Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions
NASA Technical Reports Server (NTRS)
Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)
2016-01-01
A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.
Stochastic study of solute transport in a nonstationary medium.
Hu, Bill X
2006-01-01
A Lagrangian stochastic approach is applied to develop a method of moment for solute transport in a physically and chemically nonstationary medium. Stochastic governing equations for mean solute flux and solute covariance are analytically obtained in the first-order accuracy of log conductivity and/or chemical sorption variances and solved numerically using the finite-difference method. The developed method, the numerical method of moments (NMM), is used to predict radionuclide solute transport processes in the saturated zone below the Yucca Mountain project area. The mean, variance, and upper bound of the radionuclide mass flux through a control plane 5 km downstream of the footprint of the repository are calculated. According to their chemical sorption capacities, the various radionuclear chemicals are grouped as nonreactive, weakly sorbing, and strongly sorbing chemicals. The NMM method is used to study their transport processes and influence factors. To verify the method of moments, a Monte Carlo simulation is conducted for nonreactive chemical transport. Results indicate the results from the two methods are consistent, but the NMM method is computationally more efficient than the Monte Carlo method. This study adds to the ongoing debate in the literature on the effect of heterogeneity on solute transport prediction, especially on prediction uncertainty, by showing that the standard derivation of solute flux is larger than the mean solute flux even when the hydraulic conductivity within each geological layer is mild. This study provides a method that may become an efficient calculation tool for many environmental projects.
Method and apparatus for chemical synthesis
Kong; Peter C. , Herring; J. Stephen , Grandy; Jon D.
2007-12-04
A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.
Wet-chemical systems and methods for producing black silicon substrates
Yost, Vernon; Yuan, Hao-Chih; Page, Matthew
2015-05-19
A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.
Method And Apparatus For Detecting Chemical Binding
Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.
2005-02-22
The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.
Method and apparatus for detecting chemical binding
Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM
2007-07-10
The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.
Apparatus for chemical synthesis
Kong, Peter C [Idaho Falls, ID; Herring, J Stephen [Idaho Falls, ID; Grandy, Jon D [Idaho Falls, ID
2011-05-10
A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.
NASA Astrophysics Data System (ADS)
Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco
2017-12-01
We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.
Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.
Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi
2014-04-14
The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.
ERIC Educational Resources Information Center
Armour, M. A.; And Others
1985-01-01
Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)
Chemical evaluation of soil-solution in acid forest soils
Lawrence, G.B.; David, M.B.
1996-01-01
Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled solution concentrations were higher than those obtained with either type of lysimeter, although there was less difference with tension lysimeters than zero-tension lysimeters. The method used for collection of soil solution should be taken into consideration whenever soil solution data are being interpreted.
A wet chemical method for the estimation of carbon in uranium carbides.
Chandramouli, V; Yadav, R B; Rao, P R
1987-09-01
A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.
Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R
2014-08-01
Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.
Decontamination of Anthrax spores in critical infrastructure and critical assets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David
2010-05-01
Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to normal operations as quickly as possible, sparing significant economic damage by re-opening critical facilities more rapidly and safely. Facilities and assets contaminated with Bacillus anthracis (i.e., anthrax) spores can be decontaminated with mild chemicals as compared to the harsh chemicals currently needed. Both the 'germination' solution and the 'kill' solution are constructed of 'off-the-shelf,' inexpensive chemicals. The method can be utilized by directly spraying the solutions onto exposed surfaces or by application of the solutions as aerosols (i.e., small droplets), which can also reach hidden surfaces.« less
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.
1976-01-01
A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juxiu Tong; Bill X. Hu; Hai Huang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less
40 CFR 712.5 - Method of identification of substances for reporting purposes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... substance in practice. (1) The chemical substance in aqueous solution. (2) The chemical substance containing... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES General Provisions § 712.5 Method of... otherwise required, respondents must report only about quantities of a chemical that is defined as a...
