spatial structure. The research on the relationship between structure and function is the basis of protein structure prediction. However, the prediction of super secondary structure is an important step in the prediction of protein spatial structure. Many algorithms have been proposed for the prediction of protein super secondary structure. However, the parameters used by these methods were primarily based on amino acid sequences. In this paper, we proposed a novel model for predicting five kinds of protein super secondary structures based on the chemical shifts (CSs). Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in five kinds of protein super secondary structures by using the analysis of variance (ANOVA). Secondly, we used chemical shifts of six nuclei as features, and combined with quadratic discriminant analysis (QDA) to predict five kinds of protein super secondary structures. Finally, we achieved the averaged sensitivity, specificity and the overall accuracy of 81.8%, 95.19%, 82.91%, respectively in seven-fold cross-validation. Moreover, we have performed the prediction by combining the five different chemical shifts as features, the maximum overall accuracy up to 89.87% by using the C,Cα,Cβ,N,Hα of Hα chemical shifts, which are clearly superior to that of the quadratic discriminant analysis (QDA) algorithm by using 20 amino acid compositions (AAC) as feature in the seven-fold cross-validation. These results demonstrated that chemical shifts (CSs) are indeed an outstanding parameter for the prediction of five kinds of super secondary structures. In addition, we compared the prediction of the quadratic discriminant analysis (QDA) with that of support vector machine (SVM) by using the same six CSs as features. The result suggested that the quadratic discriminant analysis method by using chemical shifts as features is a good predictor for protein super

  2. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.

    PubMed

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2016-09-01

    A tool for predicting the redox state and secondary structure of cysteine residues using multi-dimensional analyses of different combinations of nuclear magnetic resonance (NMR) chemical shifts has been developed. A data set of cysteine [Formula: see text], (13)C(α), (13)C(β), (1)H(α), (1)H(N), and (15)N(H) chemical shifts was created, classified according to redox state and secondary structure, using a library of 540 re-referenced BioMagResBank (BMRB) entries. Multi-dimensional analyses of three, four, five, and six chemical shifts were used to derive rules for predicting the structural states of cysteine residues. The results from 60 BMRB entries containing 122 cysteines showed that four-dimensional analysis of the C(α), C(β), H(α), and N(H) chemical shifts had the highest prediction accuracy of 100 and 95.9 % for the redox state and secondary structure, respectively. The prediction of secondary structure using 3D, 5D, and 6D analyses had the accuracy of ~90 %, suggesting that H(N) and [Formula: see text] chemical shifts may be noisy and made the discrimination worse. A web server (6DCSi) was established to enable users to submit NMR chemical shifts, either in BMRB or key-in formats, for prediction. 6DCSi displays predictions using sets of 3, 4, 5, and 6 chemical shifts, which shows their consistency and allows users to draw their own conclusions. This web-based tool can be used to rapidly obtain structural information regarding cysteine residues directly from experimental NMR data.

  3. 129Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129Xe NMR

    PubMed Central

    Norquay, Graham; Leung, General; Stewart, Neil J.; Wolber, Jan

    2016-01-01

    Purpose To evaluate the dependency of the 129Xe‐red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129Xe NMR. Methods Hyperpolarized 129Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized 129Xe. Results The 129Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the 129Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7–10 % in RBC oxygenation. The 129Xe‐RBC signal amplitude showed a modulation with the same frequency as the 129Xe‐RBC chemical shift. Conclusion The feasibility of using the 129Xe‐RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between 129Xe‐RBC signal and 129Xe‐RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399–1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27062652

  4. (129) Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized (129) Xe NMR.

    PubMed

    Norquay, Graham; Leung, General; Stewart, Neil J; Wolber, Jan; Wild, Jim M

    2017-04-01

    To evaluate the dependency of the (129) Xe-red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized (129) Xe NMR. Hyperpolarized (129) Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized (129) Xe. The (129) Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the (129) Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7-10 % in RBC oxygenation. The (129) Xe-RBC signal amplitude showed a modulation with the same frequency as the (129) Xe-RBC chemical shift. The feasibility of using the (129) Xe-RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between (129) Xe-RBC signal and (129) Xe-RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399-1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  6. Earth field NMR with chemical shift spectral resolution: theory and proof of concept.

    PubMed

    Katz, Itai; Shtirberg, Lazar; Shakour, Gubrail; Blank, Aharon

    2012-06-01

    A new method for obtaining an NMR signal in the Earth's magnetic field (EF) is presented. The method makes use of a simple pulse sequence with only DC fields which is much less demanding than previous approaches in terms of the pulses' rise and fall times. Furthermore, it offers the possibility of obtaining NMR data with enough spectral resolution to allow retrieving high resolution molecular chemical shift (CS) information - a capability that was not considered possible in EF NMR until now. Details of the pulse sequence, the experimental system, and our specially tailored EF NMR probe are provided. The experimental results demonstrate the capability to differentiate between three types of samples made of common fluorine compounds, based on their CS data. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Protein dynamics from chemical shift and dipolar rotational spin-echo sup 15 N NMR

    SciTech Connect

    Garbow, J.R.; Jacob, G.S.; Stejskal, E.O.; Schaefer, J. )

    1989-02-07

    The partial collapse of dipolar and chemical shift tensors for peptide NH and for the amide NH at cross-link sites in cell wall peptidoglycan, of intact lyophilized cells of Aerococcus viridans, indicates NH vector root-mean-square fluctuations of 23{degree}. This result is consistent with the local mobility calculated in typical picosecond regime computer simulations of protein dynamics in the solid state. The experimental root-mean-square angular fluctuations for both types of NH vectors increase to 37{degree} for viable wet cells at 10{degree}C. The similarity in mobilities for both general protein and cell wall peptidoglycan suggests that one additional motion in wet cells involves cooperative fluctuations of segments of cell walls, attached proteins, and associated cytoplasmic proteins.

  8. Deuterium isotope effect on 13C chemical shifts of tetrabutylammonium salts of Schiff bases amino acids.

    PubMed

    Rozwadowski, Z

    2006-09-01

    Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond. Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. Fully automatic assignment of small molecules' NMR spectra without relying on chemical shift predictions.

    PubMed

    Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien

    2015-08-01

    We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    NASA Astrophysics Data System (ADS)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  11. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  12. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

  13. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  14. On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification

    PubMed Central

    Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.

    2014-01-01

    Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362

  15. Measuring and Modeling Highly Accurate (15) N Chemical Shift Tensors in a Peptide.

    PubMed

    Soss, Sarah E; Flynn, Peter F; Iuliucci, Robbie J; Young, Robert P; Mueller, Leonard J; Hartman, Joshua; Beran, Gregory J O; Harper, James K

    2017-08-18

    NMR studies measuring chemical shift tensors are increasingly being employed to assign structure in difficult-to-crystallize solids. For small organic molecules, such studies usually focus on (13) C sites, but proteins and peptides are more commonly described using (15) N amide sites. An important and often neglected consideration when measuring shift tensors is the evaluation of their accuracy against benchmark standards, where available. Here we measure (15) N tensors in the dipeptide glycylglycine at natural abundance using the slow-spinning FIREMAT method with SPINAL-64 decoupling. The accuracy of these (15) N tensors is evaluated by comparing to benchmark single crystal NMR (15) N measurements and found to be statistically indistinguishable. These FIREMAT experimental results are further used to evaluate the accuracy of theoretical predictions of tensors from four different density functional theory (DFT) methods that include lattice effects. The best theoretical approach provides a root mean square (rms) difference of ±3.9 ppm and is obtained from a fragment-based method and the PBE0 density functional. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The FAD Cofactor of RebC Shifts to an IN Conformation upon Flavin Reduction†,‡

    PubMed Central

    2008-01-01

    RebC is a putative flavin hydroxylase functioning together with RebP to carry out a key step in the biosynthesis of rebeccamycin. To probe the mechanism of flavin-based chemistry in RebC, we solved the structure of RebC with reduced flavin. Upon flavin reduction, the RebC crystal undergoes a change in its unit cell dimension concurrent with a 5 Å movement of the isoalloxazine ring, positioning the flavin ring adjacent to the substrate-binding pocket. Additionally, a disordered helix becomes ordered upon flavin reduction, closing off one side of the substrate-binding pocket. This structure, along with previously reported structures, increases our understanding of the RebC enzyme mechanism, indicating that either the reduction of the flavin itself or binding of substrate is sufficient to drive major conformational changes in RebC to generate a closed active site. Our finding that flavin reduction seals the active site such that substrate cannot enter suggests that our reduced flavin RebC structure is off-pathway and that substrate binding is likely to precede flavin reduction during catalysis. Along with kinetic data presented here, these structures suggest that the first cycle of catalysis in RebC may resemble that of p-hydroxybenzoate hydroxylase, with substrate binding promoting flavin reduction. PMID:19035832

  17. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  18. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon.

    PubMed

    Lantto, Perttu; Standara, Stanislav; Riedel, Sebastian; Vaara, Juha; Straka, Michal

    2012-08-21

    Among rare gases, xenon features an unusually broad nuclear magnetic resonance (NMR) chemical shift range in its compounds and as a non-bonded Xe atom introduced into different environments. In this work we show that (129)Xe NMR chemical shifts in the recently prepared, matrix-isolated xenon compounds appear in new, so far unexplored (129)Xe chemical shift ranges. State-of-the-art theoretical predictions of NMR chemical shifts in compounds of general formula HXeY (Y = H, F, Cl, Br, I, -CN, -NC, -CCH, -CCCCH, -CCCN, -CCXeH, -OXeH, -OH, -SH) as well as in the recently prepared ClXeCN and ClXeNC species are reported. The bonding situation of Xe in the studied compounds is rather different from the previously characterized cases as Xe appears in the electronic state corresponding to a situation with a low formal oxidation state, between I and II in these compounds. Accordingly, the predicted (129)Xe chemical shifts occur in new NMR ranges for this nucleus: ca. 500-1000 ppm (wrt Xe gas) for HXeY species and ca. 1100-1600 ppm for ClXeCN and ClXeNC. These new ranges fall between those corresponding to the weakly-bonded Xe(0) atom in guest-host systems (δ < 300 ppm) and in the hitherto characterized Xe molecules (δ > 2000 ppm). The importance of relativistic effects is discussed. Relativistic effects only slightly modulate the (129)Xe chemical shift that is obtained already at the nonrelativistic CCSD(T) level. In contrast, spin-orbit-induced shielding effects on the (1)H chemical shifts of the H1 atom directly bonded to the Xe center largely overwhelm the nonrelativistic deshielding effects. This leads to an overall negative (1)H chemical shift in the range between -5 and -25 ppm (wrt CH(4)). Thus, the relativistic effects induced by the heavy Xe atom appear considerably more important for the chemical shift of the neighbouring, light hydrogen atom than that of the Xe nucleus itself. The predicted NMR parameters facilitate an unambiguous experimental identification of

  19. Al3+ induced planarization, conformational arrest and metallochromic shift in a pyrimidine dione dye: insight from integrated hybrid quantum-classical calculations.

    PubMed

    Selvaraj, S; Murugan, N Arul; Agren, H

    2012-02-21

    In order to explore the possibilities of simulating metallochromism by modern molecular modeling, we apply a sequential hybrid quantum-classical approach to a prototype metallochromic system-the Al(3+) ion and pyrimidinedione (PY) dye complex. The complex shows several structural features with relevance for the metallochromism: the PY dye exhibits conformers with dynamical transitions between twisted structures, which are inhibited by the addition of the metal ion leading to planarization and a conformational arrest: the Al(3+) ion behaves like a structure-modifier for both intra and intermolecular degrees of freedom and with respect to the intermolecular solvation shell structure. The sequential approach that we have employed uses DFT/MM molecular dynamics for structure modeling and TDDFT/PCM for property modeling. The computed metallochromic shift between PY and the Al(PY)(3+) complex in DMSO solvent is obtained in excellent agreement with experiment. The results infer optimism for future use of such modeling techniques to design metallochromic indicators.

  20. Characteristic chemical shift of quasicrystalline alloy Al53Si27Mn20 studied by EELS and SXES

    NASA Astrophysics Data System (ADS)

    Koshiya, S.; Terauchi, M.; Tsai, A. P.

    2011-06-01

    Chemical shifts of all constituent atoms for amorphous (Am), quasicrystalline (QC) and crystalline (Cryst) alloys of Al53Si27Mn20 were investigated for the first time by high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Al L-shell excitation EELS spectra of Am, QC and Cryst alloys, only QC alloy showed an apparent chemical shift to the larger binding energy side by 0.4 eV. In Al-Kα and Si-Kα emission SXES spectra of these alloys, only QC alloy showed a chemical shift to the larger binding energy side by 4 eV for Al-Kα and 6 eV for Si-Kα. These chemical shift values are comparable to those of corresponding metal oxides. This indicates a smaller amount of valence charge at Al and Si atomic sites in QC alloy. On the other hand, Mn-L SXES spectra did not show any chemical shift. Therefore, the decreased charge from Al and Si sites should be distributed between atomic sites, indicating the presence of covalent bonding nature for QC ordered alloy.

  1. Separation of isotropic chemical and second-order quadrupolar shifts by multiple-quantum double rotation NMR.

    PubMed

    Hung, Ivan; Wong, Alan; Howes, Andy P; Anupõld, Tiit; Samoson, Ago; Smith, Mark E; Holland, Diane; Brown, Steven P; Dupree, Ray

    2009-04-01

    Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the nu(1) and nu(2) dimensions. The application of this method is demonstrated for both crystalline (RbNO(3)) and amorphous samples (vitreous B(2)O(3)). The existence of the two rubidium isotopes ((85)Rb and (87)Rb) allows comparison of results for two nuclei with different spins (I=3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for (87)Rb in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, P(Q). For vitreous B(2)O(3), the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined-information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening.

  2. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    NASA Astrophysics Data System (ADS)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  3. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    PubMed

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  4. Conformational and reactivity study of dithiophenyl-fucosyl ketals with theoretical chemical methods.

    PubMed

    Bañuelos-Hernandez, Angel E; García-Gutiérrez, Hugo A; Fragoso-Serrano, Mabel; Mendoza-Espinoza, José Alberto

    2016-09-01

    Carbohydrates can be used as substrates to synthesize new complex molecules; these molecules contain several chiral centers that can be used in organic synthesis. D-Fucose diphenyl thioacetal reacts differentially with acetone, and this paper describes a study of the mechanism of this reaction using theoretical chemistry methods. The conformer distribution was studied using a Monte Carlo method for the reaction products, and the obtained conformers were validated by calculating the hydrogen spin-spin coupling constants with the DFT/B3LYP/DGDZVP method. Results agreed with the experimental coupling constants with an adequate root mean squared deviation. The free energies and enthalpies of formation of the resulting global minimum conformers were calculated with the same method and with the thermochemical compound method CBS-4 M. This technique, combined with the conformational analysis, allowed comparison of the formation enthalpies of the compounds involved in this reaction, and, with this information, we can postulate the correct reaction pathway. Graphical abstract Reaction pathway.

  5. Chemical amplification--cavity attenuated phase shift spectroscopy measurements of atmospheric peroxy radicals.

    PubMed

    Wood, Ezra C; Charest, John R

    2014-10-21

    We describe a new instrument for the quantification of atmospheric peroxy radicals (HO2, CH3O2, C2H5O2, etc.) using the chemical amplification method. Peroxy radicals are mixed with high concentrations of NO and CO, causing a chain reaction that produces a measurable increase in NO2 which is quantified by cavity attenuated phase shift (CAPS) spectroscopy, a highly sensitive spectroscopic detection technique. The instrument utilizes two identical reaction chambers, each with a dedicated CAPS NO2 sensor. Similar to all dual-channel chemical amplifiers, one reaction chamber operates in amplification or "ROx" mode and the other in background or "Ox" mode. The peroxy radical mixing ratio is determined by the difference between the two channels' NO2 readings divided by a laboratory-determined chain length. Each reaction chamber alternates between ROx and Ox mode on an anti-synchronized schedule, eliminating the effect of CAPS baseline offsets on the calculated peroxy radical concentrations. The chain length is determined by a new calibration method: peroxyacetyl and methyl peroxy radicals are produced by the photolysis of acetone and quantified as NO2 following reaction with excess NO. We demonstrate the performance of the instrument with results from ambient sampling in Amherst and several diagnostics of its precision. The detection limit while sampling ambient air at a relative humidity (RH) of 40% is 0.6 ppt (1 min average, signal-to-noise ratio =2), with an estimated accuracy of 25% (2σ).

  6. Environment effects on the CO vibrational shifts in erbium complexes: a quantum chemical study.

    PubMed

    Ottonelli, Massimo; Musso, Gianfranco; Dellepiane, Giovanna

    2008-11-20

    The stability of lanthanide complexes and the efficiency of the energy transfer process, which makes these molecules interesting materials for technological applications, are correlated to the chemical environment surrounding the metal ion. In particular the efficiency depends on the relative position of the antenna (the ligand moiety that acts as photon absorption center) and the lanthanide ion (the emitting center), while the stability of the complex is correlated to the strength of the coordination between the rare earth and the ligands. For these reasons, knowledge of the structural properties of the complex is an interesting task to achieve. Since a large number of ligand structures hold the carboxylate group (COO(-)), which is used as an anchor for binding the antennae to the lanthanide ion, in this work we will show how the vibrational shifts of this group, induced by the interactions between the carboxylate moiety and the metal center of the lanthanide complex, can be used for obtaining in a simple way information on the structure of the chemical environment surrounding the lanthanide ion.

  7. 19F-magnetic resonance spectroscopy and chemical shift imaging for schizophrenic patients using haloperidol decanoate.

