Sample records for chemical society san

  1. 6. Photocopy of painting (from California Historical Society, San Francisco, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of painting (from California Historical Society, San Francisco, California, Oriana Day, artist, 1879) EXTERIOR, VIEW FROM AN ANGLE OF MISSION AND SURROUNDING STRUCTURES - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  2. 8. Photocopy of drawing (from California Historical Society, San Francisco, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of drawing (from California Historical Society, San Francisco, California, Sherman, artist, before 1846) GENERAL VIEW OF MISSION (RIGHT), BARRACKS (TO LEFT OF MISSION) & GENERAL VALLEJO RESIDENCE (CENTER, WITH TOWER) - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  3. 78 FR 61958 - San Juan County Historical Society; Notice of Preliminary Determination of A Qualifying Conduit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-08

    ... Historical Society; Notice of Preliminary Determination of A Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On September 20, 2013, San Juan County Historical Society filed... County, Colorado. Applicant Contact: Beverly Rich, San Juan County Historical Society, P.O. Box 154...

  4. Metastasis Research Society VII International Congress (Part II). 7-10 October 1998, San Diego, CA, USA.

    PubMed

    Chambers, A F

    1999-02-01

    The Metastasis Research Society (MRS) has held its International Congress every two years since 1986, and alternates between European and North American meeting venues. The next MRS International Congress will be held in London, UK in the year 2000, and will be hosted by the current MRS President, Dr. Suzanne Eccles (Institute of Cancer Research, Sutton, UK). Dr. Eccles took over from the out-going President, Dr. William Stetler-Stevenson (National Institutes of Health, Bethesda, MD, USA), at the San Diego meeting. Information on joining the Metastasis Research Society, which includes a subscription to the Society's journal, Clinical and Experimental Metastasis, can be obtained from Dr. Eccles (suzan@icr.ac.uk) or from the newly-elected Secretary/Treasurer Dr. Danny Welch (Hershey, PA, USA; drw9@psu.edu). The meeting was organized by Darwin Medical Communications Ltd (Gill Heaton, Oxford, UK), who have placed the full program on the meeting web site (http:@www.sparks.co.uk/mrs). It is envisaged that full abstracts of all the presentations will be placed on the Metastasis Research Society web site, which is currently under construction. Corporate sponsors for the San Diego meeting included Agouron Pharmaceuticals, Becton Dickinson & Co, Zeneca Pharma SA, Schering AG, AntiCancer Inc, Oncogene Research Products, Daiichi Seiyaku Co Ltd and Novartis Pharma AG.

  5. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    USDA-ARS?s Scientific Manuscript database

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  6. A total extinction confidently hoped for: the destruction of Cape San society under Dutch colonial rule, 1700-1795.

    PubMed

    Adhikari, Mohamed

    2010-01-01

    San (Bushman) society in the Cape Colony was almost completely annihilated during the eighteenth and nineteenth centuries as a result of land confiscation, massacre, forced labour and cultural suppression that accompanied colonial rule. Whereas similar obliterations of indigenous peoples in other parts of the world have resulted in major public controversies and heated debate amongst academics about the genocidal nature of these episodes, in South Africa the issue has effectively been ignored aside from passing, often polemical, references to it as genocide. Even recent studies that have approached the mass killing of the Cape San with sensitivity and insight do not address it as a case of genocide. This article sets out to redress this imbalance in part by analysing the dynamic of frontier conflict between San and settler under Dutch colonial rule as genocide. It demonstrates both the exterminatory intent underlying settler violence as well as the complicity of a weak colonial state in these depredations, including its sanctioning of the root-and-branch eradication of the San.

  7. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    USDA-ARS?s Scientific Manuscript database

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  8. Linguistic Society of America Annual Meeting (44th, San Francisco, California, December 29-31, 1969). Meeting Handbook.

    ERIC Educational Resources Information Center

    Grognet, Allene Guss, Ed.

    This handbook was compiled for the 44th Linguistic Society of America Meeting in San Francisco, December 29-31, 1969. It consists of the official program for the meeting, abstracts of the 78 papers presented there, and advertisements. The abstracts are arranged in alphabetical order by author, and in some cases are accompanied by handouts. (DO)

  9. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  10. Chemical analyses for selected wells in San Joaquin County and part of Contra Costa County, California

    USGS Publications Warehouse

    Keeter, Gail L.

    1980-01-01

    The study area of this report includes the eastern valley area of Contra Costa County and all of San Joaquin County, an area of approximately 1,600 square miles in the northern part of the San Joaquin Valley, Calif. Between December 1977 and December 1978, 1,489 wells were selectively canvassed. During May and June in 1978 and 1979, water samples were collected for chemical analysis from 321 of these wells. Field determinations of alkalinity, conductance, pH, and temperature were made, and individual constituents were analyzed. This report is the fourth in a series of baseline data reports on wells in the Sacramento and San Joaquin Valleys. (USGS)

  11. Chemical Case Studies: Science-Society "Bonding."

    ERIC Educational Resources Information Center

    Hofstein, Avi; Nae, Nehemia

    1981-01-01

    Describes a unit designed to illustrate the "science-society-technology connection," in which three case studies of the chemical industry in Israel are presented to high school chemistry students. Chosen for the unit are case studies on copper production in Timna, on plastics, and on life from the Dead Sea. (CS)

  12. Investigation of Physically and Chemically Ionic Liquid Confinement in Nanoporous Materials by a Combination of SANS, Contrast-Matching SANS, XRD and Nitrogen Adsorption

    NASA Astrophysics Data System (ADS)

    Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.

    2012-02-01

    In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.

  13. Chemical quality of ground water in San Joaquin and part of Contra Costa Counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1981-01-01

    Chemical water-quality conditions were investigated in San Joaquin and part of Contra Costa Counties by canvassing available wells and sampling water from 324 representative wells. Chemical water types varied, with 73 percent of the wells sampled containing either calcium-magnesium bicarbonate, or calcium-sodium bicarbonate type water. Substantial areas contain ground water exceeding water-quality standards for boron, manganese, and nitrate. Trace elements, with the exception of boron and manganese, were present in negligible amounts. (USGS)

  14. American Chemical Society division of fuel chemistry Henry H. Storch award.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemistry

    American Chemical Society Division of Fuel Chemistry Henry H. Storch Award ... The purpose of the Henry H. Storch Award is to recognize distinguished contributions worldwide to fundamental or engineering research on the chemistry and utilization of all hydrocarbon fuels, with the exception of petroleum. ... The award was established in 1964 by the American Chemical Society Division of Fuel Chemistry and administered by the Division until 1985.

  15. 8. GENERAL VIEW FROM SOUTHEAST (Title Insurance Co. collection, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW FROM SOUTHEAST (Title Insurance Co. collection, San Diego Historical Society). Historical view, no date, photocopied for HABS, 1975 - Long-Waterman House, 2408 First Avenue, San Diego, San Diego County, CA

  16. Knowledge and Attitude of Iranian Red Crescent Society Volunteers in Dealing with Chemical Attacks.

    PubMed

    Nadjafi, Maryam; Hamzeh Pour, Siavash

    2017-04-01

    To evaluate the knowledge, attitude, and preparedness of Mahabad Red Crescent Society volunteers in dealing with chemical attacks. This prospective cross-sectional study was conducted on 120 Red Crescent Society volunteers in Mahabad City, Iran, during 2014-2015.The knowledge of the volunteers was evaluated and rated using a questionnaire as poor, moderate, and good. Also, the attitude of the volunteers towards the chemical attacks and their preparedness were rated as appropriate and inappropriate using a questionnaire. Data were analyzed using the SPSS software version 21. From a total of 120 volunteers, 62.5% were males. The mean age of the volunteers was 32.0 ± 8.2 years. None of the volunteers had adequate knowledge regarding management of the consequences of chemical terrorist attacks. Only 10 volunteers (8.3%) had appropriate attitude and 7 (5.8%) stated their preparedness for being sent to the crisis zone. Also, 116 volunteers (96.7%) declared that Mahabad Red Crescent Society has an inappropriate level of preparedness to encounter chemical terrorism attacks and release of chemical agents related to petrochemical industrial chlorine resources into the water and wastewater. The findings of the present study show poor knowledge and inappropriate attitude of Mahabad Red Crescent Society volunteers, and rescuers in encountering probable chemical attacks and industrial accidents. Furthermore, the Red Crescent Society had an inappropriate level of preparedness in the field of chemical terrorism from the viewpoint of the studied volunteers.

  17. Between Nationalism and Internationalism: The German Chemical Society In Comparative Perspective, 1867-1945.

    PubMed

    Johnson, Jeffrey Allan

    2017-09-04

    One-hundred fifty years ago, on the eve of German unification, about one-hundred people gathered in Berlin to found the German Chemical Society (DChG) under the charismatic leadership of August Wilhelm von Hofmann, who attracted a large international membership by promoting modern organic chemistry. By 1892, when Emil Fischer succeeded Hofmann, the DChG was the world's largest chemical society. Under Fischer the Society promoted international collaboration with foreign societies, and in 1900 it opened an impressive headquarters, the Hofmann House, where it centralized its greatly expanded literary activity including abstracts and reference publications. Yet a half-century later, after war and racial-national extremism, the house lay in ruins and the Society had ceased to exist. In remembering the Society, one may well ask why its auspicious beginning should have led to this ignominious end. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  19. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE

  20. Chemical Society Reinstates Iranian Chemists; Iranian-American Scholar Arrested

    ERIC Educational Resources Information Center

    Bollag, Burton

    2007-01-01

    The frosty relationship between the United States and Iran has created a chill in many areas of scholarly endeavor. One resulting battle, over whether Iranian scholars can belong to the American Chemical Society, has been largely resolved. But a new imbroglio looms with the arrest of a prominent U.S.-Iranian scholar who was visiting Tehran. The…

  1. 7. Historic American Buildings Survey From California Historical Society, Vischer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey From California Historical Society, Vischer Drawing Original: Prior to 1878 Re-photo: January 1940 VIEW FROM SOUTH - Mission San Rafael Archangel, San Rafael, Marin County, CA

  2. 1. Historic American Buildings Survey From Society of California Pioneers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey From Society of California Pioneers Painting by Renaud Original: Before 1835 Re-photo: January 1940 VIEW FROM SOUTHWEST - Mission San Rafael Archangel, San Rafael, Marin County, CA

  3. Physical and chemical properties of San Francisco Bay, California, 1980

    USGS Publications Warehouse

    Ota, Allan Y.; Schemel, L.E.; Hager, S.W.

    1989-01-01

    The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)

  4. 4. Historic American Buildings Survey From Society of California Pioneers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey From Society of California Pioneers From Vischer Drawing Original: After 1859 Re-photo: January 1940 CHURCH (VIEW FROM SOUTHWEST) - Mission San Rafael Archangel, San Rafael, Marin County, CA

  5. University of California San Francisco (UCSF-1): Chemical-Genetic Interaction Mapping Strategy | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at University of California San Francisco (UCSF-1) developed a chemical-genetic interaction mapping strategy to uncover the impact of cancer gene expression on responses to a panel of emerging therapeutics. To study the impact of aberrant gene activity in isolation, they developed an isogenic model of triple-negative breast cancer (TNBC) using the hormone receptor negative MCF10A non-tumorigenic cell line derived from healthy breast tissue which is diploid and largely devoid of somatic alterations.

  6. Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11-15, 2016, San Diego, CA.

    PubMed

    Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M

    Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.

  7. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    PubMed

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  8. Electronic Publishing and the Journals of the American Chemical Society.

    PubMed

    Spring, Jeffrey D; Garson, Lorrin R

    1996-01-01

    The American Chemical Society is developing a number of initiatives that implement emerging electronic technologies in order to provide a broad range of products and services to members and subscribers. Examples of products currently available, or under development, for access via the World Wide Web include supporting information for journals, electronic ads, color graphics and entire journals. Other activities employ e-mail, CD-ROMs, and softcopy text.

  9. Biopesticides: State of the Art and Future Opportunities by the American Chemical Society

    EPA Pesticide Factsheets

    This chapter from an American Chemical Society symposium reviews areas including how EPA views the benefits of biopesticides, related laws and legal requirements, biopesticide registration, and biopesticide data requirements.

  10. Electronic Publishing and the Journals of the American Chemical Society

    PubMed Central

    Spring, Jeffrey D.; Garson, Lorrin R.

    1996-01-01

    The American Chemical Society is developing a number of initiatives that implement emerging electronic technologies in order to provide a broad range of products and services to members and subscribers. Examples of products currently available, or under development, for access via the World Wide Web include supporting information for journals, electronic ads, color graphics and entire journals. Other activities employ e-mail, CD-ROMs, and softcopy text. PMID:27805172

  11. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    USGS Publications Warehouse

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.

    1997-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  12. American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs

    NASA Astrophysics Data System (ADS)

    Montes, Ingrid; Collazo, Carmen

    2003-10-01

    Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.

  13. Materials Research Society Symposium Proceedings on Diamond, SiC and Nitride Wide Bandgap Semiconductors Held at San Francisco, California on 4-8 April 1994. Volume 339.

    DTIC Science & Technology

    1994-04-08

    demonstrated that there existed no graphite phase at the surface of the as-deposited and 02 plasma treated polycrystalline diamond films. W 3- uO 2.5...diamond, highly ordered pyrolitic graphite ( HOPG ), and an amorphous carbon surface created by 1 keV ion bombardment of diamond. The diamond surface was...Library of Congress Cataloging in Publication Data Materials Research Society. Meeting (1994 : San Francisco, Calif.). Symposium D. Diamond, SiC and nitride

  14. How Linus Pauling Finally Got the Priestley Medal of the American Chemical Society

    NASA Astrophysics Data System (ADS)

    Davenport, Derek A.

    1998-10-01

    Late in 1981 I started firming up plans for a symposium marking the 250th anniversary of the birth of Joseph Priestley in 1733. The symposium was scheduled for the 1983 Fall Meeting of the American Chemical Society to be held in Washington D. C. Because of Priestley's wide-ranging interests and activities, the speakers were to include not only chemists and historians but also a political scientist, a grammarian, and a Unitarian minister. The closing session was to open with Melvin Calvin speaking on "Artificial Photosynthesis"-a phenomenon Priestley was the first to observe, albeit somewhat confusedly. Next came Fred Basolo, then president of the American Chemical Society, on "Synthetic Oxygen Carriers of Biological Interest"-Priestley had abeen among the first to remark on the role of dephlogisticated air (oxygen) in the interconversion of venous and arterial blood.

  15. Data related uncertainty in near-surface vulnerability assessments for agrochemicals in the San Joaquin Valley.

    PubMed

    Loague, Keith; Blanke, James S; Mills, Melissa B; Diaz-Diaz, Ricardo; Corwin, Dennis L

    2012-01-01

    Precious groundwater resources across the United States have been contaminated due to decades-long nonpoint-source applications of agricultural chemicals. Assessing the impact of past, ongoing, and future chemical applications for large-scale agriculture operations is timely for designing best-management practices to prevent subsurface pollution. Presented here are the results from a series of regional-scale vulnerability assessments for the San Joaquin Valley (SJV). Two relatively simple indices, the retardation and attenuation factors, are used to estimate near-surface vulnerabilities based on the chemical properties of 32 pesticides and the variability of both soil characteristics and recharge rates across the SJV. The uncertainties inherit to these assessments, derived from the uncertainties within the chemical and soil data bases, are estimated using first-order analyses. The results are used to screen and rank the chemicals based on mobility and leaching potential, without and with consideration of data-related uncertainties. Chemicals of historic high visibility in the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene dibromide, and simazine) are ranked in the top half of those considered. Vulnerability maps generated for atrazine and DBCP, featured for their legacy status in the study area, clearly illustrate variations within and across the assessments. For example, the leaching potential is greater for DBCP than for atrazine, the leaching potential for DBCP is greater for the spatially variable recharge values than for the average recharge rate, and the leaching potentials for both DBCP and atrazine are greater for the annual recharge estimates than for the monthly recharge estimates. The data-related uncertainties identified in this study can be significant, targeting opportunities for improving future vulnerability assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  16. 78 FR 53243 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0555] RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION...-591 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA. (a) Location. The limits of the...

  17. Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA

    PubMed Central

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.

    2016-01-01

    ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  18. Concentrations of Environmental Chemicals in Urine and Blood Samples of Children from San Luis Potosí, Mexico.

    PubMed

    Perez-Maldonado, Ivan N; Ochoa-Martinez, Angeles C; Orta-Garcia, Sandra T; Ruiz-Vera, Tania; Varela-Silva, Jose A

    2017-08-01

    Human biomonitoring (HBM) is an appreciated tool used to evaluate human exposure to environmental, occupational or lifestyle chemicals. Therefore, the aim of this study was to evaluate the exposure levels for environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico (SLP). This study identifies environmental chemicals of concern such as: arsenic (45.0 ± 15.0 µg/g creatinine), lead (5.40 ± 2.80 µg/dL), t,t-muconic acid (266 ± 220 µg/g creatinine), 1-hydroxypyrene (0.25 ± 0.15 µmol/mol creatinine), PBDEs (28.0 ± 15.0 ng/g lipid), and PCBs (33.0 ± 16.0 ng/g lipid). On the other hand, low mercury (1.25 ± 1.00 µg/L), hippuric acid (0.38 ± 0.15 µg/g creatinine) and total DDT (130 ± 35 ng/g lipid) exposure levels were found. This preliminary study showed the tool's utility, as the general findings revealed chemicals of concern. Moreover, this screening exhibited the need for HBM in the general population of SLP.

  19. Geology of the Right Stepover region between the Rodgers Creek, Healdsburg, and Maacama faults, northern San Francisco Bay region: a contribution to Northern California Geological Society Field Trip Guide, June 6-8, 2003

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei

    2003-01-01

    This Open file report was written as part of a two-day field trip on June 7 and 8, 2003, conducted for the Northern California Geological Society. The first day of this field trip (June 7) was led by McLaughlin and Sarna-Wojcicki in the area of the right- step between the Rodgers Creek- Healdsburg fault zone and the Maacama fault. The second day of the trip (June 8), was led by David Wagner of the California Geological Survey and students having recently completed MS theses at San Jose State University (James Allen) and San Francisco State University (Carrie Randolph-Loar), as well as a student from San Francisco State University whose MS thesis was in progress in June 2003 (Eric Ford). The second day covered the Rodgers Creek fault zone and related faults of the Petaluma Valley area (the Tolay and Petaluma Valley fault zones).

  20. Challenges for Chemistry in the 21st Century: Report on the American Chemical Society Presidential Event

    NASA Astrophysics Data System (ADS)

    Gettys, Nancy S.

    1998-06-01

    On Sunday morning, March 29, 1998, during the 215th American Chemical Society National Meeting in Dallas, TX, a special Presidential Event, "Challenges for Chemistry in the 21st Century", was held. It was sponsored by the American Chemical Society Committee on Science and Chemical and Engineering News as part of its 75th Anniversary. Six outstanding scientists spoke on the future of their chosen fields of study to a standing-room-only audience. The intensity and enthusiasm of these men and women were inspiring. Several common themes emerged. According to these experts, the next century will require greater education in science and technology for the public and greater emphasis on interdisciplinary approaches to science by scientists. The completion of the human genome project and technological advances, including the development of nanotechnology, will be the driving forces of research in chemistry.

  1. 77 FR 54811 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... sponsoring the TriRock Triathlon, consisting of 2000 swimmers swimming a predetermined course. The sponsor... to read as follows: Sec. 165.T11-516 Safety Zone; TriRock Triathlon; San Diego Bay, San Diego, CA. (a...

  2. 5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING SOUTHEAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  3. 4. DETAIL VIEW OF WINDOW AT CHEMICAL STORAGE BUILDING (#1776), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF WINDOW AT CHEMICAL STORAGE BUILDING (#1776), LOOKING EAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  4. 3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING (#1776), LOOKING NORTHWEST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  5. Contaminant levels in fish tissue from San Francisco Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Taberski, K.

    1995-12-31

    Edible fish species were collected from thirteen locations throughout San Francisco Bay, during the spring of 1994, for determination of contaminants levels in muscle tissue. Species collected included white croaker, surfperch, leopard and brown smoothhound sharks, striped bass, white sturgeon and halibut Sixty six composite tissue samples were analyzed for the presence of PAHs, PCBs, pesticides, trace elements and dioxin/furans. The US EPA approach to assessing chemical contaminant data for fish tissue consumption was used for identifying the primary chemicals of concern. Six chemicals or chemical groups were found to exceed screening levels established using the US EPA approach. PCBsmore » (as total Aroclors) exceeded the screening level of 3 ppb in all sixty six tissue samples, with the highest concentrations (638 ppb) found near San Francisco`s industrial areas. Mercury was elevated (> 0.14 ppm) in forty of the sixty-six samples with the highest levels (1.26 ppm) occurring in shark muscle tissues. Concentrations of the organochlorine pesticides dieldrin, total chlordanes and total DDTs exceeded screening levels in a number of samples. Dioxin/furans (as TEQs) were elevated (above 0.15 ppt) in 16 of the 19 samples analyzed. Fish with high lipid content (croaker and surfperch) in their muscle tissue generally exhibited higher contaminant levels while fish with low lipid levels (halibut and shark) exhibited lower organic contaminant levels. Tissue samples taken from North Bay stations most often exhibited high levels of chemical contamination. The California Office of Health Hazard Assessment is currently evaluating the results of this study and has issued an interim Health Advisory concerning the human consumption of fish tissue from San Francisco Bay.« less

  6. San Francisco folio, California, Tamalpais, San Francisco, Concord, San Mateo, and Haywards quadrangles

    USGS Publications Warehouse

    Lawson, Andrew Cowper

    1914-01-01

    The five sheets of the San Francisco folio the Tamalpais, Ban Francisco, Concord, Ban Mateo, and Haywards sheets map a territory lying between latitude 37° 30' and 38° and longitude 122° and 122° 45'. Large parts of four of these sheets cover the waters of the Bay of San Francisco or of the adjacent Pacific Ocean. (See fig. 1.) Within the area mapped are the cities of San Francisco, Oakland, Berkeley, Alameda, Ban Rafael, and San Mateo, and many smaller towns and villages. These cities, which have a population aggregating about 750,000, together form the largest and most important center of commercial and industrial activity on the west coast of the United States. The natural advantages afforded by a great harbor, where the railways from the east meet the ships from all ports of the world, have determined the site of a flourishing cosmopolitan, commercial city on the shores of San Francisco Bay. The bay is encircled by hilly and mountainous country diversified by fertile valley lands and divides the territory mapped into two rather contrasted parts, the western part being again divided by the Golden Gate. It will therefore be convenient to sketch the geographic features under four headings (1) the area east of San Francisco Bay; (2) the San Francisco Peninsula; (3) the Marin Peninsula; (4) San Francisco Bay. (See fig. 2.)

  7. 10. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Society of California Pioneers Original: 1860's Re-photo: January 1940 CONVENTO - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  8. 1. Historic American Buildings Survey San Francisco Chronicle Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library San Francisco, California PHOTO TAKEN ABOUT 1910 - Yerba Buena Lighthouse Buildings, Yerba Buena Island, San Francisco, San Francisco County, CA

  9. 7. Historic American Buildings Survey Drawing Society of California ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey Drawing - Society of California Pioneers Original: August 1881 (Ford drawing) Re-photo: January 1940 VIEW FROM NORTHWEST (BEFORE 1835) - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  10. 16. Photocopy of photograph (from Society of California Pioneers, c. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (from Society of California Pioneers, c. 1890) EXTERIOR, EAST SIDE OF MISSION, C. 1890 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  11. Climate-induced forest dieback as an emergent global phenomenon: Organized oral session at the Ecological Society of America/Society of Ecological Restoration Joint Meeting; San Jose, California, 5-10 August 2007

    USGS Publications Warehouse

    Allen, Craig D.; Breshears, David D.

    2007-01-01

    An organized oral session at the annual meeting of the Ecological Society of America in San Jose, Calif., posed this question: Is climate-induced drought stress triggering increasing rates and unusual patterns of forest die-off at a global scale? Twenty-nine researchers representing five continents reported on patterns, mechanisms, and projections of forest mortality.Observations include widespread forest dieback or reductions in tree cover and biodiversity in response to drought and warmer temperatures in the African Sahel (Patrick Gonzalez, The Nature Conservancy), Mediterranean and alpine Europe (Jorge Castro, Universidad de Granada), and Argentinean Patagonia (Thomas Kitzberger, Universidad Nacional del Comahue). In contrast, although much Eucalyptus mortality has resulted from recent droughts in Australia, warming trends have been less pronounced in the Southern Hemisphere and it is unclear if contemporary climate-induced tree mortality differs from previous historical drought impacts (Rod Fensham, Queensland Herbarium).

  12. Environmental Chemicals in an Urban Population of Pregnant Women and Their Newborns from San Francisco.

    PubMed

    Morello-Frosch, Rachel; Cushing, Lara J; Jesdale, Bill M; Schwartz, Jackie M; Guo, Weihong; Guo, Tan; Wang, Miaomiao; Harwani, Suhash; Petropoulou, Syrago-Styliani E; Duong, Wendy; Park, June-Soo; Petreas, Myrto; Gajek, Ryszard; Alvaran, Josephine; She, Jianwen; Dobraca, Dina; Das, Rupali; Woodruff, Tracey J

    2016-11-15

    Exposures to environmental pollutants in utero may increase the risk of adverse health effects. We measured the concentrations of 59 potentially harmful chemicals in 77 maternal and 65 paired umbilical cord blood samples collected in San Francisco during 2010-2011, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), and perfluorinated compounds (PFCs) in serum and metals in whole blood. Consistent with previous studies, we found evidence that concentrations of mercury (Hg) and lower-brominated PBDEs were often higher in umbilical cord blood or serum than in maternal samples (median cord:maternal ratio > 1), while for most PFCs and lead (Pb), concentrations in cord blood or serum were generally equal to or lower than their maternal pair (median cord:maternal ratio ≤ 1). In contrast to the conclusions of a recent review, we found evidence that several PCBs and OCPs were also often higher in cord than maternal serum (median cord:maternal ratio > 1) when concentrations are assessed on a lipid-adjusted basis. Our findings suggest that for many chemicals, fetuses may experience higher exposures than their mothers and highlight the need to characterize potential health risks and inform policies aimed at reducing sources of exposure.