40 CFR 712.5 - Method of identification of substances for reporting purposes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... substance in practice. (1) The chemical substance in aqueous solution. (2) The chemical substance containing... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES General Provisions § 712.5 Method of... otherwise required, respondents must report only about quantities of a chemical that is defined as a...
Comparison of test methods to screen for residual chemical contamination on medical device surfaces.
Kulkarni, Prachi; Shoff, Megan; Lucas, Anne
2012-01-01
Reprocessing medical devices involves several steps including cleaning and disinfection or sterilization. Chemical residuals can occur at various stages of reprocessing. These residues could interfere with device function and potentially harm patients. These solutions are composed of a combination of various chemicals and their residues are highly diluted post rinsing, therefore, it is difficult to find a sensitive and rapid method to detect toxicity due to chemical residues. This study focused on (1) finding the levels of residues that are cytotoxic using two mammalian cell lines and Daphnia magna, and (2) evaluating two test methods, Total Organic Carbon (TOC) and the Luminescent Bacteria Test (LBT), to measure residual chemicals levels. The two mammalian cell lines were equal in their cytotoxicity responses. However, Daphnia were more sensitive to some chemical residue than the two mammalian cell lines. TOC and LBT were able to detect the presence of residue well below the levels that were determined to cause mammalian cytotoxicity. LBT was more sensitive for some chemicals and TOC for others, both in solution and in simulated cleaning and rinsing for the limited number of solutions tested in this study.
Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate
NASA Astrophysics Data System (ADS)
de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro
2014-10-01
This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.
Insulin pumps and insulin quality--requirements and problems.
Brange, J; Havelund, S
1983-01-01
In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less
PREDICTING THE EFFECTIVENESS OF CHEMICAL-PROTECTIVE CLOTHING MODEL AND TEST METHOD DEVELOPMENT
A predictive model and test method were developed for determining the chemical resistance of protective polymeric gloves exposed to liquid organic chemicals. The prediction of permeation through protective gloves by solvents was based on theories of the solution thermodynamics of...
METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES
Pancer, G.P.; Zegger, J.L.
1961-12-19
A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)
Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika
2017-01-01
The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
Rurality as an Asset for Inclusive Teaching in Chemical Engineering
ERIC Educational Resources Information Center
Gomez, Jamie; Svihla, Vanessa
2018-01-01
We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…
Pretreatment Solution for Water Recovery Systems
NASA Technical Reports Server (NTRS)
Muirhead, Dean (Inventor)
2018-01-01
Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.
Advances in mixed-integer programming methods for chemical production scheduling.
Velez, Sara; Maravelias, Christos T
2014-01-01
The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.
Van Berkel, Gary J.
2015-10-06
A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.
Flow method and apparatus for screening chemicals using micro x-ray fluorescence
Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM
2009-04-14
Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.
Flow method and apparatus for screening chemicals using micro x-ray fluorescence
Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM
2011-04-26
Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.
Photopolymerization-based fabrication of chemical sensing films
Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian
2003-12-30
A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.
1976-01-01
A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.
Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula
2012-01-12
Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.
NASA Astrophysics Data System (ADS)
Pedesseau, Laurent; Jouanna, Paul
2004-12-01
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.
The finite state projection algorithm for the solution of the chemical master equation.
Munsky, Brian; Khammash, Mustafa
2006-01-28
This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.
Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp
2014-04-14
The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less
Method for chemically analyzing a solution by acoustic means
Beller, Laurence S.
1997-01-01
A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.
Epitaxial ternary nitride thin films prepared by a chemical solution method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hongmei; Feldmann, David M; Wang, Haiyan
2008-01-01
It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.
Solving the chemical master equation using sliding windows
2010-01-01
Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904
Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.
1998-01-01
Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.
Approximation and inference methods for stochastic biochemical kinetics—a tutorial review
NASA Astrophysics Data System (ADS)
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2017-03-01
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.