    PubMed

    Sassa, Takeshi; Suhara, Tetsuya; Ikehira, Hiroo; Obata, Takayuki; Girard, Franck; Tanada, Shuji; Okubo, Yoshiro

    2002-12-01

    Haloperidol decanoate is widely used in the maintenance treatment of schizophrenia and other psychotic disorders, but knowledge concerning its pharmacokinetics at the injected region is very limited. Because the chemical structure of haloperidol contains fluorine, in vivo 19F-magnetic resonance (MR) spectroscopy (repetition time (TR) = 1 s) and chemical shift imaging (CSI; TR = 1 s, pixel size = 15 x 15 mm) were performed in schizophrenic patients who were treated with haloperidol decanoate (three men and one woman) to measure its diachronic change at the injection point and visualize its local distribution after intramuscular injection. 19F signals (T1 time = 365 ms) were obtained at the haloperidol decanoate-injected region. The decrease rate of the signal-to-noise ratio (SNR) by 19F-MR spectroscopy seemed large in comparison with that of the plasma haloperidol concentration. The distribution was clearly visualized by 19F-CSI for a few days after the injection, but after 1 week could no longer be seen. Although the slow-release characteristics of depot neuroleptics have been explained by the slow diffusion of esterified neuroleptics from the oil vehicle, this result may suggest that there are other mechanisms involved in maintaining the plasma haloperidol concentration. In vivo 19F-MR spectroscopy and CSI are potentially applicable for the pharmacokinetic analysis of haloperidol and other drugs containing fluorine in their structure.

  8. pH-induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy.

    PubMed

    Nolting, Dirk; Aziz, Emad F; Ottosson, Niklas; Faubel, Manfred; Hertel, Ingolf V; Winter, Bernd

    2007-11-14

    We demonstrate the applicability of X-ray photoelectron spectroscopy to obtain charge- and site-specific electronic structural information of biomolecules in aqueous solution. Changing the pH of an aqueous solution of lysine from basic to acidic results in nitrogen 1s and carbon 1s chemical shifts to higher binding energies. These shifts are associated with the sequential protonation of the two amino groups, which affects both charge state and hydrogen bonding to the surrounding water molecules. The N1s chemical shift is 2.2 eV, and for carbon atoms directly neighboring a nitrogen the shift for C1s is approximately 0.4 eV. The experimental binding energies agree reasonably with our calculated energies of lysine(aq) for different pH values.

  9. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    SciTech Connect

    Hartman, Joshua D.; Beran, Gregory J. O.; Monaco, Stephen; Schatschneider, Bohdan

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  10. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    NASA Astrophysics Data System (ADS)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  11. Chemical and reconstruction-induced surface core-level shifts: H on low-index W surfaces

    SciTech Connect

    Riffe, D.M.; Wertheim, G.K.; Citrin, P.H. )

    1990-07-09

    The H-induced shift of the surface-atom core-level binding energy in W(110) is shown to arise from two distinct effects, one chemical in nature and the other structural. The structural shift supports a recently proposed (1{ital p}{times}1) reconstruction that turns on at {similar to}0.5 monolayer coverage. These new findings are used to provide a self-consistent interpretation of previously reported shifts from H-covered W(111) and W(100) surfaces.

  12. Correlation of Electronic Effects in N-Alkylnicotinamides with NMR Chemical Shifts and Hydride Transfer Reactivity.

    PubMed

    Burke, James R.; Frey, Perry A.

    1996-01-26

    The (13)C and (15)N NMR chemical shifts for ring atoms of a series of N-alkylnicotinamides are shown to be correlated with their reduction potentials and reactivities toward NaBH(3)CN. The nicotinamide compounds include N-ethyl-N-benzyl-N-[p-(trifluoromethyl)benzyl]-, N-(p-cyanobenzyl)-, N-(carbomethoxymethyl)-, and N-(cyanomethyl)nicotinamides. The values of delta()13(C) for all the ring carbons increase with increasing electron-withdrawing power of the N-alkyl substituent. The value for C-4 increases the most, a range of 2.4 ppm in this series, whereas those for other atoms increase on the order of 1 ppm. The value of delta()15(N) for N-1 decreases with increasing electron-withdrawing power over a range of 20 ppm. The NMR data indicate that inductive electron withdrawal by N-alkyl substituents polarizes the pi-electron system to decrease electron density on ring carbons and increase electron density on the ring nitrogen. The values of log k (second order) for reduction of these compounds by NaBH(3)CN are proportional to the values of delta()13(C) for C-4 and inversely proportional to delta()15(N) for N-1. The reduction potentials are proportional to delta()13(C). The substituent effects are qualitatively similar to the substrate-induced electrostatic effects on the nicotinamide ring of NAD(+) at the active site of UDP-galactose 4-epimerase (Burke, J. R.; Frey, P. A. Biochemistry 1993, 32, 13220-13230). However, they differ quantitatively in that the upfield perturbation at N-1 is smaller in the enzyme and the signal for C-6 is also shifted upfield. The substrate-induced enzymatic perturbation of electron density at C-4 of NAD(+) quantitatively accounts for its increase in reactivity at the active site, but the perturbation at N-1 is less closely correlated with reactivity.

  13. Impact of trait anxiety and social conformity on responses to experimental chemical challenge.

    PubMed

    Orbæk, Palle; Persson, Roger; Osterberg, Kai

    2005-05-01

    The study examined the impact of trait anxiety and social conformity on ratings and test performance during controlled solvent challenge. Healthy women (n=20) and men (n=18) were exposed to increasing levels of toluene and n-butyl acetate in a challenge chamber, during which they repeatedly rated smell intensity and annoyance, and completed neurobehavioral tests. Trait anxiety was measured by the Psychasthenia scale of the Karolinska Scales of Personality (KSP), and social conformity by the KSP Social Desirability scale. Among women, high Psychasthenia was related to higher increase in ratings of mucous membrane irritation, fatigue, and annoyance from other aspects of the environment than smell during challenges, and was related to a higher increase in reaction time variability. Among men, Psychasthenia was unrelated to annoyance ratings, and was inversely related to the increase in smell intensity ratings. Social desirability was unrelated to any rating or performance dimension for either gender.

  14. Multiparametric fat–water separation method for fast chemical-shift imaging guidance of thermal therapies

    PubMed Central

    Lin, Jonathan S.; Hwang, Ken-Pin; Jackson, Edward F.; Hazle, John D.; Jason Stafford, R.; Taylor, Brian A.

    2013-01-01

    Purpose: A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Methods: Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Results: Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively

  15. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result.

  16. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Chemical-shift-selective filter for the in vivo detection of J-coupled metabolites at 3T.

    PubMed

    Schulte, Rolf F; Trabesinger, Andreas H; Boesiger, Peter

    2005-02-01

    A chemical-shift-selective filter (CSSF) was applied to the detection of J-coupled metabolites in the human brain. This filter is an acquisition-based technique that requires the chemical shifts (CS's) of different metabolites, but not their whole multiplet structures, to be resolved. The sequence is based on the 2D constant-time spin-echo experiment, which yields pure CS spectra in the indirect dimension. Localization is achieved through point-resolved spectroscopy (PRESS). The method enables unequivocal detection of glutamate and myo-inositol, both in vitro and in vivo in the human brain, at 3T.

  18. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  19. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    PubMed Central

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  20. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  1. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    PubMed

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  2. Theoretical investigations of the γ- gauche effect on the 13C chemical shifts produced by oxygen atoms at the γ position by quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji; Horii, Fumitaka; Kurosu, Hiromichi

    2009-02-01

    The γ- gauche effect on 13C chemical shifts that is produced by the O atoms located at the γ positions has been evaluated by quantum chemistry calculations based on the GAIO-CHF procedure. The γ- gauche effects produced by the O and Cl atoms in n-propanol and n-propyl chloride are found to be, respectively, +1.4 and -0.7 ppm, whereas that due to the C atom in n-butane is -3.0 ppm in good agreement of the values previously calculated. The apparent cause of such a difference in the γ- gauche effect is mainly relatively higher shielding of the CH 3 carbon in the trans conformation for the n-propanol and n-propyl chloride. Extending the n-propanol chain at both ends causes no significant change in the γ- gauche effect produced by the O atom. In 2-butanol and 2-methyl-2-butanol as examples of secondarily and tertiarily substituted compounds, the γ- gauche effects produced by the γ-OH groups are estimated to be -7 to -9 ppm. In addition, the γ- gauche effect due to the C atom is found to increase in n-butane, secondary, and tertiary butanols in this order. The γ- gauche effect produced by the O atom in hydroxyethylcyclohexane is as negligibly small as -0.7 ppm, whereas that produced by the C atom in ethylcyclohexane is about -5 ppm. These results suggest that the γ- gauche effect, including downfield shift, produced by the O atom in a compound greatly depends on its chemical structure, whereas upfield shifts of -3 to -7 ppm are induced in all examined compounds as the γ- gauche effect due to the C atom.

  3. Atmospheric Peroxy Radical Measurements by Chemical Amplification - Cavity Attenuated Phase Shift Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Charest, J. R.

    2013-12-01

    We present a new chemical amplifier for the detection of peroxy radicals using Cavity Attenuated Phase Shift spectroscopy (CAPS) detection of NO2. The amplification scheme is similar to other chemical amplifiers and involves addition of CO (8%) and NO (3 ppm) to air sampled in a PFA tube. The chain length is quantified by amplification of a known concentration of methyl peroxy radicals (CH3O2) and peroxyacetyl radicals (CH3COO2) sampled by the instrument's reactor. The CH3O2 and CH3COO2 radicals are produced by photolysis of acetone at 254 nm and quantified by conversion to NO2 by reaction with excess NO. The chain length (CL) in dry air is over 200 and constant at RO2 concentrations under 500 ppt. The CL decreases by 55% at a relative humidity of 50%. A 0.95 cm (3/8') ID PFA tube, a 0.32 cm (1/8' ID) PFA tube, and a 0.48 cm ID quartz reactor give near-identical chain lengths and RH dependence, demonstrating the small importance of wall reactions (for clean tubing) as radical termination steps. The instrument comprises two independent inlets and CAPS detectors, allowing for simultaneous measurements in ROx mode (= NO2 + O3 + RO2 + HO2) and Ox mode (= NO2 + O3) thereby greatly reducing the effect of variations in background [Ox]. The 1σ precision of the instrument at constant background [Ox] and 0% relative humidity is 0.2 ppt ROx with 100 second averaging and increases to 0.3 ppt at an RH of 50%. The absolute uncertainty of the measurements is estimated as 20% and is affected by the accuracy of the NO2 calibration, the precision of the CAPS when calibrating at low RO2 concentrations, and the uncertainty in the photolysis quantum yield for the CH3CO + CH3 channel of acetone photolysis.

  4. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01.

    PubMed

    Cheong, Kit-Leong; Wang, Lan-Ying; Wu, Ding-Tao; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2016-09-01

    Cordyceps sinensis is a well-known tonic food with broad medicinal properties. The aim of the present study was to investigate the optimization of microwave-assisted extraction (MAE) and characterize chemical structures and chain conformation of polysaccharides from a novel C. sinensis fungus UM01. Ion-exchange and gel filtration chromatography were used to purify the polysaccharides. The chemical structure of purified polysaccharide was determined through gas chromatography-mass spectrometry. Moreover, high performance size exclusion chromatography combined with refractive index detector and multiangle laser light scattering were conducted to analyze the molecular weight (Mw ) and chain conformation of purified polysaccharide. Based on the orthogonal design L9 , optimal MAE conditions could be obtained through 1300 W of microwave power, with a 5-min irradiation time at a solid to water ratio of 1:60, generating the highest extraction yield of 6.20%. Subsequently, the polysaccharide UM01-S1 was purified. The UM01-S1 is a glucan-type polysaccharide with a (1→4)-β-d-glucosyl backbone and branching points located at O-3 of Glcp with a terminal-d-Glcp. The Mw , radius of gyration (Rg ) and hydrodynamic radius (Rh ) of UM01-S1 were determined as 5.442 × 10(6)  Da, 21.8 and 20.2 nm, respectively. Using the polymer solution theory, the exponent (ν) value of the power law function was calculated as 0.38, and the shape factor (ρ = Rg /Rh ) was 1.079, indicating that UM01-S1 has a sphere-like conformation with a branched structure in an aqueous solution. These results provide fundamental information for the future application of polysaccharides from cultured C. sinensis in health and functional food area. © 2016 Institute of Food Technologists®

  5. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.

    PubMed

    Ying, Jinfa; Grishaev, Alexander; Bax, Ad

    2006-03-01

    Knowledge of (13)C chemical shift anisotropy (CSA) in nucleotide bases is important for the interpretation of solution-state NMR relaxation data in terms of local dynamic properties of DNA and RNA. Accurate knowledge of the CSA becomes particularly important at high magnetic fields, prerequisite for adequate spectral resolution in larger oligonucleotides. Measurement of (13)C relaxation rates of protonated carbons in the bases of the so-called Dickerson dodecamer, d(CGCGAATTCGCG)(2), at 500 and 800 MHz (1)H frequency, together with the previously characterized structure and diffusion tensor yields CSA values for C5 in C, C6 in C and T, C8 in A and G, and C2 in A that are closest to values previously reported on the basis of solid-state FIREMAT NMR measurements, and mostly larger than values obtained by in vacuo DFT calculations. Owing to the noncollinearity of dipolar and CSA interactions, interpretation of the NMR relaxation rates is particularly sensitive to anisotropy of rotational diffusion, and use of isotropic diffusion models can result in considerable errors.

  6. Stereotactic biopsy in gliomas guided by 3-tesla 1H-chemical-shift imaging of choline.

    PubMed

    Hermann, Elvis J; Hattingen, Elke; Krauss, Joachim K; Marquardt, Gerhard; Pilatus, Ulrich; Franz, Kea; Setzer, Matthias; Gasser, Thomas; Tews, Dominique S; Zanella, Friedhelm E; Seifert, Volker; Lanfermann, Heinrich

    2008-01-01

    To investigate chemical-shift imaging (CSI) to guide stereotactic biopsy of the choline 'hot spot' in cerebral lesions suggestive of low-grade glioma. Nine patients with hyperintense lesions on T(2)-weighted images of standard magnetic resonance imaging without contrast enhancement underwent advanced magnetic resonance studies. These studies included 3-dimensional T(1)-weighted sequences with contrast enhancement and 2-dimensional (1)H-CSI spectroscopy at 3 T. Signal intensity maps with relative signal intensities for choline were generated. The region with the highest choline signal intensity (the hot spot) was chosen as the target for stereotactic biopsy. The histopathological results were correlated with the increase in choline. All spectroscopic data were of sufficient quality. In 5 instances the neuropathological diagnosis was grade II glioma, according to the WHO classification, and in 4 instances it was grade III glioma. According to the CSI criteria, all grade III gliomas and 4 of the 5 grade II gliomas were classified correctly. One grade II glioma was overestimated by CSI as a high-grade glioma. (1)H-CSI-guided stereotactic biopsy may offer advantages as compared to conventional stereotactic biopsy. The biopsy of the choline hot spot in suggestive low-grade gliomas may help to identify focal points of higher tumor malignancy independent of contrast enhancement. Copyright 2008 S. Karger AG, Basel.

  7. Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum

    PubMed Central

    Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.

    2015-01-01

    Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713

  8. Chemical shift anisotropy and offset effects in cross polarization solid-state NMR spectroscopy.

    PubMed

    Shekar, Srinivasan C; Lee, Dong-Kuk; Ramamoorthy, A

    2002-08-01

    The effect of an offset term in the cross-polarization (CP) Hamiltonian of a heteronuclear spin-12 pair due to off-resonant radio frequency (rf) irradiation and/or chemical shift anisotropy on one of the rf channels is investigated. Analytical solutions, simulations, and experimental results are presented. Formulating the CP spin dynamics in terms of an explicit unitary evolution operator enables the CP period to be inserted as a module in a given pulse scheme regardless of the initial density matrix present. The outcome of post-CP manipulation via pulses can be calculated on the resulting density matrix as the phases and amplitudes of all coherence modes are available. Using these tools it is shown that the offset can be used to reduce the rf power on that channel and the performance is further improved by a post-CP pulse whose flip angle matches and compensates the tilt of the effective field on the offset channel. Experimental investigations on single crystalline and polycrystalline samples of peptides confirm the oscillatory nature of CP dynamics and prove the slowing down of the dynamics under offset and/or mismatch conditions.

  9. C-13 NMR chemical shifts and visible absorption spectra of unsymmetrical fluoran dye by MO calculations

    NASA Astrophysics Data System (ADS)

    Hoshiba, T.; Ida, T.; Mizuno, M.; Otsuka, T.; Takaoka, K.; Endo, K.

    2002-01-01

    An unsymmetrical fluoran dye, 3-diethylamino-6-methyl-7-chlorofluoran (DEAMCF) is one of the leuco dyes which shows the coloring-to-decoloring reversible reaction with acidity. We calculated the 13C chemical shieldings of the DEAMCF with the frame model compounds using ab initio gauge invariant atomic orbital methods, and compared it with the experimental shifts. The calculated values of the frame compounds are in good agreement with the experimental ones in the error range of -4.9-16.7 ppm. The calculated ones for the decolored-form of the DEAMCF reflected the observed ones, although the errors range from -13.4 to 23.1 ppm. Furthermore, we analyzed the UV-Visible absorption spectra of the decolored and colored forms of DEAMCF by a semiempirical ZINDO MO method. For the colored form, the observed absorption peaks at 550 and 510 nm correspond to the excitation from π-bonding HOMO (π-electrons which conjugated in xanthene ring) and π-bonding nearest HOMO (π-electrons concentrated in benzene-ring with methyl and Cl groups of xanthene) to π ∗-antibonding LUMO (π ∗-electrons of xanthene), respectively.