  13. 12. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey Society of California Pioneers Original: About 1885 Re-photo: January 1940 VIEW FROM NORTHEAST - Mission San Antonio de Padua, Hunter Liggett Military Reservation, Jolon, Monterey County, CA

  14. 9. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey Society of California Pioneers Original: 1850's Re-photo: January 1940 CONVENTO (VIEW FROM SOUTH) - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  15. 4. Historic American Buildings Survey California Historical Society Original: About ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey California Historical Society Original: About 1860's Re-photo: January 1940 VIEW FROM NORTHWEST 1797 - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  16. 3. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Society of California Pioneers Original: Early 1860'2 Re-photo: January 1940 VIEW FROM NORTHWEST - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  17. 10. Historic American Buildings Survey Society of California Pioneers From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Society of California Pioneers From Vischer Drawing REAR VIEW OF MISSION About 1870 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  18. 10. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Society of California Pioneers Original: About 1870's Re- photo: January 1940 VIEW FROM SOUTHEAST - Mission San Antonio de Padua, Hunter Liggett Military Reservation, Jolon, Monterey County, CA

  19. 11. Historic American Buildings Survey California Historical Society Original: About ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic American Buildings Survey California Historical Society Original: About 1870 Re-photo: January 1940 CONVENTO AND ADDITIONS (VIEW FROM SOUTHWEST) - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  20. 20. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Historic American Buildings Survey Society of California Pioneers Original: 1860's Re-photo: January 1940 MISSION BUILDING OPPOSITE MISSION (NOW DESTROYED) - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  1. 6. Historic American Buildings Survey California Historical Society Original: After ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey California Historical Society Original: After 1868 Re-photo: January 1940 CEMETERY AND FRAME CHURCH (VIEW FROM NORTHWEST) - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  2. Petrographic and chemical reconnaissance study of some granitic and gneissic rocks near the San Andreas fault from Bodega Head to Cajon Pass, California

    USGS Publications Warehouse

    Ross, Donald C.

    1972-01-01

    This petrographic and chemical study is based on reconnaissance sampling of granitic and related gneissic rock in the California Coast and Transverse Ranges. In the Coast Ranges, granitic rocks are restricted to an elongate belt, the Salinian block, between the San Andreas and Sur-Nacimiento fault zones. These rocks have a considerable compositional range, but are dominantly quartz monzonite and granodiorite. Moist of the Salinian block seems to be a structurally coherent basement block of chemically related granitic rocks. However, on both the east and the west sides of the block, gneiss crops out in abundance; these rocks may be structurally separate from the main part of the Salinian block. In the Transverse Ranges, the granitic and related rocks are dominantly of granodiorite composition, and in many areas granitic and gneissic rocks are intimately intermixed.Chemically the rocks of the California Coast and Transverse Ranges are somewhat intermediate in character between those of the east-central part of the Sierra Nevada batholith and those of the western part of the Sierra Nevada batholith and the southern California batholith. Probably the closest similarity is to the east-central Sierra Nevada rocks, but the rocks of the Coast and Transverse Ranges are somewhat higher in Al2O3 and lower in K2O than Sierran rocks of the comparable SiO2 content.Granitic basement rocks of the Salinian block are now anomalously sandwiched between Franciscan terranes. The petrographic and chemical data are compatible with the concept that the Salinian rocks were originally part of the great batholithic belt along the west coast, which is exemplified by the Sierra Nevada hatholith. It also seems most likely that the Salinian block was transported from somewhere south of the Sierra Nevada batholith by large-scale right-lateral movement along the San Andreas fault zone.

  3. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  4. Oral health status of San Francisco public school kindergarteners 2000-2005.

    PubMed

    Chung, Lisa H; Shain, Sara G; Stephen, Samantha M; Weintraub, Jane A

    2006-01-01

    To determine the prevalence of dental caries and oral health disparities in San Francisco kindergarten public school children from 2000-2005. The San Francisco Department of Public Health in partnership with the San Francisco Dental Society and assistance from the National Dental Association, has been conducting annual dental screenings of kindergarten children enrolled in the San Francisco Unified School District since 2000. Outcomes assessed from this series of cross-sectional screenings included prevalence of caries experience, untreated caries, treatment needs, and caries severity by child's sex, race/ethnicity, residential zip code, and a proxy for socioeconomic status. Of 76 eligible schools, 62-72 participated, and 86-92% of enrolled children (n=3,354-3,527) were screened yearly. Although there was a small, significant decrease over the time period, in 2005, 50.1% of children had caries experience; 28.8% had untreated caries and 7.6% had urgent treatment needs. Each year caries prevalence was greatest for Asian children, those attending schools with > 50% children eligible for the free or reduced-price meal program, and children living in zip codes in and around Chinatown and San Francisco's southern border. Despite signs of improvement, caries remains a public health problem especially in Asian and Hispanic children, and children living in certain sections of San Francisco.

  5. 75 FR 38412 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... waters of San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to... San Diego POPS Fireworks, which will include fireworks presentations conducted from a barge in San...

  6. 19. Historic American Buildings Survey Society of California Pioneers Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Historic American Buildings Survey Society of California Pioneers Original: 1850's Re-photo: January 1940 MISSION BUILDINGS NORTH OF CHURCH; VIEW FROM WEST - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  7. 9. Photocopy of drawing (from Society of California Pioneers, Vischer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of drawing (from Society of California Pioneers, Vischer, artist, c. 1870) EXTERIOR, VIEW OF SOUTH FACADE OF MISSION AND CONVENTO, C. 1870 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  8. Chemical quality and oxidative stability of extra virgin olive oils from San Juan province (Argentina).

    PubMed

    Ceci, Liliana N; Mattar, Susana B; Carelli, Amalia A

    2017-10-01

    This study provides information about the chemical quality (quality indices, fatty acid profile, total polyphenols (PPs), tocopherols and pigments) and oxidative stability index (OSI) of virgin olive oils of Arbequina, Changlot Real and Coratina cultivars (San Juan province, Argentina). The influence of the cultivar and the effect of earlier harvest dates on the yields (OY), quality and OSI of the oils were also evaluated. All the oils were classified as extra virgin. The OY (L/100kg) averaged: Arbequina=13.2, Changlot Real=21.3, Coratina=18.3. The oleic acid (O) percentage, oleic to linoleic plus linolenic ratio [O/(L+Ln)], PPs and OSI were highly dependent on cultivar (Arbequinachemical and nutritional quality, higher oxidative stability and a fatty acid profile according to the IOC trade standard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 11. Photocopy of photograph (from Society of California Pioneers, 1850's) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (from Society of California Pioneers, 1850's) EXTERIOR, GENERAL VIEW OF MISSION COMPLEX IN 1850'S - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  10. 40. Historic American Buildings Survey San Francisco Chronicle Collection San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Historic American Buildings Survey San Francisco Chronicle Collection San Francisco, California March 24, 1924 VIEW OF HIGH ALTAR - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  11. 29. Photocopy of photograph (from San Francisco Chronicle Library, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph (from San Francisco Chronicle Library, San Francisco, California, c. 1930 (?) EXTERIOR, GENERAL VIEW OF CONVENTO, FRONT VIEW, AFTER RESTORATION - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  12. TERATOLOGY SOCIETY 1998 PUBLIC AFFAIRS COMMITTEE SYMPOSIUM: THE NEW THALIDOMIDE ERA: DEALING WITH THE RISKS

    EPA Science Inventory

    The Teratology Society Public Affairs Committee Symposium was held on June 21, 1998, during the Society's annual meeting in San Diego, California. The symposium was organized and chaired by Dr. Carole Kimmel. The sysmposium was designed to consider the medical, social, and ethi...

  13. 28. Photocopy of photograph (from San Francisco Chronicle Library, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of photograph (from San Francisco Chronicle Library, San Francisco, California, c. 1930 (?) EXTERIOR, DETAIL OF MISSION BELL IN FRONT OF CONVENTO, C. 1930 (?) - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  14. 10. Photocopy of drawing (from Society of California Pioneers, H.C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing (from Society of California Pioneers, H.C. Ford, artist, 1883) EXTERIOR, GENERAL VIEW OF MISSION FROM A DISTANCE, 1883 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  15. Resistance Management for San Jose Scale (Hemiptera: Diaspididae).

    PubMed

    Buzzetti, K; Chorbadjian, R A; Nauen, R

    2015-12-01

    The San Jose scale Diaspidiotus perniciosus Comstock is one of the most important pests of deciduous fruit trees. The major cause of recent outbreaks in apple orchards is thought to be the development of insecticide resistance, specifically organophosphates. The first report was given in North America, and now, in Chile. In the present study, San Jose scale populations collected from two central regions of Chile were checked for their susceptibility to different mode of action insecticides in order to establish alternatives to manage this pest. No evidence of cross resistance between organophosphates insecticides and acetamiprid, buprofezin, pyriproxyfen, spirotetramat, sulfoxaflor, or thiacloprid was found. Baselines of LC50-LC95 for different life stages of San Jose scale are given, as reference to future studies of resistance monitoring. The systemic activity of acetamiprid, spirotetramat, and thiacloprid was higher than the contact residue effect of these compounds. For sulfoxaflor, both values were similar. Program treatments including one or more of these compounds are compared in efficacy and impact on resistance ratio values. In order to preserve new insecticides as an important tool to control San Jose scale, resistance management programs should be implemented, considering insecticide mode of action classes alternated or mixed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Geochemical assessment of metals and dioxin in sediment from the San Carlos Reservoir and the Gila, San Carlos, and San Francisco Rivers, Arizona

    USGS Publications Warehouse

    Church, Stan E.; Choate, LaDonna M.; Marot, Marci E.; Fey, David L.; Adams, Monique; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    In October 2004, we sampled stream-bed sediment, terrace sediment, and sediment from the San Carlos Reservoir to determine the spatial and chronological variation of six potentially toxic metals-Cu, Pb, Zn, Cd, As, and Hg. Water levels in the San Carlos Reservoir were at a 20-year low at an elevation of 2,409 ft (734.3 m). Four cores were taken from the reservoir: one from the San Carlos River arm, one from the Gila River arm, and two from the San Carlos Reservoir just west of the Pinal County line. Radioisotope chronometry (7Be, 137Cs, and 210Pb) conducted on sediment from the reservoir cores provides a good chronological record back to 1959. Chronology prior to that, during the 1950s, is based on our interpretation of the 137Cs anomaly in reservoir cores. During and prior to the 1950s, the reservoir was dry and sediment-accumulation rates were irregular; age control based on radioisotope data was not possible. We recovered sediment at the base of one 4-m-long core that may date back to the late 1930s. The sedimentological record contains two discrete events, one about 1978-83 and one about 1957, where the Cu concentration in reservoir sediment exceeded recommended sediment quality guidelines and should have had an effect on sensitive aquatic and benthic organisms. Concentrations of Zn determined in sediment deposited during the 1957(?) event also exceeded recommended sediment quality guidelines. Concentration data for Cu from the four cores clearly indicate that the source of this material was upstream on the Gila River. Lead isotope data, coupled with the geochemical data from a 2M HCl-1 percent H2O2 leach of selected sediment samples, show two discrete populations of data. One represents the dominant sediment load derived from the Safford Valley, and a second reflects sediment derived from the San Francisco River. The Cu concentration spikes in the reservoir cores have chemical and Pb isotope signatures that indicate that deposits in a porphyry copper deposit

  17. Compounds of emerging concern in the San Antonio River Basin, Texas, 2011–12

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.

    2016-11-16

    The City of San Antonio and the surrounding municipalities in Bexar County, Texas, are among the fastest growing cities in the Nation. Increases in residential and commercial development are changing runoff patterns and likely will increase chemical loads into streams. The U.S. Geological Survey, in cooperation with the San Antonio River Authority, evaluated the concentrations and distributional patterns of selected “compounds of emerging concern” (CECs) by collecting and analyzing water-quality samples from 20 sites in the San Antonio River Basin, Tex., during 2011–12. On the basis of their chemical composition or similar uses, the CECs discussed in this fact sheet are wastewater compounds, pharmaceutical compounds (hereinafter referred to as “pharmaceuticals”), and steroidal hormone and sterol compounds (hereinafter referred to as “steroidal hormones and sterols”). Three synoptic sampling events were completed during 2011–12 to analyze for CECs in the San Antonio River Basin. Samples were analyzed for 54 wastewater compounds, 13 pharmaceuticals, 17 steroidal hormones, and 4 sterols. Overall, the concentrations of all CECs analyzed for during this study were low, generally close to or less than the laboratory reporting level.

  18. Adapting an ambient monitoring program to the challenge of managing emerging pollutants in the San Francisco Estuary.

    PubMed

    Hoenicke, Rainer; Oros, Daniel R; Oram, John J; Taberski, Karen M

    2007-09-01

    While over seven million organic and inorganic compounds that have been indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry are commercially available, most pollution monitoring programs focus only on those chemical stressors for which regulatory benchmarks exist, and have been traditionally considered responsible for the most significant human and environmental health risks. Until the late 1990s, the San Francisco Estuary Regional Monitoring Program was no exception in that regard. After a thorough external review, the monitoring program responded to the need for developing a pro-active surveillance approach for emerging pollutants in recognition of the fact that the potential for the growing list of widely used chemical compounds to alter the integrity of water is high. We describe (1) the scientific and analytical bases underlying a new surveillance monitoring approach; (2) summarize approaches used and results obtained from a forensic retrospective; (3) present the growing data set on emerging pollutants from surveillance monitoring and related efforts in the San Francisco Bay Area to characterize newly targeted compounds in wastewater streams, sediment, storm water runoff, and biota; and (4) suggest next steps in monitoring program development and applied research that could move beyond traditional approaches of pollutant characterization. Based on the forensic analysis of archived chromatograms and chemical and toxicological properties of candidate compounds, we quantified a variety of synthetic organic compounds which had previously not been targeted for analysis. Flame retardant compounds, pesticides and insecticide synergists, insect repellents, pharmaceuticals, personal care product ingredients, plasticizers, non-ionic surfactants, and other manufacturing ingredients were detected in water, sediment, and/or biological tissue samples. Several of these compounds, especially polybrominated diphenyl ether flame

  19. 77 FR 42647 - Safety Zone: San Diego Symphony POPS Fireworks; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 1625-AA00 Safety Zone: San Diego Symphony POPS Fireworks; San Diego, CA AGENCY: Coast Guard, DHS... waters of San Diego Bay in support of the San Diego Symphony POPS Fireworks. This safety zone is... David Varela, Waterways Management, U.S. Coast Guard Sector San Diego, Coast Guard; telephone 619-278...

  20. 75 FR 77756 - Safety Zone; San Diego Parade of Lights Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...-AA00 Safety Zone; San Diego Parade of Lights Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... San Diego Bay in San Diego, CA in support of the two San Diego Parade of Lights Fireworks Displays on... and Purpose Fireworks and Stage FX America INC are sponsoring the San Diego Parade of Lights Fireworks...

  1. 41. Historic American Buildings Survey San Francisco CallBulletin Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Historic American Buildings Survey San Francisco Call-Bulletin Library San Francisco, California INTERIOR VIEW OF CHURCH BEFORE RESTORATION - 1934 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  2. 76 FR 45693 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to provide for... of the waterway during scheduled fireworks events. Persons and vessels will be prohibited from...

  3. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.

  4. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  5. Gain-loss study of lower San Pedro Creek and the San Antonio River, San Antonio, Texas, May-October 1999

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek. 

  6. 76 FR 38305 - Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG 2011-0402] Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... annual San Francisco Chronicle Fireworks Display (Independence Day Celebration for the City of San...

  7. Topographical map of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01554 (January 2000) --- This is a shaded relief depiction of the same data set found in JSC2000-E-01553. Radar imagery, such as that to be provided by SRTM, is instrumental in creating these types of topographic models. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles. Cajon Junction and Cajon Pass, as well as part of the San Andreas fault line, are clearly seen.

  8. Streamflow gains and losses along San Francisquito Creek and characterization of surface-water and ground-water quality, southern San Mateo and northern Santa Clara counties, California, 1996-97

    USGS Publications Warehouse

    Metzger, Loren F.

    2002-01-01

    San Francisquito Creek is an important source of recharge to the 22-square-mile San Francisquito Creek alluvial fan ground-water subbasin in the southern San Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along San Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between San Francisquito Creek and the San Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along San Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of San Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in San Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the San Mateo Drive bike bridge and Middlefield Road; average losses between San Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from San Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water

  9. Role of Bai-Shao towards the antidepressant effect of Chaihu-Shu-Gan-San using metabonomics integrated with chemical fingerprinting.

    PubMed

    Chang, Xing; Jia, Hongmei; Zhou, Chao; Zhang, Hongwu; Yu, Meng; Yang, Junshan; Zou, Zhongmei

    2015-12-01

    Chaihu-Shu-Gan-San (CSGS) is a classical traditional Chinese medicine formula for the treatment of depression. As one of the single herbs in CSGS, Bai-Shao displayed antidepressant effect. In order to explore the role of Bai-Shao towards the antidepressant effect of CSGS, the metabolic regulation and chemical profiles of CSGS with and without Bai-Shao (QBS) were investigated using metabonomics integrated with chemical fingerprinting. At first, partial least squares regression (PLSR) analysis was applied to characterize the potential biomarkers associated with chronic unpredictable mild stress (CUMS)-induced depression. Among 46 differential metabolites found in the ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) and (1)H NMR-based urinary metabonomics, 20 were significantly correlated with the preferred sucrose consumption observed in behavior experiments and were considered as biomarkers to evaluate the antidepressant effect of CSGS. Based on differential regulation on CUMS-induced metabolic disturbances with CSGS and QBS treatments, we concluded that Bai-Shao made crucial contribution to CSGS in the improvement of the metabolic deviations of six biomarkers (i.e., glutamate, acetoacetic acid, creatinine, xanthurenic acid, kynurenic acid, and N-acetylserotonin) disturbed in CUMS-induced depression. While the chemical constituents of Bai-Shao contributed to CSGS were paeoniflorin, albiflorin, isomaltopaeoniflorin, and benzoylpaeoniflorin based on the multivariate analysis of the UPLC-Q-TOF/MS chemical profiles from CSGS and QBS extracts. These findings suggested that Bai-Shao played an indispensable role in the antidepressant effect of CSGS. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dissolved sulfides in the oxic water column of San Francisco Bay, California

    USGS Publications Warehouse

    Kuwabara, J.S.; Luther, G.W.

    1993-01-01

    Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.

  11. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. 1. Historic American Buildings Survey From Society of California Pioneers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey From Society of California Pioneers Original: About 1790 Re- photo: January 1940 (From old drawing by Sukes, showing first church at left, second church being built near center - about 1790) - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  13. Public Involvement and Response Plan (Community Relations Plan), Presidio of San Francisco, San Francisco, California

    DTIC Science & Technology

    1992-03-01

    Oty_ Population City Population San Jose 782,248 Santa Clara 92,090 San Francisco 763,800 Daly City 91,209 Oakland 372,000 San Mateo 84,829...Oakland Tribune P.O. Box 24424 Oakland, CA 94623 (415) 645-2000/2771 DAILY NEWSPAPERS (cont’d) Editor San Jose Mercury-News P.O. Box 5533 750 Ridder...Park Drive San Jose , CA 95190 (408) 920-5000/288-8060 Editor San Mateo Times P.O. Box 5400 1080 S. Amphlett San Mateo, CA 94402 (415) 348

  14. Chemical Industry, the Environment, and Russian Provincial Society: The Case of the Kokshan Chemical Works (1850-1925).

    PubMed

    Vinogradov, Andrei; Petriashin, Stanislav

    2018-05-01

    This article explores interactions between the chemical industry, the environment, and Russian provincial society in the late nineteenth and early twentieth centuries, using the example of the Kokshan chemical works, in the Elabuga District, Viatka Province, Russian Empire (today Mendeleevsk District, Republic of Tatarstan, Russian Federation). The plant's location facilitated its rapid development due to a number of factors, including a cheap labour force, the availability of raw materials, and the absence of local competition. However, the factory's development came in conjunction with the deterioration of the environment and subsequent health problems for employees and the surrounding population. Conflicts connected with the Kokshan works illustrate differences between this case and similar examples in Russia and Europe. In Viatka Province, the local community remained mostly silent regarding these issues, and made no demands for improving sanitary control and working conditions or reducing pollution; rather, it was distant activists who personally suffered no harm who intervened in the interest of social justice. The history of the company reflects the contrast between the transfer of European technological innovations to Russia and laborious efforts to increase national wealth on the one hand, and the exploitation of the environment and endangerment of workers' health on the other.

  15. 77 FR 15260 - Safety Zone; San Francisco Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Zone; San Francisco Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... Fireworks Display in the Captain of the Port, San Francisco area of responsibility during the dates and... hazards associated with the fireworks display. During the enforcement period, unauthorized persons or...

  16. State Governance and Civil Society in Education: Revisiting the Relationship

    ERIC Educational Resources Information Center

    Rockwell, Elsie; Vera, Eugenia Roldan

    2013-01-01

    ISCHE 33 was convened in San Luis Potosi to re-examine a relationship--that between society, education and the state--that had been largely taken for granted in official histories of education of modern nations. This theme was inspired by the bicentenary celebrations of the relatively early nineteenth-century movements (from 1804 to 1824) that…

  17. 2. Historic American Buildings Survey San Francisco Chronicle Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey San Francisco Chronicle Library San Francisco, California Year Built: 1834 Photo Taken: About 1925 VIEW FROM EAST - General Sherman Quarters, 464 Calle Principal, Monterey, Monterey County, CA

  18. ERA—European Radiochemists Association: Report on the activities of the Working Party for Nuclear and Radiochemistry of the Federation of European Chemical Societies

    NASA Astrophysics Data System (ADS)

    Kolar, Z. I.; Ware, A. R.

    2003-01-01

    The European Radiochemists Association started almost simultaneously with the appearance of the first issue of the Radiochemistry in Europe newsletter in August 1995. The objective of the European Radiochemists Association (ERA) is to extend and improve communication between radiochemists in Europe through a newsletter. Liaison persons within each country or group exchange details of their activities, set up a diary of relevant international events and exchange details of specialist equipment, facilities and technology. In the year 2000 the Federation of European Chemical Societies decided to form a working party on nuclear and radiochemistry. It is a formalisation of the European Radiochemists Association. Each chemical society is allowed to nominate a member to the Working Party on Nuclear and Radiochemistry. Currently we have 12 nominated members plus two invited and one observer. In addition to the ERA aims and objectives it proposes to put together a syllabus of radiochemistry for undergraduate and post-graduate students—this aspect has been a part of our support of the International Atomic Energy Agency initiative. Also the aim of the working party is to support other working parties and divisions, to press the Federation of the European Chemical Societies for financial structure. To this end an Expression of Interest has been tabled with the Framework 6 Programme for networking within radiochemistry in Europe. The WP will liaise with the International Isotope Society and the International Society on Radiopharmaceutical Chemistry and Biology to seek to communicate and to consider ways of working together.

  19. 76 FR 55796 - Safety Zone; TriRock Triathlon, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ...-AA00 Safety Zone; TriRock Triathlon, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION.... Basis and Purpose Competitor Group is sponsoring the TriRock Triathlon, consisting of 2000 swimmers.... 165.T11-431 to read as follows: Sec. 165.T11-431 Safety Zone; TriRock Triathlon, San Diego Bay, San...

  20. San Marco-C Explorer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    On or about 24 April 1971, the San Marco-C spacecraft will be launched from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco-C is the third cooperative satellite project between Italy and the United States. The first such cooperative project resulted in the San Marco-1 satellite which was launched into orbit from the Wallops Island Range with a Scout vehicle on 15 December 1964. The successful launch demonstrated the readiness of the Italian Centro Ricerche Aerospaziuli (CRA) launch crews to launch the Scout vehicle and qualified the basic spacecraft design. The second in the series of cooperative satellite launches was the San Marco-II which was successfully launched into orbit from the San Marco Range on 26 April 1967. This was the first Scout launch from the San Marco Range. The San Marco-II carried the same accelerometer as San Marco-1, but the orbit permitted the air drag to be studied in detail in the equatorial region. The successful launch also served to qualify the San Marco Range as a reliable facility for future satellite launches, and has since been used for the successful launch of SAS-A (Explorer 42). This cooperative project has been implemented jointly by the Italian Space Commission and NASA. The CRA provided the spacecraft, its subsystems, and an air drag balance; Goddard Space Flight Center (GSFC) provided an omegatron and a neutral mass spectrometer, technical consultation and support. In addition, NASA provided the Scout launch vehicle. The primary scientific objective of the San Marco-C is to obtain, by measurement, a description of the equatorial neutral-particle atmosphere in terms of its density, com- position, and temperature at altitudes of 200 km and above, and to obtain a description of variations that result from solar and geomagnetic activities. The secondary scientific objective is to investigate the interdependence of three neutral

  1. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  2. Aerial photo of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01553 (January 2000) --- This USGS elevation model showing increasing elevation as increasing brightness is included here for comparison purposes with the high-resolution topographic elevation map image in E01554. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles.

  3. 78 FR 20792 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  4. 77 FR 28771 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  5. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  6. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  7. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  8. 3. Historic American Buildings Survey San Francisco Examiner Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey San Francisco Examiner Library San Francisco, California Photo Taken: About 1910 (From 'The Sperry Family' - Page 17) VIEW FROM NORTHEAST - First Theatre in California, Southwest corner of Pacific & Scott Streets, Monterey, Monterey County, CA

  9. 76 FR 1386 - Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ...-AA00 Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA AGENCY: Coast... zone on the navigable waters of San Diego Bay in San Diego, CA in support of the Centennial of Naval... February 12, 2010, the Centennial of Naval Aviation Kickoff will take place in San Diego Bay. In support of...

  10. Repositioned Lives: Language, Ethnicity, and Narrative Identity among Chinese-Vietnamese Community College Students in Los Angeles' San Gabriel Valley.

    ERIC Educational Resources Information Center

    Frank, Russell Alan

    Chinese speakers from Vietnam are a distinctive but hidden ethnolinguistic minority group in the San Gabriel Valley region of Los Angeles. Many variables present barriers to their full participation in society from both the values and norms of dominant American society and non-Chinese co-nationals from Vietnam as well as higher status co-ethnics…

  11. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  12. San Marino.

    PubMed

    1985-02-01

    San Marino, an independent republic located in north central Italy, in 1983 had a population of 22,206 growing at an annual rate of .9%. The literacy rate is 97% and the infant mortality rate is 9.6/1000. The terrain is mountainous and the climate is moderate. According to local tradition, San Marino was founded by a Christian stonecutter in the 4th century A.D. as a refuge against religious persecution. Its recorded history began in the 9th century, and it has survived assaults on its independence by the papacy, the Malatesta lords of Rimini, Cesare Borgia, Napoleon, and Mussolini. An 1862 treaty with the newly formed Kingdom of Italy has been periodically renewed and amended. The present government is an alliance between the socialists and communists. San Marino has had its own statutes and governmental institutions since the 11th century. Legislative authority at present is vested in a 60-member unicameral parliament. Executive authority is exercised by the 11-member Congress of State, the members of which head the various administrative departments of the goverment. The posts are divided among the parties which form the coalition government. Judicial authority is partly exercised by Italian magistrates in civil and criminal cases. San Marino's policies are tied to Italy's and political organizations and labor unions active in Italy are also active in San Marino. Since World War II, there has been intense rivalry between 2 political coalitions, the Popular Alliance composed of the Christian Democratic Party and the Independent Social Democratic Party, and the Liberty Committee, coalition of the Communist Party and the Socialist Party. San Marino's gross domestic product was $137 million and its per capita income was $6290 in 1980. The principal economic activities are farming and livestock raising, along with some light manufacturing. Foreign transactions are dominated by tourism. The government derives most of its revenue from the sale of postage stamps to

  13. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San

  14. 76 FR 75908 - Notice of Inventory Completion: The University of California, San Diego, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... University of California, San Diego, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Regents of the University of California on behalf of the University of California, San Diego... culturally affiliated with the human remains may contact the University of California, San Diego. Disposition...