Tveito, Aslak; Skavhaug, Ola; Lines, Glenn T; Artebrant, Robert
2011-08-01
Instabilities in the electro-chemical resting state of the heart can generate ectopic waves that in turn can initiate arrhythmias. We derive methods for computing the resting state for mathematical models of the electro-chemical process underpinning a heartbeat, and we estimate the stability of the resting state by invoking the largest real part of the eigenvalues of a linearized model. The implementation of the methods is described and a number of numerical experiments illustrate the feasibility of the methods. In particular, we test the methods for problems where we can compare the solutions with analytical results, and problems where we have solutions computed by independent software. The software is also tested for a fairly realistic 3D model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chemical comminution and deashing of low-rank coals
Quigley, David R.
1992-01-01
A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.
Chemical comminution and deashing of low-rank coals
Quigley, David R.
1992-12-01
A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.
Chemical deposition methods using supercritical fluid solutions
Sievers, Robert E.; Hansen, Brian N.
1990-01-01
A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.
Voltammetric analysis apparatus and method
Almon, A.C.
1993-06-08
An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.
Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S
2016-02-01
Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
Method for chemically analyzing a solution by acoustic means
Beller, L.S.
1997-04-22
A method and apparatus are disclosed for determining a type of solution and the concentration of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration. 10 figs.
Separation of metals by supported liquid membrane
Takigawa, Doreen Y.
1992-01-01
A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.
Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products.
Uchiyama, Shigehisa; Noguchi, Mayumi; Takagi, Nao; Hayashida, Hideki; Inaba, Yohei; Ogura, Hironao; Kunugita, Naoki
2018-06-19
As a new form of cigarettes, heated tobacco products (HTPs) have been rapidly distributed worldwide. In this study, an improved method for analyzing gaseous and particulate compounds generated from HTPs is described. Smoke is collected using a GF-CX572 sorbent cartridge with 300 mg of carbon molecular sieves, that is, Carboxen 572 (CX572), and a 9 mm glass-fiber filter (GF). After collection, the CX572 particles from the cartridge are transferred along with the GF and deposited into a vial containing two phases of carbon disulfide and methanol. The CX572 particles settle into the lower carbon disulfide phase, while nonpolar compounds are desorbed. After the sample is allowed to stand, the solution is slowly stirred. The two-phase mixture of carbon disulfide and methanol is combined into a homogeneous solution. Polar compounds are then desorbed, while the desorbed nonpolar compounds remain in solution. For the analysis of carbonyl compounds, an enriched 2,4-dinitrophenylhydrazine solution is added to a portion of the combined solution for derivatization and subsequent high-performance liquid chromatography analysis. For the analysis of volatile organic compounds and water, a portion of the combined solution is analyzed by gas chromatography-mass spectrometry or equipped with a thermal conductivity detector. By applying the proposed GF-CX572 one-cartridge method to the analysis of the mainstream smoke generated from HTPs and traditional cigarettes, several chemical compounds are detected, and the chemical composition of smoke is revealed. The GF-CX572 one-cartridge method can analyze gaseous and particulate chemical compounds from the HTP smoke by utilizing not only the entire puff volume but also one puff volume because the GF-CX-572 cartridge can be replaced with a new cartridge within 3 s. An overview of the chemicals generated from HTPs is obtained in detail by one-puff volume sampling. In addition, the generated chemical compounds strongly depend on the temperature of tobacco leaves in HTPs.
Chemical Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Method and system for suppression of stimulated Raman scattering in laser materials
Caird, John A; Bayramian, Andrew J; Ebbers, Christopher A
2013-11-19
A composition of matter is provided having the general chemical formula K(H,D).sub.2P(.sup.16O.sub.x,.sup.18O.sub.y).sub.4, where x<0.998 or y>0.002, and x+y.apprxeq.1. Additionally, a method of fabricating an optical material by growth from solution is provided. The method includes providing a solution including a predetermined percentage of (H,D).sub.2.sup.16O and a predetermined percentage of (H,D).sub.2.sup.18O, providing a seed crystal, and supporting the seed crystal on a platform. The method also includes immersing the seed crystal in the solution and forming the optical material. The optical material has the general chemical formula K(H,D).sub.2P(.sup.16O.sub.x,.sup.18O.sub.y).sub.4, where x<0.998 or y>0.002, and x+y.apprxeq.1.