  10. Chemical Shift Encoded Water–Fat Separation Using Parallel Imaging and Compressed Sensing

    PubMed Central

    Sharma, Samir D.; Hu, Houchun H.; Nayak, Krishna S.

    2013-01-01

    Chemical shift encoded techniques have received considerable attention recently because they can reliably separate water and fat in the presence of off-resonance. The insensitivity to off-resonance requires that data be acquired at multiple echo times, which increases the scan time as compared to a single echo acquisition. The increased scan time often requires that a compromise be made between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject motion. This work describes a combined parallel imaging and compressed sensing approach for accelerated water–fat separation. In addition, the use of multiscale cubic B-splines for B0 field map estimation is introduced. The water and fat images and the B0 field map are estimated via an alternating minimization. Coil sensitivity information is derived from a calculated k-space convolution kernel and l1-regularization is imposed on the coil-combined water and fat image estimates. Uniform water–fat separation is demonstrated from retrospectively undersampled data in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled acquisition of the knee at 8.6x acceleration. PMID:22505285

  11. Solid-state NMR chemical shift assignments for AL-09 VL immunoglobulin light chain fibrils.

    PubMed

    Piehl, Dennis W; Blancas-Mejía, Luis M; Ramirez-Alvarado, Marina; Rienstra, Chad M

    2017-04-01

    Light chain (AL) amyloidosis is a systemic disease characterized by the formation of immunoglobulin light-chain fibrils in critical organs of the body. The light-chain protein AL-09 presents one severe case of cardiac AL amyloidosis, which contains seven mutations in the variable domain (VL) relative to its germline counterpart, κI O18/O8 VL. Three of these mutations are non-conservative-Y87H, N34I, and K42Q-and previous work has shown that they are responsible for significantly reducing the protein's thermodynamic stability, allowing fibril formation to occur with fast kinetics and across a wide-range of pH conditions. Currently, however, there is extremely limited structural information available which explicitly describes the residues that are involved in supporting the misfolded fibril structure. Here, we assign the site-specific (15)N and (13)C chemical shifts of the rigid residues of AL-09 VL fibrils by solid-state NMR, reporting on the regions of the protein involved in the fibril as well as the extent of secondary structure.

  12. Nuclear magnetic resonance spectra and (207)Pb chemical-shift tensors of lead carboxylates relevant to soap formation in oil paintings.

    PubMed

    Catalano, Jaclyn; Yao, Yao; Murphy, Anna; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil

    2014-01-01

    Soap formation in traditional oil paintings occurs when heavy-metal-containing pigments, such as lead white, 2PbCO3·Pb(OH)2, and lead tin yellow type I, Pb2SnO4, react with fatty acids in the binding medium. These soaps may form aggregates that can be 100-200 μm in diameter, which swell and protrude through the paint surface, resulting in the degradation of the paint film and damage to the integrity of the artwork. The factors that trigger soap formation and the mechanism(s) of the process are not yet well understood. To elucidate these issues, chemical and structural information is necessary, which can be obtained using solid-state (207)Pb and (13)C nuclear magnetic resonance (NMR). In this article, we report (207)Pb and (13)C solid-state NMR spectra and (207)Pb chemical-shift tensors of lead carboxylates implicated in soap formation: lead stearate, lead palmitate, and lead azelate, in addition to lead oleate and lead heptanoate for comparison. The (13)C cross polarization with magic-angle spinning (MAS) spectra of these lead carboxylates show resonance doubling for the carbons closest to the lead, indicating two different conformations of the fatty acid chains in the asymmetric unit. The (207)Pb NMR spectra, from which tensors were determined, were obtained with direct excitation and spin-temperature alternation, with and without MAS, and with the wide band uniform rate smooth truncation Carr-Purcell-Meiboom-Gill pulse sequence. The results of these experiments show that the local coordination environment of lead azelate is different from lead palmitate and lead stearate and could thus be distinguished from these in a paint film displaying soap formation. In addition, comparing the (207)Pb NMR chemical-shift tensors of the lead carboxylates studied shows that crystal packing of the acyl chains may be a factor in determining the coordination environment around the lead.

  13. Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging.

    PubMed

    Brodsky, Ethan K; Holmes, James H; Yu, Huanzhou; Reeder, Scott B

    2008-05-01

    Chemical-shift artifacts associated with non-Cartesian imaging are more complex to model and less clinically acceptable than the bulk fat shift that occurs with conventional spin-warp Cartesian imaging. A novel k-space based iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) approach is introduced that decomposes multiple species while simultaneously correcting distortion of off-resonant species. The new signal model accounts for the additional phase accumulated by off-resonant spins at each point in the k-space acquisition trajectory. This phase can then be corrected by adjusting the decomposition matrix for each k-space point during the final IDEAL processing step with little increase in reconstruction time. The technique is demonstrated with water-fat decomposition using projection reconstruction (PR)/radial, spiral, and Cartesian spin-warp imaging of phantoms and human subjects, in each case achieving substantial correction of chemical-shift artifacts. Simulations of the point-spread-function (PSF) for off-resonant spins are examined to show the nature of the chemical-shift distortion for each acquisition. Also introduced is an approach to improve the signal model for species which have multiple resonant peaks. Many chemical species, including fat, have multiple resonant peaks, although such species are often approximated as a single peak. The improved multipeak decomposition is demonstrated with water-fat imaging, showing a substantial improvement in water-fat separation.

  14. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    PubMed

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.

  15. Stereospecific assignment of 1H resonances through chemical shift calculation and their use in structure determination by NMR

    NASA Astrophysics Data System (ADS)

    Harvey, Timothy S.; van Gunsteren, Wilfred F.; Ikura, Mitsuhiko

    1995-04-01

    Understanding of the factors which influence proton chemical shifts in nuclear magnetic resonance (NMR) spectra of proteins has advanced steadily as the number of proteins, for which assignments in conjunction with high resolution structures have been obtained, has increased. Progress has been made in both the calculation of chemical shifts from given coordinates, both empirically for 1H (Williamson & Asakura J. Magn. Reson. (1991) 94, 557) and using ab initio approaches for calculation of 13C (De Dios et al. Science (1993) 260, 1491). Concomitantly Wishart et al. (J. Mol. Biol. (1992) 222, 311), using statistical methods have clarified the relationship between Hα chemical shift and regular secondary structure in proteins to a high degree of accuracy. We recently demonstrated the significant amount of structural information present in the Hα chemical shift through the use of chemical shift restrained molecular dynamics simulations (Harvey & van Gunsteren Techniques in Protein Chemistry IV (1993) 615, Academic Press). Here we apply a similar methodology to the stereospecific assignment of methylene and methyl proton resonances in proteins. Stereospecific assignment of such 1H resonances dramatically increases the degree of precision of ensembles of structures derived from NMR data. However, this is often a cumbersome process, requiring detailed analysis of large amounts of data. Furthermore, experimental considerations such as poor signal-to-noise ratios, spectral overlap and spin diffusion combine to make this process somewhat unreliable. We present calculations of the chemical shifts for the known structures of bovine pancreatic trypsin inhibitor (Mw 6.5 kDa) and the α-amylase inhibitor tendamistat (Mw 8 kDa), for which stereospecific assignments and high resolution structures from both NMR and crystallographic studies are available. The methods described are also applied to the ensemble of structures obtained for protein S (Mw 19 kDa) for both structure

  16. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study.

    PubMed

    Garay, Pablo G; Martin, Osvaldo A; Scheraga, Harold A; Vila, Jorge A

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results.

  17. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  18. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-03

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  19. Conformation and conformational exchange of Olopatadine hydrochloride

    NASA Astrophysics Data System (ADS)

    Lei, Lian-di; Zhu, Chuan-jun; Yang, Chun-hui; Cui, Yu-xin

    2008-12-01

    Besides the assignments of the 13C and 1H shifts by 1D and 2D NMR, the experiment 1H spectra of Olopatadine hydrochloride were recorded at temperature range 228-338 K. The variable-temperature spectra revealed a dynamic NMR effect which is attributed to conformational interconversion of the drug. At low temperature, the solution was shown to contain two conformers and the ration of them was 1:1. A conformational process with a free energy of activation of 56.7 kJ mol -1, coalescence temperature 298 K, was interpreted as geminal 1H exchange. Using molecule simulation, conformational candidates for two conformers are proposed.

  20. Ab initio calculations of the intermolecular chemical shift in nuclear magnetic resonance in the gas phase and for adsorbed species

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; de Dios, Angel C.

    1992-07-01

    The chemical shifts observed in nuclear magnetic resonance experiments are the differences in shielding of the nuclear spin in different electronic environments. These are known to depend on intermolecular interactions as evidenced by density-dependent chemical shifts in the gas phase, gas-to-liquid shifts, and adsorption shifts on surfaces. We present the results of the first ab initio intermolecular chemical shielding function calculated for a pair of interacting atoms for a wide range of internuclear separations. We used the localized orbital local origin (LORG) approach of Hansen and Bouman and also investigated the second-order electron correlation contributions using second-order LORG (SOLO). The 39Ar shielding in Ar2 passes through zero at some very short distance, going through a minimum, and asymptotically approaches zero at larger separations. The 21Ne shielding function in Ne2 has a similar shape. The Drude model suggests a method of scaling that portion of the shielding function that is weighted most heavily by exp[-V(R)/kT]. The scaling factors, which have been verified in the comparison of 21Ne in Ne2 against 39Ar in Ar2 ab initio results, allows us to project out from the same 39Ar in Ar2 ab initio values the appropriate 129Xe shielding functions in the Xe-Ar, Xe-Kr, and Xe-Xe interacting pairs. These functions lead to temperature-dependent second virial coefficients of chemical shielding which agree with experiments in the gas phase. Ab initio calculations of 39Ar shielding in clusters of argon are used to model the observed 129Xe chemical shifts of Xe, Xe2,...,Xe8 trapped in the cages of zeolite NaA.

  1. Ab initio studies of the nuclear magnetic resonance chemical shifts of a rare gas atom in a zeolite

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Lim, Hyung-Mi

    1995-09-01

    The intermolecular chemical shift of a rare gas atom inside a zeolite cavity is calculated by ab initio analytical derivative theory using gauge-including atomic orbitals (GIAO) at the Ar atom and the atoms of selected neutral clusters each of which is a 4-, 6-, or 8-ring fragment of the zeolite cage. The Si, Al, O atoms and the charge-balancing counterions (Na+, K+, Ca2+) of the clusters (from 24 to 52 atoms) are at coordinates taken from the refined single crystal x-ray structure of the NaA, KA, and CaA zeolites. Terminating OH groups place the H atom at an appropriate O-H distance along the bond to the next Si or Al atom in the crystal. The chemical shift of the Ar atom located at various positions relative to the cluster is calculated using Boys-Bernardi counterpoise correction at each position. The dependence of the rare gas atom chemical shift on the Al/Si ratio of the clusters is investigated. The resulting shielding values are fitted to a pairwise additive form to elicit effective individual Ar-O, Ar-Na, Ar-K, Ar-Ca intermolecular shielding functions of the form σ(39Ar, Ar...Ozeol)= a6r-6+a8r-8+a10r-10+a12r -12, where r is the distance between the Ar and the O atom. A similar form is used for the counterions. The dependence of the Ar shielding on the Al/Si ratio is established (the greater the Al content, the higher the Ar chemical shift), which is in agreement with the few experimental cases where the dependence of the 129Xe chemical shift on the Al/Si ratio of the zeolite has been observed.

  2. Radiological assessment of mesenteric and retroperitoneal cysts in adults: is there a role for chemical shift MRI?

    PubMed

    Ayyappan, Anoop P; Jhaveri, Kartik S; Haider, Masoom A

    2011-01-01

    The purpose of this study was to assess the potential role for chemical shift magnetic resonance imaging (MRI) in identifying lymphangiomas from other cystic mesenteric and retroperitoneal masses. A retrospective search of radiology database identified 24 consecutive patients with mesenteric and retroperitoneal cysts (nine men, 15 women; mean age, 41 years; age range, 19-75 years) who had undergone MR which included in-phase and opposed-phase chemical shift imaging. Signal intensity (SI) decrease between in-phase and opposed-phase MR images of the cyst was evaluated qualitatively by two radiologists. Ultrasound (US), computed tomography (CT), and MRI findings of the morphological appearances of all the cystic lesions that demonstrated significant signal drop on chemical shift MR were also recorded. Of mesenteric and retroperitoneal cysts, 33% (8/24) revealed qualitative decrease in intensity on opposed-phase MR images relative to that seen on in-phase images. On ultrasound, these cysts demonstrated anechoic simple fluid. Their mean CT attenuation was 13 HU (range: 5-20 HU). Signal loss on fat-suppressed T1-weighted sequences was displayed only by a single cyst. None of the lesions with qualitative SI decrease on opposed-phase MR showed suggestion of lipid on US and CT. The presence of intra cystic lipid detected by chemical shift MR may not be overt on cross-sectional imaging such as US and CT. Chemical shift MRI provides additional sensitivity and specificity as an imaging test for demonstration of lipid within mesenteric and retroperitoneal cysts enabling a higher diagnostic yield for lymphangioma leading to more appropriate patient management. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition.

    PubMed

    Asatekin, Ayse; Gleason, Karen K

    2011-02-09

    High-aspect ratio hydrophobic, cylindrical nanopores having diameters as low as 5 nm are rapidly fabricated using conformal vapor deposition of fluorinated polymeric layers into porous track-etched polycarbonate membranes. The resultant selectivity of these membranes for pairs of small molecules of similar size, but of different hydrophobicity, arises from solute-pore wall interactions emphasized by confinement. Increasing selectivity was observed as pore diameter decreased and as the surface of the pore became more hydrophobic. Cylindrical pores provided higher selectivity than bottleneck-shaped pores having the same minimum diameter. A maximum selectivity of 234 was achieved between mesitylene and phloroglucinol by the best performing membrane. Membranes with small fluorinated pores exhibited an effective cutoff based on the polar surface area of the molecules, with limited correlation with solute size. This technology could lead to a new generation of membrane separations based on specific interactions.

  4. A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Nanba, Tokuro; Nishimura, Mitsunori; Miura, Yoshinari

    2004-12-01

    In 29Si-NMR, it has so far been accepted that the chemical shifts of Q n species (SiO 4 units containing n bridging oxygens) were equivalent between alkali borosilicate and boron-free alkali silicate glasses. In the sodium borosilicate glasses with low sodium content, however, a contradiction was confirmed in the estimation of alkali distribution; 11B NMR suggested that Na ions were entirely distributed to borate groups to form BO 4 units, whereas a -90 ppm component was also observed in 29Si-NMR spectra, which has been attributed to Q 3 species associated with a nonbridging oxygen (NBO). Then, cluster molecular orbital calculations were performed to interpret the -90 ppm component in the borosilicate glasses. It was found that a silicon atom which had two tetrahedral borons (B4) as its second nearest neighbors was similar in atomic charge and Si2p energy to the Q 3 species in boron-free alkali silicates. Unequal distribution of electrons in Si-O-B4 bridging bonds was also found, where much electrons were localized on the Si-O bonds. It was finally concluded that the Si-O-B4 bridges with narrow bond angle were responsible for the -90 ppm 29Si component in the borosilicate glasses. There still remained another interpretation; the Q 3 species were actually present in the glasses, and NBOs in the Q 3 species were derived from the tricluster groups, such as (O 3Si)O(BO 3) 2. In the glasses with low sodium content, however, it was concluded that the tricluster groups were not so abundant to contribute to the -90 ppm component.

  5. Computed and experimental chemical shift parameters for rigid and flexible YAF peptides in the solid state.

    PubMed

    Pawlak, Tomasz; Trzeciak-Karlikowska, Katarzyna; Czernek, Jiri; Ciesielski, Wlodzimierz; Potrzebowski, Marek J

    2012-02-16

    DFT methods were employed to compute the (13)C NMR chemical shift tensor (CST) parameters for crystals of YAF peptides (Tyr-Ala-Phe) with different stereochemistry for the Ala residue. Tyr-D-Ala-Phe 1 crystallizes in the C2 space group while Tyr-L-Ala-Phe crystallizes in either the P2(1)2(1)2 space group (2a) or the P6(5) space group (2b). PISEMA MAS measurements for samples with a natural abundance of (1)H and (13)C nuclei and (2)H QUADECHO experiments for samples with deuterium labeled aromatic rings were used to analyze the geometry and time scale of the molecular motion. At ambient temperature, the tyrosine ring of sample 1 is rigid and the phenylalanine ring undergoes a π-jump, both rings in sample 2a are static, and both rings in sample 2b undergo a fast regime exchange. The theoretical values of the CST were obtained for isolated molecules (IM) and clusters employing the ONIOM approach. The experimental (13)C δ(ii) parameters for all of the samples were measured via a 2D PASS sequence. Significant scatter of the computed versus the experimental (13)C CST parameters was observed for 1 and 2b, while the observed correlation was very good for 2a. In this report, we show that the quality of the (13)C σ(ii)/(13)C δ(ii) correlations, when properly interpreted, can be a source of important information about local molecular motions.

  6. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    USGS Publications Warehouse

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  7. Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow.