  15. 77 FR 34988 - Notice of Inventory Completion: San Diego State University, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... State University appears to have been collected from back dirt by an unknown student and brought back to... Inventory Completion: San Diego State University, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: San Diego State University Archeology Collections Management Program has...

  16. Underwater gravity meter survey of San Francisco and San Pablo bays, California, 1982

    USGS Publications Warehouse

    Childs, Jonathan R.; Beyer, L.A.; McCulloch, D.S.; McHendrie, G.A.; Steele, W.C.

    1983-01-01

    Seafloor gravity measurements were made at 281 bottom stations in San Francisco and San Pablo Bays, California, on a series of lines oriented approximately NNE.. Line spacing was approximately 2.8 km and stations along the lines mere spaced 0.5 to 1.5 km apart, between 0.5 and 1.5 km perpendicular to the axis. Sample Bouguer anomalies in the San Francisco Bay range from -15 to +15 mGals (?0.1 mgal), while anomalies in the San Pablo Bay are consistently negative, ranging from +4.0 to -40.0 mGal (?0.2 mGal).

  17. 78 FR 38584 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... 1625-AA00 Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA AGENCY... on the navigable waters of San Diego Bay in support of the San Diego Symphony Summer POPS Fireworks... Diego, Coast Guard; telephone 619-278-7656, email [email protected] . If you have...

  18. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  19. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  20. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  1. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  2. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  3. Hydrologic characteristics of lagoons at San Juan, Puerto Rico, during an October 1974 tidal cycle

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Ellis, S.R.

    1983-01-01

    Flow and water-quality changes were studied during a period of intense rainfall in the San Juan Lagoon system. The study covered a 25-hour period beginning 0900 hours 22 October, 1974. Precipitation during the study period averaged 70 millimeters. Sampling stations were located at Boca de Cangrejos, the main ocean outlet; Canal Pinones between Laguna de Pinones and Laguna La Torrecilla; Canal Suarez between Laguna San Jose, connects to Laguna La Torrecilla; and Cano de Martin Pena between Laguna San Jose and Bahia de San Juan. In addition water-elevation recording gages were installed at each lagoon. Water samples from the canal stations were analyzed for organic carbon, nitrogen and phosphorus species, and suspended sediment. Specific-conductance measurements were used with the chemical data to estimate the runoff contributions of nutrients. Runoff into the lagoon, system during the study period was about 2.8 million cubic meters, or about 70 percent of the average precipitation. The runoff contributed chemical loadings to the lagoons of 95,000 kilograms total-organic carbon; 2,700 kilograms of total phosphorus; and 10,000 kilograms of total Khjeldhal nitrogen. A comparison with a prior study during which there was no significant rain, show that dry-period loadings are less than 10 percent of the wet-period loadings. At the end of the study period the system had not reached equilibrium, and the lagoons retained 80 percent of the water inflows from 50 to 90 percent of the chemical loads. Nearly 95 percent of the water outflows occurred at the Boca de Cangrejos sea outlet. The three lagoons and interconnecting canals form a very complex hydraulic system that is difficult to study using traditional techniques. A model of the system will facilitate management to improve the quality of water in the lagoons.

  4. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a...

  5. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a...

  6. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. (a...

  7. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. (a...

  8. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  9. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  10. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  11. 75 FR 39166 - Safety Zone; San Francisco Giants Baseball Game Promotion, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...-AA00 Safety Zone; San Francisco Giants Baseball Game Promotion, San Francisco, CA AGENCY: Coast Guard... Francisco Giants Baseball Game Promotion. This safety zone is established to ensure the safety of... Game Promotion on July 16, 2010, on the navigable waters of McCovey Cove, in San Francisco Bay, off of...

  12. 77 FR 70891 - Safety Zone; Bay Bridge Construction, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...-AA00 Safety Zone; Bay Bridge Construction, San Francisco Bay, San Francisco, CA AGENCY: Coast Guard... the navigable waters of the San Francisco Bay near Yerba Buena Island, CA in support of the Bay Bridge... construction of the Bay Bridge, the safety zone is necessary to provide for the safety of mariners transiting...

  13. 77 FR 36041 - San Antonio Central Railroad, L.L.C.-Lease Exemption-Port Authority of San Antonio

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35603] San Antonio Central Railroad, L.L.C.--Lease Exemption--Port Authority of San Antonio San Antonio Central Railroad, L.L... in Wacto Holdings, Inc.--Continuance in Control Exemption--San Antonio Central Railroad, L.L.C...

  14. 33 CFR 165.T11-630 - Safety zone; Giants Enterprises Fireworks Display, San Francisco Bay, San Francisco, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Francisco Bay, San Francisco, CA. (a) Location. This temporary safety zone is established in the navigable waters of the San Francisco Bay near Pier 48 in San Francisco, CA as depicted in National Oceanic and... Fireworks Display, San Francisco Bay, San Francisco, CA. 165.T11-630 Section 165.T11-630 Navigation and...

  15. San Marco D/L Explorer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ti March 26, 1964, Centro Ricerche Aerospaziali (CRA) successfully launched a two-stage Nike sounding rocket from the Santa Rita launch platform off the Kenya coast, concluding Phase I. It carried basic elements of the San Marco science instrumentation and served further to flight qualify these canponents as well as provide a means of check-out of range instrumentation and equipment. The second phase culminated in the launch of the San Marco-I Spacecraft fran Wallops Island on a Scout vehicle on December 15, 1964. This launch derronstrated the readiness of the CRA launch crews for Phase III operations and qualified the basic spacecraft design. In addition it confirmed the usefulness and reliability of the drag balance device for accurate determinations of air density values and satellite attitude. phase III was completed with the launching of San Marco-11 frcm the San Marco platform off the coast of Kenya on April 26, 1967. ?he San Marco-II carried the same instrunentation as the San Marco-I, but the equatorial orbit permitted a more detailed study to be made of density variations versus altitude in the equatorial region. Ihe successful launch also served to qualify the San Marco Range as a reliable facility for future satellite launches. The successful culmination of the first San Marco endeavor paved the way for still closer collaboration in future space explorations.

  16. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  17. The Teratology Society 2007 strategic planning session: a desire to inspire.

    PubMed

    2008-05-01

    On April 18-20, 2007, the Teratology Society held its third strategic planning session (SPS) in San Diego, CA. The purpose of this session was to build on the successful work generated by the previous strategic plans [Nashville, TN 2002 and Cincinnati, OH 1997] and importantly, to provide a path forward to inspire the Society, create deeper connections with members that speak to their individual passion for the science of teratology and to increase the Society's visibility within the larger scientific community. The following summary report provides an overview of the session's pre-work, objective, and discussions. A total of 24 attendees were present at the session. The group included representation from Council, various committees and different members constituencies. This plan and the activities subsequent to the session will provide a path forward for our Society for the next five years.

  18. Water resources and geology of the Los Coyotes Indian Reservation and vicinity, San Diego County, California

    USGS Publications Warehouse

    Ballog, A.P.; Moyle, W.R.

    1980-01-01

    The water resources of the Los Coyotes Indian Reservation, San Diego County, Calif., are sufficient to supply the limited domestic and stock-water needs of the present residents of the reservation. Surface-water runoff is derived from direct precipitation on the area and from intermittent spring flow. Groundwater occurs in the alluvial deposits and in the consolidated rocks where they are highly fractured or deeply weathered. The best potential for groundwater development on the reservation is in the small alluvial basins in the San Ysidro and San Ignacio areas. Most water on the reservation is good to excellent in chemical quality for domestic, stock, and irrigation use. Water from two wells (and one spring), however, exceeds the primary drinking-water standard for nitrate plus nitrate. (USGS)

  19. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  20. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  1. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  2. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  3. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  4. News Release: NREL's Gregg Beckham Wins Prestigious Royal Society of

    Science.gov Websites

    chemical engineer from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is the Royal Society of Chemistry, Society of Chemical Industry and Institute of Materials, Minerals and Mining a shelf of glass bottles in a laboratory. Gregg Beckham, a senior research fellow and chemical

  5. Seafloor terrain analysis and geomorphology of the greater Los Angeles Margin and San Pedro Basin, Southern California

    USGS Publications Warehouse

    Dartnell, P.; Gardner, J.V.

    2009-01-01

    The seafloor off greater Los Angeles, California, has been extensively studied for the past century. Terrain analysis of recently compiled multibeam bathymetry reveals the detailed seafloor morphology along the Los Angeles Margin and San Pedro Basin. The terrain analysis uses the multibeam bathymetry to calculate two seafloor indices, a seafloor slope, and a Topographic Position Index. The derived grids along with depth are analyzed in a hierarchical, decision-tree classification to delineate six seafloor provinces-high-relief shelf, low-relief shelf, steep-basin slope, gentle-basin slope, gullies and canyons, and basins. Rock outcrops protrude in places above the generally smooth continental shelf. Gullies incise the steep-basin slopes, and some submarine canyons extend from the coastline to the basin floor. San Pedro Basin is separated from the Santa Monica Basin to the north by a ridge consisting of the Redondo Knoll and the Redondo Submarine Canyon delta. An 865-m-deep sill separates the two basins. Water depths of San Pedro Basin are ??100 m deeper than those in the San Diego Trough to the south, and three passes breach a ridge that separates the San Pedro Basin from the San Diego Trough. Information gained from this study can be used as base maps for such future studies as tectonic reconstructions, identifying sedimentary processes, tracking pollution transport, and defining benthic habitats. ?? 2009 The Geological Society of America.

  6. 77 FR 46115 - Notice of Inventory Completion: San Diego Museum of Man, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Museum of Man professional staff in consultation with representatives of the Pueblo of Santa Ana, New... Inventory Completion: San Diego Museum of Man, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The San Diego Museum of Man has completed an inventory of human remains in consultation...

  7. A Mass Balance for Mercury in the San Francisco Bay Area

    PubMed Central

    MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

    2008-01-01

    We develop and illustrate a general regional multi-species model that describes the fate and transport of mercury in three forms, elemental, divalent, and methylated, in a generic regional environment including air, soil, vegetation, water and sediment. The objectives of the model are to describes the fate of the three forms of mercury in the environment and determine the dominant physical sinks that remove mercury from the system. Chemical transformations between the three groups of mercury species are modeled by assuming constant ratios of species concentrations in individual environmental media. We illustrate and evaluate the model with an application to describe the fate and transport of mercury in the San Francisco Bay Area of California. The model successfully rationalizes the identified sources with observed concentrations of total mercury and methyl mercury in the San Francisco Bay Estuary. The mass balance provided by the model indicates that continental and global background sources control mercury concentrations in the atmosphere but loadings to water in the San Francisco Bay estuary are dominated by runoff from the Central Valley catchment and re-mobilization of contaminated sediments deposited during past mining activities. The model suggests that the response time of mercury concentrations in the San Francisco Bay estuary to changes in loadings is long, of the order of 50 years. PMID:16190232

  8. 75 FR 17329 - Safety Zone; Big Bay Fourth of July Fireworks, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...-AA00 Safety Zone; Big Bay Fourth of July Fireworks, San Diego Bay, San Diego, CA AGENCY: Coast Guard... safety zone on the navigable waters of the San Diego Bay in support of the Big Bay July Fourth Show to Benefit the San Diego Armed Services YMCA. This temporary safety zone is necessary to provide for the...

  9. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  10. Geochemical evidence of chemical and physical weathering of mine waste downriver from the New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Weinman, B.

    2014-12-01

    Soil, river bank, and sediment samples were collected from Panoache Creek's mine tailings and its drainages in the Mendota Pool area of California's Central Valley. The samples were collected in order to understand the transport mechanisms of mercury and other heavy metals from the abandoned New Idria Mercury Mine (NIMM) in San Banito County, CA. It is generally thought that materials weathered from the NIMM site flow down gradient into the San Carlos Creek, which then joins Silver Creek and Panoche Creek, before finally ending up in the Valley's Mendota pool and San Joaquin River (SJR). While we know that factors like geology, anthropogenic activities, and weathering can accelerate heavy metal accumulation at downgradient reaches (Chakravarty and Patgiri, 2009), it is unclear how this part of the SJR has responded to the mine's abandonment since the 1970s. To investigate how mercury and other heavy metals are weathering and being transported through this portion of the SJR drainage, gains and losses using "enrichment factors" (EF) were calculated and compared along a gradient downstream. Overall, EF of fine and bank sediments show Hg is being enriched and stored within bank sediments. For example, Hg in banks sediments are up to 5% enriched compared to the bed sediments. There is also an enrichment gain trending downstream, as sediments settling in the Mendota pool have comparatively higher EF for Hg (0.94 ppm to 6.91 ppm) relative to background concentrations. Along with other geochemical indices, which can be used to more highly resolve exactly how mine contaminants like Hg are chemically and physically being weathered, (i.e., Igeo, PLI, and CIA) the overall enrichment trend is interpreted to be the physical transport of erosion material during runoff events from the stream banks of SJR tributaries. This interpretation is also supported by depleted Sr and enriched Rb/Sr ratios, which further support physical transport as a dominating factor in contaminant

  11. The teratology society 2012-2017 strategic plan: pushing the boundaries.

    PubMed

    Curran, Christine Perdan; Lau, Christopher; Schellpfeffer, Michael A; Stodgell, Christopher J; Carney, Edward W

    2013-01-01

    The Teratology Society held its fourth strategic planning session in Albuquerque, NM, April 10-12, 2012, and launched the 2012-2017 Strategic Plan in conjunction with the 2012 annual meeting in Baltimore, MD. Building on the energy of the successful implementation of prior strategic plans (San Diego, 2007; Nashville,TN 2002; Cincinnati, OH 1998), session participants worked to identify barriers to success as a scientific society, as well as impending challenges and opportunities to which the Society needs to respond. The following report provides an overview of the Strategic Planning process, objectives, activities, and conclusions. A total of 23 members were present at the session, and the group included representation from Council, various committees, and different member constituencies. This plan, Pushing the Boundaries, and its three strategic intents: Broaden Our Identity, Expand Our Membership, and Increase Our Influence, will drive the direction of the Teratology Society for the next five years. Copyright © 2013 Wiley Periodicals, Inc.

  12. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  13. 77 FR 42638 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... navigable waters of Mission Bay in support of the Sea World San Diego Fireworks. This safety zone is..., since immediate action is needed to ensure the public's safety. B. Basis and Purpose Sea World is...

  14. 78 FR 77597 - Safety Zone; Allied PRA-Solid Works, San Diego Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...-AA00 Safety Zone; Allied PRA-Solid Works, San Diego Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION... the Allied PRA--Solid Works fireworks display, which will be conducted from a barge located southwest... Works; San Diego, CA. (a) Location. The limits of the safety zone will include all the navigable waters...

  15. Paleohydrogeology of the San Joaquin basin, California

    USGS Publications Warehouse

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  16. Aggregate Settling Velocities in San Francisco Estuary Margins

    NASA Astrophysics Data System (ADS)

    Allen, R. M.; Stacey, M. T.; Variano, E. A.

    2015-12-01

    One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of < 1*10-7 to 1.4*10-5 m/s) (Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.

  17. The Biocurator Society (GSC8 Meeting)

    ScienceCinema

    Gaudet, Pascal

    2018-01-10

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Pascal Gaudet of Northwestern University talks about "The Biocurator Society" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 11, 2009.

  18. [Drugs and pharmaceutical episodes in "Sazae-San": Japanese comic strips in 1940s-1970s].

    PubMed

    Goino, Masahiko

    2009-01-01

    This is a report on episodes with references to drugs and pharmaceuticals in one of the most famous Japanese comic strips, "Sazae-san", in the period from 1945 to 1974. There were 111 episodes of "Sazae-san" including references to drugs and pharmaceuticals in this period. In the period from 1945 to 1954, there were some references to pharmacists and pharmacies but only a small number of references in the period from 1965 to 1974. In the period from 1945 to 1954, there were references to disinfectants and insecticides in the hygienic chemistry field. However, in the period from 1965 to 1974, there were references to environmental problems, food additives and agricultural chemicals. As drug development has progressed, the number of references to practical drugs in "Sazae-san" has decreased over the period from 1945-1974.

  19. 78 FR 29025 - Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ...-AA00 Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS... waters of Mission Bay in support of the Sea World San Diego Fireworks 2013 season. This safety zone is... Guard to establish safety zones (33 U.S.C 1221 et seq.). Sea World is sponsoring the Sea World Fireworks...

  20. 77 FR 60899 - Safety Zone; Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... 1625-AA00 Safety Zone; Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... navigable waters of Mission Bay in support of the Sea World San Diego Fireworks. This safety zone is... zones (33 U.S.C 1221 et seq.). Sea World is sponsoring the Sea World Fireworks, which will include a...

  1. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    USGS Publications Warehouse

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  2. Characterization and differentiation of Italian Parma, San Daniele and Toscano dry-cured hams: a multi-disciplinary approach.

    PubMed

    Laureati, Monica; Buratti, Susanna; Giovanelli, Gabriella; Corazzin, Mirco; Lo Fiego, Domenico P; Pagliarini, Ella

    2014-01-01

    This study aimed at characterizing the sensory quality of Italian PDO dry-cured Parma, San Daniele and Toscano hams, applying a multi-disciplinary approach. Ham sensory profile as well as physico-chemical, aromatic, morphological and textural characteristics was investigated. There was a great difference between Toscano ham and Parma and San Daniele hams, which were more similar even though differentiated. Toscano ham showed higher scores for pork-meat odor, saltiness, dryness, fibrousness and hardness; accordingly, this ham was described by a high NaCl content and by high values of instrumental hardness, cohesiveness, gumminess and chewiness. Parma ham was characterized by a cured flavor, whereas San Daniele ham showed a wider fatty area and higher pH values. Parma and San Daniele hams were also described by higher values of sweetness, RGB color values and water activity. Sensory characteristics evaluated by trained assessors were correlated to instrumental measures, indicating that instrumental devices can be effectively applied for dry-cured ham characterization. © 2013.

  3. The MobiSan approach: informal settlements of Cape Town, South Africa.

    PubMed

    Naranjo, A; Castellano, D; Kraaijvanger, H; Meulman, B; Mels, A; Zeeman, G

    2010-01-01

    Pook se Bos informal settlement and the Cape Town Water & Sanitation Services Department are partnering on an urban sanitation project with a Dutch Consortium consisting of Lettinga Associates Foundation (LeAF), Landustrie Sneek and Vitens-Evides International. The aim of the project is to improve the basic sanitation services provided in informal settlements through the implementation of the MobiSan approach. The approach consists of a communal Urine-Diversion and Dehydration Toilet (UDDT) built in a former sea shipping container. The system is independent of water, electricity or sewerage connection and it is maintained by full-time community caretakers who also act as hygiene promoters. The project seeks to link sanitation services with hygiene promotion in informal settlements while enhancing user satisfaction and reducing costs in providing basic sanitation services. This paper describes the preliminary experiences and lessons learnt during the implementation and evaluation of the MobiSan prototype and discusses its potential for replication. The MobiSan has proved to be an appropriate option by means of dealing successfully with shallow groundwater table, land availability and high settlement densities. In addition it has been demonstrated to be cost-competitive in terms of operating cost compared to chemical toilets.

  4. 77 FR 54815 - Safety Zone: America's Cup World Series Regattas, San Francisco Bay; San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ...-AA00 Safety Zone: America's Cup World Series Regattas, San Francisco Bay; San Francisco, CA AGENCY... the on-water activities associated with 2012 America's Cup World Series regattas scheduled for October..., the City of San Francisco plans to host two America's Cup World Series regattas as part of a circuit...

  5. 75 FR 15611 - Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...-AA00 Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA AGENCY: Coast... navigable waters of the San Diego Bay in support of the United Portuguese SES Centennial Festa. This... Centennial Festa, which will include a fireworks presentation originating from a tug and barge combination in...

  6. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA.

    PubMed

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.

  7. 33 CFR 165.1187 - Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. 165.1187 Section 165.1187... Limited Access Areas Eleventh Coast Guard District § 165.1187 Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. (a) Location. All waters extending...

  8. 33 CFR 165.1187 - Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. 165.1187 Section 165.1187... Limited Access Areas Eleventh Coast Guard District § 165.1187 Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. (a) Location. All waters extending...

  9. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Naval Base Point... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  10. Space Radar Image of San Francisco, California

    NASA Image and Video Library

    1999-04-15

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA01791

  11. 75 FR 35651 - Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG 2010-0367] Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Independence Day...

  12. Una Visita al Viejo San Juan (A Visit to Old San Juan).

    ERIC Educational Resources Information Center

    Cabello, Victor; And Others

    Written in Spanish, this black and white illustrated booklet provides a tour of Old San Juan, Puerto Rico's oldest and most historic city. Brief historical information is provided on the Perro de San Jeronimo, a statue of a barking dog found in front of the Castillo; Plaza de Colon, a small plaza dedicated to Christopher Columbus; the Catedral de…

  13. San Jose Unified School District, 2010-2013: Building a Culture of Evidence-Based Practice around College Readiness

    ERIC Educational Resources Information Center

    Kless, Lambrina

    2013-01-01

    In 2012-2013, leaders and staff of the San Jose Unified School District (SJUSD) focused on accomplishing the district's new mission: to aggressively pursue solutions to close the opportunity gap and ensure that all students leave SJUSD with twenty-first-century skills, prepared to participate in a global society. The district's participation in…

  14. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Hart, P.E.

    1999-01-01

    The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.

  15. ASTER Images San Francisco Bay Area

    NASA Image and Video Library

    2000-04-26

    This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco. Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals. http://photojournal.jpl.nasa.gov/catalog/PIA02606

  16. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  17. San Cristobal Volcano, Nicaragua

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A white plume of smoke, from San Cristobal Volcano (13.0N, 87.5W) on the western coast of Nicaragua, blows westward along the Nicaraguan coast just south of the Gulf of Fonseca and the Honduran border. San Csistobal is a strato volcano some 1,745 meters high and is frequently active.

  18. San Marco C-2 (San Marco-4) Post Launch Report No. 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The San Marco C-2 spacecraft, now designated San Marco-4, was successfully launched by a Scout vehicle from the San Marco Platform on 18 February 1974 at 6:05 a.m. EDT. The launch occurred 2 hours 50 minutes into the 3-hour window due co low cloud cover at the launch site. All spacecraft subsystems have been checked and are functioning normally. The protective caps for the two U.S. experiments were ejected and the Omegatron experiment activated on 19 February. The neutral mass spectrometer was activated as scheduled on 22 February after sufficient time to allow for spacecraft outgassing and to avoid the possibility of corona occurring. Both instruments are performing properly and worthwhile scientific data is being acquired.

  19. 78 FR 19103 - Safety Zone; Spanish Navy School Ship San Sebastian El Cano Escort; Bahia de San Juan; San Juan, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... School Ship San Sebastian El Cano, a public vessel, and during their 21 gun salute in accordance with the... zone is necessary to protect the public from the hazards associated with the 21 gun salute near the Bar... an escort of the Spanish Navy School Ship San Sebastian El Cano and 21 gun salute. The outbound...

  20. 78 FR 53245 - Safety Zone; San Diego Bayfair; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may...-AA00 Safety Zone; San Diego Bayfair; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION...

  1. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  2. San Francisco, San Pablo Bay Area

    NASA Image and Video Library

    1994-09-30

    STS068-244-022 (30 September-11 October 1994) --- (San Francisco, San Pablo Bay Area) Photographed through the Space Shuttle Endeavour's flight deck windows, the heavily populated bay area is featured in this 70mm frame. The relatively low altitude of Endeavour's orbit (115 nautical miles) and the use of a 250mm lens on the Hasselblad camera allowed for capturing detail in features such as the Berkeley Marina (frame center). The region's topography is well depicted with the lowland areas heavily populated and the hills much more sparsely covered. The Oakland Hills in the right lower center appear to be re-vegetated after a devastating fire. The Golden Gate Recreation Area in the upper left also shows heavy vegetation. The three bridges across the main part of the bay and their connecting roads are prominent. Cultural features such as Golden Gate Park and the Presidio contrast with the gray of the city.

  3. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  4. Hydrology of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Emery, P.A.; Boettcher, A.J.; Snipes, R.J.; Mcintyre, H.J.

    1969-01-01

    An investigation of the water resources of the Colorado part of the San Luis Valley was begun in 1966 by the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board. (See index map, fig. 1). The purpose of the investigation is to provide information for planning and implementing improved water-development and management practices. The major water problems in the San Luis Valley include (1) waterlogging, (2) waste of water by nonbeneficial evapotranspiration, (3) deterioration of ground-water chemical quality, and (4) failure of Colorado to deliver water to New Mexico and Texas in accordance with the Rio Grande Compact. This report describes the hydrologic environment, extent of water-resource development, and some of the problems related to that development. Information presented is based on data collected from 1966 to 1968 and on previous studies. Subsequent reports are planned as the investigation progresses. The San Luis Valley extends about 100 miles from Poncha Pass near the northeast corner of Saguache County, Colo., to a point about 16 miles south of the Colorado-New Mexico State line. The total area is 3,125 square miles, of which about 3,000 are in Colorado. The valley is nearly flat except for the San Luis Hills and a few other small areas. The Colorado part of the San Luis Valley, which is described in this report, has an average altitude of about 7,700 feet. Bounding the valley on the west are the San Juan Mountains and on the east the Sangre de Cristo Mountains. Most of the valley floor is bordered by alluvial fans deposited by streams originating in the mountains, the most extensive being the Rio Grande fan (see block diagram, fig. 2 in pocket). Most of the streamflow is derived from snowmelt from 4,700 square miles of watershed in the surrounding mountains. The northern half of the San Luis Valley is internally drained and is referred to as the closed basin. The lowest part of this area is known locally as the "sump." The

  5. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  6. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  7. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  8. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  9. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  10. The San Andreas Fault in the San Francisco Bay area, California: a geology fieldtrip guidebook to selected stops on public lands

    USGS Publications Warehouse

    Stoffer, Philip W.

    2005-01-01

    This guidebook contains a series of geology fieldtrips with selected destinations along the San Andreas Fault in part of the region that experienced surface rupture during the Great San Francisco Earthquake of 1906. Introductory materials present general information about the San Andreas Fault System, landscape features, and ecological factors associated with faults in the South Bay, Santa Cruz Mountains, the San Francisco Peninsula, and the Point Reyes National Seashore regions. Trip stops include roadside areas and recommended hikes along regional faults and to nearby geologic and landscape features that provide opportunities to make casual observations about the geologic history and landscape evolution. Destinations include the sites along the San Andreas and Calaveras faults in the San Juan Bautista and Hollister region. Stops on public land along the San Andreas Fault in the Santa Cruz Mountains in Santa Clara and Santa Cruz counties include in the Loma Prieta summit area, Forest of Nicene Marks State Park, Lexington County Park, Sanborn County Park, Castle Rock State Park, and the Mid Peninsula Open Space Preserve. Destinations on the San Francisco Peninsula and along the coast in San Mateo County include the Crystal Springs Reservoir area, Mussel Rock Park, and parts of Golden Gate National Recreation Area, with additional stops associated with the San Gregorio Fault system at Montara State Beach, the James F. Fitzgerald Preserve, and at Half Moon Bay. Field trip destinations in the Point Reyes National Seashore and vicinity provide information about geology and character of the San Andreas Fault system north of San Francisco.

  11. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  12. English Articulation between the San Francisco Unified School District and the City College of San Francisco. Youth Data Archive Issue Brief

    ERIC Educational Resources Information Center

    Gurantz, Oded

    2012-01-01

    San Francisco's Bridge to Success (BtS) initiative brings together the City and County of San Francisco, the San Francisco Unified School District (SFUSD), the City College of San Francisco (CCSF), and key community organizations to promote postsecondary success for underrepresented students. Various working groups, each comprised of staff from…

  13. 78 FR 39610 - Safety Zone; Big Bay Boom, San Diego Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may...-AA00 Safety Zone; Big Bay Boom, San Diego Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION...

  14. 33 CFR 165.1103 - Security Zone; Naval Mine Anti Submarine Warfare Command; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Submarine Warfare Command; San Diego Bay, San Diego, CA. 165.1103 Section 165.1103 Navigation and Navigable... Eleventh Coast Guard District § 165.1103 Security Zone; Naval Mine Anti Submarine Warfare Command; San... the Naval Mine Anti Submarine Warfare Command, bound by the following coordinates: 32°43′40.9″ N, 117...

  15. Overview of the Southern San Andreas Fault Model

    USGS Publications Warehouse

    Weldon, Ray J.; Biasi, Glenn P.; Wills, Chris J.; Dawson, Timothy E.

    2008-01-01

    This appendix summarizes the data and methodology used to generate the source model for the southern San Andreas fault. It is organized into three sections, 1) a section by section review of the geological data in the format of past Working Groups, 2) an overview of the rupture model, and 3) a manuscript by Biasi and Weldon (in review Bulletin of the Seismological Society of America) that describes the correlation methodology that was used to help develop the ?geologic insight? model. The goal of the Biasi and Weldon methodology is to quantify the insight that went into developing all A faults; as such it is in concept consistent with all other A faults but applied in a more quantitative way. The most rapidly slipping fault and the only known source of M~8 earthquakes in southern California is the San Andreas fault. As such it plays a special role in the seismic hazard of California, and has received special attention in the current Working Group. The underlying philosophy of the current Working Group is to model the recurrence behavior of large, rapidly slipping faults like the San Andreas from observed data on the size, distribution and timing of past earthquakes with as few assumptions about underlying recurrence behavior as possible. In addition, we wish to carry the uncertainties in the data and the range of reasonable extrapolations from the data to the final model. To accomplish this for the Southern San Andreas fault we have developed an objective method to combine all of the observations of size, timing, and distribution of past earthquakes into a comprehensive set of earthquake scenarios that each represent a possible history of earthquakes for the past ~1400 years. The scenarios are then ranked according to their overall consistency with the data and then the frequencies of all of the ruptures permitted by the current Working Group?s segmentation model are calculated. We also present 30-yr conditional probabilities by segment and compare to previous

  16. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    This Executive Summary to the Endocrine Society's second Scientific Statement on environmental endocrine-disrupting chemicals (EDCs) provides a synthesis of the key points of the complete statement. The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information. The Statement also included thorough coverage of studies of developmental exposures to EDCs, especially in the fetus and infant, because these are critical life stages during which perturbations of hormones can increase the probability of a disease or dysfunction later in life. A conclusion of the Statement is that publications over the past 5 years have led to a much fuller understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability. These findings will prove useful to researchers, physicians, and other healthcare providers in translating the science of endocrine disruption to improved public health. PMID:26414233

  17. Chemical and bacteriological quality of water at selected sites in the San Antonio area, Texas, August 1968-January 1975

    USGS Publications Warehouse

    Reeves, R.D.; Blakey, J.F.

    1976-01-01

    Urban development on or adjacent to the recharge zone of the Edwards aquifer is causing concern about the possible pollution of ground water in the aquifer, which is the principal source of water supply for the San Antonio area. Water-quality data for many wells and springs and for selected sites on streams that cross the recharge zone of the aquifer are being collected to provide background information and to detect any current pollution of ground water in the area. Water from the Edwards aquifer is very hard and of the calcium bicarbonate type. The concentrations of dissolved solids in samples from wells and springs ranged from about 200 to 470 mg/1 (milligrams per liter); the chloride and sulfate concentrations ranged from 6.5 to 62 mg/1 and from 0.0 to 65 mg/1, respectively. The nitrate and phosphate contents of the ground water ranged from 0.0 to 15 mg/1 and from 0.00 to 0. 37 mg/1. The concentrations of these and other constituents show that the chemical quality of water in the Edwards aquifer has not been degraded significantly by domestic, industrial, or agricultural effluents. However, variations in the number of coliforms, the concentrations of nitrate and phosphate, and the presence of fecal coliforms and fecal streptococci in samples from some wells show that fecal pollution is reaching the aquifer. Most of these wells, which are located in or just downdip from the recharge zone, are poorly sealed or inadequately cased. The areal variation in the locations of these wells indicates that pollution of ground water in the aquifer is very localized. Prllution results principally from runoff from the land surface and from effluent from septic tanks which enters the aquifer through fractures in the recharge zone or which infiltrates through the thin soil into poorly sealed or inadequately cased wells in or adjacent to the recharge zone. Trace amounts of several pesticides have been detected in samples from two wells in the San Antonio area. Field

  18. Symposium DD: Low-Dimensional Materials-Synthesis, Assembly, Property Scaling and Modeling. Held in San Francisco, CA on April 9-13, 2007

    DTIC Science & Technology

    2008-06-01

    Ciencia e Ingenieria de los Materiales , Universidad de Costa Rica, San Jose, Costa Rica. We have developed a new unifying tight-binding theory that...Fisico Matem6ticas, Universidad Aut6noma de Nuevo Le6n, San Nicolas de los Garza, Nuevo LeAfA3n, Mexico; 2Chemical Engineering Department and Texas...ORNL), Oak Ridge, Tennessee; 2Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, Puerto Real, Cadiz, Spain; 3Departamento de

  19. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-05-06

    STS039-89-053 (28 April-6 May 1991) --- A 70mm, infrared frame of the city of San Francisco, taken on a clear day. The gray areas represent urban regions, and the red areas are vegetated. Within the city of San Francisco, parks like Golden Gate park and the Presidio at the base of the Golden Gate Bridge easily stand out from the well-developed parts of the city. Major thoroughfares and bridges (Golden Gate and Bay Bridges) are seen as are other landmarks such as Candlestick Park and Alcatraz. The trace of the San Andreas faults show as a straight valley running northerly along the San Francisco peninsula. Good detail is visible in the turbid waters of San Francisco Bay.

  20. 49. Aerial view of statehouse and San Cristobal, Fuerte El ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Aerial view of statehouse and San Cristobal, Fuerte El Abanico, San Carlos ravelin and Atlantic Ocean in the background - Castillo de San Cristobal, Boulevard Norzagaray, San Juan, San Juan Municipio, PR

  1. History of San Marco

    NASA Technical Reports Server (NTRS)

    Caporale, A. J.

    1968-01-01

    A brief history is reported of the first San Marco project, a joint program of the United States and Italy. The Project was a three phase effort to investigate upper air density and associated ionosphere phenomena. The initial phase included the design and development of the spacecraft, the experiments, the launch complex, and a series of suborbital flights, from Wallops Island. The second phase, consisting of designing, fabricating, and testing a spacecraft for the first orbital mission, culminated in an orbital launch also from Wallops Island. The third phase consisted of further refining the experiments and spacecraft instrumentation and of establishing a full-bore scout complex in Kenya. The launch of San Marco B, in April 1967, from this complex into an equatorial orbit, concluded the initial San Marco effort.

  2. South entrance, plan, section, & detail. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South entrance, plan, section, & detail. San Bernardino Valley Union Junior College, Science Building. Detailed drawings of tile work, wrought iron, and art stone, Howard E. Jones, Architect, San Bernardino, California. Sheet 6, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  3. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    USGS Publications Warehouse

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  4. 33 CFR 165.T11-534 - Safety zone; Bay Bridge construction, San Francisco Bay, San Francisco, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Francisco, CA. (a) Location. This temporary safety zone is established in the navigable waters of the San... construction, San Francisco Bay, San Francisco, CA. 165.T11-534 Section 165.T11-534 Navigation and Navigable... within a box connected by the following points: 37°49′06″ N, 122°21′17″ W; 37°49′01″ N, 122°21′12″ W; 37...

  5. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence

  6. San Jose, Costa Rica

    NASA Technical Reports Server (NTRS)

    2007-01-01

    San Jose, capital city of Costa Rica, fills the valley between two steep mountain ranges. In this image made from data collected by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite, visible, shortwave, and near-infrared wavelengths of light that the sensor observed have been combined to produce a false-color version of the scene in which vegetation is red, urban areas are silvery gray, water is dark blue, and clouds are white. The image was captured on February 8, 2007. San Jose is in the center of the image. The Rio Torres winds through downtown San Jose. Cartago, the much smaller colonial capital, sits in the lower right corner, while the city of Alajuela appears across the river, northwest of San Jose. The cities' manmade surfaces contrast sharply with the lushly vegetated landscape surrounding the city. Greenhouses are common in the region, and their glass roofs may be the brilliant white spots around the outer edges the cities. The long, straight runway of the Tobias Bolanos International Airport is visible as a dark line southeast of Alajuela. The landscape around the two cities shown here is rugged. Steep mountain peaks cast dark shadows across their leeward slopes. Patches of dark red vegetation on the mountains north of San Jose may be rainforest. Coffee plantations also cover the slopes of the mountains around the city. February is the dry season in Costa Rica. During the rainy season, from about April to November, clouds usually block the satellite's view of this tropical location. NASA image created by Jesse Allen, using data provided courtesy of Asaf Ullah and Tim Gubbels, SERVIR project.

  7. Sediment transport in the San Francisco Bay Coastal System: An overview

    USGS Publications Warehouse

    Barnard, Patrick L.; Schoellhamer, David H.; Jaffe, Bruce E.; Lester J. McKee,

    2013-01-01

    The papers in this special issue feature state-of-the-art approaches to understanding the physical processes related to sediment transport and geomorphology of complex coastal-estuarine systems. Here we focus on the San Francisco Bay Coastal System, extending from the lower San Joaquin-Sacramento Delta, through the Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~ 8 x 109 m3/day, in addition to the transport of mud, sand, biogenic material, nutrients, and pollutants. Despite this physical, biological and chemical connection, resource management and prior research have often treated the Delta, Bay and adjacent ocean as separate entities, compartmentalized by artificial geographic or political boundaries. The body of work herein presents a comprehensive analysis of system-wide behavior, extending a rich heritage of sediment transport research that dates back to the groundbreaking hydraulic mining-impact research of G.K. Gilbert in the early 20th century.

  8. 22. Post Engineer Office, Presidio of San Francisco, Building # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Post Engineer Office, Presidio of San Francisco, Building # 1049 Letterman General Hospital. Alterations to EKG Cardiology Clinic. November 1963. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  9. Characteristics of AA amyloidosis patients in San Francisco.

    PubMed

    Lejmi, Hiba; Jen, Kuang-Yu; Olson, Jean L; James, Sam H; Sam, Ramin

    2016-04-01

    AA amyloidosis due to subcutaneous injection of drugs of abuse has been described in the USA, but all the existing literature is from more than 20 years ago. There is more recent literature from Europe. We have observed a high incidence of AA amyloidosis in the county hospital in San Francisco. Here, we describe 24 patients who had kidney biopsy-proven AA amyloidosis from our hospital from 1998 to 2013. All the patients were thought to have AA amyloidosis from skin popping of illicit drugs after having exhausted the intravenous route. These patients with biopsy-proven AA amyloidosis were analysed further. All patients were found to have hepatitis C infection, hypertension was not common, most had advanced kidney failure, and acidosis was common as was tubulointerstitial involvement on the kidney biopsy. Other organ involvement included hepatomegaly and splenomegaly in a number of patients; direct myocardial involvement was not seen, but pulmonary hypertension, history of deep vein thrombosis and pulmonary embolism were common. The prognosis of these patients was poor. The mortality rate approached 50% 1 year after biopsy, and most of the patient needed dialysis shortly after diagnosis. Cessation of drug use seemed beneficial but rarely achievable. AA amyloidosis from skin popping is common in San Francisco. Most patients with renal involvement end up on dialysis, and mortality rates are exceedingly high. © 2015 Asian Pacific Society of Nephrology.

  10. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  11. MAPP in action in San Antonio, Texas.

    PubMed

    Shields, Kathleen M; Pruski, Charles E

    2005-01-01

    San Antonio was selected as an official Mobilizing for Action through Planning and Partnerships (MAPP) demonstration site by National Association of County and City Officials in 2000. The San Antonio Metropolitan Health District, under the leadership of Dr Fernando A. Guerra, agreed to facilitate the process. The MAPP process provided the San Antonio Metropolitan Health District, the local public health authority, a defined process for community health improvement, as well as a mechanism to help bridge the gap between public health and the community. The San Antonio Metropolitan Health District organized a Core Planning Team to lead the MAPP process in April 2001. By October 2002, the Core Planning Team was expanded to a full community working group named the Alliance for Community Health in San Antonio and Bexar County (Alliance). The Alliance identified six strategic issues, which eventually became the basis of the San Antonio Community Health Improvement Plan. The strategic issues are Public Policy, Data Tracking, Healthy Lifestyles, Promoting a Sense of Community, Access to Care, and Safe Environment. San Antonio's MAPP experience has been successful in bringing together the public health system partners, and establishing public health priorities collectively. The MAPP process has resulted in the development of many new initiatives, and, most important, has opened the door to many partnership opportunities in the future. The work of the Alliance, through the MAPP process, has helped to leverage resources for public health improvement in San Antonio, and has the potential to effect positive change in public health in the future.

  12. 33 CFR 165.T11-568 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA. 165.T11-568 Section 165.T11-568 Navigation and... Areas Eleventh Coast Guard District § 165.T11-568 Safety Zone; San Diego Symphony Summer POPS Fireworks...

  13. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  14. 78 FR 57482 - Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...-AA00 Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA AGENCY: Coast Guard... America's Cup air shows. These safety zones are established to provide a clear area on the water for... announced by America's Cup Race Management. ADDRESSES: Documents mentioned in this preamble are part of...

  15. 77 FR 42649 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-0497] RIN 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on...

  16. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  17. Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems

    DTIC Science & Technology

    2017-08-01

    Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems The views, opinions and/or findings contained in...University of California - San Diego Title: Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems Report Term...including enzymatic reactions , occurring at the aqueous interfaces of thermotropic LCs show promise as the basis of biomolecular triggers of LC

  18. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and

  19. 75 FR 51098 - Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, Island, San Juan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ..., Washington Maritime National Wildlife Refuge Complex, 715 Holgerson Drive, Sequim, WA 98382. FOR FURTHER...] Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, Island, San Juan, Skagit, and Whatcom Counties, WA AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability: draft...

  20. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate

  1. San Diego's Capital Planning Process

    ERIC Educational Resources Information Center

    Lytton, Michael

    2009-01-01

    This article describes San Diego's capital planning process. As part of its capital planning process, the San Diego Unified School District has developed a systematic analysis of functional quality at each of its school sites. The advantage of this approach is that it seeks to develop and apply quantifiable metrics and standards for the more…

  2. Section AA through main entrance gates & west stairs. San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section AA through main entrance gates & west stairs. San Bernardino Valley Union Junior College, Science Building. Also includes plans and sections of boys' and girls' toilets. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 311. Scales 1/4 inch to the foot (section AA) and 1/2 inch to the foot (toilet rooms). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  3. San Marco C-2 Explorer

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The San Marco C-2 spacecraft will be launched no earlier than 18 February 1974 from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco C-2 is the fourth cooperative satellite project between Italy and the United States. The purpose of the mission is to obtain measurements of the diurnal variations of the equatorial neutral atmosphere density, composition, and temperature and to use these data for correlation with AE-C (Explorer 51) data for studies of the physics and dynamics of the thermosphere. The San Marco C-2 project is a joint undertaking of the National Aeronautics and Space Administration (NASA) and the Italian Space Commission officially initiated with a Memorandum of Understanding in August of 1973. Project management responsibility for the Italian portion of the project has been assigned to the Centro Ricerche Aerospaziali (CRA) while the Goddard Space Flight Center (GSFC) has responsibility for the United States portion.

  4. San Andreas drilling sites selected

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Zoback, Mark

    A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.

  5. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  6. Shelving plans, elevations, and sections. San Bernardino Valley Union Junior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Shelving plans, elevations, and sections. San Bernardino Valley Union Junior College, Science Building. Howard E. Jones, Architect, San Bernardino, California. Sheet 9, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  7. 76 FR 19781 - Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, San Juan, Skagit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...., Lopez Island, WA 98261. North Olympic Public Library..... 630 N. Sequim Ave., 360-683-1161 Sequim, WA...] Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, San Juan, Skagit, Island, and Whatcom Counties, WA; Final Comprehensive Conservation Plan, Wilderness Stewardship Plan, and Finding of...

  8. 22. Photocopy of photograph (from San Francisco Chronicle Collection) Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (from San Francisco Chronicle Collection) Photographer unknown, Date unknown SIDE VIEW OF CHURCH - Mission San Miguel Arcangel, Highway 101, San Miguel, San Luis Obispo County, CA

  9. Isotopic and Chemical Analysis of Nitrate Sources and Cycling in the San Joaquin River Near Stockton, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2002-12-01

    Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.

  10. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Bay Delta Estuary is the hub of California's water distribution system, supplying some or all of the... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... interested parties on possible EPA actions to address water quality conditions affecting aquatic resources in...

  11. South elevation and main floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South elevation and main floor plan. San Bernardino Valley Union Junior College, Science Building. Includes chemistry and botany departments. Howard E. Jones, Architect, San Bernardino, California. Sheet 2, job no. 311. Scale 1/8 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Biostratigraphy of the San Joaquin Formation in borrow-source area B-17, Kettleman Hills landfill, North Dome, Kettleman Hills, Kings County, California

    USGS Publications Warehouse

    Powell, Charles L.; Fisk, Lanny H.; Maloney, David F.; Haasl, David M.

    2010-01-01

    The stratigraphic occurrences and interpreted biostratigraphy of invertebrate fossil taxa in the upper San Joaquin Formation and lower-most Tulare Formation encountered at the Chemical Waste Management Kettleman Hills waste disposal facility on the North Dome of the Kettleman Hills, Kings County, California are documented. Significant new findings include (1) a detailed biostratigraphy of the upper San Joaquin Formation; (2) the first fossil occurrence of Modiolus neglectus; (3) distinguishing Ostrea sequens from Myrakeena veatchii (Ostrea vespertina of authors) in the Central Valley of California; (4) differentiating two taxa previously attributed to Pteropurpura festivus; (5) finding a stratigraphic succession between Caesia coalingensis (lower in the section) and Catilon iniquus (higher in the section); and (6) recognizing Pliocene-age fossils from around Santa Barbara. In addition, the presence of the bivalves Anodonta and Gonidea in the San Joaquin Formation, both restricted to fresh water and common in the Tulare Formation, confirm periods of fresh water or very close fresh-water environments during deposition of the San Joaquin Formation.

  13. 1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOODWATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOOD-WATER CANAL TO SAN TAN INDIAN CANAL - San Carlos Irrigation Project, San Tan Flood Water Canal, North Side of Gila River, Coolidge, Pinal County, AZ

  14. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, City of San Francisco, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Zone; Fourth of July Fireworks, City of San Francisco, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for... anchoring in the safety zone, unless authorized by the Patrol Commander (PATCOM). DATES: The regulations in...

  15. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-06-14

    STS040-152-100 (5-14 June 1991) --- Although clouds obscure part of the city of San Francisco and the mouth of San Francisco Bay, development and physiographic features in the immediate vicinity of the bay are well displayed. The photograph clearly shows the eastern part of the city, including the Embarcadero, the Bay Bridge, which was damaged in the 1989 earthquake, and Candlestick Park, San Mateo, and Dumbarton Bridges, cross the southern portion of the bay. Vari-colored salt ponds also rim the southern Bay near Moffett Field. Highway 280 runs along the San Andreas fault south of the city. On the eastern margin of the bay are Berkeley the Sacramento River and the Haywood and Calaveras faults.

  16. 33 CFR 165.T11-560 - Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission Bay; San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission Bay; San Diego, CA. 165.T11-560 Section 165.T11-560 Navigation and Navigable... Eleventh Coast Guard District § 165.T11-560 Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission...

  17. Toxic phytoplankton in San Francisco Bay

    USGS Publications Warehouse

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  18. Foundation plan. San Bernardino Valley Union Junior College, Classics Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Foundation plan. San Bernardino Valley Union Junior College, Classics Building. Also includes sections AA-KK (except DD). Howard E. Jones, Architect, San Bernardino, California. Sheet 1, job no. 312. Scales 1/8 inch to the foot (plan) and 1/2 inch to the foot (sections). February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  19. Details of main entrance. San Bernardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Details of main entrance. San Bernardino Valley Union Junior College, Classics Building. Half elevation of exterior iron gates, half plan of interior with tiling, and section AA. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 312. Scale 1/2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  20. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  1. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  2. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  3. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  4. 21. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital. EKG Cardiology Clinic, Building 1049. December 1955. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  5. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    USDA-ARS?s Scientific Manuscript database

    Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...

  6. Organochlorine chemical residues in bluegills and common carp from the irrigated San Joaquin Valley floor, California

    USGS Publications Warehouse

    Saiki, Michael K.; Schmitt, Christopher J.

    1986-01-01

    Samples of bluegills (Lepomis macrochirus) and common carp (Cyprinus carpio) collected from the San Joaquin River and two tributaries (Merced River and Salt Slough) in California were analyzed for 21 organochlorine chemical residues by gas chromatography to determine if pesticide contamination was confined to downstream sites exposed to irrigated agriculture, or if nonirrigated upstream sites were also contaminated. Residues ofp,p′-DDE were detected in all samples of both species. Six other contaminants were also present in both species at one or more of the collection sites: chlordane (cis-chlordane +trans-nonachlor);p,p′-DDD;o,p′-DDT;p,p′-DDT; DCPA (dimethyl tetrachloroterephthalate); and dieldrin. Concentrations of most of these residues were generally higher in carp than in bluegills; residues of other compounds were found only in carp: α-BHC (α-benzenehexachloride), Aroclor® 1260, and toxaphene. Concentrations of most organochlorines in fish increased from upstream to downstream. Water quality variables that are influenced by irrigation return flows (e.g., conductivity, turbidity, and total alkalinity) also increased from upstream to downstream and were significantly correlated (P < 0.05) with organochlorine residue levels in the fish. In carp, concentrations of two residues-⌆DDT (p,p′-DDD +p,p′-DDE + +p,p′-DDT; 1.43 to 2.21 mg/kg wet weight) and toxaphene (3.12 mg/kg wet weight)-approached the highest levels reported by the National Pesticide Monitoring Program for fish from other intensively farmed watersheds of the United States in 1980 to 1981, and surpassed criteria for whole-body residue concentrations recomended by the National Academy of Sciences and National Academy of Engineers for the protection of piscivorous wildlife.

  7. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  8. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  9. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  10. North elevation and second floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North elevation and second floor plan. San Bernardino Valley Union Junior College, Science Building. Includes physics, geology, and zoology departments shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch to the foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  11. East and west elevations. San Berardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East and west elevations. San Berardino Valley Union Junior College, Science Building. Also includes elevations and sections of chemistry department shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, Job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch t other foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Performance of San Fernando dams during 1994 Northridge earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardet, J.P.; Davis, C.A.

    1996-07-01

    The 1994 Northridge and 1971 San Fernando Earthquakes subjected the Lower and Upper San Fernando Dams of the Van Norman Complex in the San Fernando Valley, Calif., to strong near-source ground motions. In 1994, these earth dams, which were out of service and retained only a few meters of water, extensively cracked and settled due to the liquefaction of their hydraulic fill. The Lower San Fernando Dam moved over 15 cm upstream as the hydraulic fill liquefied beneath its upstream slope. The Upper San Fernando Dam moved even more and deformed in a complicated three-dimensional pattern. The responses of themore » Lower and Upper San Fernando Dams during the 1994 Northridge Earthquake, although less significant than in 1971, provide the geotechnical engineering community with two useful case histories.« less

  13. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  14. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  15. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  16. 78 FR 39588 - Special Local Regulations; Revision of 2013 America's Cup Regulated Area, San Francisco Bay; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-AA08 Special Local Regulations; Revision of 2013 America's Cup Regulated Area, San Francisco Bay; San...: The Coast Guard is revising the regulated area for the 2013 America's Cup sailing events. Previously... final rule regulating the on-water activities associated with the ``Louis Vuitton Cup,'' ``Red Bull...

  17. 77 FR 50921 - Safety Zone: Bay Bridge Load Transfer Safety Zone, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...-AA00 Safety Zone: Bay Bridge Load Transfer Safety Zone, San Francisco Bay, San Francisco, CA AGENCY... the Bay Bridge Load Transfer Safety Zone from August 1, 2012 through October 31, 2012. This safety... Bay Bridge from the temporary suspension arrangement to the permanent suspension arrangement, the...

  18. Distribution and demography of San Francisco gartersnakes (Thamnophis sirtalis tetrataenia) at Mindego Ranch, Russian Ridge Open Space Preserve, San Mateo County, California

    USGS Publications Warehouse

    Kim, Richard; Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2018-04-26

    San Francisco gartersnakes (Thamnophis sirtalis tetrataenia) are a subspecies of common gartersnakes endemic to the San Francisco Peninsula of northern California. Because of habitat loss and collection for the pet trade, San Francisco gartersnakes were listed as endangered under the precursor to the Federal Endangered Species Act. A population of San Francisco gartersnakes resides at Mindego Ranch, San Mateo County, which is part of the Russian Ridge Open Space Preserve owned and managed by the Midpeninsula Regional Open Space District (MROSD). Because the site contained non-native fishes and American bullfrogs (Lithobates catesbeianus), MROSD implemented management to eliminate or reduce the abundance of these non-native species in 2014. We monitored the population using capture-mark-recapture techniques to document changes in the population during and following management actions. Although drought confounded some aspects of inference about the effects of management, prey and San Francisco gartersnake populations generally increased following draining of Aquatic Feature 3. Continued management of the site to keep invasive aquatic predators from recolonizing or increasing in abundance, as well as vegetation management that promotes heterogeneous grassland/shrubland near wetlands, likely would benefit this population of San Francisco gartersnakes.

  19. 1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, showing street profiles of three San Francisco cable lines. Figure 7, at bottom of engraving, is the profile of Hallidie's Clay Street Hill Railroad. Figures 8 and 9 show the grades for the California Street Cable Railroad and the Geary Street Park & Ocean Railroad respectively. Note the lack of significant grades along Geary Street. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. Elevation and plan of east side entrance. San Bernardino Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation and plan of east side entrance. San Bernardino Valley Union Junior College, Library Building. Also includes sections II and SS of entrance hall; and a stress diagram of steel truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 315. Scale 1/2 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  1. West elevation. San Bernardino Valley Union Junior College, Science Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West elevation. San Bernardino Valley Union Junior College, Science Building. Also includes plan of entrance, section EE showing tiling and typical transom design, and a full size detail of a door jamb for inside concrete walls. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. 78 FR 48044 - Safety Zone; San Diego International Airport Terminal Two West Grand Opening Fireworks; San Diego...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...-AA00 Safety Zone; San Diego International Airport Terminal Two West Grand Opening Fireworks; San Diego... Opening of Lindbergh Airport Terminal Two West on August 8, 2013. This temporary safety zone is necessary... Diego International Airport Terminal Two grand opening. This safety zone is necessary to provide for the...