    PubMed

    Winfeld, Matthew; Ahlawat, Shivani; Safdar, Nabile

    2016-09-01

    MRI signal intensity of pediatric bone marrow can be difficult to interpret using conventional methods. Chemical shift imaging (CSI), which can quantitatively assess relative fat content, may improve the ability to accurately diagnose bone marrow abnormalities in children. Consecutive pelvis and extremity MRI at a children's hospital over three months were retrospectively reviewed for inclusion of CSI. Medical records were reviewed for final pathological and/or clinical diagnosis. Cases were classified as normal or abnormal, and if abnormal, subclassified as marrow-replacing or non-marrow-replacing entities. Regions of interest (ROI) were then drawn on corresponding in and out-of-phase sequences over the marrow abnormality or over a metaphysis and epiphysis in normal studies. Relative signal intensity ratio for each case was then calculated to determine the degree of fat content in the ROI. In all, 241 MRI were reviewed and 105 met inclusion criteria. Of these, 61 had normal marrow, 37 had non-marrow-replacing entities (osteomyelitis without abscess n = 17, trauma n = 9, bone infarction n = 8, inflammatory arthropathy n = 3), and 7 had marrow-replacing entities (malignant neoplasm n = 4, bone cyst n = 1, fibrous dysplasia n = 1, and Langerhans cell histiocytosis n = 1). RSIR averages were: normal metaphyseal marrow 0.442 (0.352-0.533), normal epiphyseal marrow 0.632 (0.566-698), non-marrow-replacing diagnoses 0.715 (0.630-0.799), and marrow-replacing diagnoses 1.06 (0.867-1.26). RSIR for marrow-replacing entities proved significantly different from all other groups (p < 0.05). ROC analysis demonstrated an AUC of 0.89 for RSIR in distinguishing marrow-replacing entities. CSI techniques can help to differentiate pathologic processes that replace marrow in children from those that do not.

  8. Intermolecular shielding contributions studied by modeling the 13C chemical-shift tensors of organic single crystals with plane waves

    PubMed Central

    Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.

    2009-01-01

    In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448

  9. Distribution and Xe129 NMR chemical shifts of Xen clusters in the alpha cages of zeolite AgA

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Lim, Hyung-Mi

    1997-09-01

    The distributions and 129Xe NMR chemical shifts of xenon in zeolite AgA have been measured in a series of experiments by Moudrakovski, Ratcliffe, and Ripmeester [Proc. Internat. Zeolite Conference, Quebec, 1995; unpublished]. We carry out grand canonical Monte Carlo (GCMC) simulations of xenon in a rigid zeolite AgA lattice to provide the average Xen cluster shifts, and the distributions Pn for comparison with their experiments. The GCMC results for the distributions, the fraction Pn of the alpha cages containing n Xe atoms, are compared with the experimental distributions in 12 samples and the agreement is excellent. The distributions in NaA and in AgA are very similar, as can be established from the comparison of the dispersion of the distributions, {-2}, and both are different from the idealized hypergeometric distribution, in which the component atoms occupy eight lattice sites per cage under mutual exclusion. The calculated chemical shift increments [σ(Xen)-σ(Xen-1)]AgA are in good agreement with experiment. The differences between these and the increments in zeolite NaA, {[σ(Xen)-σ(Xen-1)]AgA-[σ(Xen)-σ(Xen-1)]NaA}, are fairly small and are in good agreement with experiment. The absolute 129Xe chemical shifts of Xen in the alpha cages of AgA are nearly uniformly shifted by about 40 ppm compared to the Xen clusters in NaA. This is attributed to the Fermi contact shifts arising from the Ag0 metal atoms that form the linear Ag32+ complexes that are found within the beta cages of AgA.

  10. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.

    PubMed

    Fujisawa, Seiichiro; Ishihara, Mariko; Kadoma, Yoshinori

    2005-01-01

    In the light of recent developments, changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC (L-alpha dimyristoylphosphatidylcholine) or DPPC (L-alpha-dipalmitoylphosphatidylcholine) liposomes as a model for mimic native lipid bilayers were studied at 30, 37, and 52 degrees C. The chemical shifts of 3Ha, 3C, and 4C resonances in methacrylates (see Fig. 2) were greatly shifted higher field, suggesting the methacrylate molecule-lipid bilayer interaction. Comparison of the findings with methyl methacrylate (MMA), ethylene dimethacrylate (EDMA), and triethyleneglycol dimethacrylate (TEGDMA) revealed that the interaction of dimethacrylates (EDMA, TEGDMA) was greater than monomethacrylate, MMA. Their interaction with DMPC liposomes was also judged by a differential scanning calorimetry (DSC), indicating that the interaction was characterized by decreasing the enthalpy, entropy, and transition co-operativity. The evidence of the upfield NMR-shifts for methacrylate molecules was also judged by the descriptors such as the reactivity (HOMO-LUMO energy) and the electrostatic function (partial charges) between methacrylate molecules and DPPC, calculated by a PM 3 semiempirical MO method. The upfield NMR shifts were considerably well interpreted from the descriptors. NMR screening technique in methacrylates to phospholipid targets would be highly valuable in biomaterial developments. Figure 2 Changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC or DPPC liposomes. DMPC liposomes/MMA (1:1, molar ratio) and DMPC/TEGDMA (1:1) liposomes were measured at 30 degrees C. In DPPC liposome system, the rippled gel phase was measured at 30 degrees C, whereas the liquid crystalline phase for MMA and for both EDMA and TEGDMA were measured at 52 degrees C and 37 degrees C, respectively.

  11. Experimental and theoretical study of substituent effect on 13C NMR chemical shifts of 5-arylidene-2,4-thiazolidinediones

    NASA Astrophysics Data System (ADS)

    Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.

    2013-10-01

    The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.

  12. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  13. Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition.

    PubMed

    Im, Sung Gap; Kusters, David; Choi, Wonjae; Baxamusa, Salmaan H; van de Sanden, M C M; Gleason, Karen K

    2008-09-23

    Novel nanoporous poly(3,4-ethylenedioxythiophene) (PEDOT) films with basalt-like surface morphology are successfully obtained via a one-step, vapor phase process of oxidative chemical vapor deposition (oCVD) by introducing a new oxidant, CuCl(2). The substrate temperature of the oCVD process is a crucial process parameter for controlling electrical conductivity and conjugation length. Moreover, the surface morphology is also systemically tunable through variations in substrate temperature, a unique advantage of the oCVD process. By increasing the substrate temperature, the surface morphology becomes more porous, with the textured structure on the nanometer scale. The size of nanopores and fibrils appears uniformly over 25 mm x 25 mm areas on the Si wafer substrates. Conformal coverage of PEDOT films grown with the CuCl(2) oxidant (C-PEDOT) is observed on both standard trench structures with high aspect ratio and fragile surfaces with complex topology, such as paper, results which are extremely difficult to achieve with liquid phase based processes. The tunable nanoporosity and its conformal coverage on various complex geometries are highly desirable for many device applications requiring controlled, high interfacial area, such as supercapacitors, Li ion battery electrodes, and sensors. For example, a highly hydrophilic surface with the static water contact angle down to less than 10 degrees is obtained solely by changing surface morphology. By applying fluorinated polymer film onto the nanoporous C-PEDOT via initiative chemical vapor deposition (iCVD), the C-PEDOT surface also shows the contact angle higher than 150 degrees . The hierarchical porous structure of fluorinated polymer coated C-PEDOT on a paper mat shows superhydrophobicity and oil repellency.

  14. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    PubMed

    Sablón-Carrazana, Marquiza; Fernández, Isaac; Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are able

  15. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures

    PubMed Central

    Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F.; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M.

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17–42 and Aβ16–21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are

  16. Prediction of carbon-13 NMR chemical shift of alkanes with rooted path vector.

    PubMed

    Zhou, L P; Sun, L L; Yu, Y; Lu, W; Li, Z L

    2006-11-01

    Systematic studies were further made on graph theory in quantitative structure-spectrum relationships (QSSR) for various areas of spectroscopies. Chemical shifts (CS) in alkanes for carbon-13 nuclear magnetic resonance (13C NMR) were well correlated with a set of novel molecular graph indices, called the rooted path vector of various lengths, as several multivariate regression equations as following:CS=3.022+5.336P1+7.356P2-1.648P3+0.83859P4+0.210P5-0.138P6-0.506P7+2.486P8-1.669P9; n=402, m=9, R=0.944, RCV=0.9413, S.D.=3.333, F=358.343, U=35833.211, Q=4355.422 for all types (primary, secondly, tertiary, quaternary as well as methane) of carbon atoms CS=0.983+6.811P1+7.584P2-2.029P3+0.809P4+0.106P5+0.043P6-0.124P7+1.715P8-1.101P9; n=374, m=9, R=0.975, RCV=0.9737, S.D.=2.303, F=773.372, U=36912.109, Q=1930.363 for primary, secondly, tertiary (including methane) carbon atoms; and CS=27.819+2.351P2+0.549P3-0.440P4+0.170P5-0.050P6; n=27, m=5, R=0.992, RCV=0.9674, S.D.=0.324, F=265.418, U=138.891, Q=2.198 for quaternary carbon atoms, respectively. Quite good estimation and prediction results were obtained from the quantitative molecular modeling and the performance of multiple linear regression (MLR) equations were tested to work well through cross-validation (CV) with the leave-one-out (LOO) procedure.

  17. Five stable points on the N sub 6 energy hypersurface: Structures, energies, frequencies, and chemical shifts

    SciTech Connect

    Engelke, R. )

    1989-07-27

    Five stationary points on the N{sub 6} energy hypersurface have been located by use of ab initio self-consistent field (SCF) methods. These five points correspond to the N{sub 6} analogues of the (CH){sub 6} structures: (a) benzene (1), (b) Dewar benzene (2), (c) benzvalene (3), (d) triprismane (4), and (e) trans-3,3{prime}-bicyclopropenyl (5). The points of the energy hypersurface are calculated in the restricted Hartree-Fock approximation, using 4-31G and 4-31G* basis sets. At the stationary points, vibrational frequencies have also been calculated at the RHF/4-31G and RHF/4-31G* levels. Within the RHF/4-31G* model, all the structures are stable. For trans-3,3{prime}-bicyclopropenyl, no corresponding stationary point is found with the RHF/4-31G model. The five structures are higher in energy than three N{sub 2} molecules by (1) 243, (2) 289, (3) 303, (4) 382, and (5) 286 kcal/mol with the RHF/4-31G* model. The effect of electron correlation on the energies is examined by use of the MP2-FC/4-31G*//RHF/4-31G* and MP2=FC/4-31G//RHF/4-31G models. In most cases, the inclusion of correlation stabilizes the structures to dissociation into three N{sub 2} molecules by 30-50 kcal/mol (relative to the mean field results). The lowest (nontorsional) RHF/4-31G* vibrational frequency for 2-5 is significantly larger than that of 1, indicating that the geometries of 2-5 are more rigidly defined by the energy hypersurface than is 1. Nitrogen chemical shifts are also presented; these were calculated at the RHF/4-31G level using gauge-invariant atomic orbitals and SCF perturbation theory. Most calculations were also performed on diatomic nitrogen (N{sub 2}), diimide (N{sub 2}H{sub 2}), and hydrazine (N{sub 2}H{sub 4}); these results are used as an aid in the interpretation of the N{sub 6} results.

  18. A general theoretical description of the influence of isotropic chemical shift in dipolar recoupling experiments for solid-state NMR

    NASA Astrophysics Data System (ADS)

    Shankar, Ravi; Ernst, Matthias; Madhu, P. K.; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2017-04-01

    We present a general theoretical description that allows us to describe the influence of isotropic chemical shift in homonuclear and heteronuclear dipolar recoupling experiments in magic-angle-spinning solid-state NMR. Through a transformation of the Hamiltonian into an interaction frame with the combined radio-frequency irradiation and the isotropic chemical shift, we determine an effective Hamiltonian to first order with respect to the relevant internal nuclear spin interactions. This unravels the essential resonance conditions for efficient dipolar recoupling. Furthermore, we propose how to handle situations where the resonance conditions are not exactly fulfilled. To verify the general theoretical description, we compare numerical simulations using a time-sliced time-dependent Hamiltonian with simulations using the calculated effective Hamiltonian for propagation. The comparisons are exemplified for the homonuclear dipolar recoupling experiments C 721 and POST-C 721 .

  19. Backbone chemical shifts assignments, secondary structure, and ligand binding of a family GH-19 chitinase from moss, Bryum coronatum.

    PubMed

    Shinya, Shoko; Nagata, Takuya; Ohnuma, Takayuki; Taira, Toki; Nishimura, Shigenori; Fukamizo, Tamo

    2012-10-01

    Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A). The backbone signals were nearly completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of the chitin dimer to the enzyme solution perturbed the chemical shifts of HSQC resonances of the amino acid residues forming the putative substrate-binding cleft. Further NMR analysis of the ligand binding to BcChi-A will improve understanding of the substrate-recognition mechanism of GH-19 enzymes.

  20. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    NASA Astrophysics Data System (ADS)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}chemical shift of water solvating lithium and chlorine individually. The thermal behavior of this quantity confirms previous results about the role of the temperature in the solvation mechanisms down to about 225K. This temperature coincides with that of the so-called Widom line for water supporting the liquid-liquid transition hypothesis.

  1. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8.

    PubMed

    Konstantinov, Ivan A; Broadbelt, Linda J

    2011-11-10

    This study aimed at investigating the performance of a series of basis sets, density functional theory (DFT) functionals, and the IEF-PCM solvation model in the accurate calculation of (1)H and (13)C NMR chemical shifts in toluene-d(8). We demonstrated that, on a test set of 37 organic species with various functional moieties, linear scaling significantly improved the calculated shifts and was necessary to obtain more accurate results. Inclusion of a solvation model produced larger deviations from the experimental data as compared to the gas-phase calculations. Moreover, we did not find any evidence that very large basis sets were necessary to reproduce the experimental NMR data. Ultimately, we recommend the use of the BMK functional. For the (1)H shifts the use of the 6-311G(d) basis set gave linearly scaled mean unsigned (MU) and root-mean-square (rms) errors of 0.15 ppm and 0.21 ppm, respectively. For the calculation of the (13)C chemical shifts the 6-31G(d) basis set produced MUE of 1.82 ppm and RMSE of 3.29 ppm.

  2. Addition of magnetic resonance imaging to computed tomography-based three-dimensional conformal radiotherapy planning for postoperative treatment of astrocytomas: Changes in tumor volume and isocenter shift.

    PubMed

    Bagri, Puneet Kumar; Kapoor, Akhil; Singh, Daleep; Singhal, Mukesh Kumar; Narayan, Satya; Kumar, Harvindra Singh

    2015-01-01

    Postoperative radiotherapy is the current gold standard treatment in astrocytomas. Computed tomography (CT)-based radiotherapy planning leads to either missing of the tumor volume or underdosing. The aim of this prospective study was to study the changes in tumor volume on addition of magnetic resonance imaging (MRI) to CT-based three-dimensional radiotherapy treatment planning of astrocytomas. Twenty-five consecutive patients of astrocytoma (WHO grades I-IV) for postoperative three-dimensional conformal radiotherapy were included in this prospective study. Postoperative tumor volumes were contoured on CT-based images and recontoured on CT-MRI images after automated MRI co-registration on treatment planning system Eclipse 8.9.15 as per ICRU-50 report. Tumor volumes were compared with each other. The MRI-based mean and median tumor volume was 24.24 cc ± 13.489 and 18.72 cc (range 5.6-46.48 cc), respectively, while for CT it was 19.4 cc ± 11.218 and 16.24 cc (range: 5.1-38.72 cc), respectively. The mean and median isocenter shift between CT and MRI was 4.05 mm and 4.39 mm (range 0.92-6.32 mm), respectively. There is a linear relationship between MRI and CT volume with a good correlation coefficient of R (2) = 0.989, and MRI-based tumor volume was 1.208 times as compared to CT volume. Statistical analysis using paired sample t-test for the difference in CT and MRI tumor volume was highly significant (P < 0.001). Addition of MRI to the CT-based three-dimensional radiation treatment planning reduces the chances of geographical miss or tumor under dosing. Thus, MRI should be an integral part of three-dimensional planning of astrocytomas.

  3. Addition of magnetic resonance imaging to computed tomography-based three-dimensional conformal radiotherapy planning for postoperative treatment of astrocytomas: Changes in tumor volume and isocenter shift

    PubMed Central

    Bagri, Puneet Kumar; Kapoor, Akhil; Singh, Daleep; Singhal, Mukesh Kumar; Narayan, Satya; Kumar, Harvindra Singh

    2015-01-01

    Introduction: Postoperative radiotherapy is the current gold standard treatment in astrocytomas. Computed tomography (CT)-based radiotherapy planning leads to either missing of the tumor volume or underdosing. The aim of this prospective study was to study the changes in tumor volume on addition of magnetic resonance imaging (MRI) to CT-based three-dimensional radiotherapy treatment planning of astrocytomas. Materials and Methods: Twenty-five consecutive patients of astrocytoma (WHO grades I-IV) for postoperative three-dimensional conformal radiotherapy were included in this prospective study. Postoperative tumor volumes were contoured on CT-based images and recontoured on CT-MRI images after automated MRI co-registration on treatment planning system Eclipse 8.9.15 as per ICRU-50 report. Tumor volumes were compared with each other. Result: The MRI-based mean and median tumor volume was 24.24 cc ± 13.489 and 18.72 cc (range 5.6–46.48 cc), respectively, while for CT it was 19.4 cc ± 11.218 and 16.24 cc (range: 5.1-38.72 cc), respectively. The mean and median isocenter shift between CT and MRI was 4.05 mm and 4.39 mm (range 0.92–6.32 mm), respectively. There is a linear relationship between MRI and CT volume with a good correlation coefficient of R2 = 0.989, and MRI-based tumor volume was 1.208 times as compared to CT volume. Statistical analysis using paired sample t-test for the difference in CT and MRI tumor volume was highly significant (P < 0.001). Conclusion: Addition of MRI to the CT-based three-dimensional radiation treatment planning reduces the chances of geographical miss or tumor under dosing. Thus, MRI should be an integral part of three-dimensional planning of astrocytomas. PMID:25839014

  4. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  5. The N-substitution and N-oxidation effects on the carbon-13 chemical shift of some substituted anilines

    NASA Astrophysics Data System (ADS)

    Hanna, Salim Y.

    1992-10-01

    The N-substitution and the N-oxidation effects on the carbon-13 chemical shift for all ring carbons of some substituted anilines are discussed. Correlation of the N-substitution effect with substituent constants by means of a linear combination of two empirical parameters, σ I and σ R has been studied. The best correlation was obtained between the N-methylation effect and the substituent constants.

  6. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Schmedt Auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Torsionally Responsive C[subscript 3]-Symmetric Azo Dyes: Azo−Hydrazone Tautomerism, Conformational Switching, and Application for Chemical Sensing

    SciTech Connect

    Lee, Ho Yong; Song, Xinli; Park, Hyunsoo; Baik, Mu-Hyun; Lee, Dongwhan

    2010-12-07

    An efficient triple azo coupling reaction between anilines and phloroglucinol furnished a series of C{sub 3}-symmetric molecules 7-9 supporting multiple conjugation pathways that converge at the molecular core. A combination of {sup 1}H/{sup 13}C NMR spectroscopy, X-ray crystallography, and density functional theory computational studies provided a coherent picture of the [n,{pi}]-conjugated molecular core, which is best described as the tris(hydrazone) [rather than tris(azo)] tautomer stabilized by resonance-assisted hydrogen bonding. For a homologous series of compounds, an increase in the torsional angles between the planar molecular core and the peripheral aryl groups results in a systematic blue shift in the low-energy electronic transitions (7, 523 nm; 8, 505 nm; 9, 445 nm in CHCl{sub 3}) that qualitatively correlates with the shrinkage of effective conjugation through structural distortion. Similar spectral shifts could also be induced by amine substrates that interact with the intramolecular hydrogen-bonding network to trigger bond-twisting motions. Specifically, a brief exposure of a thin film of 7 to vapor samples of butyl-, hexyl-, diethyl-, and diisopropylamine resulted in a rapid and reversible color change from pink to dark-orange. Under similar conditions, however, triethylamine did not elicit any detectable color change, despite the fact that it has a significantly higher vapor pressure than n-hexylamine. These findings implicate that the hydrogen-bonding donor ability is a key requirement for the binding-induced conformational switching, which allows for direct naked-eye detection of volatile amines under ambient conditions.

  8. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    PubMed

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments.

  9. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  10. Application of Data Mining Tools for Classification of Protein Structural Class from Residue Based Averaged NMR Chemical Shifts

    PubMed Central

    Kumar, Arun. V.; Ali, Rehana F.M.; Cao, Yu; Krishnan, V.V.

    2015-01-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue’s averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80 % accuracy measured by Matthew Correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with > 90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. PMID:25758094

  11. A combined DFT - NMR study of cyclic 1,2-diones and methyl ethers of their enols: The power and limitations of the method based on theoretical predictions of 13C NMR chemical shifts

    NASA Astrophysics Data System (ADS)

    Kubicki, Dominik; Gryff-Keller, Adam; Szczeciński, Przemysław

    2012-08-01

    A series of cyclic 1,2-diones and methyl ethers of their enols were investigated by a combined 13C NMR/computational DFT method to establish their preferred solution structures. The optimum molecular geometries and magnetic shielding constants of carbon nuclei were calculated with GIAO DFT [PBE1PBE/6-311++G(2d,p) PCM] method for the investigated molecules allowing for enolization and dynamic conformational equilibriums occurring in the solutions. These compounds served simultaneously as model compounds for testing the effectiveness and limitations of the exploited method of investigating molecular structures based on comparison of the theoretically calculated magnetic shielding constants and experimental 13C NMR chemical shifts. Generally, a very good agreement between experimental and theoretical data was obtained for the investigated group of compounds, which proved the applied level of theory and used methodology to be adequate and should ensure a high accuracy of the 13C NMR chemical shift predictions. Some divergences between the experiment and theory could be interpreted as the results of insufficiencies of the molecular modelling and the effects of neglecting vibrational/librational molecular motions. Furthermore, we report herein an observation of an unexpected 1H NMR spectral pattern for 2,3-dimethoxycyclodeca-1,3-diene (diether of cyclodecadione dienol), which was interpreted to be caused by the slow (in NMR time scale) enantiomerization of this molecule which preferentially assumes a chiral conformation.

  12. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    PubMed

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P < .001), and caudate (-10.6%; P = .04), while the Cho:Cr ratio was higher in the bilateral superior temporal cortex (left: +10.0%; P = .03 and right: +10.8%; P = .01), superior temporal white matter (left: +14.6%; P = .003 and right: +9.5%; P = .02), and thalamus (left: +11.6%; P = .002 and right: +11.1%; P = .001). False discovery rate-corrected voxel-based findings were highly consistent

  13. ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins

    PubMed Central

    Larsen, Anders S.; Bratholm, Lars A.; Christensen, Anders S.; Channir, Maher

    2015-01-01

    We present ProCS15: a program that computes the isotropic chemical shielding values of backbone and Cβ atoms given a protein structure in less than a second. ProCS15 is based on around 2.35 million OPBE/6-31G(d,p)//PM6 calculations on tripeptides and small structural models of hydrogen-bonding. The ProCS15-predicted chemical shielding values are compared to experimentally measured chemical shifts for Ubiquitin and the third IgG-binding domain of Protein G through linear regression and yield RMSD values of up to 2.2, 0.7, and 4.8 ppm for carbon, hydrogen, and nitrogen atoms. These RMSD values are very similar to corresponding RMSD values computed using OPBE/6-31G(d,p) for the entire structure for each proteins. These maximum RMSD values can be reduced by using NMR-derived structural ensembles of Ubiquitin. For example, for the largest ensemble the largest RMSD values are 1.7, 0.5, and 3.5 ppm for carbon, hydrogen, and nitrogen. The corresponding RMSD values predicted by several empirical chemical shift predictors range between 0.7–1.1, 0.2–0.4, and 1.8–2.8 ppm for carbon, hydrogen, and nitrogen atoms, respectively. PMID:26623185

  14. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics.

    PubMed

    Straka, Michal; Lantto, Perttu; Vaara, Juha

    2008-03-27

    We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized

  15. Cellular thermal shift and clickable chemical probe assays for the determination of drug-target engagement in live cells.

    PubMed

    Xu, Hua; Gopalsamy, Ariamala; Hett, Erik C; Salter, Shores; Aulabaugh, Ann; Kyne, Robert E; Pierce, Betsy; Jones, Lyn H

    2016-07-14

    Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation. We developed two orthogonal technologies, the cellular thermal shift assay (CETSA) and a covalent chemical probe reporter approach (harnessing sulfonyl fluoride tyrosine labeling and subsequent click chemistry) to measure the occupancy of the mRNA-decapping scavenger enzyme DcpS by a small molecule inhibitor in live cells. Enzyme affinity determined using isothermal dose response fingerprinting (ITDRFCETSA) and the concentration required to occupy 50% of the enzyme (OC50) using the chemical probe reporter assay were very similar. In this case, the chemical probe method worked well due to the long offset kinetics of the reversible inhibitor (determined using a fluorescent dye-tagged probe). This work suggests that CETSA could become the first choice assay to determine in-cell target engagement due to its simplicity.

  16. Sub-electron-volt chemical shifts and strong interference effects measured in the resonance x-ray scattering spectra of aniline

    SciTech Connect

    Luo, Y.; Agren, H.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J.

    1995-11-01

    By exploring the monosubstituted benzene compound aniline, we demonstrate that resonance inelastic x-ray spectroscopy of chemically shifted species is {ital site} {ital selective}. Core-excited levels with distinct, super-electron-volt shifts can be resonantly excited and their x-ray emission spectra analyzed separately. Core-excited levels referring to sites with small, sub-electron-volt, chemical shifts give resonant x-ray spectra that interfere strongly. It is demonstrated that this interference, which is manifested in the one-step model, can be used to monitor chemical shifts in the sub-electron-volt energy region. We show that in the limit when these chemical shifts go to zero some salient symmetry-selective features of the benzene resonant x-ray emission spectrum are restored in the aniline spectra.

  17. Proton, carbon, and nitrogen chemical shifts accurately delineate differences and similarities in secondary structure between the homologous proteins IRAP and IL-1 beta.

    PubMed

    Stockman, B J; Scahill, T A; Strakalaitis, N A; Brunner, D P; Yem, A W; Deibel, M R

    1992-11-01

    1H alpha, 13C alpha, and 15N alpha secondary shifts, defined as the difference between the observed value and the random coil value, have been calculated for interleukin-1 receptor antagonist protein and interleukin-1 beta. Averaging of the secondary chemical shifts with those of adjacent residues was used to smooth out local effects and to obtain a correlation dependent on secondary structure. Differences and similarities in the placement of secondary structure elements in the primary sequences of these structurally homologous proteins are manifested in the smoothed secondary chemical shifts of all three types of nuclei. The close correlation observed between the secondary chemical shifts and the previously defined locations of secondary structure, as defined by traditional methods, exemplifies the advantage of chemical shifts to delineate regions of secondary structure.

  18. Water chemical shift in 1H NMR of red cells: effects of pH when transmembrane magnetic susceptibility differences are low.

    PubMed

    Larkin, Timothy J; Bubb, William A; Kuchel, Philip W

    2008-04-01

    The (1)H magic angle spinning (MAS) NMR spectrum of water in erythrocyte suspensions shows peaks from each of the intracellular and extracellular water pools. The splitting is a true chemical shift and is brought about by the elimination of water exchange under MAS conditions due to physical separation of the two water populations. The size of the chemical shift difference is determined by the concentration of intracellular protein affecting the average extent of hydrogen bonding of water. We present here a model of the chemical shift behavior for water in erythrocytes under normal high-resolution NMR conditions based on results from MAS experiments on these cells exposed to different pH and osmotic conditions. The model accurately predicts the chemical shift of water for a static sample, and the results demonstrate that in high-resolution NMR experiments the chemical shift of water will appear to be invariant if differences in magnetic susceptibility across the cell membrane are minimal (<10% of the magnetic susceptibility of water). Thus, changes in the shape and chemical shift of the water resonance are not due to pH changes in the physiological range. The findings are fundamental to an interpretation of the mechanism of chemical shift effects on the water resonance that may occur in functional MRI.

  19. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  20. Approximate quantum chemical methods for modelling carbohydrate conformation and aromatic interactions: β-cyclodextrin and its adsorption on a single-layer graphene sheet.

    PubMed

    Jaiyong, Panichakorn; Bryce, Richard A

    2017-06-14

    Noncovalent functionalization of graphene by carbohydrates such as β-cyclodextrin (βCD) has the potential to improve graphene dispersibility and its use in biomedical applications. Here we explore the ability of approximate quantum chemical methods to accurately model βCD conformation and its interaction with graphene. We find that DFTB3, SCC-DFTB and PM3CARB-1 methods provide the best agreement with density functional theory (DFT) in calculation of relative energetics of gas-phase βCD conformers; however, the remaining NDDO-based approaches we considered underestimate the stability of the trans,gauche vicinal diol conformation. This diol orientation, corresponding to a clockwise hydrogen bonding arrangement in the glucosyl residue of βCD, is present in the lowest energy βCD conformer. Consequently, for adsorption on graphene of clockwise or counterclockwise hydrogen bonded forms of βCD, calculated with respect to this unbound conformer, the DFTB3 method provides closer agreement with DFT values than PM7 and PM6-DH2 approaches. These findings suggest approximate quantum chemical methods as potentially useful tools to guide the design of carbohydrate-graphene interactions, but also highlights the specific challenge to NDDO-based methods in capturing the relative energetics of carbohydrate hydrogen bond networks.

  1. Phenylboronic acid-based (19)F MRI probe for the detection and imaging of hydrogen peroxide utilizing its large chemical-shift change.

    PubMed

    Nonaka, Hiroshi; An, Qi; Sugihara, Fuminori; Doura, Tomohiro; Tsuchiya, Akira; Yoshioka, Yoshichika; Sando, Shinsuke

    2015-01-01

    Herein, we report on a new (19)F MRI probe for the detection and imaging of H2O2. Our designed 2-fluorophenylboronic acid-based (19)F probe promptly reacted with H2O2 to produce 2-fluorophenol via boronic acid oxidation. The accompanying (19)F chemical-shift change reached 31 ppm under our experimental conditions. Such a large chemical-shift change allowed for the imaging of H2O2 by (19)F chemical-shift-selective MRI.

  2. The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized (89) Y Complexes and Their Solution Structures.

    PubMed

    Xing, Yixun; Jindal, Ashish K; Regueiro-Figueroa, Martín; Le Fur, Mariane; Kervarec, Nelly; Zhao, Piyu; Kovacs, Zoltan; Valencia, Laura; Pérez-Lourido, Paulo; Tripier, Raphaël; Esteban-Gómez, David; Platas-Iglesias, Carlos; Sherry, A Dean

    2016-11-07

    Recently developed dynamic nuclear polarization (DNP) technology offers the potential of increasing the NMR sensitivity of even rare nuclei for biological imaging applications. Hyperpolarized (89) Y is an ideal candidate because of its narrow NMR linewidth, favorable spin quantum number (I=1/2 ), and long longitudinal relaxation times (T1 ). Strong NMR signals were detected in hyperpolarized (89) Y samples of a variety of yttrium complexes. A dataset of (89) Y NMR data composed of 23 complexes with polyaminocarboxylate ligands was obtained using hyperpolarized (89) Y measurements or (1) H,(89) Y-HMQC spectroscopy. These data were used to derive an empirical equation that describes the correlation between the (89) Y chemical shift and the chemical structure of the complexes. This empirical correlation serves as a guide for the design of (89) Y sensors. Relativistic (DKH2) DFT calculations were found to predict the experimental (89) Y chemical shifts to a rather good accuracy. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation.

  4. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  5. Linking the operating parameters of chemical vapor deposition reactors with film conformality and surface nano-morphology.

    PubMed

    Cheimarios, Nikolaos; Garnelis, Sokratis; Kokkoris, George; Boudouvis, Andreas G

    2011-09-01

    A multiscale modeling framework is used to couple the co-existing scales, i.e., macro-, micro- and nano-scale, in chemical vapor deposition (CVD) processes. The framework consists of a reactor scale model (RSM) for the description of the transport phenomena in the bulk phase (macro-scale) of a CVD reactor and two models for the micro- and nano-scale: (a) A feature scale model (FSM) describing the deposition of a film inside features on a predefined micro-topography on the wafer and (b) a nano-morphology model (NMM) describing the surface morphology evolution during thin film deposition on an initially flat surface. The FSM is deterministic and consists of three sub-models: A ballistic model for the species' transport inside features, a surface chemistry model, and a profile evolution algorithm based on the level set method. The NMM is stochastic and is based on the kinetic Monte Carlo method. The coupling of RSM with FSM is performed through a correction of the species consumption on the wafer. The linking of RSM with NMM is performed through "feeding" of the deposition rate calculated by RSM to the NMM. The case study is CVD of Silicon (Si) from Silane. The effect of the reactor's operating parameters on the Si film conformality inside trenches is investigated by the coupling of RSM with FSM. The formation of dimmers on an initially flat Si (001) surface as well as the periodic change of the surface nano-morphology is predicted.

  6. Influence of the chemical shift artifact on measurements of compact bone thickness in equine distal limb MR images.

    PubMed

    Dimock, Abigail N; Spriet, Mathieu

    2010-01-01

    The effect of the chemical shift artifact, resulting from misregistration or phase cancellation at the interface between compact and trabecular bone, on apparent bone thickness was quantified in six isolated equine limbs. Sagittal T1-weighted spin echo (SE) and in-phase three-dimensional spoiled gradient echo (SPGR) images were acquired twice with a 1.5 T magnetic resonance (MR) unit, switching the frequency encoding direction between acquisitions. Out-of-phase SPGR images were also obtained. MR images with different frequency encoding directions were compared with each other and to radiographs made from corresponding 3-mm-bone sections. Compact bone thickness was significantly different when comparing images acquired with different frequency encoding directions for both SE and SPGR sequences. Significant differences were identified in the frequency but not the phase encoding direction when measurements of compact bone in MR images were compared with measurements obtained from thin section radiographs for the majority of surfaces studied (P < 0.05). Correction of MR measurements with the calculated chemical shift abolished these differences (P > 0.05). Measurements of compact bone from out-of-phase SPGR sequences were significantly different than from in-phase sequences (P < 0.001) with out-of-phase measurements greater than in-phase measurements by an average of 0.38mm. These results indicate that the chemical shift artifact results in errors in MR evaluation of compact bone thickness when measurements are performed in the frequency encoding direction or in out-of-phase images. For better accuracy, measurements should be performed parallel to the phase encoding direction and avoiding out-of-phase gradient echo sequences.

  7. Effects of hydrogen bonding on amide-proton chemical shift anisotropy in a proline-containing model peptide

    NASA Astrophysics Data System (ADS)

    Pichumani, Kumar; George, Gijo; Hebbar, Sankeerth; Chatterjee, Bhaswati; Raghothama, Srinivasarao

    2015-05-01

    Longitudinal relaxation due to cross-correlation between dipolar (1HN-1Hα) and amide-proton chemical shift anisotropy (1HN CSA) has been measured in a model tripeptide Piv-LPro-LPro-LPhe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA.