  3. 78 FR 28800 - Foreign-Trade Zone 61-San Juan, Puerto Rico; Application for Subzone; Parapiezas Corporation; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ..., Puerto Rico; Application for Subzone; Parapiezas Corporation; San Juan, Puerto Rico An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Puerto Rico Trade & Export Company... located in San Juan, Puerto Rico. The application was submitted pursuant to the provisions of the Foreign...

  4. 78 FR 21397 - Don Edwards San Francisco Bay National Wildlife Refuge, Alameda, Santa Clara, and San Mateo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...) 792-5828. Mail: U.S. Fish and Wildlife Service, San Francisco Bay NWR Complex, 1 Marshlands Road... the San Francisco Bay National Wildlife Refuge Complex, 1 Marshlands Road, Fremont, CA 94555 (510) 792... and environmental education. We announce our decision and the availability of the FONSI for the final...

  5. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  6. Examination of spotted sand bass (Paralabrax maculatofasciatus) pollutant bioaccumulation in San Diego Bay, San Diego, California

    PubMed Central

    2013-01-01

    The spotted sand bass (Paralabrax maculatofasciatus) is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay. Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration. Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay. PMID:24282672

  7. Examination of spotted sand bass (Paralabrax maculatofasciatus) pollutant bioaccumulation in San Diego Bay, San Diego, California.

    PubMed

    Loflen, Chad L

    2013-01-01

    The spotted sand bass (Paralabrax maculatofasciatus) is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay. Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration. Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay.

  8. Distinctive Triassic megaporphyritic monzogranite: Evidence for only 160 km offset along the San Andreas Fault, southern California

    NASA Astrophysics Data System (ADS)

    Frizzell, Virgil A., Jr.; Mattinson, James M.; Matti, Jonathan C.

    1986-12-01

    Distinctive megaporphyritic bodies of monzogranite to quartz monzonite that occur in the Mill Creek region of the San Bernardino Mountains and across the San Andreas fault on Liebre Mountain share identical modal and chemical compositions, intrusive ages, and petrogenesis and similar thermal histories. Both bodies are strontium-rich and contain large potassium feldspar phenocrysts and hornblende. U-Pb determinations on zircon from both bodies indicate Triassic intrusive ages (215 Ma) and derivation, in part, from homogeneous Precambrian continental crust. U-Pb analyses on apatite and sphene and K-Ar analyses on hornblende and biotite show that the bodies suffered a Late Cretaceous thermal event (70-75 Ma). The strong similarities between the two bodies suggest that they constitute segments of a formerly continuous pluton that has been offset about 160 km by movement on the San Andreas fault, about 80 km less than the generally accepted distance. Plutons having monzonitic compositions, reassembled with the megaporphyritic bodies are used as a piercing point, form a relatively coherent province within the varied suite of Mesozoic batholithic and prebatholithic rocks in southern California.

  9. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-118 (June 1973) --- An infrared photograph of the San Francisco Bay, California area, taken from the Skylab 1/2 space station in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type 2443 film was used. Note the thickly populated and highly developed area around the bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiment Package (EREP). Photo credit: NASA

  10. The Pan-American Federation of Neurological Societies (PAFNS): A New Regional Organization.

    PubMed

    Medina, Marco T; Román, Gustavo C

    2016-07-15

    The Pan-American Federation of Neurological Societies (PAFNS) was created on 15 November 2011 during the 20th World Congress of Neurology in Marrakech by virtue of the "Declaration of Morocco" signed by the WFN Latin American delegates and ratified on 5 March 2012 by delegates attending the 13th Pan-American Congress of Neurology in La Paz, Bolivia. On 20 March 2013 delegates attending the 65th Annual Meeting of the American Academy of Neurology in San Diego, California, USA, gave formal approval to the PAFNS Constitution. The neurological societies from the following countries have approved and signed the constitution as founding members and active ordinary members: Argentina, Brazil, Bolivia, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay, and Venezuela. The Ibero-American Stroke Society (SIECV), the Commission on Latin American Affairs of the International League Against Epilepsy (ILAE) and the World Sleep Society have requested the status of Associate Members. The WFN and the American Academy of Neurology provided seed grants for the creation of the Pan-American Federation of Neurological Societies. PAFNS represents a major step for the improvement of regional neurological care, education and research. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 75 FR 61611 - Modification of Class E Airspace; San Clemente, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... [Modified] San Clemente Island NALF (Fredrick Sherman Field), CA (Lat. 33[deg]01'22'' N., long. 118[deg]35'19'' W.) San Clemente Island TACAN (Lat. 33[deg]01'37'' N., long. 118[deg]34'46'' W.) That airspace... San Clemente, CA. Decommissioning of the San Clemente Island Non-Directional Radio Beacon (NDB) at San...

  12. Chemical and biochemical study of industrially produced San Simón da Costa smoked semi-hard cow's milk cheeses: Effects of storage under vacuum and different modified atmospheres.

    PubMed

    Garabal, J I; Rodríguez-Alonso, P; Franco, D; Centeno, J A

    2010-05-01

    Two batches of smoked, semi-hard (ripened for 45 d) San Simón da Costa cow's milk cheeses with Protected Designation of Origin were used to investigate the chemical, biochemical, and sensorial parameters that may be affected by modified-atmosphere packaging. Cheeses were packaged for 45 d as follows: vacuum packaging, packaging in 100% N(2), packaging in a gas mixture of 20% CO(2)/80% N(2), and packaging in a gas mixture of 50% CO(2)/50% N(2). The San Simón da Costa cheeses were characterized by high contents of lactic, oxalic, and citric organic acids. The main free amino acids found were isoleucine, phenylalanine, serine, valine, lysine, and glutamic acid, and the most abundant volatile compounds included ethanol, diacetyl, 2-butanol, isopropyl alcohol, furfural, acetaldehyde, 2-butanone, acetone, and 2-methylfuran. Modified atmospheres appeared to alter the ripening processes by affecting lipolysis, as indicated by the lower concentrations of butyric and propionic acids compared with control cheeses. In addition, modified-atmosphere packaging altered the proteolysis processes, yielding higher amounts of branched-chain alcohols. The results revealed that storage under modified atmosphere contributes to the accumulation of several compounds probably derived from smoke, including aldehydes such as 2-furancarboxaldehyde (furfural), alcohols such as 2-methoxyphenol (guaiacol), ketones such as 2-cyclopenten-1-one, and esters such as methyl furancarboxylate, which were negatively correlated with flavor. Vacuum packaging was the most useful technique in terms of preserving the sensory quality of San Simón da Costa Protected Designation of Origin cheeses. Considering the current demands for packaged portions of food at the distribution and retail levels and the potential health risks associated with some smoke-derived compounds usually present in some smoked foods, the results obtained in this study may be of special interest to the cheese industry. Copyright 2010

  13. San Francisco Bay Long Term Management Strategy for Dredging

    EPA Pesticide Factsheets

    The San Francisco Bay Long Term Management Strategy (LTMS) is a cooperative effort to develop a new approach to dredging and dredged material disposal in the San Francisco Bay area. The LTMS serves as the Regional Dredging Team for the San Francisco area.

  14. 76 FR 22809 - Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...-AA00 Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA AGENCY... Security Exercise, a multi-agency exercise that tests the proficiency of teams called upon in real [[Page... exercise, many of whom will be traveling at high speeds while interfacing with law enforcement responders...

  15. Development of a systematic strategy for the global identification and classification of the chemical constituents and metabolites of Kai-Xin-San based on liquid chromatography with quadrupole time-of-flight mass spectrometry combined with multiple data-processing approaches.

    PubMed

    Wang, Xiaotong; Liu, Jing; Yang, Xiaomei; Zhang, Qian; Zhang, Yiwen; Li, Qing; Bi, Kaishun

    2018-03-30

    To rapidly identify and classify complicated components and metabolites for traditional Chinese medicines, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with multiple data-processing approaches was established. In this process, Kai-Xin-San, a widely used classic traditional Chinese medicine preparation, was chosen as a model prescription. Initially, the fragmentation patterns, diagnostic product ions and neutral loss of each category of compounds were summarized by collision-induced dissociation analysis of representative standards. In vitro, the multiple product ions filtering technique was utilized to identify the chemical constituents for globally covering trace components. With this strategy, 108 constituents were identified, and compounds database was successfully established. In vivo, the prototype compounds were extracted based on the established database, and the neutral loss filtering technique combined with the drug metabolism reaction rules was employed to identify metabolites. Overall, 69 constituents including prototype and metabolites were characterized in rat plasma and nine constituents were firstly characterized in rat brain, which may be the potential active constituents resulting in curative effects by synergistic interaction. In conclusion, this study provides a generally applicable strategy to global metabolite identification for the complicated components in complex matrix and a chemical basis for further pharmacological research of Kai-Xin-San. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ASTER Images San Francisco Bay Area

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco.

    Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth

  17. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  18. 75 FR 8804 - Safety Zone; NASSCO Launching of USNS Charles Drew, San Diego Bay, San Diego, CA.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...-AA00 Safety Zone; NASSCO Launching of USNS Charles Drew, San Diego Bay, San Diego, CA. AGENCY: Coast... United States Naval Ship (USNS) Charles Drew. The safety zone is necessary to provide for the safety of... to the safety of the USNS Charles Drew and surrounding vessels as this ship launches from NASSCO...

  19. Quaternary geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: a digital database

    USGS Publications Warehouse

    Helley, E.J.; Graymer, R.W.

    1997-01-01

    Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.

  20. San Francisco Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  1. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines.

    PubMed

    Sipe, Jean D; Benson, Merrill D; Buxbaum, Joel N; Ikeda, Shu-Ichi; Merlini, Giampaolo; Saraiva, Maria J M; Westermark, Per

    2016-12-01

    The Nomenclature Committee of the International Society of Amyloidosis (ISA) met during the XVth Symposium of the Society, 3 July-7 July 2016, Uppsala, Sweden, to assess and formulate recommendations for nomenclature for amyloid fibril proteins and the clinical classification of the amyloidoses. An amyloid fibril must exhibit affinity for Congo red and with green, yellow or orange birefringence when the Congo red-stained deposits are viewed with polarized light. While congophilia and birefringence remain the gold standard for demonstration of amyloid deposits, new staining and imaging techniques are proving useful. To be included in the nomenclature list, in addition to congophilia and birefringence, the chemical identity of the protein must be unambiguously characterized by protein sequence analysis when possible. In general, it is insufficient to identify a mutation in the gene of a candidate amyloid protein without confirming the variant changes in the amyloid fibril protein. Each distinct form of amyloidosis is uniquely characterized by the chemical identity of the amyloid fibril protein that deposits in the extracellular spaces of tissues and organs and gives rise to the disease syndrome. The fibril proteins are designated as protein A followed by a suffix that is an abbreviation of the parent or precursor protein name. To date, there are 36 known extracellular fibril proteins in humans, 2 of which are iatrogenic in nature and 9 of which have also been identified in animals. Two newly recognized fibril proteins, AApoCII derived from apolipoprotein CII and AApoCIII derived from apolipoprotein CIII, have been added. AApoCII amyloidosis and AApoCIII amyloidosis are hereditary systemic amyloidoses. Intracellular protein inclusions displaying some of the properties of amyloid, "intracellular amyloid" have been reported. Two proteins which were previously characterized as intracellular inclusions, tau and α-synuclein, are now recognized to form extracellular

  2. San Francisco vessel traffic service watchstander analysis

    DOT National Transportation Integrated Search

    1979-11-01

    A team of human factors specialists analyzed the performance of watchstanders in the U.S. Coast Guard's San Francisco Vessel Traffic Center at Yerba Buena Island, San Francisco, California. Data collected included copies of the center's forms and log...

  3. San Diego's High School Dropout Crisis

    ERIC Educational Resources Information Center

    Wilson, James C.

    2012-01-01

    This article highlights San Diego's dropout problem and how much it's costing the city and the state. Most San Diegans do not realize the enormous impact high school dropouts on their city. The California Dropout Research Project, located at the University of California at Santa Barbara, has estimated the lifetime cost of one class or cohort of…

  4. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  5. 76 FR 10945 - San Luis Trust Bank, FSB, San Luis Obispo, CA; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision San Luis Trust Bank, FSB, San Luis Obispo... contained in section 5(d)(2) of the Home Owners' Loan Act, the Office of Thrift Supervision has duly... Thrift Supervision. Sandra E. Evans, Federal Register Liaison. [FR Doc. 2011-4306 Filed 2-25-11; 8:45 am...

  6. Comparison of a few recording current meters in San Francisco Bay, CA

    USGS Publications Warehouse

    Cheng, R.T.

    1978-01-01

    A team of research scientists in the U.S. Geological Survey uses San Francisco Bay, California, as an outdoor laboratory to study complicated interactions of physical, chemical, and biological processes which take place in an estuarine environment. A current meter comparison study was conceived because of the need to select a suitable current meter to meet field requirements for current measurements in the Bay. The study took place in south San Francisco Bay, California, in the spring of 1977. An instrument tower which was designed to support instruments free from the conventional mooring line motions was constructed and emplaced in south San Francisco Bay. During a period of two months, four types of recording current meters have been used in the tests. The four types were: (1) Aanderaa, (2) tethered shroud-impeller, (3) drag-inclinometer, and (4) electromagnetic current meters. With the exception of the electromagnetic current meter, one of each type was mounted on the instrument tower, and one of each type was deployed on moorings near the instrument tower. In addition, a wind anemometer and a recording tide gauge were also installed on the tower. This paper discusses the characteristics of each instrument and the accuracy that each instrument can provide when used in an estuarine environment. We pay special attention to our experiences in the field operation with respect to handling of the instruments and to our experiences working up the raw data in the post-deployment data analysis.

  7. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    PubMed

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  8. 1. Historic American Buildings Survey San Francisco Chronicle Library Rephoto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library Re-photo May 1940 TAKEN 1849-50 - Abandoned Ships, Historic View, 1849-1850, Yerba Beuna Cove, San Francisco, San Francisco County, CA

  9. 1. Historic American Buildings Survey San Francisco Chronicle Library Rephoto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library Re-photo May 1940 TOTALLY DESTROYED - Old U. S. Custom House, Historic View, Battery & Washington Streets, San Francisco, San Francisco County, CA

  10. Drift of surface and near-bottom waters of the San Francisco Bay system, California March 1970 through April 1971

    USGS Publications Warehouse

    Conomos, T.J.; McCulloch, D.S.; Peterson, D.H.; Carlson, P.R.

    1972-01-01

    The San Francisco Bay system is a complex estuary in which there is an interplay between natural chemical and physical processes, and changes resulting from the works of man. The bay is used for recreation, water-borne commerce, fishing, domestic and industrial waste disposal, and esthetic pleasure. Because some of these uses are competitive, it is desirable to adequately predict the impact of man's activities on this natural system. The reliability of such predictions will be strengthened by long-term observations directed toward understanding the natural processes occurring in the bay. This study is a compilation of one aspect of the U.S. Geological Survey's continuing investigations of the San Francisco Bay system.

  11. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  12. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, LOOKING NORTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  13. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  14. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING SOUTHEAST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  15. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, LOOKING SOUTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  16. Does gender bias influence awards given by societies?

    NASA Astrophysics Data System (ADS)

    Holmes, Mary Anne; Asher, Pranoti; Farrington, John; Fine, Rana; Leinen, Margaret S.; LeBoy, Phoebe

    2011-11-01

    AGU is a participant in a U.S. National Science Foundation (NSF)-funded project called Advancing Ways of Awarding Recognition in Disciplinary Societies (AWARDS), which seeks to examine whether gender bias affects selection of recipients of society awards. AGU is interested in learning why there is a higher proportion of female recipients of service and education awards over the past 2 decades. Combined with a lower rate of receipt of research awards, these results suggest that implicit (subconscious) bias in favor of male candidates still influences awardee selection. Six other professional societies (American Chemical Society, American Mathematical Society, American Society of Anesthesiologists, Mathematical Association of America, Society for Neuroscience, and Society for Industrial and Applied Mathematics) are participating in the project. Volunteers from each participant society attended an Association for Women in Science (AWIS)-sponsored workshop in May 2010 to examine data and review literature on best practices for fair selection of society awardees. A draft proposal for implementing these practices will be brought before the AGU Council and the Honors and Recognition Committee at their upcoming meetings.

  17. 1. Historic American Buildings Survey San Francisco Chronicle Photo Undated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Photo Undated (by Taber) ca. 1885 GREENWICH STREET HOUSES (From Powell to Kearny) - Telegraph Hill, Historic View, Greenwich Street, San Francisco, San Francisco County, CA

  18. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... boundary line of sections 22, 27, and 34, T24S, R10E, to the Monterey-San Luis Obispo County line; then (5) Follow the Monterey-San Luis Obispo County line west for approximately 7.0 miles, back onto the Tierra...

  19. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W. [CGD 7-83-29, 49 FR 48540, Dec. 13, 1984] ...

  20. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W. [CGD 7-83-29, 49 FR 48540, Dec. 13, 1984] ...

  1. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  2. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  3. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, LOOKING EAST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  4. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, LOOKING SOUTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  5. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  6. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  7. VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  8. An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands

    NASA Astrophysics Data System (ADS)

    Rodrigues, Leonor; Lombardo, Umberto; Trauerstein, Mareike; Huber, Perrine; Mohr, Sandra; Veit, Heinz

    2016-07-01

    Pre-Columbian raised field agriculture in the tropical lowlands of South America has received increasing attention and been the focus of heated debates regarding its function, productivity, and role in the development of pre-Columbian societies. Even though raised fields are all associated to permanent or semi-permanent high water levels, they occur in different environmental contexts. Very few field-based studies on raised fields have been carried out in the tropical lowlands and little is known about their use and past management. Based on topographic surveying and mapping, soil physical and chemical analysis and OSL and radiocarbon dating, this paper provides insight into the morphology, functioning and time frame of the use of raised fields in the south-western Llanos de Moxos, Bolivian Amazon. We have studied raised fields of different sizes that were built in an area near the town of San Borja, with a complex fluvial history. The results show that differences in field size and height are the result of an adaptation to a site where soil properties vary significantly on a scale of tens to hundreds of metres. The analysis and dating of the raised fields sediments point towards an extensive and rather brief use of the raised fields, for about 100-200 years at the beginning of the 2nd millennium.

  9. Geohydrology and water chemistry in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Kadhim, Dina

    1997-01-01

    The 40-square-mile Rialto-Colton ground- water basin is in western San Bernardino County, California, about 60 miles east of Los Angeles.This basin was chosen for storage of imported water because of the good quality of native ground water, the known capacity for additional ground-water storage in the basin, and the availability of imported water. Because the movement and mixing of imported water needed to be determined, the San Bernardino Valley Municipal Water District entered into a cooperative program with the U.S.Geological Survey in 1991 to study the geohydrology and water chemistry in the Rialto- Colton basin. Ground-water flow and chemistry were investigated using existing data, borehole- geophysical and lithologic logs from newly drilled test holes, measurement of water levels, and chemical analyses of water samples. The Rialto-Colton basin is bounded on the northwest and southeast by the San Gabriel Mountains and the Badlands, respectively. The San Jacinto Fault and Barrier E form the northeastern boundary, and the Rialto-Colton Fault forms the southwestern boundary. Except in the southeastern part of the basin, the San Jacinto and Rialto-Colton Faults act as groundwater barriers that impede ground- water flow into and out of the basin.Barrier E generally does not impede ground- water flow into the basin. The ground-water system consists primarily of gravel, sand, silt, and clay. The maximum thickness is greater than 1,000 feet. The ground- water system is divided into four water-bearing units: river-channel deposits, and upper, middle, and lower water-bearing units. Relatively impermeable consolidated deposits underlie the lower water- bearing unit and form the lower boundary of the ground- water system. Ground water moves from east to west in the river-channel deposits and upper water-bearing unit in the southeastern part of the basin, and from northwest to southeast in the middle and lower water-bearing units. Two major internal faults, Barrier J and

  10. 1. Historic American Buildings Survey San Francisco Chronicle Library ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library ca. 1865 ORIGINAL SITE - RIGHT FOREGROUND (On Market Street) - Holy Cross Parish Hall, Eddy Street (moved from Market & Second Streets), San Francisco, San Francisco County, CA

  11. 78 FR 58878 - Safety Zone; San Diego Shark Fest Swim; San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... this rule because the logistical details of the San Diego Shark Fest Swim were not finalized nor... Local Notice to Mariners and Broadcast Notice to Mariners. D. Regulatory Analyses We developed this rule... analyses based on a number of these statutes and executive orders. 1. Regulatory Planning and Review This...

  12. VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  13. 1. GENERAL VIEW OF COMPLEX (drawing from History of San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF COMPLEX (drawing from History of San Diego County, California, published 1883. Photocopy 1975 by Bert Shankland, San Diego). - Johnson-Taylor Ranch House, Black Mountain Road vicinity, Rancho Penasquitos, San Diego County, CA

  14. Highlights of the 16th annual scientific sessions of the Society for Cardiovascular Magnetic Resonance.

    PubMed

    Carpenter, John-Paul; Patel, Amit R; Fernandes, Juliano Lara

    2013-07-19

    The 16th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance (SCMR) took place in San Francisco, USA at the end of January 2013. With a faculty of experts from across the world, this congress provided a wealth of insight into cutting-edge research and technological development. This review article intends to provide a highlight of what represented the most significant advances in the field of cardiovascular magnetic resonance (CMR) during this year's meeting.

  15. Geologic map of the Cochetopa Park and North Pass Calderas, northeastern San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2012-01-01

    The San Juan Mountains in southwestern Colorado have long been known as a site of exceptionally voluminous mid-Tertiary volcanism, including at least 22 major ignimbrite sheets (each 150-5,000 km3) and associated caldera structures active at 33-23 Ma. Recent volcanologic and petrologic studies in the San Juan region have focused mainly on several ignimbrite-caldera systems: the southeastern area (Platoro complex), western calderas (Uncompahgre-Silverton-Lake City), and the central cluster (La Garita-Creede calderas). Far less studied has been the northeastern San Juan region, which occupies a transition between earlier volcanism in central Colorado and large-volume younger ignimbrite-caldera foci farther south and west. The present map is based on new field coverage of volcanic rocks in seventeen 7.5' quadrangles in northeastern parts of the volcanic field, high-resolution age determinations for 120 new sites, and petrologic studies involving several hundred new chemical analyses. This mapping and the accompanying lab results (1) document volcanic evolution of the previously unrecognized North Pass caldera and the morphologically beautifully preserved but enigmatic Cochetopa basin, including unique features not previously described from ignimbrite calderas elsewhere; (2) provide evidence for a more rapid recurrence of large ignimbrite eruptions than previously known elsewhere; (3) quantify the regional time-space-volume progression from the earlier Sawatch magmatic trend southward into the San Juan region; and (4) permit more rigorous comparison between the broad mid-Tertiary magmatic belt in the western U.S. Cordillera and the type continental-margin arc volcanism in the central Andes.

  16. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  17. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  18. Modern Chemical Technology, Volume 5.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 26-31 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional material intended to prepare chemical technologists. Chapter 26 reviews oxidation and reduction, including applications in titrations with potassium permanganate and iodometry. Coordination compounds are…

  19. The San Dimas experimental forest: 50 years of research

    Treesearch

    Paul H. Dunn; Susan C. Barro; Wade G. Wells; Mark A Poth; Peter M. Wohlgemuth; Charles G. Colver

    1988-01-01

    The San Dimas Experimental Forest serves as a field laboratory for studies of chaparral and related ecosystems, and has been recognized by national and international organizations. It covers 6,945 ha (17,153 acres) in the foothills of the San Gabriel Mountains northeast of Los Angeles, and has a typical Mediterranean-type climate. The Forest encompasses the San Dimas...

  20. 33 CFR 110.120 - San Luis Obispo Bay, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, Calif. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.120 San Luis Obispo Bay, Calif. (a) Area A-1. Area A-1 is the water area bounded by the San Luis Obispo County wharf, the shoreline, a line drawn...

  1. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  2. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  3. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  4. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  5. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  6. The San Francisco Consortium; An Educational Association for Urban Affairs. Progress Report.

    ERIC Educational Resources Information Center

    San Francisco Consortium, CA.

    The San Francisco Consortium was formed in the Fall of 1967 by 5 institutions: City College of San Francisco, Golden Gate College, San Francisco State College, University of California-San Francisco Medical Center and the University of San Francisco. Its primary purpose is to be the instrument through which the resources of the major local…

  7. Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1996-01-01

    The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix

  8. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm

  9. SAN FRANCISCO BAY WETLANDS REGIONAL MONITORING PROGRAM

    EPA Science Inventory

    The geographic area to be monitored is the San Francisco Estuary and its watersheds from the Golden Gate to the Sacramento-San Joaquin Delta at Broad Slough. The initial focus will be the baylands of the region defined as the lands between the maximum and minimum elevations of t...

  10. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah

    USGS Publications Warehouse

    Mundorff, J.C.; Thompson, Kendall R.

    1982-01-01

    The water-quality reconnaissance of the San Rafael River basin, Utah, encompassed an area of about 2,300 square miles (5,960 square kilometers). Data were obtained by the U.S. Geological Survey one or more times at 116 sites from June 1977 to September 1978. At 19 other sites visited during the same period, the streams were dry. Precipitation and stream discharge were significantly less than normal during 1977 and ranged from less than to more than normal during 1978. Exposed rocks in the San Rafael River basin range in age from Permian to Holocene. The Carmel Formation of Jurassic age and various members of the Mancos Shale of Cretaceous age are major contributors of dissolved solids to streams in the basin. There are eight major reservoirs having a total usable capacity of 115, 000 acre-feet (142 cubic hectometers); seven are mainly for irrigation supply; one, having a usable capacity of 30,530 acre-feet (38 cubic hectometers), is for power plant water supply. From about April to November, major diversions from Huntington, Cottonwood, and Ferron Creeks nearly deplete the flow downstream; during such periods, downstream flow in these streams and in the San Rafael River is mainly irrigation-return flow and some ground-water seepage. The water at the points of major diversion on Huntington, Cottonwood, and Ferron Creeks is of excellent quality for irrigation; salinity hazard is low to medium, and sodium hazard is low. Dissolved-solids concentrations are less than 500 milligrams per liter. The water at the mouths of Huntington, Cottonwood, and Ferron Creeks has markedly larger dissolved-solids concentrations than does the water upstream from major diversions. The changes in the chemical quality occur in stream reaches that cross a belt of land 10 to 15 miles (16 to 24 kilometers) wide where the Mancos Shale is widely exposed. This also is the area where nearly all the intensive irrigation in the San Rafael River basin is practiced. There are no perennial tributaries

  11. Support for the American Chemical Society's Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantica, Paul F.

    The ACS Summer Schools in Nuclear and Radiochemistry were held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broadenmore » the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program.« less

  12. Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA.