  8. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  9. Synthesis, conformational, spectroscopic and chemical reactivity analysis of 2-cyano-3-(1H-pyrrol-2-yl)acrylohydrazide using experimental and quantum chemical approaches

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.

    2015-02-01

    This paper describes the synthesis, spectroscopic (1H and 13C NMR, UV-Visible, FT-IR and ESI Mass), conformational analysis, chemical reactivity and non-linear optical (NLO) properties of newly synthesized pyrrole derivative 2-cyano-3-(1H-pyrrol-2-yl)acrylohydrazide (2CPA) C8H8N4O using experimental and quantum chemical techniques. The presence of signal at δ 8.010 ppm due to vinyl proton as well as NH and NH2 protons signals at 11.054 and 2.499 ppm in experimental 1H NMR spectrum indicate that 2CPA contain sbnd CHdbnd CCNsbnd and sbnd NHsbnd NH2 frame. The combined experimental and theoretical symmetric (3194 cm-1) and asymmetric (3221 cm-1) stretching wavenumber analysis confirms free NH2 group in the solid phase FT-IR spectrum of the synthesized compound. The interaction energies of dimer formation using density functional theory (DFT) and Quantum theory of Atoms in Molecules (QTAIM) calculations are found to be 20.210, 19.683 kcal/mol, respectively. The maximum values of the electrophilic reactivity descriptors at C6 indicate that this site is more prone to nucleophilic attack and favoring the formation of heterocyclic derivatives. A natural bond orbital (NBOs) analysis has been carried out to investigate intramolecular charge transfer, conjugative and hyperconjugative interactions within molecule. The calculated first hyperpolarizability (β0) of 2CPA, indicates that investigated molecule will show non-linear optical response and might be used as non-linear optical (NLO) material.

  10. NMR chemical shift as analytical derivative of the Helmholtz free energy.

    PubMed

    Van den Heuvel, Willem; Soncini, Alessandro

    2013-02-07

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case, the paramagnetic part of the shielding tensor is expressed in terms of the g and A tensors of the electron paramagnetic resonance spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C(60), with Ln = Ce(3+), Nd(3+), Sm(3+), Dy(3+), Er(3+), and Yb(3+), where the ground state can be a strongly spin-orbit coupled icosahedral sextet for which the paramagnetic shift cannot be described by previous theories.

  11. Structure of the Bacterial Cytoskeleton Protein Bactofilin by NMR Chemical Shifts and Sequence Variation.

    PubMed

    Kassem, Maher M; Wang, Yong; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2016-06-07

    Bactofilins constitute a recently discovered class of bacterial proteins that form cytoskeletal filaments. They share a highly conserved domain (DUF583) of which the structure remains unknown, in part due to the large size and noncrystalline nature of the filaments. Here, we describe the atomic structure of a bactofilin domain from Caulobacter crescentus. To determine the structure, we developed an approach that combines a biophysical model for proteins with recently obtained solid-state NMR spectroscopy data and amino acid contacts predicted from a detailed analysis of the evolutionary history of bactofilins. Our structure reveals a triangular β-helical (solenoid) conformation with conserved residues forming the tightly packed core and polar residues lining the surface. The repetitive structure explains the presence of internal repeats as well as strongly conserved positions, and is reminiscent of other fibrillar proteins. Our work provides a structural basis for future studies of bactofilin biology and for designing molecules that target them, as well as a starting point for determining the organization of the entire bactofilin filament. Finally, our approach presents new avenues for determining structures that are difficult to obtain by traditional means.

  12. Uranyl Carbonate Complexes in Aqueous Solution and Their Ligand NMR Chemical Shifts and (17)O Quadrupolar Relaxation Studied by ab Initio Molecular Dynamics.

    PubMed

    Marchenko, Alex; Truflandier, Lionel A; Autschbach, Jochen

    2017-07-03

    Dynamic structural effects, NMR ligand chemical shifts, and (17)O NMR quadrupolar relaxation rates are investigated in the series of complexes UO2(2+), UO2(CO3)3(4-), and (UO2)3(CO3)6(6-). Car-Parrinello molecular dynamics (CPMD) is used to simulate the dynamics of the complexes in water. NMR properties are computed on clusters extracted from the CPMD trajectories. In the UO2(2+) complex, coordination at the uranium center by water molecules causes a decrease of around 300 ppm for the uranyl (17)O chemical shift. The final value of this chemical shift is within 40 ppm of the experimental range. The UO2(CO3)3(4-) and (UO2)3(CO3)6(6-) complexes show a solvent dependence of the terminal carbonate (17)O and (13)C chemical shifts that is less pronounced than that for the uranyl oxygen atom. Corrections to the chemical shift from hybrid functionals and spin-orbit coupling improve the accuracy of chemical shifts if the sensitivity of the uranyl chemical shift to the uranyl bond length (estimated at 140 ppm per 0.1 Å from trajectory data) is taken into consideration. The experimentally reported trend in the two unique (13)C chemical shifts is correctly reproduced for (UO2)3(CO3)6(6-). NMR relaxation rate data support large (17)O peak widths, but remain below those noted in the experimental literature. Comparison of relaxation data for solvent-including versus solvent-free models suggest that carbonate ligand motion overshadows explicit solvent effects.

  13. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  14. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints

    PubMed Central

    2015-01-01

    Knowledge of RNA structure is necessary to determine structure–function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5′ to 3′ directionality of base pairs in helices. The 5′ to 3′ directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  15. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  16. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.

  17. Demystifying fluorine chemical shifts: Electronic structure calculations address origins of seemingly anomalous 19F-NMR spectra of fluorohistidine isomers and analogues

    PubMed Central

    Kasireddy, Chandana; Bann, James G.

    2015-01-01

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of 19F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in 19F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of 19F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  18. Suppression of sodium nuclear magnetic resonance double-quantum coherence by chemical shift and relaxation reagents

    NASA Astrophysics Data System (ADS)

    Hutchison, Robert B.; Huntley, James J. A.; Jin, Haoran; Shapiro, Joseph I.

    1992-12-01

    An investigation into the signal suppression behavior of the paramagnetic shift and relaxation reagents, Dy(P3O10)27- and Gd(P3O10)27-, with regard to their use in the nuclear magnetic resonance spectroscopic study of sodium has been performed. Measurements of T1 and T2 relaxation time constants of sodium in normal saline, Krebs-Henseleit buffer, and human blood serum, as a function of concentration of these reagents showed that, although closely coupled in the saline and K-H buffer environments, in plasma T1 and T2 become decoupled, transverse relaxation dominating in comparison to longitudinal relaxation. Linewidth measurements further suggest that relaxation in the plasma milieu is controlled primarily by inherent T2 relaxation, rather than by field inhomogeneity or diffusion effects. Quantitative single-quantum (1Q) and double-quantum (2Q) intensity measurements, biexponential T2 relaxation measurements, and parametric studies of the preparation time of the 2Q pulse sequence, were obtained in suspensions of bovine serum albumin and human erythrocytes. The observed suppression of sodium 2Q coherence by paramagnetic shift and relaxation reagents was found to exhibit a complex behavior in albumin solutions, involving the biexponential T2 decay to be expected during the preparation time of the 2Q filter pulse sequence, as well as the optimum preparation time for production of the double-quantum coherence itself. The controlling factor for both of these effects is the biexponential amplitude function in the expression for the transverse magnetization observed following application of the 2Q pulse sequence. This in turn is determined entirely by the values for the slow and fast components of biexponential relaxation in sodium, which themselves depend upon the concentration of the macromolecular binding sites for quadrupolar interaction. A similar behavior has been observed in suspensions of human erythrocytes.

  19. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up.

  20. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-01-01

    on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLGm$\\bar{x}$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace}13C{r_brace} and 19F{l_brace}13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements

  1. [Nuclear magnetic resonance study of the conformation in nucleotides, oligonucleotides, and their analogs. I. Conformation of adenosine-3',5'-cyclic phosphate and its analogs in aqueous solutions].

    PubMed

    Bobruskin, I D; Guliaev, N N; Kirpichnikov, M P; Severin, E S; Tunitskaia, V A

    1979-01-01

    Conformation in aqueous solution of adenosine-3',5'-cyclophosphate, 8-(beta-aminoethylamino) adenosine-3',5'-cyclophosphate, 8-(beta-oxiethylamino) adenosine-3',5'-cyclophosphate, 8-(carboxymethylamino) adenosine-3',5'-cyclophosphate and their non-cyclic analogs has been studied by NMR spectroscopy. The conformational situation in the model of dynamic equilibrium of sin- and anti-states has been described on the basis of spinlattice relaxation times and temperature dependences of chemical shifts. Adenosine-3',5'-cyclophosphate has been demonstrated to exist mainly in anti-conformation while 8-substituted analogs -- in sin-conformation. Equilibrium constants have been calculated for the compounds under study.

  2. Position dependence of the 13C chemical shifts of α-helical model peptides. Fingerprint of the 20 naturally occurring amino acids

    PubMed Central

    Vila, Jorge A.; Baldoni, Héctor A.; Scheraga, Harold A.

    2004-01-01

    The position dependence of the 13C chemical shifts was investigated at the density functional level for α-helical model peptides represented by the sequence Ac-(Ala)i-X-(Ala)j-NH2, where X represents any of the 20 naturally occurring amino acids, with 0 ≤ i ≤ 8 and i + j = 8. Adoption of the locally dense basis approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 20 naturally occurring amino acids in α-helices, there is (1) significant variability of the computed 13C shielding as a function of both the guest residue (X) and the position along the sequence; for example, at the N terminus, the 13Cα and 13Cβ shieldings exhibit a uniform pattern of variation with respect to both the central or the C-terminal positions; (2) good agreement between computed and observed 13Cα and 13Cβ chemical shifts in the interior of the helix, with correlation coefficients of 0.98 and 0.99, respectively; for 13Cα chemical shifts, computed in the middle of the helix, only five residues, namely Asn, Asp, Ser, Thr, and Leu, exhibit chemical shifts beyond the observed standard deviation; and (3) better agreement for four of these residues (Asn, Asp, Ser, and Thr) only for the computed values of the 13Cα chemical shifts at the N terminus. The results indicate that 13Cβ, but not 13Cβ, chemical shifts are sensitive enough to reflect the propensities of some amino acids for specific positions within an α-helix, relative to the N and C termini of peptides and proteins. PMID:15498939

  3. Chemical potential shift and gap-state formation in SrTiO3-δ revealed by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pal, Prabir; Kumar, Pramod; Aswin, V.; Dogra, Anjana; Joshi, Amish G.

    2014-08-01

    In this study, we report on investigations of the electronic structure of SrTiO3 annealed at temperature ranging between 550 and 840 °C in an ultrahigh vacuum. Annealing induced oxygen vacancies (Ovac) impart considerable changes in the electronic structure of SrTiO3. Using core-level photoemission spectroscopy, we have studied the chemical potential shift (Δμ) as a function of annealing temperature. The result shows that the chemical potential monotonously increases with electron doping in SrTiO3-δ. The monotonous increase of the chemical potential rules out the existence of electronic phase separation in the sample. Using valence band photoemission, we have demonstrated the formation of a low density of states at the near Fermi level electronic spectrum of SrTiO3-δ. The gap-states were observed by spectral weight transfer over a large energy scale of the stoichiometric band gap of SrTiO3 system leading finally to an insulator-metal transition. We have interpreted our results from the point of structural distortions induced by oxygen vacancies.

  4. Parsimony in Protein Conformational Change.

    PubMed

    Chapman, Brynmor K; Davulcu, Omar; Skalicky, Jack J; Brüschweiler, Rafael P; Chapman, Michael S

    2015-07-07

    Protein conformational change is analyzed by finding the minimalist backbone torsion angle rotations that superpose crystal structures within experimental error. Of several approaches for enforcing parsimony during flexible least-squares superposition, an ℓ(1)-norm restraint provided greatest consistency with independent indications of flexibility from nuclear magnetic resonance relaxation dispersion and chemical shift perturbation in arginine kinase and four previously studied systems. Crystallographic cross-validation shows that the dihedral parameterization describes conformational change more accurately than rigid-group approaches. The rotations that superpose the principal elements of structure constitute a small fraction of the raw (φ, ψ) differences that also reflect local conformation and experimental error. Substantial long-range displacements can be mediated by modest dihedral rotations, accommodated even within α helices and β sheets without disruption of hydrogen bonding at the hinges. Consistency between ligand-associated and intrinsic motions (in the unliganded state) implies that induced changes tend to follow low-barrier paths between conformational sub-states that are in intrinsic dynamic equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    PubMed

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds.

  6. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    PubMed

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  7. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning.

    PubMed

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  8. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  9. Non-invasive localization of thymol accumulation in Carum copticum (Apiaceae) fruits by chemical shift selective magnetic resonance imaging.

    PubMed

    Gersbach, P V; Reddy, N

    2002-08-01

    Magnetic resonance imaging was used to localize the site of essential oil accumulation in fruit of Carum copticum L. (Apiaceae). A chemical shift method is described that utilized the spectral properties of the aromatic monoterpene thymol, the major component of the essential oil, to image thymol selectively. The presence of essential oil secretory structures in the fruit and an essential oil containing a high proportion of thymol were confirmed with optical microscopy and gas chromatography-mass spectrometry, respectively. Selective imaging of whole C. copticum fruits showed that thymol accumulation was localized to the secretory structures (canals) situated in the fruit wall. The technique was considered non-invasive as the seeds used in the imaging experiments remained intact and viable.

  10. The structure and conformations of piracetam (2-oxo-1-pyrrolidineacetamide): Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Ksenafontov, Denis N.; Moiseeva, Natalia F.; Khristenko, Lyudmila V.; Karasev, Nikolai M.; Shishkov, Igor F.; Vilkov, Lev V.

    2010-12-01

    The geometric structure of piracetam was studied by quantum chemical calculations (DFT and ab initio), gas electron diffraction (GED), and FTIR spectroscopy. Two stable mirror symmetric isomers of piracetam were found. The conformation of pyrrolidine ring is an envelope in which the C4 atom deviates from the ring plane, the angle between the planes (C3 sbnd C4 sbnd C5) and (C2 sbnd C3 sbnd C5) is 154.1°. The direction of the deviation is the same as that of the side acetamide group. The piracetam molecule is stabilized in the gas phase by an intramolecular hydrogen bond between the N9H 2 group and the oxygen O6, bonded to C2. The principal structural parameters ( re, Å and ∠e, degrees; uncertainties are 3 σLS values) were found to be: r(С3 sbnd С4) = 1.533(1), r(C4 sbnd C5) = 1.540(1), r(N1 sbnd C5) = 1.456(1), r(C2 sbnd C3) = 1.520(1), r(N1 sbnd C7) = 1.452(1), r(C7 sbnd C8) = 1.537(1), r(N1 sbnd C2) = 1.365(2), r(C8 sbnd N9) = 1.360(2), r(C2 dbnd O6) = 1.229(1), r(C8 dbnd O10) = 1.221(1), ∠C2 sbnd N1 sbnd C5 = 113.4(6), ∠N1 sbnd C2 sbnd C3 = 106.9(6), ∠N1 sbnd C7 sbnd C8 = 111.9(6), ∠C7 sbnd C8 sbnd N9 = 112.5(6), ∠N1 sbnd C2 sbnd O6 = 123.0(4), ∠C3 sbnd N1 sbnd C7 = 120.4(4), ∠C7 sbnd C8 sbnd O10 = 120.2(4), ∠C5 sbnd N1 sbnd C2 sbnd O6 = 170(6), ∠C3 sbnd C2 sbnd N1 sbnd C7 = 178(6), ∠C2 sbnd N1 sbnd C7 sbnd C8 = 84.2, ∠N1 sbnd C7 sbnd C8 sbnd O10 = 111.9.

  11. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum.

    PubMed

    Pearce, Jake T M; Athersuch, Toby J; Ebbels, Timothy M D; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2008-09-15

    In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.

  12. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-07

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

  13. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  14. Reliable Resonance Assignments of Selected Residues of Proteins with Known Structure Based on Empirical NMR Chemical Shift Prediction

    PubMed Central

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-01-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100 – 250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation. PMID:25863893

  15. A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids.

    PubMed

    Hou, Guangjin; Gupta, Rupal; Polenova, Tatyana; Vega, Alexander J

    2014-02-01

    Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of (1)H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN-symmetry based experiments, from which the principal components of the (1)H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of (1)H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U-(13)C,(15)N-labeled histdine demonstrating that (1)H chemical shift tensors can be reliably determined for the (1)H(15)N and (1)H(13)C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental (1)H(C) and (1)H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids.

  16. A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Gupta, Rupal; Polenova, Tatyana; Vega, Alexander J.

    2014-01-01

    Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of 1H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN-symmetry based experiments, from which the principal components of the 1H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of 1H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U-13C,15N-labeled histdine demonstrating that 1H chemical shift tensors can be reliably determined for the 1H15N and 1H13C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental 1H(C) and 1H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids. PMID:25484446

  17. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  18. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    PubMed

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Structure and conformational behavior of N-phenylpiperidine studied by gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Shlykov, Sergey A.; Phien, Tran D.; Gao, Yan; Weber, Peter M.

    2017-03-01

    Molecular structure and conformational behavior of N-phenylpiperidine (NPhP) were investigated by synchronous gas-phase electron diffraction/mass spectrometry (GED/MS) and quantum chemistry. Due to influence of steric repulsion and hyperconjugation, NPhP may exist in two conformers, equatorial and axial chair forms. Both experiment and theoretical calculations suggest a C1 symmetry of the conformers, with the plane perpendicular to the phenyl group turned by ca. 30-40° (equatorial) and 0-20° (axial) about the plane perpendicular to the piperidine ring symmetry plane. According to the QC calculations, NPhP may exist as two conformers, equatorial and axial, with a ratio of Eq:Ax = 92:8 (B3LYP), 87:13 (B3LYP-GD3), 84:16 (M06-2X), 83:17 (MP2/6-311G**) and 76:24% (MP2/cc-pVTZ). Except for the latter, these values are in good agreement with the experimental GED data of 90(10):10(10)%. A comparative analysis of similar compounds, phenylcyclohexane and 1-phenylheterocyclohexanes, was performed. Conformational properties depend on the CPhsbnd X bond distance and hyperconjugation between the phenyl ring and the lone pair on the heteroatom. The contribution of the axial form of 1-phenylcyclohexane derivatives increases in the series of the heteroatom X in the cyclohexane ring: C → N → Si → P.

  20. Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps.

    PubMed

    Marsico, Franco; Burastero, Osvaldo; Defelipe, Lucas A; Lopez, Elias Daniel; Arrar, Mehrnoosh; Turjanski, Adrián G; Marti, Marcelo A

    2017-09-11

    Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DNA-induced conformational changes in cyclic AMP receptor protein: detection and mapping by a protein footprinting technique using multiple chemical proteases.

    PubMed

    Baichoo, N; Heyduk, T

    1999-07-02

    Cyclic AMP receptor protein (CRP) is a regulator of transcription in Escherichia coli which mediates its activity by binding specific DNA sequences in a cyclic AMP-dependent manner. The interaction of CRP with specific DNA was probed by a protein footprinting technique using chemical proteases of different charge, size, and hydrophobicity. The experimental data were compared with known crystal structures of cAMP-CRP and cAMP-CRP-DNA complexes to determine a correlation between the structure of the complexes, the nature of the chemical protease and protein cleavage patterns. In addition, such comparison allowed us to determine if DNA binding in solution induced conformational changes in the protein not apparent in the crystal structure. In the cAMP-CRP-DNA complex, both the protections and the enhancements of proteolytic cleavage were observed outside of the known CRP-DNA interface, suggesting that CRP undergoes a conformational change upon binding DNA. Among the observed changes, the most interesting were those around the B alpha-helix and beta-strand 8, since this region overlaps with the activation region 2 which CRP uses for protein-protein interactions with RNA polymerase. DNA-induced changes were observed also in the region involved in CRP-CytR interaction and in CRP intersubunit contact regions. These data suggest that binding of DNA in solution induces conformational changes in CRP which can be transmitted via intersubunit contacts to regions of the protein involved in interactions with other members of transcriptional machinery.

  2. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    PubMed

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  3. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.

    PubMed

    Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen

    2006-11-02

    NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.

  4. Octahedral adducts of dichlorosilane with substituted pyridines: synthesis, reactivity and a comparison of their structures and (29)si NMR chemical shifts.

    PubMed

    Fester, Gerrit W; Wagler, Jörg; Brendler, Erica; Böhme, Uwe; Roewer, Gerhard; Kroke, Edwin

    2008-01-01

    H(2)SiCl(2) and substituted pyridines (Rpy) form adducts of the type all-trans-SiH(2*)Cl(2)2 Rpy. Pyridines with substituents in the 4- (CH(3), C(2)H(5), H(2)C=CH, (CH(3))(3)C, (CH(3))(2)N) and 3-positions (Br) give the colourless solids 1 a-f. The reaction with pyrazine results in the first 1:2 adduct (2) of H(2)SiCl(2) with an electron-deficient heteroaromatic compound. Treatment of 1 d and 1 e with CHCl(3) yields the ionic complexes [SiH(2)(Rpy)(4)]Cl(2*)6 CHCl(3) (Rpy=4-methylpyridine (3 d) and 4-ethylpyridine (3 e)). All products are investigated by single-crystal X-ray diffraction and (29)Si CP/MAS NMR spectroscopy. The Si atoms are found to be situated on centres of symmetry (inversion, rotation), and the Si-N distances vary between 193.3 pm for 1 c (4-(dimethylamino)pyridine complex) and 197.3 pm for 2. Interestingly, the pyridine moieties are coplanar and nearly in an eclipsed position with respect to the SiH(2) units, except for the ethyl-substituted derivative 1 e, which shows a more staggered conformation in the solid state. Calculation of the energy profile for the rotation of one pyridine ring indicates two minima that are separated by only 1.2 kJ mol(-1) and a maximum barrier of 12.5 kJ mol(-1). The (29)Si NMR chemical shifts (delta(iso)) range from -145.2 to -152.2 ppm and correlate with the electron density at the Si atoms, in other words with the +I and +M effects of the substituents. Again, compound 1 e is an exception and shows the highest shielding. The bonding situation at the Si atoms and the (29)Si NMR tensor components are analysed by quantum chemical methods at the density functional theory level. The natural bond orbital analysis indicates polar covalent Si-H bonds and very polar Si-Cl bonds, with the highest bond polarisation being observed for the Si-N interaction, which must be considered a donor-acceptor interaction. An analysis of the topological properties of the electron distribution (AIM) suggests a Lewis structure, thereby

  5. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  6. Conformational properties of 1-cyano-1-silacyclohexane, C5H10SiHCN: Gas electron diffraction, low-temperature NMR and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belyakov, Alexander V.; Sigolaev, Yrii F.; Shlykov, Sergey A.; Wallevik, Sunna Ó.; Jonsdottir, Nanna R.; Jonsdottir, Sigridur; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2017-03-01

    The conformational preference of the cyano group of the 1-cyano-1-silacyclohexane was studied experimentally by means of gas electron diffraction (GED) and dynamic nuclear magnetic resonance (DNMR) as well as by quantum chemical (QC) calculations applying high-level coupled cluster methods as well as DFT methods. According to the GED experiment, the compound exists in the gas-phase as a mixture of two conformers possessing the chair conformation of the six-membered ring and Cs symmetry while differing in the axial or equatorial position of the substituent (axial = 84(12) mol %/equatorial = 16(12) mol %) at T = 279(3) K, corresponding to an A value (Gax - Geq) of -1.0(4) kcal mol-1. Gas-phase CCSD(T) calculations predict an A value of -0.72 kcal mol-1 at 279 K. In contrast, the low-temperature 13C NMR experiments resulted in an axial/equatorial ratio of 35/65 mol % at 120 K corresponding to an A value of 0.14 kcal mol-1. An average value for ΔG#e→a = 5.6 ± 0.1 kcal mol-1 was obtained for the temperature range 110-145 K. The dramatically different conformational behaviour in the gas-phase (GED) compared to the liquid phase (DNMR) suggests a strong solvation effect. According to natural bond orbital analysis the axial conformer of the title compound is an example of stabilization of a form, which is not favored by electrostatic effects and is favored predominantly by steric and conjugation effects.

  7. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  8. Geometries and tautomerism of OHN hydrogen bonds in aprotic solution probed by H/D isotope effects on (13)C NMR chemical shifts.

    PubMed

    Tolstoy, Peter M; Guo, Jing; Koeppe, Benjamin; Golubev, Nikolai S; Denisov, Gleb S; Smirnov, Sergei N; Limbach, Hans-Heinrich

    2010-10-14

    The (1)H and (13)C NMR spectra of 17 OHN hydrogen-bonded complexes formed by CH(3)(13)COOH(D) with 14 substituted pyridines, 2 amines, and N-methylimidazole have been measured in the temperature region between 110 and 150 K using CDF(3)/CDF(2)Cl mixture as solvent. The slow proton and hydrogen bond exchange regime was reached, and the H/D isotope effects on the (13)C chemical shifts of the carboxyl group were measured. In combination with the analysis of the corresponding (1)H chemical shifts, it was possible to distinguish between OHN hydrogen bonds exhibiting a single proton position and those exhibiting a fast proton tautomerism between molecular and zwitterionic forms. Using H-bond correlations, we relate the H/D isotope effects on the (13)C chemical shifts of the carboxyl group with the OHN hydrogen bond geometries.

  9. Effect of Ca2+ on the 1H NMR chemical shift of the methyl signal of oversulphated chondroitin sulphate, a contaminant in heparin.

    PubMed

    McEwen, Ian; Rundlöf, Torgny; Ek, Marianne; Hakkarainen, Birgit; Carlin, Gunnar; Arvidsson, Torbjörn

    2009-04-05

    The chemical shift of the methyl signal of oversulphated chondroitin sulphate (OSCS) is dependent on the type and concentration of the counterion. When OSCS is present as a contaminant in heparin sodium, the reported methyl 1H chemical shift is 2.15 +/- 0.02 ppm. In this report, a value of 2.18 +/- 0.01 ppm is reported for the OSCS in the presence of Ca2+. The chemical shift of the methyl signal of pure OSCS varies linearly from 2.13 ppm to 2.18 ppm with increasing amounts of Ca2+, until reaching the saturation point of four Ca2+ ions per OSCS disaccharide unit, which contains four sulphate groups (a 1:1 ratio between sulphate groups and Ca2+). This Ca2+ effect can be used for OSCS identification as well as to facilitate quantification.

  10. Correlation between the temperature dependence of intrinsic MR parameters and thermal dose measured by a rapid chemical shift imaging technique.

    PubMed

    Taylor, B A; Elliott, A M; Hwang, K P; Hazle, J D; Stafford, R J

    2011-12-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R(2)* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue. Using a multigradient echo acquisition and the Stieglitz-McBride algorithm, the temperature sensitivity coefficients of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6 x 1.6 x 4 mm 3,≤ 5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature sensitivity of R(2)* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R(2)* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω = 1.01 ± 0.03), thereby showing that the changes in R(2)* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R(2)* mapping and T1-W imaging, it is shown that changes in the sensitivity of R(2)* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Correlation between the Temperature Dependence of Intrsinsic Mr Parameters and Thermal Dose Measured by a Rapid Chemical Shift Imaging Technique

    PubMed Central

    Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2011-01-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063

  12. Brain temperature and pH measured by (1)H chemical shift imaging of a thulium agent.

    PubMed

    Coman, Daniel; Trubel, Hubert K; Rycyna, Robert E; Hyder, Fahmeed

    2009-02-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non-invasive methods. At 11.7 T, we demonstrate that a thulium-based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by (1)H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi-parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor - which has a predominantly extracellular presence - depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium-based method compared well with other methods for temperature ((1)H MRS of N-acetylaspartate and water; copper-constantan thermocouple wire) and pH ((31)P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in alpha-chloralose-anesthetized and renal-ligated rats revealed temperature (33-34 degrees C) and pH (7.3-7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS).

  13. 1H and 13C NMR chemical shift assignments of spiro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method.

    PubMed

    Khalilov, L M; Tulyabaev, A R; Yanybin, V M; Tuktarov, A R

    2011-06-01

    The (1)H and (13)C NMR chemical shifts of spiro-cycloalkylidene[60]fullerenes were assigned using experimental NMR data and the Density Functional Theory (DFT)-Gauge Independence Of Atomic Orbitals method (GAIO) calculation method in the Perdew Burke Ernzerhof (PBE)/3z approach. The calculated values of the (13)C NMR chemical shifts adequately reproduce the experimental values at this quantum chemistry approach. Similar assignments will be helpful for (13)C NMR spectral analysis of homo- and methano[60]fullerene derivatives for structure elucidation and to determine the influence of fullerene frames on substituents and the influence of substituents on fullerene cores.

  14. Novel use of chemical shift in NMR as molecular descriptor: a first report on modeling carbonic anhydrase inhibitory activity and related parameters.

    PubMed

    Khadikar, Padmakar V; Sharma, Vimukta; Karmarkar, Sneha; Supuran, Claudiu T

    2005-02-15

    A novel use of NMR chemical shift of the SO(2)NH(2) protons (in dioxane as solvent) as a molecular descriptor is described for modeling the inhibition constant for benzene sulfonamides against the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The methodology is extended to model diuretic activity and lipophilicity of benzene sulfonamide derivatives. The regression analysis of the data has shown that the NMR chemical shift is incapable of modeling lipophilicity. However, it is quite useful for modeling the diuretic activity of these derivatives. The results are compared with those obtained using distance-based topological indices: Wiener (W)-, Szeged (Sz)-, and PI (Padmakar-Ivan) indices.

  15. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    NASA Astrophysics Data System (ADS)

    Basu, T.; Kumar, M.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.; Som, T.

    2015-09-01

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5-15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  16. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    SciTech Connect

    Basu, T.; Kumar, M.; Som, T.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.

    2015-09-14

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  17. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    PubMed

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  18. MRI chemical shift imaging of the fat content of the pancreas and liver of patients with type 2 diabetes mellitus.

    PubMed

    Chai, Jun; Liu, Peng; Jin, Erhu; Su, Tianhao; Zhang, Jie; Shi, Kaining; Hong, X U; Yin, Jie; Yu, Hengchi

    2016-02-01

    The present study aimed to investigate the association between the content and distribution of fat in the pancreas and liver in patients with type 2 diabetes mellitus (T2DM). A total of 70 patients newly diagnosed with T2DM (T2DM group) and 30 healthy volunteers (normal control group) were enrolled in the present study. Dual-echo magnetic resonance (MR) chemical shift imaging was used to measure the fat content of the liver and the head, body and tail regions of the pancreas. In addition, the distribution of fat in the various regions of the pancreas, as well as the average fat content of the pancreas versus the liver, were compared. The fat content of the pancreatic head, body and tail regions of the T2DM group were 5.59±4.70, 4.80±3.75 and 4.89±3.86%, respectively. The fat content of these regions in the normal control group were 3.89±2.47, 3.30±2.11 and 3.23±2.23%, respectively. The average fat content of the pancreas was 5.19±3.75% for the T2DM group and 3.47±2.00% for the normal control group. The average fat content of the liver was 9.87±3.19% for the T2DM group and 7.24±2.38% for the normal control group. Therefore, the results from MR chemical shift imaging suggested that there were no significant differences in the distribution of fat between the pancreas of patients newly diagnosed with T2DM and that from the healthy population; however, the average fat content in the pancreas of the T2DM group was significantly higher (F=3.597; P<0.05), as compared with the normal control group. In addition, there was no correlation between the fat contents in the pancreas and liver in patients newly diagnosed with T2DM and the healthy population.

  19. A Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis.

    PubMed

    Hughes, Robert L; Johnson, Luke A; Behiry, Enas M; Loveridge, E Joel; Allemann, Rudolf K

    2017-04-18

    Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis is described. Using DHFR from Escherichia coli (EcDHFR), selective side-chain (13)C labeling of methionine and tryptophan residues is shown to be sufficient to detect the closed-to-occluded conformational transition that follows the chemical step in the catalytic cycle, with clear chemical shift perturbations found for both methionine methyl and tryptophan indole groups. In contrast, no such perturbations are seen for the DHFR from the psychrophile Moritella profunda, where the equivalent conformational change is absent. Like EcDHFR, Salmonella enterica DHFR shows experimental evidence of a large-scale conformational change following hydride transfer that relies on conservation of a key hydrogen bonding interaction between the M20 and GH loops, directly comparable to the closed-to-occluded conformational change observed in EcDHFR. For the hyperthermophile Thermotoga maritima, no chemical shift perturbations were observed, suggesting that no major conformational change occurs during the catalytic cycle. In spite of their conserved tertiary structures, DHFRs display variations in conformational sampling that occurs concurrently with catalysis.

  20. Probing Conformational Rescue Induced by a Chemical Corrector of F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutant*

    PubMed Central

    Yu, Wilson; Chiaw, Patrick Kim; Bear, Christine E.

    2011-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule corrector compounds have been identified using high throughput screens, which partially rescue the trafficking defect of F508del-CFTR, allowing a fraction of the mutant protein to escape endoplasmic reticulum retention and traffic to the plasma membrane, where it exhibits partial function as a cAMP-regulated chloride channel. A subset of such corrector compounds binds directly to the mutant protein, prompting the hypothesis that they rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis directly by evaluating the consequences of a corrector compound on the conformation of each nucleotide binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. Interestingly, we found that VRT-325 was capable of partially restoring compactness in NBD1. However, VRT-325 had no detectable effect on the conformation of the second half of the molecule. In comparison, ablation of the di-arginine sequence, R553XR555 (F508del-KXK-CFTR), modified protease susceptibility of NBD1, NBD2, and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together, these interventions restored processing of F508del-CFTR to near wild type. Importantly, however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. Importantly, this defect in channel activation can be fully corrected by the addition of the potentiator, VX-770. PMID:21602569

  1. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  2. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  3. T1-corrected fat quantification using chemical shift-based water/fat separation: application to skeletal muscle

    PubMed Central

    Karampinos, Dimitrios C.; Yu, Huzanzhou; Shimakawa, Ann; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Chemical shift based water/fat separation, like iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL), has been proposed for quantifying intermuscular adipose tissue (IMAT). An important confounding factor in IDEAL-based IMAT quantification is the large difference in T1 between muscle and fat, which can cause significant overestimation in the fat fraction. This T1 bias effect is usually reduced by employing small flip angles. T1-correction can be performed by employing at least two different flip angles and fitting for T1 of water and fat. In the present work, a novel approach for the water/fat separation problem in a dual flip angle experiment is introduced and a new approach for the selection of the two flip angles, labeled as the unequal small flip angle approach, is developed, aiming to improve the noise efficiency of the T1-correction step relative to existing approaches. It is shown that the use of flip angles, selected such the muscle water signal is assumed to be T1-independent for the first flip angle and the fat signal is assumed to be T1-independent for the second flip angle, has superior noise performance to the use of equal small flip angles (no T1 estimation required) and the use of large flip angles (T1 estimation required). PMID:21452279

  4. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    PubMed

    Toy, Mehmet; Tanak, Hasan

    2016-01-05

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  5. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  6. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by (19)F chemical shift imaging.