    PubMed

    Hixson, Mark; Mahmud, Abdullah; Hu, Jianlin; Kleeman, Michael J

    2012-05-01

    The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2

  13. 75 FR 55975 - Safety Zone; San Diego Harbor Shark Fest Swim; San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Guard did not receive notification of the logistical details of the San Diego Bay swim in sufficient... the Captain of the Port, or designated representative. Regulatory Analyses We developed this rule... analyses based on 13 of these statutes or executive orders. Regulatory Planning and Review This rule is not...

  14. Radar image San Francisco Bay Area, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The San Francisco Bay Area in California and its surroundings are shown in this radar image from the Shuttle Radar Topography Mission (SRTM). On this image, smooth areas, such as the bay, lakes, roads and airport runways appear dark, while areas with buildings and trees appear bright. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market district in San Francisco, appear bright due to the alignment of streets and buildings with respect to the incoming radar beam. Three of the bridges spanning the Bay are seen in this image. The Bay Bridge is in the center and extends from the city of San Francisco to Yerba Buena and Treasure Islands, and from there to Oakland. The Golden Gate Bridge is to the left and extends from San Francisco to Sausalito. The Richmond-San Rafael Bridge is in the upper right and extends from San Rafael to Richmond. Angel Island is the large island east of the Golden Gate Bridge, and lies north of the much smaller Alcatraz Island. The Alameda Naval Air Station is seen just below the Bay Bridge at the center of the image. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen on the left side of the image. The fault trace is the straight feature filled with linear reservoirs, which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east.

    This radar image was acquired by just one of SRTM's two antennas and, consequently, does not show topographic data, but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover and urbanization. The overall faint striping pattern in the images is a data processing artifact due to the

  15. CIRSS vertical data integration, San Bernardino study

    NASA Technical Reports Server (NTRS)

    Hodson, W.; Christenson, J.; Michel, R. (Principal Investigator)

    1982-01-01

    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff.

  16. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California

    NASA Astrophysics Data System (ADS)

    Yule, J.; McBurnett, P.; Ramzan, S.

    2011-12-01

    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace

  17. South San Francisco Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2007-01-01

    View eastward. Elevations in mapped area color coded: purple (approx 15 m below sea level) to red-orange (approx 90 m above sea level). South San Francisco Bay is very shallow, with a mean water depth of 2.7 m (8.9 ft). Trapezoidal depression near San Mateo Bridge is where sediment has been extracted for use in cement production and as bay fill. Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Distance across bottom of image approx 11 km (7 mi); vertical exaggeration 1.5X.

  18. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been

  19. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  20. Holocene deceleration of the San Andreas fault zone in San Bernardino and implications for the eastern California shear zone rate debate

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lavier, L.; Anderson, M. L.; Matti, J.; Powell, R. E.

    2005-05-01

    New geodetic inferences for the rate of strain accumulation on the San Andreas fault associated with tectonic loading are ~20 mm/yr slower than observed Holocene surface displacement rates in the San Bernardino area, south of the fault's intersection with the San Jacinto fault zone, and north of its intersection with the eastern California shear zone (ECSZ). This displacement rate "anomaly" is significantly larger than can be easily explained by locking depth errors or earthquake cycle effects not accounted for in geodesy-constrained models for elastic loading rate. Using available time-averaged fault displacement-rates for the San Andreas and San Jacinto fault zones, we estimate instantaneous time-variable displacement rates on the San Andreas-San Jacinto-ECSZ fault zones, assuming that these fault zones form a closed system in the latitude band along which the fault zones overlap with one another and share in the accommodation of steady Pacific-North America relative plate motion. We find that the Holocene decrease in San Andreas loading rate can be compensated by a rapid increase in loading/displacement rate within the ECSZ over the past ~5 kyrs, independent of, but consistent with geodetic and geologic constraints derived from the ECSZ itself. Based on this model, we suggest that reported differences between fast contemporary strain rates observed on faults of the ECSZ using geodesy and slow rates inferred from Quaternary geology and Holocene paleoseismology (i.e., the ECSZ rate debate) may be explained by rapid changes in the pattern and rates of strain accumulation associated with fault loading largely unrelated to postseismic stress relaxation. If so, displacement rate data sets from Holocene geology and present-day geodesy could potentially provide important new constraints on the rheology of the lower crust and upper mantle representing lithospheric behavior on time-scales of thousands of years. Moreover, the results underscore that disagreement between

  1. Determining the physical processes behind four large eruptions in rapid sequence in the San Juan caldera cluster (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Curry, Adam; Caricchi, Luca; Lipman, Peter

    2017-04-01

    Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.

  2. Reports from the award symposia hosted by the American Chemical Society, Division of Carbohydrate Chemistry at the 245th American Chemical Society National Meeting.

    PubMed

    Huang, Xuefei; Vocadlo, David J

    2013-07-19

    We would like to congratulate all of the award winners for the well deserved honor. The award symposia provided a snapshot of some of the state-of-the-art research at the interface between chemistry and biology in the glycoscience field. The presentations serve as prime examples of the increasing integration of chemical and biological research in the area of glycoscience and how tools of chemistry can be applied to answer interesting, important, and fundamental biological questions. We look forward to many more years of exciting developments in the chemistry and chemical biology of glycoscience and anticipate improved tools and approaches will drive major advances while also spurring interests in the wider field.

  3. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  4. A selected review of abstracts from the 20th Annual Meeting of the Society for Neuro-Oncology (SNO).

    PubMed

    Chamberlain, Marc C

    2016-07-01

    20th Annual Meeting of the Society for Neuro-Oncology, San Antonio, TX, USA, 18-22 November 2015 The Society for Neuro-Oncology is the largest neuro-oncology meeting in the USA that meets annually and provides a multiday venue that showcases new brain cancer clinical trial results and basic research primarily pertaining to gliomas. The Society for Neuro-Oncology 2015 meeting comprising one education day, 2 days of premeetings and 3 days of presentation, over 200 oral presentations and 900 abstracts provides an overview of contemporary neuro-oncology that includes metastatic disease of the central nervous system as well as primary brain tumors. This review attempts to highlight select abstracts presented at this year's meeting in a short summary that provides a synopsis of a large and multifaceted meeting.

  5. NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance

    Science.gov Websites

    in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company

  6. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities

  7. 12. Historic American Buildings Survey S.F. Chronicle Library, San Francisco ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey S.F. Chronicle Library, San Francisco BUILT 1853 - '4 AFTER THE DISASTER OF 1906 - St. Mary's Church, 660 California Street, San Francisco, San Francisco County, CA

  8. San Antonio, Texas as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-101-053 (18 Oct-1 Nov 1993) --- This sharp cloud-free photograph of San Antonio, Texas illustrates the classic pattern of western cities. The Hispanic heart of the city; an intertwining of streets along the San Antonio River and around the Alamo, surrounded by a late 19th century Anglo grid of small businesses and suburban homes. Transportation routes radiate to mid and late 20th Century ring corridors separating the urban/suburban region from the surrounding agricultural countryside. San Antonio was founded around permanent springs that rise at the foot of the Balcones Escarpment, which separates the Texas Hill Country from the South Texas Plains. Limestone quarries are conspicuous along the edge of the escarpment. San Antonio has long been a major site for military training bases: Randolph Air Force Base is outside the city to the northeast, Fort Sam Houston is contained within the northeast quadrant of the city, Brooks Air Force Base lies at the southeastern corner, and Lackland and Kelly Air Force Bases are within the suburban fringe to the southwest. San Antonio International Airport can be seen at the foot of the escarpment in the northern part of the city.

  9. Children and the San Fernando earthquake

    USGS Publications Warehouse

    Howard, S. J.

    1980-01-01

    Before dawn, on February 9, 1971, a magnitude 6.4 earthquake occurred in the San Fernando Valley of California. On the following day, theSan Fernando Valley Child Guidance Clinic, through radio and newspapers, offered mental health crises services to children frightened by the earthquake. Response to this invitation was immediate and almost overwhelming. During the first 2 weeks, the Clinic's staff counseled hundreds of children who were experiencing various degrees of anxiety. 

  10. Modern Chemical Technology, Volume 6.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 32-39 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional materials intended to prepare chemical technologists. The study of organic chemistry is continued as these major topics are considered: alcohols and phenols, alkyl and aryl halides, ethers, aldehydes and…

  11. San Francisco urban partnership agreement : national evaluation plan.

    DOT National Transportation Integrated Search

    2009-12-22

    This report provides an analytic framework for evaluating the San Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The San Francisco UPA projects to be evaluated focus on those r...

  12. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  13. Cacao use and the San Lorenzo Olmec.

    PubMed

    Powis, Terry G; Cyphers, Ann; Gaikwad, Nilesh W; Grivetti, Louis; Cheong, Kong

    2011-05-24

    Mesoamerican peoples had a long history of cacao use--spanning more than 34 centuries--as confirmed by previous identification of cacao residues on archaeological pottery from Paso de la Amada on the Pacific Coast and the Olmec site of El Manatí on the Gulf Coast. Until now, comparable evidence from San Lorenzo, the premier Olmec capital, was lacking. The present study of theobromine residues confirms the continuous presence and use of cacao products at San Lorenzo between 1800 and 1000 BCE, and documents assorted vessels forms used in its preparation and consumption. One elite context reveals cacao use as part of a mortuary ritual for sacrificial victims, an event that occurred during the height of San Lorenzo's power.