    PubMed

    Coman, Daniel; Sanganahalli, Basavaraju G; Cheng, David; McCarthy, Timothy; Rothman, Douglas L; Hyder, Fahmeed

    2014-05-01

    (19)F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-d-glucose (FDG) and 2-fluoro-2-deoxy-d-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, (19)F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500 mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with (19)F 2D chemical shift imaging (CSI) at 11.7 T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by (19)F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Determination of the Chemical-Shift Difference between the Lactate Multiplets and Its pH Dependence

    NASA Astrophysics Data System (ADS)

    Bunse, Michael; Jung, Wulf-Ingo; Dietze, Günther; Lutz, Otto

    1996-09-01

    A volume-selective NMR method is presented for very exact determination of the difference of the Larmor frequencies between the coupled resonances of homonuclear AX3spin systems, as, for example, lactate. The frequency difference can be determined with an accuracy of 0.003 ppm even if only the doublet of the spin system can be detected. The method is based on the effects of homonuclear polarization transfer which occurs in localized double-spin-echo spectroscopy. It is used for determination of the chemical-shift difference of the lactate multiplets, which depends on the degree of dissociation and consequently on pH. Measurements were performed with a 1.5 T Siemens Magnetom SP 63 whole-body imager on solutions of lactate and acetic acid in physiological sodium chloride solution with pH from 1 to 11. As a consequence of these measurements, conclusions are possible for the optimum echo time for PRESS measurements which avoid signal losses from polarization transfer. Furthermore, the possibility of localized pH determination by this effect is discussed.

  8. Water Solvent Effect on Theoretical Evaluation of (1)H NMR Chemical Shifts: o-Methyl-Inositol Isomer.

    PubMed

    Dos Santos, Hélio F; Chagas, Marcelo A; De Souza, Leonardo A; Rocha, Willian R; De Almeida, Mauro V; Anconi, Cleber P A; De Almeida, Wagner B

    2017-04-13

    In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of (1)H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in the (1)H NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP (1)H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimental (1)H NMR spectrum measured in D2O was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.

  9. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    NASA Astrophysics Data System (ADS)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  10. Rotational Spectrum, Conformational Composition, and Quantum Chemical Calculations of Cyanomethyl Formate (HC(O)OCH2C≡N), a Compound of Potential Astrochemical Interest.

    PubMed

    Samdal, Svein; Møllendal, Harald; Carles, Sophie

    2015-08-27

    The rotational spectrum of cyanomethyl formate (HC(O)OCH2C≡N) has been recorded in the 12–123 GHz spectral range. The spectra of two conformers were assigned. The rotamer denoted I has a symmetry plane and two out-of plane hydrogen atoms belonging to the cyanomethyl (CH2CN) moiety. In the conformer called II, the cyanomethyl group is rotated 80.3° out of this plane. Conformer I has an energy that is 1.4(6) kJ/mol lower than the energy of II according to relative intensity measurements. A large number of rotational transitions have been assigned for the ground and vibrationally excited states of the two conformers and accurate spectroscopic constants have been obtained. These constants should predict frequencies of transitions outside the investigated spectral range with a very high degree of precision. It is suggested that cyanomethyl formate is a potential interstellar compound. This suggestion is based on the fact that its congener methyl formate (HC(O)OCH3) exists across a large variety of interstellar environments and the fact that cyanides are very prevalent in the Universe. The experimental work has been augmented by high-level quantum chemical calculations. The CCSD/cc-pVQZ calculations are found to predict structures of the two forms that are very close to the Born–Oppenheimer equilibrium structures. MP2/cc-pVTZ predictions of several vibration–rotation interaction constants were generally found to be rather inaccurate. A gas-phase reaction between methyl formate and the cyanomethyl radical CH2CN to produce a hydrogen atom and cyanomethyl formate was mimicked using MP2/cc-pVTZ calculations. It was found that this reaction is not favored thermodynamically. It is also conjectured that the possible formation of cyanomethyl formate might be catalyzed and take place on interstellar particles.

  11. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  12. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  13. A proposal for guideline for prevention of allergic occupational asthma in conformity with the globally harmonized system of classification and labelling of chemicals (GHS).

    PubMed

    Sato, K; Kusaka, Y

    2007-01-01

    The use of chemical products to enhance and improve life is a widespread worldwide practice. Alongside the benefits of these products, there is also the potential of chemicals for adverse effects to people or the environment. As a result, a number of countries or organizations have developed laws or regulations over the years that require information to be prepared and transmitted to those using chemicals, through labels or Safety Data Sheets (SDS). Their differences are significant enough to result in different labels or SDS for the same product in different countries. In July 2003, United Nations (UN) recommended the globally harmonized system of classification and labelling of chemicals (GHS). We, special committee of Japanese Society of Occupational and Environmental Allergy proposed a guideline for prevention of allergic occupational asthma and sensitizers (n=60) causing occupational asthma or contact dermatitis in conformity with respiratory and skin sensitization criteria of GHS. We should propose these 60 sensitizers to the chemical industry association and governments to control, regulate and label them in each country.

  14. Elucidation of the resting state of a rhodium NNN-pincer hydrogenation catalyst that features a remarkably upfield hydride (1)H NMR chemical shift.

    PubMed

    Hänninen, Mikko M; Zamora, Matthew T; MacNeil, Connor S; Knott, Jackson P; Hayes, Paul G

    2016-01-11

    Rhodium(I) alkene complexes of an NNN-pincer ligand catalyze the hydrogenation of alkenes, including ethylene. The terminal or resting state of the catalyst, which exhibits an unprecedentedly upfield Rh-hydride (1)H NMR chemical shift, has been isolated and a synthetic cycle for regenerating the catalytically active species has been established.

  15. Quantum-chemical analysis of paramagnetic 13C NMR shifts of iron-bound cyanide ions in heme-protein environments

    NASA Astrophysics Data System (ADS)

    Yamaki, Daisuke; Hada, Masahiko

    2012-12-01

    Paramagnetic 13C NMR chemical shifts of iron-bound cyanide ions located in biological environments such as heme-proteins are significantly sensitive to the environments. These chemical shifts are due to negative spin density at 13C induced by the open-shell iron center. In order to examine the environments effects on the electronic states around heme parts, ab initio calculations were performed for model systems of heme-proteins. The proximal residues in proteinparts of cytochrome c, hemoglobin, myoglobin and horseradish peroxidase were included in the model systems with the common active site (cyanide imidazole porphyrinato iron(III)) to take account of the environments effects. The calculated paramagnetic shifts of model systems reproduce the experimental trend of corresponding heme-proteins. It is found that the effects of proximal residues on the electronic states of the heme-parts are significant for these hemeproteins. In this abstract we focused on the calculations and analysis of cytochrome c.

  16. Computational Study of (13)C NMR Chemical Shift Anisotropy Patterns in C20H10 and [C20H10](4-). Insights into Their Variation upon Planarization and Formation of Concentric Aromatic Species in the Smaller Isolated-Pentagon Structural Motif.

    PubMed

    Muñoz-Castro, Alvaro; Caimanque-Aguilar, Wilson; Morales-Verdejo, Cesar

    2017-04-06

    Corannulene, C20H10, exhibits a concave surface in the ground state that is able to experience a bowl-to-bowl inversion through a planar conformation. Such a structure is the smaller example resembling an isolated-pentagon motif, as a relevant fragment in fullerene chemistry. Here, we explored the differences between bowl and planar conformations involving both energetic and (13)C NMR properties, for the neutral and tetraanionic species by using density functional theory (DFT) methods. This allows us to understand the variation of the chemical environment at the carbon atoms upon planarization of this representive motif. Our results reveal that the variation of the chemical shift comes about from the variation of different main components of the shielding tensor, according to the relative position of the carbon atoms in the structure (i.e., rim, hub, and protonated), which is more relevant for both hub and protonated sites, in contrast to the rim carbon remaining almost unshifted. Interestingly, the planar transition state exhibits a more favorable bonding situation than the bowl-shaped conformation; however, the higher strain is enough to overcome this extra stabilization. Upon reduction to the tetraanionic counterpart (C20H10(4-)), a lesser strain in the planar conformation is observed, decreasing the inversion barrier. In addition, the formation of the concentric aromatic ring systems in C20H10(4-), results in a more axially symmetric chemical shift anisotropy (CSA) tensor for the hub carbons, accounting in a local manner, for the concentric aromatic behavior in such structure in contrast to the neutral parent. These observations can be useful to evaluate the aromatic behavior of teh isolated-pentagon rule (IPR) motif in fullerene cages.

  17. Post-translational modification and conformational state of Heat Shock Protein 90 differentially affect binding of chemically diverse small molecule inhibitors

    PubMed Central

    Beebe, Kristin; Mollapour, Mehdi; Scroggins, Bradley; Prodromou, Chrisostomos; Xu, Wanping; Tokita, Mari; Taldone, Tony; Pullen, Lester; Zierer, Bettina K.; Lee, Min-Jung; Trepel, Jane; Buchner, Johannes; Bolon, Daniel; Chiosis, Gabriela; Neckers, Leonard

    2013-01-01

    Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes that facilitates the conformational maturation and function of a diverse protein clientele, including aberrant and/or over-expressed proteins that are involved in cancer growth and survival. A role for Hsp90 in supporting the protein homeostasis of cancer cells has buoyed interest in the utility of Hsp90 inhibitors as anti-cancer drugs. Despite the fact that all clinically evaluated Hsp90 inhibitors target an identical nucleotide-binding pocket in the N domain of the chaperone, the precise determinants that affect drug binding in the cellular environment remain unclear, and it is possible that chemically distinct inhibitors may not share similar binding preferences. Here we demonstrate that two chemically unrelated Hsp90 inhibitors, the benzoquinone ansamycin geldanamycin and the purine analog PU-H71, select for overlapping but not identical subpopulations of total cellular Hsp90, even though both inhibitors bind to an amino terminal nucleotide pocket and prevent N domain dimerization. Our data also suggest that PU-H71 is able to access a broader range of N domain undimerized Hsp90 conformations than is geldanamycin and is less affected by Hsp90 phosphorylation, consistent with its broader and more potent anti-tumor activity. A more complete understanding of the impact of the cellular milieu on small molecule inhibitor binding to Hsp90 should facilitate their more effective use in the clinic. PMID:23867252

  18. Conformational stability, molecular orbital studies (chemical hardness and potential), vibrational investigation and theoretical NBO analysis of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene.

    PubMed

    Saravanan, S; Balachandran, V; Vishwanathan, K

    2014-04-24

    The FT-IR and FT-Raman spectra of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene (musk ambrette) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The total energy calculations of musk ambrette were tried for the possible conformers. The molecular structure, geometry optimization, vibrational frequencies were obtained by the density functional theory (DFT) using B3LYP and LSDA method with 6-311G(d,p) basis set for the most stable conformer "C1". The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated and the scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The stability of the molecule arising from hyper conjugate interactions and the charge delocalization has been analyzed using bond orbital (NBO) analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The dipole moment (μ), polarizability (α), anisotropy polarizability (Δα) and first hyperpolarizability (βtot) of the molecule have been reported. The thermodynamic functions (heat capacity, entropy and enthalpy) were obtained for the range of temperature 100-1000 K. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  19. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state.

    PubMed

    Uldry, Anne-Christine; Griffin, John M; Yates, Jonathan R; Pérez-Torralba, Marta; María, M Dolores Santa; Webber, Amy L; Beaumont, Maximus L L; Samoson, Ago; Claramunt, Rosa María; Pickard, Chris J; Brown, Steven P

    2008-01-23

    Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude

  20. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine. Copyright © 2012 Wiley Periodicals, Inc.

  1. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation.

    PubMed

    Nagao, Takashi; Mishima, Daisuke; Javkhlantugs, Namsrai; Wang, Jun; Ishioka, Daisuke; Yokota, Kiyonobu; Norisada, Kazushi; Kawamura, Izuru; Ueda, Kazuyoshi; Naito, Akira

    2015-11-01

    The structure, topology and orientation of membrane-bound antibiotic alamethicin were studied using solid state nuclear magnetic resonance (NMR) spectroscopy. (13)C chemical shift interaction was observed in [1-(13)C]-labeled alamethicin. The isotropic chemical shift values indicated that alamethicin forms a helical structure in the entire region. The chemical shift anisotropy of the carbonyl carbon of isotopically labeled alamethicin was also analyzed with the assumption that alamethicin molecules rotate rapidly about the bilayer normal of the phospholipid bilayers. It is considered that the adjacent peptide planes form an angle of 100° or 120° when it forms α-helix or 310-helix, respectively. These properties lead to an oscillation of the chemical shift anisotropy with respect to the phase angle of the peptide plane. Anisotropic data were acquired for the 4 and 7 sites of the N- and C-termini, respectively. The results indicated that the helical axes for the N- and C-termini were tilted 17° and 32° to the bilayer normal, respectively. The chemical shift oscillation curves indicate that the N- and C-termini form the α-helix and 310-helix, respectively. The C-terminal 310-helix of alamethicin in the bilayer was experimentally observed and the unique bending structure of alamethicin was further confirmed by measuring the internuclear distances of [1-(13)C] and [(15)N] doubly-labeled alamethicin. Molecular dynamics simulation of alamethicin embedded into dimyristoyl phophatidylcholine (DMPC) bilayers indicates that the helical axes for α-helical N- and 310-helical C-termini are tilted 12° and 32° to the bilayer normal, respectively, which is in good agreement with the solid state NMR results. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Temperature dependence of conformation, chemical state, and metal-directed assembly of tetrapyridyl-porphyrin on Cu(111)

    SciTech Connect

    Klappenberger, F.; Auwaerter, W.; Marschall, M.; Weber-Bargioni, A.; Schiffrin, A.; Barth, J. V.

    2008-12-07

    We present a combined scanning tunneling microscopy (STM), near-edge x-ray-absorption fine-structure, and x-ray photoemission spectroscopy (XPS) study on the bonding and ordering of tetrapyridyl-porphyrin molecules on the Cu(111) surface in the 300-500 K temperature range. Following deposition at 300 K the molecules are adsorbed with a pronounced conformational adaptation of the anchored species featuring a saddle-shaped macrocycle and terminal groups pointing toward the substrate. Upon moderate annealing supramolecular chains evolve that are stabilized by metal-ligand interactions between the mesopyridyl substituents and copper adatoms resulting in twofold copper coordination. Annealing to temperatures exceeding 450 K strongly alters the molecular appearance in high-resolution STM data. This modification was also induced by controlled voltage pulses and related to a deprotonation of the molecule by XPS. Under appropriate conditions a novel binding motif leads to honeycomb structures coexisting with the chain segments. The conformation withstands annealing without large modification.

  3. Molecular structure and conformations of caramboxin, a natural neurotoxin from the star fruit: A computational study

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2015-01-01

    Using density functional theory calculations we investigate the molecular structure and conformations of caramboxin, a neurotoxin recently isolated from the star fruit Averroha carambola. Among the seven conformers that exist within an energy window of ∼16.0 kcal/mol, two of them are the most favored ones with an energy difference of less than 2.0 kcal/mol. The computed chemical shifts of these two low-energy conformers are in good agreement with the experimental values determined in deuterated dimethylsulfoxide thus confirming the 2D chemical structure assigned to the neurotoxin. A topological analysis of the theoretical electronic charge density of four caramboxin conformers reveals the existence of intramolecular CH⋯O/N interactions which, in addition to the classical OH⋯O/N H-bonding interactions, contribute to decrease the conformational freedom of the neurotoxin.

  4. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

    PubMed Central

    Coman, Daniel; Trubel, Hubert K.; Rycyna, Robert E.; Hyder, Fahmeed

    2009-01-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly due to lack of precise and non-invasive methods. At 11.7T, we demonstrate that a thulium-based macrocyclic complex infused through the blood stream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi-parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium-based method compared well with other methods for temperature (1H magnetic resonance spectroscopy (MRS) of N-acetyl aspartate and water; copper-constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of differing pH values observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α-chloralose anesthetized and renal-ligated rats revealed temperature (33–34 °C) and pH (7.3–7.4) distributions in the cerebral cortex which are in agreement with observations by other methods. These results demonstrate that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with 1H CSI. PMID:19130468

  5. The recognition of multi-class protein folds by adding average chemical shifts of secondary structure elements.

    PubMed

    Feng, Zhenxing; Hu, Xiuzhen; Jiang, Zhuo; Song, Hangyu; Ashraf, Muhammad Aqeel

    2016-03-01

    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.

  6. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor.

    PubMed

    Del Grande, Filippo; Tatizawa-Shiga, Ney; Jalali Farahani, Sahar; Chalian, Majid; Fayad, Laura Marie

    2014-06-01

    To investigate chemical shift imaging (CSI) with in-phase and opposed-phase (OP) gradient-echo sequences as an alternative sequence to spin-echo T1 imaging for defining intra-medullary skeletal tumor extent. This retrospective HIPAA-compliant study was approved by our institutional institutional review board (IRB). Twenty-three subjects with histologically-proven tumors (17 appendicular, 6 axial) underwent magnetic resonance imaging (MRI) with T1-weighted spin echo (T1SE), fluid-sensitive, CSI, and contrast-enhanced T1 sequences. One observer recorded intra-medullary tumor extent (millimeters), with 153 total measurements on each sequence. Red marrow grade [0 (none), 1 (<50