  14. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern <span class="hlt">San</span> Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the <span class="hlt">San</span> Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the <span class="hlt">San</span> Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the <span class="hlt">San</span> Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern <span class="hlt">San</span> Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45986','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45986"><span>City of <span class="hlt">San</span> Francisco, California street tree resource analysis</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao</p> <p>2004-01-01</p> <p>Street trees in <span class="hlt">San</span> Francisco are comprised of two distinct populations, those managed by the city’s Department of Public Works (DPW) and those managed by private property owners with or without the help of <span class="hlt">San</span> Francisco’s urban forestry nonprofit, Friends of the Urban Forest (FUF). These two entities believe that the public’s investment in stewardship of <span class="hlt">San</span> Francisco...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/tx0964.photos.367021p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/tx0964.photos.367021p/"><span>DETAIL OF SOUTH <span class="hlt">SAN</span> GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>DETAIL OF SOUTH <span class="hlt">SAN</span> GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING NORTHEAST. - South <span class="hlt">San</span> Gabriel River Bridge, Spanning South Fork of <span class="hlt">San</span> Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED517460.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED517460.pdf"><span>Trouble Brewing in <span class="hlt">San</span> Francisco. Policy Brief</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Buck, Stuart</p> <p>2010-01-01</p> <p>The city of <span class="hlt">San</span> Francisco will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that <span class="hlt">San</span> Francisco faces an aggregate $22.4 billion liability for pensions and retiree health benefits that are underfunded--including $14.1 billion for the city…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1182.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1182.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1182.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1182.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1182.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-870.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-870.pdf"><span>33 CFR 334.870 - <span class="hlt">San</span> Diego Harbor, Calif.; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 <span class="hlt">San</span> Diego Harbor... the Pacific Ocean in North <span class="hlt">San</span> Diego Bay in an area extending from the western boundary of North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-870.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-870.pdf"><span>33 CFR 334.870 - <span class="hlt">San</span> Diego Harbor, Calif.; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 <span class="hlt">San</span> Diego Harbor... the Pacific Ocean in North <span class="hlt">San</span> Diego Bay in an area extending from the western boundary of North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1106.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1106.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1106.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1106.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1106.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=natural+AND+polymers&id=ED062144','ERIC'); return false;" href="https://eric.ed.gov/?q=natural+AND+polymers&id=ED062144"><span>Modern <span class="hlt">Chemical</span> Technology, Volume 8.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pecsok, Robert L.; Chapman, Kenneth</p> <p></p> <p>This volume is one of a series for the <span class="hlt">Chemical</span> Technician Curriculum Project (ChemTeC) of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: amino acids and proteins, carbohydrates, synthetic polymers, other natural products, <span class="hlt">chemical</span> separations…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047748','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047748"><span><span class="hlt">Chemical</span> controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the <span class="hlt">San</span> Andreas system</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Lockner, David A.</p> <p>2013-01-01</p> <p>The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the <span class="hlt">chemical</span> contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic <span class="hlt">chemical</span> environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the <span class="hlt">San</span> Andreas system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014907','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014907"><span>Geochemical evaluation of the geothermal resources in the <span class="hlt">San</span> Marcos region, Guatemala</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fournier, R.O.; Hanshaw, B.B.</p> <p>1986-01-01</p> <p>The <span class="hlt">chemical</span> and isotopic compositions of hot springs in the <span class="hlt">San</span> Marcos region of Guatemala are internally consistent with a hydrologic model in which a deep 240??C reservoir and one or more shallow 195-200??C reservoirs are present. Variations in hot-spring water compositions results from a combination of boiling, mixing with cold, dilute water, and <span class="hlt">chemical</span> re-equilibration with decreasing temperature. The recharge water for the deep 240??C reservoir is isotopically heavier than the local meteoric water and probably comes from many kilometers to the west or southwest. The water in the shallow reservoir is a mixture of the 240??C water with about 20 ?? 5% of cold, locally derived meteoric water. After mixing, the water in the shallow reservoir re-equilibrates with reservoir rock at 195-200??C. In some places additional mixing with cold water occurs after water leaves the shallow reservoir. ?? 1986.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V23A1237L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V23A1237L"><span>Geochemical and Isotopic Estimates of Eolian Dust in Soils of the <span class="hlt">San</span> Juan Mountains, USA.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawrence, C. R.; Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.</p> <p>2007-12-01</p> <p>Eolian dust deposition in the <span class="hlt">San</span> Juan Mountain Range in southern Colorado has increased 5-7 fold in the past two centuries. This dust deposition contributes an exogenous supply of biologically relevant elements such as Ca, K, Mg, and P to these alpine ecosystems in the form of fine textured mineral particulates. The deposition of eolian dust may be an underestimated factor of soil formation and soil chemistry in these alpine settings. The importance of eolian dust relative to the weathering of local bedrock likely varies across bedrock types. The <span class="hlt">San</span> Juan Range is geologically diverse with distinct regions of Meso-proterozic crystalline granites in the Weminuche Wilderness, Mesozoic sedimentary layers near Molas Pass in the <span class="hlt">San</span> Juan National Forest, and Tertiary volcanic geology found on Red Mountain Pass in the Uncompahgre National Forest. Principle component analysis of element chemistry shows that bedrock and soils from these sites cluster by geology. In addition, these groups are <span class="hlt">chemically</span> distinct from eolian dust collected from snow in the <span class="hlt">San</span> Juan Range. Several elements seem to drive the difference of dust from soils and bedrock including Ca, Sr, Cu and Cd. The purpose of this research was to estimate the relative contribution of eolian dust to alpine soil element pools in the <span class="hlt">San</span> Juan Mountains across a range of local geologic parent material. A calculation of element mass- balance shows that Cu and Cd are enriched in the surface soils of both volcanic and sedimentary soils relative to concentrations in local bedrock. However, Ca is enriched only in volcanic soils. These observations support the notion that eolian dust contributes to soil formation and that the relative contribution of dust across the landscape varies with geology. In addition to element mass-balance estimates we utilize Sr and Nd isotope measurements of soil, bedrock, and dust to further constrain the importance of eolian dust to these alpine soils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.862a2004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.862a2004C"><span>Spin-analyzed <span class="hlt">SANS</span> for soft matter applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.</p> <p>2017-06-01</p> <p>The small angle neutron scattering (<span class="hlt">SANS</span>) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate <span class="hlt">SANS</span> polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for <span class="hlt">SANS</span> polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing <span class="hlt">SANS</span> polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized <span class="hlt">SANS</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01751.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01751.html"><span>Space Radar Image of <span class="hlt">San</span> Francisco, California</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-05-01</p> <p>This is a radar image of <span class="hlt">San</span> Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown <span class="hlt">San</span> Francisco is visible in the center of the image with the city of Oakland east (to the right) across <span class="hlt">San</span> Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting <span class="hlt">San</span> Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of <span class="hlt">San</span> Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. http://photojournal.jpl.nasa.gov/catalog/PIA01751</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1966/0075/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1966/0075/report.pdf"><span>Ground water in the <span class="hlt">San</span> Joaquin Valley, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kunkel, Fred; Hofman, Walter</p> <p>1966-01-01</p> <p>Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the <span class="hlt">San</span> Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the <span class="hlt">San</span> Joaquin Valley was "Ground Water in the <span class="hlt">San</span> Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the <span class="hlt">San</span> Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the <span class="hlt">San</span> Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the <span class="hlt">San</span> Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24952455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24952455"><span>Copper bioavailability and toxicity to Mytilus galloprovincialis in Shelter Island Yacht Basin, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio</p> <p>2014-08-15</p> <p>The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), <span class="hlt">San</span> Diego, CA, USA, was assessed with simultaneous toxicological, <span class="hlt">chemical</span>, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. <span class="hlt">Chemical</span> assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on <span class="hlt">chemical</span> speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21642.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21642.pdf"><span>75 FR 53332 - <span class="hlt">San</span> Carlos Irrigation Project, Arizona</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-08-31</p> <p>... DEPARTMENT OF THE INTERIOR Bureau of Reclamation <span class="hlt">San</span> Carlos Irrigation Project, Arizona AGENCY..., as amended, on the rehabilitation of <span class="hlt">San</span> Carlos Irrigation Project (SCIP) water delivery facilities... convey irrigation water from the Gila River and Central Arizona Project (CAP) to agricultural lands in...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-05/pdf/2012-26894.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-05/pdf/2012-26894.pdf"><span>77 FR 66499 - Environmental Impact Statement: <span class="hlt">San</span> Bernardino and Los Angeles Counties, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-05</p> <p>... <span class="hlt">San</span> Bernardino, 285 East Hospitality Lane, <span class="hlt">San</span> Bernardino, California 92408 (2) Sheraton Ontario..., November 13, 2012 from 5-7 p.m. at the Hilton <span class="hlt">San</span> Bernardino, 285 East Hospitality Lane, <span class="hlt">San</span> Bernardino...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021712','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021712"><span>Transport of diazinon in the <span class="hlt">San</span> Joaquin River Basin, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, C.R.</p> <p>1999-01-01</p> <p>Most of the application of the organophosphate insecticide diazinon in the <span class="hlt">San</span> Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of <span class="hlt">San</span> Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the <span class="hlt">San</span> Joaquin River. In this 1994 study, the three major east-side tributaries to the <span class="hlt">San</span> Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the <span class="hlt">San</span> Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the <span class="hlt">San</span> Joaquin River were the main sources later. Although 74 percent of diazinon transport in the <span class="hlt">San</span> Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the <span class="hlt">San</span> Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the <span class="hlt">San</span> Joaquin River Basin.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-74c.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-74c.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-74c.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/2','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/2"><span>Alternative Fuels Data Center: Students Reduce Vehicle Idling in <span class="hlt">San</span></span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Antonio, Texas</A> <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas to someone by E-mail Share Alternative Fuels Data Center: <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas on Facebook Tweet about Alternative Fuels Data Center: <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas on Twitter Bookmark</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=312671&keyword=pure+AND+applied+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=312671&keyword=pure+AND+applied+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The Omics Revolution in Agricultural Research</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> in <span class="hlt">San</span> Francisco, CA, USA, August 10–14...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2013/3037/pdf/fs2013-3037.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2013/3037/pdf/fs2013-3037.pdf"><span>USGS science at work in the <span class="hlt">San</span> Francisco Bay and Sacramento-<span class="hlt">San</span> Joaquin Delta estuary</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shouse, Michelle K.; Cox, Dale A.</p> <p>2013-01-01</p> <p>The <span class="hlt">San</span> Francisco Bay and Sacramento-<span class="hlt">San</span> Joaquin Delta form one of the largest estuaries in the United States. The “Bay-Delta” system provides water to more than 25 million California residents and vast farmlands, as well as key habitat for birds, fish, and other wildlife. To help ensure the health of this crucial estuary, the U.S. Geological Survey, in close cooperation with partner agencies and organizations, is providing science essential to addressing societal issues associated with water quantity and quality, sediment transportation, environmental contamination, animal health and status, habitat restoration, hazards, ground subsidence, and climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981GeoRL...8..425K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981GeoRL...8..425K"><span>Anomalous <span class="hlt">chemical</span> changes in well waters and possible relation to earthquakes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Chi-Yu; Evans, William C.; Presser, Theresa; Husk, Robert H.</p> <p></p> <p>Water level, temperature, salinity, electric conductivity, and pH have been measured periodically for several years at three water wells located along a 17-km segment of the <span class="hlt">San</span> Andreas fault between <span class="hlt">San</span> Juan Bautista and Cienega Winery in central California. Water samples were collected at the same time for subsequent <span class="hlt">chemical</span> analyses in the laboratory. Some sudden large changes in salinity and conductivity were recorded in early March 1980 at the two wells near <span class="hlt">San</span> Juan Bautista. These changes coincided approximately with the beginning of an episode of increased local seismicity, including a magnitude 4.8 earthquake on April 13. Analyses of water samples revealed corresponding changes in ion concentrations, especially of Na+, Ca++, Mg++, SO4--, HCO3-, F-, and Cl-. The observed changes may be the result of mixing of waters from different aquifers through cracks developed in the water barriers by a possible crustal strain episode that may have occurred in the study area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011837','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011837"><span>Anomalous <span class="hlt">chemical</span> changes in well waters and possible relation to earthquakes.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chi-Yu, King; Evans, William C.; Presser, T.; Husk, R.H.</p> <p>1981-01-01</p> <p>Water level, temperature, salinity, electric conductivity, and pH have been measured periodically for several years at three water wells located along a 17km segment of the <span class="hlt">San</span> Andreas fault between <span class="hlt">San</span> Juan Bautista and Cienega Winery in central California. Water samples were collected at the same time for subsequent <span class="hlt">chemical</span> analyses in the laboratory. Some sudden large changes in salinity and conductivity were recorded in early March 1980 at the two wells near <span class="hlt">San</span> Juan Bautista. These changes coincided approximately with the beginning of an episode of increased local seismicity, including a magnitude 4.8 earthquake on April 13. Analyses of water samples revealed corresponding changes in ion concentrations, especially of Na+, Ca2+, Mg2+, 035SO42-, 046HCO3-, F-, and Cl-. The observed changes may be the result of mixing of waters from different aquifers through cracks developed in the water barriers by a possible crustal strain episode that may have occurred in the study area.-Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA371125','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA371125"><span>Consolidated Area Telephone System-<span class="hlt">San</span> Diego Area</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1996-02-29</p> <p>This audit resulted from the Audit on the Consolidated Area Telephone System-<span class="hlt">San</span> Francisco Bay Area. The Consolidated Area Telephone System ( CATS ...<span class="hlt">San</span> Diego contract, valued at $142 million, will expire in August 1996. In October 1995, administration of CATS transferred from the Navy Public Works...efficiency, and effectiveness of asset accountability over CATS leased telecommunications equipment and services (switches, cabling, and telephones</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED517463.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED517463.pdf"><span>Trouble Brewing in <span class="hlt">San</span> Diego. Policy Brief</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Buck, Stuart</p> <p>2010-01-01</p> <p>The city of <span class="hlt">San</span> Diego will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that <span class="hlt">San</span> Diego faces total of $45.4 billion, including $7.95 billion for the county pension system, $5.4 billion for the city pension system, and an estimated $30.7…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45255','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45255"><span>Human aspects of air quality in the <span class="hlt">San</span> Bernardino Mountains</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>P.L. Winter</p> <p>1999-01-01</p> <p>The preceding chapters of this book have provided infomation on the ecological characteristics of the <span class="hlt">San</span> Bernardino Mountains, as well as the effects of ozone and other air pollutants on vegetation and soil in the <span class="hlt">San</span> Bernardinos, and additional interactions with air pollution and forest health. This chapter focuses on the human aspects of air quality in the <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3102397','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3102397"><span>Cacao use and the <span class="hlt">San</span> Lorenzo Olmec</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Powis, Terry G.; Cyphers, Ann; Gaikwad, Nilesh W.; Grivetti, Louis; Cheong, Kong</p> <p>2011-01-01</p> <p>Mesoamerican peoples had a long history of cacao use—spanning more than 34 centuries—as confirmed by previous identification of cacao residues on archaeological pottery from Paso de la Amada on the Pacific Coast and the Olmec site of El Manatí on the Gulf Coast. Until now, comparable evidence from <span class="hlt">San</span> Lorenzo, the premier Olmec capital, was lacking. The present study of theobromine residues confirms the continuous presence and use of cacao products at <span class="hlt">San</span> Lorenzo between 1800 and 1000 BCE, and documents assorted vessels forms used in its preparation and consumption. One elite context reveals cacao use as part of a mortuary ritual for sacrificial victims, an event that occurred during the height of <span class="hlt">San</span> Lorenzo's power. PMID:21555564</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K"><span>Geomorphological expression of a complex structural region: <span class="hlt">San</span> Andreas Fault through the <span class="hlt">San</span> Gorgonio Pass, southern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.</p> <p>2015-12-01</p> <p>The <span class="hlt">San</span> Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the <span class="hlt">San</span> Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the <span class="hlt">San</span> Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the <span class="hlt">San</span> Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the <span class="hlt">San</span> Bernardino Basin to the NW.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2004/3091/pdf/FS2004-3091.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2004/3091/pdf/FS2004-3091.pdf"><span>Linking selenium sources to ecosystems: <span class="hlt">San</span> Francisco Bay-Delta Model</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Presser, Theresa S.; Luoma, Samuel N.</p> <p>2004-01-01</p> <p>Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western <span class="hlt">San</span> Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., <span class="hlt">San</span> Luis Drain) to discharge into the <span class="hlt">San</span> Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the <span class="hlt">San</span> Joaquin Valley was first considered. An existing 85-mile portion of the <span class="hlt">San</span> Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the <span class="hlt">San</span> Joaquin River and eventually into the Bay-Delta. If the <span class="hlt">San</span> Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/504','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/504"><span>Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in Promoting EVs</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>of a <em>school</em> bus Michigan Transports <em>Students</em> in Hybrid Electric <em>School</em> Buses Jan. 4, 2014 Photo of <span class="hlt">San</span> Diego Leads in <em>Promoting</em> EVs to someone by E-mail Share Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in <em>Promoting</em> EVs on Facebook Tweet about Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6099840-decrepitation-crack-healing-fluid-inclusions-san-carlos-olivine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6099840-decrepitation-crack-healing-fluid-inclusions-san-carlos-olivine"><span>Decrepitation and crack healing of fluid inclusions in <span class="hlt">San</span> Carlos olivine</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wanamaker, B.J.; Wong, Tengfong; Evans, B.</p> <p>1990-09-10</p> <p>Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in <span class="hlt">San</span> Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusionmore » scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in <span class="hlt">San</span> Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. <span class="hlt">Chemical</span> changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the <span class="hlt">San</span> Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0411/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0411/report.pdf"><span>Transport of diazinon in the <span class="hlt">San</span> Joaquin River basin, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, Charles R.</p> <p>1997-01-01</p> <p>Most of the application of the organophosphate insecticide diazinon in the <span class="hlt">San</span> Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of <span class="hlt">San</span> Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the <span class="hlt">San</span> Joaquin River. In this 1994 study, the three major east-side tributaries to the <span class="hlt">San</span> Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the <span class="hlt">San</span> Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the <span class="hlt">San</span> Joaquin River were the main sources later. Although 74 percent of diazinon transport in the <span class="hlt">San</span> Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the <span class="hlt">San</span> Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts059-213-009.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts059-213-009.html"><span><span class="hlt">San</span> Francisco Bay, California as seen from STS-59</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-04-14</p> <p>STS059-213-009 (9-20 April 1994) --- <span class="hlt">San</span> Francisco Bay. Orient with the sea up. The delta of the combined Sacramento and <span class="hlt">San</span> Joaquin Rivers occupies the foreground, <span class="hlt">San</span> Francisco Bay the middle distance, and the Pacific Ocean the rest. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and <span class="hlt">San</span> Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene. Hasselblad camera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS059-213-009&hterms=vallejo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvallejo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS059-213-009&hterms=vallejo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvallejo"><span><span class="hlt">San</span> Francisco Bay, California as seen from STS-59</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p><span class="hlt">San</span> Francisco Bay as seen from STS-59. View is oriented with the sea up. The delta of the combined Sacramento and <span class="hlt">San</span> Joaquin Rivers occupies the foreground with <span class="hlt">San</span> Francisco Bay in the middle distance, then the Pacific Ocean. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and <span class="hlt">San</span> Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://archives.datapages.com/data/pacific/data/036/036001/1_ps0360001.htm','USGSPUBS'); return false;" href="http://archives.datapages.com/data/pacific/data/036/036001/1_ps0360001.htm"><span>Geological literature on the <span class="hlt">San</span> Joaquin Valley of California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maher, J.C.; Trollman, W.M.; Denman, J.M.</p> <p>1973-01-01</p> <p>The following list of references includes most of the geological literature on the <span class="hlt">San</span> Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The <span class="hlt">San</span> Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, <span class="hlt">San</span> Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include <span class="hlt">San</span> Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H13E1370P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H13E1370P"><span>Striped Bass Habitat use in the <span class="hlt">San</span> Francisco Estuary Determined Using Otolith Microchemistry Techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillis, C. C.; Ostrach, D. J.; Weber, P. K.; Ingram, B. L.; Zinkl, J. G.</p> <p>2005-12-01</p> <p>Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass ( Morone saxatilis). This study explores techniques to determine migration in striped bass as part of a larger study investigating maternal transfer of xenobiotics to progeny in the <span class="hlt">San</span> Francisco Estuary. The timing of movement of fish between salt and fresh water can easily be determined using a number of <span class="hlt">chemical</span> markers in otoliths. Determining movement within estuaries, however, is a more difficult problem because mesohaline geochemical signatures approach the marine end member at very low salinities. Two tracers were used to reconstruct the migration history of striped bass in the <span class="hlt">San</span> Francisco Estuary: Sr/Ca (measured by electron microprobe and LA-ICP-MS) and Sr isotope ratio (measured by LA-MC-ICP-MS). Both tracers can be used to map the salinity the fish is exposed to at the time of otolith increment deposition. Salinity, in turn, is mapped to location within the <span class="hlt">San</span> Francisco Bay estuary based on monthly salinity surveys. The two methods have their respective benefits. Sr/Ca can be measured with higher spatial resolution (<10 microns). Sr isotope ratios are not modulated by metabolism. Sr isotope measurements were made to check the Sr/Ca results. In the <span class="hlt">San</span> Francisco Estuary, low 87Sr/86Sr (0.706189) river water mixes with high 87Sr/86Sr (0.709168) marine water to 80% of the marine signal (0.7085) when the salinity is only 5% (1.8 ppt) seawater, and 95% of the marine signal (0.7090) at salinities of 20% (6.6 ppt) seawater (Ingram and Sloan, 1992). This salinity model should map directly to the otolith because there is no biological fractionation of Sr isotopes. The Sr/Ca otolith and salinity models predict a similar response. For both models, calculated otolith salinity is mapped to location within the <span class="hlt">San</span> Francisco Estuary based on monthly salinity surveys. Using previously published salinity models, the otolith Sr/Ca and Sr isotope results are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Occupational+AND+Safety+AND+Health+AND+Administration+AND+OSHA&pg=2&id=EJ226380','ERIC'); return false;" href="https://eric.ed.gov/?q=Occupational+AND+Safety+AND+Health+AND+Administration+AND+OSHA&pg=2&id=EJ226380"><span>A Framework for Evaluating <span class="hlt">Chemical</span> Hazards.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Coble, Charles R.; Hounshell, Paul B.</p> <p>1980-01-01</p> <p>Lists questions that teachers should ask relating to use of all <span class="hlt">chemicals</span> in the school laboratory, as well as <span class="hlt">chemicals</span> with known and suspected dangerous properties. Tables list Occupational Safety and Health Administration (OSHA)-defined carcinogens, American <span class="hlt">Chemical</span> <span class="hlt">Society</span>-defined teratogens, suspected carcinogens, and other hazardous…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527011"><span>Space flight-associated neuro-ocular syndrome (<span class="hlt">SANS</span>).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J</p> <p>2018-03-12</p> <p>Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (<span class="hlt">SANS</span>). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of <span class="hlt">SANS</span> including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study <span class="hlt">SANS</span> in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=sediments&pg=5&id=EJ150549','ERIC'); return false;" href="https://eric.ed.gov/?q=sediments&pg=5&id=EJ150549"><span>Great Lakes: <span class="hlt">Chemical</span> Monitoring</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Delfino, Joseph J.</p> <p>1976-01-01</p> <p>The Tenth Great Lakes Regional Meeting of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> met to assess current <span class="hlt">Chemical</span> Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27114.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27114.pdf"><span>75 FR 65985 - Safety Zone: Epic Roasthouse Private Party Firework Display, <span class="hlt">San</span> Francisco, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-27</p> <p>... the navigable waters of <span class="hlt">San</span> Francisco Bay 1,000 yards off Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco... waters of <span class="hlt">San</span> Francisco Bay, 1,000 yards off Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco, CA. The fireworks... Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco, CA. The fireworks launch site will be located in position 37...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-12/pdf/2012-14299.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-12/pdf/2012-14299.pdf"><span>77 FR 34984 - Notice of Intent To Repatriate a Cultural Item: <span class="hlt">San</span> Diego Museum of Man, <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-12</p> <p>...The <span class="hlt">San</span> Diego Museum of Man, in consultation with the appropriate Indian tribes, has determined that a cultural item meets the definition of unassociated funerary object and repatriation to the Indian tribes stated below may occur if no additional claimants come forward. Representatives of any Indian tribe that believes itself to be culturally affiliated with the cultural item may contact the <span class="hlt">San</span> Diego Museum of Man.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=definition+AND+compensation+AND+benefit&id=ED338310','ERIC'); return false;" href="https://eric.ed.gov/?q=definition+AND+compensation+AND+benefit&id=ED338310"><span>Master Contract: <span class="hlt">San</span> Joaquin Delta College Teachers Association/CTA/NEA and <span class="hlt">San</span> Joaquin Delta Community College District, July 1987-June 1990.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>San Joaquin Delta Community Coll. District, CA.</p> <p></p> <p>The collective bargaining agreement between the <span class="hlt">San</span> Joaquin Delta Community College District Board of Trustees and the <span class="hlt">San</span> Joaquin Delta College Teachers Association/California Teachers Association/National Education Association is presented. This contract, covering the period from July 1987 through June 1990, deals with the following topics:…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321638p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321638p/"><span>3. Photographic copy of map. <span class="hlt">San</span> Carlos Project, Arizona. Irrigation ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>3. Photographic copy of map. <span class="hlt">San</span> Carlos Project, Arizona. Irrigation System. Department of the Interior. United States Indian Service. No date. Circa 1939. (Source: Henderson, Paul. U.S. Indian Irrigation Service. Supplemental Storage Reservoir, Gila River. November 10, 1939, RG 115, <span class="hlt">San</span> Carlos Project, National Archives, Rocky Mountain Region, Denver, CO.) - <span class="hlt">San</span> Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1142.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1142.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1142.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1142.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1142.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1104.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1104.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1104.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1104.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1104.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5861926-rooftops-san-fernando','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5861926-rooftops-san-fernando"><span>Rooftops of <span class="hlt">San</span> Fernando</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ellis, G.</p> <p>1978-06-01</p> <p>A review of the Jet Propulsion Laboratory study of the possibilities of using solar cell arrays on rooftops in the <span class="hlt">San</span> Fernando Valley is given. Some cost and performance goals developed in this study are described. (MOW)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Chemical&pg=3&id=EJ1030275','ERIC'); return false;" href="https://eric.ed.gov/?q=Chemical&pg=3&id=EJ1030275"><span>From the Beginning: The "Journal of <span class="hlt">Chemical</span> Education" and Secondary School Chemistry</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lagowski, Joseph J.</p> <p>2014-01-01</p> <p>The people, events, and issues that were involved in the beginning and the evolution of the "Journal of <span class="hlt">Chemical</span> Education" and the Division of <span class="hlt">Chemical</span> Education (DivCHED) are traced and discussed. The constitution of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> incorporates the roots of <span class="hlt">chemical</span> education as an area of interest to the <span class="hlt">Society</span>. Both…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol17/pdf/CFR-2010-title40-vol17-sec81-176.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol17/pdf/CFR-2010-title40-vol17-sec81-176.pdf"><span>40 CFR 81.176 - <span class="hlt">San</span> Luis Intrastate Air Quality Control Region.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 40 Protection of Environment 17 2010-07-01 2010-07-01 false <span class="hlt">San</span> Luis Intrastate Air Quality Control Region. 81.176 Section 81.176 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.176 <span class="hlt">San</span> Luis Intrastate Air Quality Control Region. The <span class="hlt">San</span> Luis Intrastate...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1983/4044/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1983/4044/report.pdf"><span>Evaluation of the <span class="hlt">San</span> Dieguito, <span class="hlt">San</span> Elijo, and <span class="hlt">San</span> Pasqual hydrologic subareas for reclaimed water use, <span class="hlt">San</span> Diego County, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Izbicki, J.A.</p> <p>1983-01-01</p> <p>A study was made to determine the suitability of three small hydrologic subareas in <span class="hlt">San</span> Diego County, California, for reuse of municipal wastewater. Ground-water quality has been impacted by agricultural water use, imported water use, changes in natural recharge patterns, seawater intrusion, and intrusion of ground water from surrounding marine sediments; therefore, ground water is of limited value as a water-supply source. Reclaimed water use is feasible and expected to improve ground-water quality, creating a new source of water for agricultural use. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037285','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037285"><span>Space use and habitat selection of migrant and resident American Avocets in <span class="hlt">San</span> Francisco Bay</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Demers, Scott A.; Takekawa, John Y.; Ackerman, Joshua T.; Warnock, N.; Athearn, N.D.</p> <p>2010-01-01</p> <p><span class="hlt">San</span> Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in <span class="hlt">San</span> Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in <span class="hlt">San</span> Francisco Bay. ?? The Cooper Ornithological <span class="hlt">Society</span> 2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020444','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020444"><span><span class="hlt">Chemical</span> gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing <span class="hlt">chemical</span> indicators of dredged material disposal in the deep sea</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.</p> <p>1998-01-01</p> <p>Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off <span class="hlt">San</span> Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the <span class="hlt">San</span> Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been <span class="hlt">chemically</span> characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from <span class="hlt">San</span> Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1351490-gila-san-francisco-decision-support-tool','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1351490-gila-san-francisco-decision-support-tool"><span>Gila <span class="hlt">San</span> Francisco Decision Support Tool - 2010</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Amy Cha-Tien; Tidwell, Vincent C.; Klisa, Geoff</p> <p>2014-12-01</p> <p>The Gila-<span class="hlt">San</span> Francisco Decision Support Tool analyzes the water demand and supply for the Gila <span class="hlt">San</span> Francisco region spanning four counties in southwestern New Mexico (Catron, Hidalgo, Luna and Grant). Catalyzed by the 2004 Arizona Water Settlement Act and prompted by a keen awareness for the unique ecology in the region, the model was developed by Sandia with a collaborative modeling team from federal, state, local, and public stakeholders</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19394000','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19394000"><span>Ovarian and adipose tissue dysfunction in polycystic ovary syndrome: report of the 4th special scientific meeting of the Androgen Excess and PCOS <span class="hlt">Society</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yildiz, Bulent O; Azziz, Ricardo</p> <p>2010-07-01</p> <p>Significant advances have been made in our understanding of ovarian dysfunction in polycystic ovary syndrome (PCOS), and alterations in adipose tissue function are likely to play an important role in its pathophysiology. This review highlights the principal novel concepts presented at the 4th special scientific meeting of the Androgen Excess and PCOS <span class="hlt">Society</span>, "Ovarian and Adipose Tissue Dysfunction: Potential Roles in Polycystic Ovary Syndrome," which occurred on June 6, 2008 in <span class="hlt">San</span> Francisco, California. Copyright 2010 American <span class="hlt">Society</span> for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6540E..15G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6540E..15G"><span>Biological and <span class="hlt">chemical</span> terrorism scenarios and implications for detection systems needs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn</p> <p>2007-04-01</p> <p>Terrorists intent on causing many deaths and severe disruption to our <span class="hlt">society</span> could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using <span class="hlt">chemical</span> or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and <span class="hlt">chemical</span> threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with <span class="hlt">San</span> Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2001/fs017-01/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2001/fs017-01/"><span>The <span class="hlt">San</span> Francisco volcanic field, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Priest, S.S.; Duffield, W.A.; Malis-Clark, Karen; Hendley, J. W.; Stauffer, P.H.</p> <p>2001-01-01</p> <p>Northern Arizona's <span class="hlt">San</span> Francisco Volcanic Field, much of which lies within Coconino and Kaibab National Forests, is an area of young volcanoes along the southern margin of the Colorado Plateau. During its 6-million-year history, this field has produced more than 600 volcanoes. Their activity has created a topographically varied landscape with forests that extend from the Pi?on-Juniper up to the Bristlecone Pine life zones. The most prominent landmark is <span class="hlt">San</span> Francisco Mountain, a stratovolcano that rises to 12,633 feet and serves as a scenic backdrop to the city of Flagstaff.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-09-28/pdf/2012-23918.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-09-28/pdf/2012-23918.pdf"><span>77 FR 59648 - Notice of Inventory Completion: <span class="hlt">San</span> Francisco State University, NAGPRA Program, <span class="hlt">San</span> Francisco, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-09-28</p> <p>...The <span class="hlt">San</span> Francisco State University NAGPRA Program has completed an inventory of human remains and associated funerary objects, in consultation with the appropriate Indian tribe, and has determined that there is a cultural affiliation between the human remains and associated funerary objects and a present-day Indian tribe. Representatives of any Indian tribe that believes itself to be culturally affiliated with the human remains and associated funerary objects may contact the <span class="hlt">San</span> Francisco State University NAGPRA Program. Repatriation of the human remains and associated funerary objects to the Indian tribe stated below may occur if no additional claimants come forward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4713018','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4713018"><span>A Tale of Two Cities: Access to Care and Services Among African-American Transgender Women in Oakland and <span class="hlt">San</span> Francisco</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cruz, Taylor M.; Iwamoto, Mariko; Sakata, Maria</p> <p>2015-01-01</p> <p>Abstract Purpose: The <span class="hlt">San</span> Francisco Bay Area attracts people from all over the country due to the perception of lesbian, gay, bisexual, and transgender (LGBT) acceptance and affirmation. African-American transgender women are severely marginalized across <span class="hlt">society</span> and as such have many unmet health and social service needs. This study sought to quantitatively assess unmet needs among African-American transgender women with a history of sex work by comparing residents of Oakland versus <span class="hlt">San</span> Francisco. Methods: A total of 235 African-American transgender women were recruited from <span class="hlt">San</span> Francisco (n=112) and Oakland (n=123) through community outreach and in collaboration with AIDS service organizations. Participants were surveyed regarding basic, health, and social needs and HIV risk behaviors. Pearson Chi-squared tests and a linear regression model examined associations between city of residence and unmet needs. Results: While participants from both cities reported unmet needs, Oakland participants had a greater number of unmet needs in receiving basic assistance, mental health treatment, and health care services. Oakland participants also reported less transgender community identification but higher social support from the family. Conclusion: These findings demonstrate the enormity of African-American transgender women's needs within the Bay Area. Greater resources are needed for social service provision targeting this marginalized group of people, particularly in Oakland. PMID:26788672</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA23C..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA23C..03A"><span>Lighting the path to the frontier we're pushing: some insights from the 1906 <span class="hlt">San</span> Francisco earthquake</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alley, R. B.</p> <p>2015-12-01</p> <p>After the 1906 <span class="hlt">San</span> Francisco earthquake, an effort was organized to reassure potential settlers that the city was safe from future earthquake damages. The effort was quite small compared to, say, opposition to evolution and the great antiquity of the Earth, and there did not exist a modern body of seismological risk analyses for the <span class="hlt">San</span> Francisco boosters to reject. Nonetheless, some groups organized a response that did not immediately seek to use and advance the best science of the day; the risk assessments and earthquake engineering that underpin the modern city came later, and with much vigorous discussion. As Geoscientists, our job description is to go to great places with wonderful people, learn what no one knows about the Earth and our interactions with it, and use that knowledge to help <span class="hlt">society</span>. But, advancing the greater good often has short-term costs for some people, and as in 1906 <span class="hlt">San</span> Francisco, this has led to a long history of rejection of parts of our science, often by people who ultimately would benefit from using that science, as <span class="hlt">San</span> Francisco now benefits. Thus, as we Geoscientists push the frontiers of knowledge, it is increasingly important for us to pay attention to lighting the path for people to follow in using that knowledge for good. Weather forecasters have long known that it is not enough to tell people that a hurricane or tornado is coming; once good information is available, it must be supplied in a way that is credible and promotes optimal responses. Recent successes show that this can be done well. On some issues, however, Geoscientists have been much less successful, so there is room for new approaches from new as well as old faces in making our science more broadly useful.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5529138','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5529138"><span>An Official American Thoracic <span class="hlt">Society</span> Workshop Report: <span class="hlt">Chemical</span> Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoyle, Gary W.; Jordt, Sven-Eric; Jugg, Bronwen J.; Martin, James G.; Matalon, Sadis; Patterson, Steven E.; Prezant, David J.; Sciuto, Alfred M.; Svendsen, Erik R.; White, Carl W.; Veress, Livia A.</p> <p>2017-01-01</p> <p>This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic <span class="hlt">Society</span> (ATS) and the National Institutes of Health (NIH) Countermeasures Against <span class="hlt">Chemical</span> Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for <span class="hlt">chemical</span> threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), <span class="hlt">chemical</span> asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents. PMID:28418689</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=level+AND+topical&pg=7&id=ED568612','ERIC'); return false;" href="https://eric.ed.gov/?q=level+AND+topical&pg=7&id=ED568612"><span>Voice and Valency in <span class="hlt">San</span> Luis Potosi Huasteco</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Munoz Ledo Yanez, Veronica</p> <p>2014-01-01</p> <p>This thesis presents an analysis of the system of transitivity, voice and valency alternations in Huasteco of <span class="hlt">San</span> Luis Potosi (Mayan) within a functional-typological framework. The study is based on spoken discourse and elicited data collected in the municipalities of Aquismon and Tancanhuitz de Santos in the state of <span class="hlt">San</span> Luis Potosi, Mexico. The…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581911','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581911"><span>Effect of Legal Status of Pharmacy Syringe Sales on Syringe Purchases by Persons Who Inject Drugs in <span class="hlt">San</span> Francisco and <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Siddiqui, Saira S.; Armenta, Richard; Evans, Jennifer L.; Yu, Michelle; Cuevas-Mota, Jazmine; Page, Kimberly; Davidson, Peter; Garfein, Richard S.</p> <p>2015-01-01</p> <p>Sharing blood-contaminated syringes is the main risk factor for acquiring and transmitting blood-borne infections among persons who inject drugs (PWID). To reduce this risk, in 2005, California enacted legislation allowing local health jurisdictions to legalize non-prescription syringe sales after approving a disease prevention demonstration project (DPDP). With <span class="hlt">San</span> Francisco approving a DPDP immediately and <span class="hlt">San</span> Diego never approving one, we compared PWID across cities for their use of pharmacies PWID to obtain syringes. PWID age 18–30 years old were recruited into separate studies in <span class="hlt">San</span> Francisco (n=243) and <span class="hlt">San</span> Diego (n=338) between 2008 and 2011. We used multivariable logistic regression to compare the proportions of PWID who obtained syringes from pharmacies by city while controlling for socio-demographics, injection practices and other risk behaviors. Overall, most PWID were white (71%), male (63%), and between the ages of 18–25 years (55%). Compared to <span class="hlt">San</span> Francisco, a smaller proportion of PWID in <span class="hlt">San</span> Diego had bought syringes from pharmacies in the prior three months (16.9% vs. 49.8%; p<0.001), which remained statistically significant after adjusting for socio-demographic and behavioral factors (adjusted odds ratio=4.45, 95% confidence interval: 2.98, 6.65). Use of pharmacies to obtain syringes was greater where it was legal to do so. Public health policy can influence HIV and hepatitis C associated risk among PWID; however, implementation of these policies is crucial for the benefits to be realized. PMID:26252980</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/2006/2918/sim2918_geolposter-hires.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/2006/2918/sim2918_geolposter-hires.pdf"><span>Geologic map of the <span class="hlt">San</span> Francisco Bay region</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.</p> <p>2006-01-01</p> <p>The rocks and fossils of the <span class="hlt">San</span> Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 <span class="hlt">San</span> Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the <span class="hlt">San</span> Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the <span class="hlt">San</span> Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://landslides.usgs.gov/docs/coe/CoeISL2008.pdf','USGSPUBS'); return false;" href="http://landslides.usgs.gov/docs/coe/CoeISL2008.pdf"><span>Landslide risk in the <span class="hlt">San</span> Francisco Bay region</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coe, J.A.; Crovelli, R.A.</p> <p>2008-01-01</p> <p>We have used historical records of damaging landslides triggered by rainstorms, and a newly developed Probabilistic Landslide Assessment Cost Estimation System (PLACES), to estimate the numbers and direct costs of future landslides in the <span class="hlt">San</span> Francisco Bay region. The estimated annual cost of future landslides in the entire region is about US $15 million (year 2000 $). The estimated annual cost is highest for <span class="hlt">San</span> Mateo County ($3.32 million) and lowest for Solano County ($0.18 million). Normalizing costs by dividing by the percentage of land area with slopes equal or greater than about 10° indicates that <span class="hlt">San</span> Francisco County will have the highest cost per square km ($7,400), whereas Santa Clara County will have the lowest cost per square km ($230). These results indicate that the <span class="hlt">San</span> Francisco Bay region has one of the highest levels of landslide risk in the United States. Compared to landslide cost estimates from the rest of the world, the risk level in the Bay region seems high, but not exceptionally high.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/20610','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/20610"><span>Timber resource statistics for the <span class="hlt">San</span> Joaquin and southern resource areas of California.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Karen L. Waddell; Patricia M. Bassett</p> <p>1997-01-01</p> <p>This report is a summary of timber resource statistics for the <span class="hlt">San</span> Joaquin and Southern Resource Areas of California, which include Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, <span class="hlt">San</span> Bernardino, <span class="hlt">San</span> Diego, <span class="hlt">San</span> Joaquin, Stanislaus, Tulare, and Tuolumne Counties. Data were collected as part...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019175','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019175"><span>Three-dimensional upper crustal velocity structure beneath <span class="hlt">San</span> Francisco Peninsula, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.; Zoback, M.L.</p> <p>1997-01-01</p> <p>This paper presents new seismic data from, and crustal models of the <span class="hlt">San</span> Francisco Peninsula. In much of central California the <span class="hlt">San</span> Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On <span class="hlt">San</span> Francisco Peninsula, however, the present-day <span class="hlt">San</span> Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the <span class="hlt">San</span> Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the <span class="hlt">San</span> Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in <span class="hlt">San</span> Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the <span class="hlt">San</span> Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day <span class="hlt">San</span> Andreas fault in this region sometime after about 3.0 m.y. ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.water.ca.gov/iep/products/newsletterPrevious.cfm','USGSPUBS'); return false;" href="http://www.water.ca.gov/iep/products/newsletterPrevious.cfm"><span>Specific conductance, water temperature, and water level data, <span class="hlt">San</span> Francisco Bay, California, water year 1998</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buchanan, Paul A.</p> <p>1999-01-01</p> <p>Specific conductance and water temperature data are continuously recorded at four sites in <span class="hlt">San</span> Francisco Bay, California: <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo, Central <span class="hlt">San</span> Francisco Bay at Presidio Military Reservation, Pier 24 at Bay Bridge, and South <span class="hlt">San</span> Francisco Bay at <span class="hlt">San</span> Mateo Bridge near Foster City (Figure 1). Water level data are recorded only at <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo. These data were recorded by the Department of Water Resources (DWR) before 1988, by the US Geological Survey (USGS) National Research Program from 1988 to 1989, and by the USGS-DWR cooperative program since 1990. This article presents time-series plots of data from the four sites in <span class="hlt">San</span> Francisco Bay during water year 1998 (1 October 1997 through 30 September 1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA951464','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA951464"><span>Modern Cast Irons in <span class="hlt">Chemical</span> Engineering</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1934-11-09</p> <p>fl’ceew. T I <span class="hlt">SOCIETY</span> OF <span class="hlt">CHEMICAL</span> INDUSTRY <span class="hlt">CHEMICAL</span> ENGINEERING GROUP MODERN CAST IRONS IN <span class="hlt">CHEMICAL</span> ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN <span class="hlt">CHEMICAL</span> ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to <span class="hlt">chemical</span> or thermal resistance. Small blow-holes Any...consideration of modern cast irons in <span class="hlt">chemical</span> seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010785p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010785p/"><span>8. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library Original: ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>8. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library Original: 1936 Re-photo: June 1940 WEST ELEVATION - Mission <span class="hlt">San</span> Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED369134.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED369134.pdf"><span>Smart Schools for <span class="hlt">San</span> Antonio's Future: A Report on Public Education.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trinity Univ., San Antonio, TX. Center for Educational Leadership.</p> <p></p> <p>Schools in <span class="hlt">San</span> Antonio, Texas, need to make changes to make life work better for <span class="hlt">San</span> Antonio's students, to improve their learning, and to help them become happier and more productive students. Schools must take children where they are and work with their circumstances. <span class="hlt">San</span> Antonio is failing to provide students with the learning and development…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://sanjuanultra.org','SCIGOVWS'); return false;" href="http://sanjuanultra.org"><span><span class="hlt">San</span> Juan Ultra (Mooklabs)</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>de Información Formulario para la solicitud de datos e información relevantes a las <em>investigaciones</em> Science Foundation under Grant No. 0948507." back up ↑ © Copyright <em>2018</em> <span class="hlt">San</span> Juan Ultra (Mooklabs</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5110/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5110/"><span>Assessment of nonpoint source <span class="hlt">chemical</span> loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, <span class="hlt">San</span> Rafael Swell, Utah</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg</p> <p>2008-01-01</p> <p>During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the <span class="hlt">San</span> Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source <span class="hlt">chemical</span> loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of <span class="hlt">chemical</span> loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more <span class="hlt">chemical</span> constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010793p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010793p/"><span>16. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library About: ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>16. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library About: 1934 Re-photo: June 1940 VIEW FROM WEST - Mission <span class="hlt">San</span> Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0367/pdf/of2001-0367.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0367/pdf/of2001-0367.pdf"><span>Volcano-hazard zonation for <span class="hlt">San</span> Vicente volcano, El Salvador</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.</p> <p>2001-01-01</p> <p><span class="hlt">San</span> Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city <span class="hlt">San</span> Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as <span class="hlt">San</span> Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around <span class="hlt">San</span> Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of <span class="hlt">San</span> Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at <span class="hlt">San</span> Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1980/0064/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1980/0064/report.pdf"><span>Sediment transport of streams tributary to <span class="hlt">San</span> Francisco, <span class="hlt">San</span> Pablo, and Suisun Bays, California, 1909-66</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Porterfield, George</p> <p>1980-01-01</p> <p>A review of historical sedimentation data is presented, results of sediment-data collection for water years 1957-59 are summarized, and long-term sediment-discharge estimates from a preliminary report are updated. Comparison of results based on 3 years of data to those for the 10 water years, 1957-66, provides an indication of the adequacy of the data obtained during the short period to define the long-term relation between sediment transport and streamflow. During 1909-66, sediment was transported to the entire <span class="hlt">San</span> Francisco Bay system at an average rate of 8.6 million cubic yards per year. The Sacramento and <span class="hlt">San</span> Joaquin River basins provided about 83% of the sediment inflow to the system annually during 1957-66 and 86% during 1909-66. About 98% of this inflow was measured or estimated at sediment measuring sites. Measured sediment inflow directly to the bays comprised only about 40% of the total discharged by basins directly tributary to the bays. About 90% of the total sediment discharge to the delta and the bays in the <span class="hlt">San</span> Francisco Bay system thus was determined on the basis of systematic measurements. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2013/3080/pdf/fs2013-3080.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2013/3080/pdf/fs2013-3080.pdf"><span>Origin and characteristics of discharge at <span class="hlt">San</span> Marcos Springs, south-central Texas</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Musgrove, MaryLynn; Crow, Cassi L.</p> <p>2013-01-01</p> <p>The Edwards aquifer in south-central Texas is one of the most productive aquifers in the Nation and is the primary source of water for the rapidly growing <span class="hlt">San</span> Antonio area. Springs issuing from the Edwards aquifer provide habitat for several threatened and endangered species, serve as locations for recreational activities, and supply downstream users. Comal Springs and <span class="hlt">San</span> Marcos Springs are major discharge points for the Edwards aquifer, and their discharges are used as thresholds in groundwater management strategies. Regional flow paths originating in the western part of the aquifer are generally understood to supply discharge at Comal Springs. In contrast, the hydrologic connection of <span class="hlt">San</span> Marcos Springs with the regional Edwards aquifer flow system is less understood. During November 2008–December 2010, the U.S. Geological Survey, in cooperation with the <span class="hlt">San</span> Antonio Water System, collected and analyzed hydrologic and geochemical data from springs, groundwater wells, and streams to gain a better understanding of the origin and characteristics of discharge at <span class="hlt">San</span> Marcos Springs. During the study, climatic and hydrologic conditions transitioned from exceptional drought to wetter than normal. The wide range of hydrologic conditions that occurred during this study—and corresponding changes in surface-water, groundwater and spring discharge, and in physicochemical properties and geochemistry—provides insight into the origin of the water discharging from <span class="hlt">San</span> Marcos Springs. Three orifices at <span class="hlt">San</span> Marcos Springs (Deep, Diversion, and Weissmuller Springs) were selected to be representative of larger springs at the spring complex. Key findings include that discharge at <span class="hlt">San</span> Marcos Springs was dominated by regional recharge sources and groundwater flow paths and that different orifices of <span class="hlt">San</span> Marcos Springs respond differently to changes in hydrologic conditions; Deep Spring was less responsive to changes in hydrologic conditions than were Diversion Spring and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=descriptive+AND+survey+AND+quantitative&id=ED582478','ERIC'); return false;" href="https://eric.ed.gov/?q=descriptive+AND+survey+AND+quantitative&id=ED582478"><span>Surveillance versus Privacy: Considerations for the <span class="hlt">San</span> Bernardino Community</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Price, Robert</p> <p>2017-01-01</p> <p>This privacy versus security doctoral research examines existing literature, policies, and perceptions to identify the effects of the 2015 <span class="hlt">San</span> Bernardino terrorist attack on the <span class="hlt">San</span> Bernardino community. This study contributes to identifying factors that influence perceptions of governmental surveillance. Multiple articles contribute to the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25716874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25716874"><span>Influence of pig genetic type on sensory properties and consumer acceptance of Parma, <span class="hlt">San</span> Daniele and Toscano dry-cured hams.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pagliarini, Ella; Laureati, Monica; Dinnella, Caterina; Monteleone, Erminio; Proserpio, Cristina; Piasentier, Edi</p> <p>2016-02-01</p> <p>This study investigated the sensory properties and acceptability of different Protected Designation of Origin (PDO) dry-cured hams. For each PDO, two genotypes were selected: IL×LW (reference hybrid) and Goland (commercial hybrid). According to descriptive analysis, genetic variance affected few attributes describing Toscano and <span class="hlt">San</span> Daniele ham sensory quality. The commercial hybrid Parma ham was distinct from the traditional one, the Goland genotype being significantly higher in red color, saltiness, dryness and hardness and showing a lower intensity of pork-meat odor/flavor and sweetness than the IL×LW genotype. Consumer acceptance was mainly influenced by the PDO technology. A genotype effect on acceptance was only observed in Toscano ham. Principal component regression analysis revealed that Toscano ham was the preferred sample. Considering that the consumers involved were from Tuscany, it is likely that Toscano ham was preferred owing to their higher familiarity with this product. Sensory properties of ham samples were better discriminated according to their PDO than their genotype. Likewise, consumer liking was more affected by the specific PDO technology than by genetic type. Toscano ham was the most preferred and most familiar product among Tuscan consumers, indicating that familiarity with the product was the best driver of dry-cured ham preference. © 2015 <span class="hlt">Society</span> of <span class="hlt">Chemical</span> Industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187040','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187040"><span><span class="hlt">San</span> Andreas tremor cascades define deep fault zone complexity</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.</p> <p>2015-01-01</p> <p>Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep <span class="hlt">San</span> Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. <span class="hlt">San</span> Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the <span class="hlt">San</span> Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the <span class="hlt">San</span> Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central <span class="hlt">San</span> Andreas Fault and tremor-producing subduction zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035432','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035432"><span>Correlation between deep fluids, tremor and creep along the central <span class="hlt">San</span> Andreas fault</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.</p> <p>2011-01-01</p> <p>The seismicity pattern along the <span class="hlt">San</span> Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and <span class="hlt">chemical</span> weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the <span class="hlt">San</span> Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the <span class="hlt">San</span> Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19790004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19790004"><span>American <span class="hlt">Chemical</span> <span class="hlt">Society</span>--238th National Meeting & Exposition. Developments in medicinal chemistry: part 1. 16-20 August 2009, Washington DC, USA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gater, Deborah; Macauley, Donald</p> <p>2009-10-01</p> <p>The 238th National Meeting and Exposition of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span>, held in Washington DC, included topics covering new compounds and developments in the field of medicinal chemistry. This conference report highlights selected presentations on a novel KV1.5 blocker, a state-dependent CaV2.2 antagonist, therapeutic uses of macrocycles, a novel P2X7 antagonist, developments using the StaR technology platform, the optimization of a neuropeptide S receptor antagonist, and type 1 glycine transport modulators. Investigational drugs discussed include WYE-160020 (Wyeth), Trox-1 (Neuromed Pharmaceuticals Inc), ulimorelin (Tranzyme Pharma Inc), E-32224 (Ensemble Discovery Corp) and PF-03463275 (Pfizer Inc); the discontinued compound AZD-9056 is also highlighted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26252980','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26252980"><span>Effect of legal status of pharmacy syringe sales on syringe purchases by persons who inject drugs in <span class="hlt">San</span> Francisco and <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siddiqui, Saira S; Armenta, Richard F; Evans, Jennifer L; Yu, Michelle; Cuevas-Mota, Jazmine; Page, Kimberly; Davidson, Peter; Garfein, Richard S</p> <p>2015-11-01</p> <p>Sharing blood-contaminated syringes is the main risk factor for acquiring and transmitting blood-borne infections among persons who inject drugs (PWID). To reduce this risk, in 2005, California enacted legislation allowing local health jurisdictions to legalize non-prescription syringe sales after approving a disease prevention demonstration project (DPDP). With <span class="hlt">San</span> Francisco approving a DPDP immediately and <span class="hlt">San</span> Diego never approving one, we compared PWID across cities for their use of pharmacies PWID to obtain syringes. PWID age 18-30 years old were recruited into separate studies in <span class="hlt">San</span> Francisco (n=243) and <span class="hlt">San</span> Diego (n=338) between 2008 and 2011. We used multivariable logistic regression to compare the proportions of PWID who obtained syringes from pharmacies by city while controlling for sociodemographics, injection practices and other risk behaviors. Overall, most PWID were White (71%), male (63%), and between the ages of 18-25 years (55%). Compared to <span class="hlt">San</span> Francisco, a smaller proportion of PWID in <span class="hlt">San</span> Diego had bought syringes from pharmacies in the prior three months (16.9% vs. 49.8%; p<0.001), which remained statistically significant after adjusting for sociodemographic and behavioral factors (adjusted odds ratio=4.45, 95% confidence interval: 2.98, 6.65). Use of pharmacies to obtain syringes was greater where it was legal to do so. Public health policy can influence HIV and hepatitis C associated risk among PWID; however, implementation of these policies is crucial for the benefits to be realized. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176','ERIC'); return false;" href="https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176"><span>1906 Letter to the <span class="hlt">San</span> Francisco Health Department</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schmachtenberg, Kristin</p> <p>2006-01-01</p> <p>On Wednesday, April 18, 1906, an earthquake, measuring 7.8 on the Richter magnitude scale and lasting 48 seconds, erupted along the <span class="hlt">San</span> Andreas fault with a flash point originating in the <span class="hlt">San</span> Francisco Bay area. The force of the earthquake tore apart buildings and roads, causing water and gas mains to twist and break. The resulting effects of the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5155/sir20175155.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5155/sir20175155.pdf"><span>Hydrologic assessment and numerical simulation of groundwater flow, <span class="hlt">San</span> Juan Mine, <span class="hlt">San</span> Juan County, New Mexico, 2010–13</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, Anne M.</p> <p>2018-04-03</p> <p>Coal combustion byproducts (CCBs), which are composed of fly ash, bottom ash, and flue gas desulfurization material, produced at the coal-fired <span class="hlt">San</span> Juan Generating Station (SJGS), located in <span class="hlt">San</span> Juan County, New Mexico, have been buried in former surface-mine pits at the <span class="hlt">San</span> Juan Mine, also referred to as the <span class="hlt">San</span> Juan Coal Mine, since operations began in the early 1970s. This report, prepared by the U.S. Geological Survey in cooperation with the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department, describes results of a hydrogeologic assessment, including numerical groundwater modeling, to identify the timing of groundwater recovery and potential pathways for groundwater transport of metals that may be leached from stored CCBs and reach hydrologic receptors after operations cease. Data collected for the hydrologic assessment indicate that groundwater in at least one centrally located reclaimed surface-mining pit has already begun to recover.The U.S. Geological Survey numerical modeling package MODFLOW–NWT was used with MODPATH particle-tracking software to identify advective flow paths from CCB storage areas toward potential hydrologic receptors. Results indicate that groundwater at CCB storage areas will recover to the former steady state, or in some locations, groundwater may recover to a new steady state in 6,600 to 10,600 years at variable rates depending on the proximity to a residual cone-of-groundwater depression caused by mine dewatering and regional oil and gas pumping as well as on actual, rather than estimated, groundwater recharge and evapotranspirational losses. Advective particle-track modeling indicates that the number of particles and rates of advective transport will vary depending on hydraulic properties of the mine spoil, particularly hydraulic conductivity and porosity. Modeling results from the most conservative scenario indicate that particles can migrate from CCB repositories to either the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=66385&Lab=NERL&keyword=ars&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=66385&Lab=NERL&keyword=ars&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> PEDRO WATERSHED DATABASE</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Pedro River Geo-Data Browser was jointly developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency and the U.S. Department of Agriculture, Agricultural Research Service (Tucson, AZ). Since 1995, U.S. Environmental Protection Agency (EP A) and U...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63241&keyword=implementation+AND+integrated+AND+water+AND+resource+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63241&keyword=implementation+AND+integrated+AND+water+AND+resource+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> PEDRO GEODATA BROWSER</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Pedro Data Browser was developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV). The goal of the Landscape Sciences Program is to improve decision-making relative to natural and human resource management through the development...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.T21A1073M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.T21A1073M"><span>Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the <span class="hlt">San</span> Gregorio Fault; Moss Beach, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazzoni, S.; Moore, J.; Bish, D. L.</p> <p>2002-12-01</p> <p>The apparently weak nature of the <span class="hlt">San</span> Andreas fault system poses a fundamental geophysical question. The <span class="hlt">San</span> Gregorio fault at Moss Beach, CA is an active splay of the right-lateral <span class="hlt">San</span> Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the <span class="hlt">San</span> Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via <span class="hlt">chemical</span> alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28892301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28892301"><span>Deep nirS amplicon sequencing of <span class="hlt">San</span> Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jessica A; Francis, Christopher A</p> <p>2017-12-01</p> <p>Denitrification is a dominant nitrogen loss process in the sediments of <span class="hlt">San</span> Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of <span class="hlt">San</span> Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in <span class="hlt">San</span> Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 <span class="hlt">Society</span> for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27091188','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27091188"><span>Trans Women Doing Sex in <span class="hlt">San</span> Francisco.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, Colin J; Weinberg, Martin S; Rosenberger, Joshua G</p> <p>2016-10-01</p> <p>This research investigates the sexuality of trans women (individuals who were assigned male status at birth who currently identify as women), by focusing on the "bodily techniques" (Crossley, 2006) they use in "doing" sexuality. The "doing sexuality" framework not only is modeled after the "doing gender" approach of West and Zimmerman (1987), but also utilizes the idea of "sexual embodiment" to emphasize the agency of trans women as they conceptualize and organize their sexuality in a socially recognized way. This is often difficult as they confront discrimination from medical and legal professionals as well as intimate partners who may find it difficult to adapt to the trans woman's atypical body and conception of gender. However, with a study group of 25 trans women from <span class="hlt">San</span> Francisco, we found the study participants to be adept at overcoming such hurdles and developing techniques to "do" their sexuality. At the same time, we found trans women's agency constrained by the erotic habitus (Green, 2008) of the wider <span class="hlt">society</span>. The interplay between innovation and cultural tradition provides an opportunity to fashion a more general model of "doing" sexuality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=55540&Lab=OWOW&keyword=land+AND+indigenous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=55540&Lab=OWOW&keyword=land+AND+indigenous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> FRANCISCO ESTUARY PROJECT COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Estuary, a significant natural resource, <span class="hlt">San</span> Francisco Bay and the Delta combine to form the West Coast's largest estuary. The Estuary conveys the waters of the Sacramento and <span class="hlt">San</span> Joaquin Rivers to the Pacific Ocean. It encompasses roughly 1,600 square miles, drains over 40 p...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010712p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010712p/"><span>18. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>18. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, California, 1895) EXTERIOR, SOUTH FRONT OF MISSION AND CONVENTO, 1895 - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Atomic+AND+spectroscopy&pg=6&id=ED062143','ERIC'); return false;" href="https://eric.ed.gov/?q=Atomic+AND+spectroscopy&pg=6&id=ED062143"><span>Modern <span class="hlt">Chemical</span> Technology, Volume 7.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pecsok, Robert L.; Chapman, Kenneth</p> <p></p> <p>This volume is one of the series for the <span class="hlt">Chemical</span> Technician Curriculum Project (ChemTeC) of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: the nature of reversible processes, equilibrium constants, variable reaction tendencies, practical…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Thermal+AND+conductivity&pg=2&id=ED062145','ERIC'); return false;" href="https://eric.ed.gov/?q=Thermal+AND+conductivity&pg=2&id=ED062145"><span>Modern <span class="hlt">Chemical</span> Technology, Volume 9.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pecsok, Robert L.; Chapman, Kenneth</p> <p></p> <p>This volume is one of the series for the <span class="hlt">Chemical</span> Technician Curriculum Project (ChemTeC) of the American <span class="hlt">Chemical</span> <span class="hlt">Society</span> funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: ion exchange, electrphoresis, dialysis, electrochemistry, corrosion, electrolytic cells, coulometry,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18472394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18472394"><span><span class="hlt">Chemical</span> and genetic defenses against disease in insect <span class="hlt">societies</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stow, Adam; Beattie, Andrew</p> <p>2008-10-01</p> <p>The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of <span class="hlt">chemical</span> defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial <span class="hlt">chemicals</span> and the insect-killing fungi may be useful in medicine and agriculture, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174001','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174001"><span>Selenium and other elements in juvenile striped bass from the <span class="hlt">San</span> Joaquin Valley and <span class="hlt">San</span> Francisco Estuary, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Saiki, Michael K.; Palawski, Donald U.</p> <p>1990-01-01</p> <p>Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the <span class="hlt">San</span> Joaquin Valley and <span class="hlt">San</span> Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the <span class="hlt">San</span> Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the <span class="hlt">San</span> Joaquin River.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419162','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419162"><span>Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: <span class="hlt">San</span> Juan National Forest - Dolores Ranger District, Colorado</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kandt, Alicen J.; Kiatreungwattana, Kosol</p> <p></p> <p>This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the <span class="hlt">San</span> Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American <span class="hlt">Society</span> of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010707p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010707p/"><span>13. Photocopy of photograph (from Golden Gate Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>13. Photocopy of photograph (from Golden Gate Museum, <span class="hlt">San</span> Francisco, California, 1850's) EXTERIOR, VIEW OF CONVENTO BEFORE RESTORATION, 1850'S - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010724p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010724p/"><span>30. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>30. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, California, 1930 (?) EXTERIOR, EAST SIDE OF MISSIONA AFTER RESTORATION, C. 1930 (?) - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730021606','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730021606"><span>A simulation of the <span class="hlt">San</span> Andreas fault experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Agreen, R. W.; Smith, D. E.</p> <p>1973-01-01</p> <p>The <span class="hlt">San</span> Andreas Fault Experiment, which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, was simulated for an eight year observation period. The two tracking stations are located near <span class="hlt">San</span> Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 kilometers apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C Spacecraft was simulated for these two stations during August and September for eight consecutive years. An error analysis of the recovery of the relative location of Quincy from the data was made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the <span class="hlt">San</span> Diego site, and laser systems range biases and noise. The results of this simulation indicate that the distance of Quincy from <span class="hlt">San</span> Diego will be determined each year with a precision of about 10 centimeters. This figure is based on the accuracy of earth models and other parameters available in 1972.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010713p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010713p/"><span>19. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>19. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, California, late 1890's) EXTERIOR, GENERAL VIEW OF MISSION, LATE 1890'S - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0362.photos.013587p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0362.photos.013587p/"><span>9. Historic American Buildings Survey Golden Gate Park Museum <span class="hlt">San</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>9. Historic American Buildings Survey Golden Gate Park Museum <span class="hlt">San</span> Francisco, California Original: 1870's Re-photo: February 1940 VIEW FROM SOUTH - Mission <span class="hlt">San</span> Antonio de Padua, Hunter Liggett Military Reservation, Jolon, Monterey County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.sfei.org/documents/1996-annual-report-san-francisco-estuary-regional-monitoring-program-trace-substances','USGSPUBS'); return false;" href="http://www.sfei.org/documents/1996-annual-report-san-francisco-estuary-regional-monitoring-program-trace-substances"><span>Water quality variability in <span class="hlt">San</span> Francisco Bay, Some gGeneral lessons from 1996 sampling: 1996 annual report, <span class="hlt">San</span> Francisco estuary regional monitoring program for trace substances</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Baylosis, J.I.</p> <p>1997-01-01</p> <p>This report describes the results from the 1996 Regional Monitoring Program for Trace Substances (RMP). It is the fourth Annual Report from the RMP which began in 1993 and attempts to synthesize the most obvious data patterns from the last four years. This report includes data from Base Program monitoring activities, as well as results of Pilot and Special Studies conducted or completed in 1996. Additionally, several articles contributed by RMP investigators and others, are included. These articles provide perspective and insight on important contaminant issues identified by the RMP. This summary addresses which kinds of pollutants measured by the RMP appear to be at levels that warrant concern, what kinds of trends may be discerned, and which stations have consistently shown elevated contaminant levels. The goals or general objectives of the RMP are: 1. To obtain high quality baseline data describing the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediment of the <span class="hlt">San</span> Francisco Estuary. 2. To determine seasonal and annual trends in <span class="hlt">chemical</span> and biological water quality in the <span class="hlt">San</span> Francisco Estuary. 3. To continue to develop a data set that can be used to determine long-term trends in the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediments of the <span class="hlt">San</span> Francisco Estuary. 4. To determine whether water quality and sediment quality in the Estuary at large are in compliance with objectives established by the Basin Plan (the regulatory planning document used by the Regional Water Quality Control Board). 5. To provide a database on water and sediment quality in the Estuary which is compatible with data being developed in other ongoing studies, including wasteload allocation studies and model development, sediment quality objectives development, in-bay studies of dredged material disposal, Interagency Ecological Program (IEP) water quality studies, primary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010721p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010721p/"><span>27. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>27. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, California, Date unknown) EXTERIOR, SOUTH FRONT, DETAIL OF ENTRANCE AFTER RESTORATION, C. 1930 (?) - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010699p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010699p/"><span>5. Photocopy of painting (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>5. Photocopy of painting (from De Young Museum, <span class="hlt">San</span> Francisco, California, Oriana Day, artist, c. 1861-1885) EXTERIOR VIEW OF MISSION BEFORE 1835 - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369694p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369694p/"><span>29. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>29. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. INBOARD PROFILE, SHEET NUMBER H-5314-11-10. Drawn by A.E. Wilson, undated. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369695p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369695p/"><span>30. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>30. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. MIDSHIP SECTION, SHEET NUMBER H-5314-11-2. Drawn by H.A. Lennon, undated. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1110.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span>... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-503-id2258.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-503-id2258.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 25 Indians 1 2013-04-01 2013-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-603.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-603.pdf"><span>25 CFR 162.603 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 25 Indians 1 2014-04-01 2014-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.603 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title25-vol1/pdf/CFR-2012-title25-vol1-sec162-503.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title25-vol1/pdf/CFR-2012-title25-vol1-sec162-503.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 25 Indians 1 2012-04-01 2011-04-01 true <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title25-vol1/pdf/CFR-2011-title25-vol1-sec162-503.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title25-vol1/pdf/CFR-2011-title25-vol1-sec162-503.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 25 Indians 1 2011-04-01 2011-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1120.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1120.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1120.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1110.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span>... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54025','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54025"><span>Steam, solarization, and tons of prevention: the <span class="hlt">San</span> Francisco Public Utilities Commission's fight to contain Phytophthoras in <span class="hlt">San</span> Francisco Bay area restoration sites</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Greg Lyman; Jessica Appel; Mia Ingolia; Ellen Natesan; Joe Ortiz</p> <p>2017-01-01</p> <p>To compensate for unavoidable impacts associated with critical water infrastructure capital improvement projects, the <span class="hlt">San</span> Francisco Public Utilities Commission (SFPUC) restored over 2,050 acres of riparian, wetland, and upland habitat on watershed lands in Alameda, Santa Clara, and <span class="hlt">San</span> Mateo Counties. Despite strict bio-sanitation protocols, plant pathogens (...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=age+AND+grouping&pg=7&id=EJ607362','ERIC'); return false;" href="https://eric.ed.gov/?q=age+AND+grouping&pg=7&id=EJ607362"><span>An Intentional Laboratory: The <span class="hlt">San</span> Carlos Charter Learning Center.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Darwish, Elise</p> <p>2000-01-01</p> <p>Describes the <span class="hlt">San</span> Carlos Charter Learning Center, a K-8 school chartered by the <span class="hlt">San</span> Carlos, California, school district to be a research and development site. It has successfully shared practices in multi-age groupings, interdisciplinary instruction, parents as teachers, and staff evaluation. The article expands on the school's challenges and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-240.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-240.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-240.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-240.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-240.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H"><span>New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the <span class="hlt">San</span> Onofre and <span class="hlt">San</span> Mateo Trends in the Inner California Borderlands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.</p> <p>2015-12-01</p> <p>The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from <span class="hlt">San</span> Diego to the <span class="hlt">San</span> Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre fault trends is they are transpressional features associated with westward</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.water.ca.gov/iep/newsletters/2002/IEPNewsletterWinter2002.pdf','USGSPUBS'); return false;" href="http://www.water.ca.gov/iep/newsletters/2002/IEPNewsletterWinter2002.pdf"><span>Water level, specific conductance, and water temperature data, <span class="hlt">San</span> Francisco Bay, California, for Water Year 2000</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buchanan, P.A.</p> <p>2002-01-01</p> <p>Time series of water-level, specific-conductance, and watertemperature data were collected at seven sites in <span class="hlt">San</span> Francisco Bay during water year 2000 (October 1, 1999 through September 30, 2000). Water-level data were recorded only at Point <span class="hlt">San</span> Pablo. Specific-conductance and water-temperature data were recorded at 15-minute intervals at the following locations (Figure 1): • Carquinez Strait at Carquinez Bridge • Napa River at Mare Island Causeway near Vallejo • <span class="hlt">San</span> Pablo Bay at Petaluma River Channel Marker 9 • <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo • Central <span class="hlt">San</span> Francisco Bay at Presidio Military Reservation • Central <span class="hlt">San</span> Francisco Bay at Pier 24 • South <span class="hlt">San</span> Francisco Bay at <span class="hlt">San</span> Mateo Bridge near Foster City.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0361.photos.013503p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0361.photos.013503p/"><span>7. Historic American Buildings Survey From Golden Gate Park <span class="hlt">San</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>7. Historic American Buildings Survey From Golden Gate Park <span class="hlt">San</span> Francisco, California Original: Ante 1860 Re-photo: February 1940 VIEW FROM SOUTH - Mission <span class="hlt">San</span> Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1501/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1501/report.pdf"><span>The Cenozoic evolution of the <span class="hlt">San</span> Joaquin Valley, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartow, J. Alan</p> <p>1991-01-01</p> <p>The <span class="hlt">San</span> Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The <span class="hlt">San</span> Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the <span class="hlt">San</span> Joaquin basin from the remainder of the basin. Cenozoic strata in the <span class="hlt">San</span> Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The <span class="hlt">San</span> Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the <span class="hlt">San</span> Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the <span class="hlt">San</span> Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1110.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span> Diego Bay, from the surface to the sea floor, within 25 yards of all piers, abutments, fenders and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1110.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span> Diego Bay, from the surface to the sea floor, within 25 yards of all piers, abutments, fenders and...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>