Method and system for suppression of stimulated Raman scattering in laser materials
Caird, John A.; Bayramian, Andrew J.; Ebbers, Christopher A.
2015-07-14
A composition of matter is provided having the general chemical formula K(H,D).sub.2P(.sup.16O.sub.x,.sup.18O.sub.y).sub.4, where x<0.998 or y>0.002, and x+y.apprxeq.1. Additionally, a method of fabricating an optical material by growth from solution is provided. The method includes providing a solution including a predetermined percentage of (H,D).sub.2.sup.16O and a predetermined percentage of (H,D).sub.2.sup.18O, providing a seed crystal, and supporting the seed crystal on a platform. The method also includes immersing the seed crystal in the solution and forming the optical material. The optical material has the general chemical formula K(H,D).sub.2P(.sup.16O.sub.x,.sup.18O.sub.y).sub.4, where x<0.998 or y>0.002, and x+y.apprxeq.1.
ACCURACY AND COST CONSIDERATIONS IN CHOOSING A CHEMICAL MECHANISM FOR OPERATIONAL USE IN AQ MODELS
There are several contemporary chemical kinetic mechanisms available for use in tropospheric air quality simulation models, with varying degrees of condensation of the chemical reaction pathways. Likewise, there are several different numerical solution methods available to use w...
Chemical evaluation of electronic cigarettes
Cheng, Tianrong
2014-01-01
Objective To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Methods Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. Results The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Conclusions Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes. PMID:24732157
Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.
Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de
2009-01-01
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Voltametric analysis apparatus and method
Almon, Amy C.
1993-01-01
An apparatus and method for electrochemical analysis of elements in solution. An auxiliary electrode 14, a reference electrode 18, and five working electrodes 20, 22, 26, 28, and 30 are positioned in a container 12 containing a sample solution 34. The working electrodes are spaced apart evenly from each other and auxiliary electrode 14 to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode 14 and each of the working electrodes 20, 22, 26, 28, and 30. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution 34 and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C
2010-08-01
We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.
Jackson, Darryl D.; Hollen, Robert M.
1983-01-01
A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.
NASA Technical Reports Server (NTRS)
Palmer, Grant; Venkatapathy, Ethiraj
1993-01-01
Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Chemical and petrochemical industry
NASA Astrophysics Data System (ADS)
Staszak, Katarzyna
2018-03-01
The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.
Jackson, D.D.; Hollen, R.M.
1981-02-27
A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.
Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W
2012-03-08
A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volatile Organic Carbon Emissions. Phase 2.
1987-02-01
on sulfur (S IV) species *0. B. Nurmi, et al, "Sulfite Oxidation in Organic Acid Solutions," Flue Gas Desulfurization , American Chemical Society, 1982...in Organic Acid Solutions," Flue Gas Desulfurization , American Chemical Society, 1982, pp. 173-189. 8. Experimental Statistics; Handbook 91, United...Analysis of percentage solvent removal from absorber 49 inlet gas by Yates’ method 12. Analysis of weight percent solvent in recycle column 50 absorber
[Contemporary solutions for better air quality at electric welders workplace].
Markova, O L; Ivanova, E V
2015-01-01
The article deals with hygienic evaluation of electric welder's workplace, concerning chemical factor, with technical solutions on organization of supply-and-exhaust ventilation and methods to improve air quality in various welding tasks.
NASA Astrophysics Data System (ADS)
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-09-01
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k
Xu, G; Hughes-Oliver, J M; Brooks, J D; Yeatts, J L; Baynes, R E
2013-01-01
Quantitative structure-activity relationship (QSAR) models are being used increasingly in skin permeation studies. The main idea of QSAR modelling is to quantify the relationship between biological activities and chemical properties, and thus to predict the activity of chemical solutes. As a key step, the selection of a representative and structurally diverse training set is critical to the prediction power of a QSAR model. Early QSAR models selected training sets in a subjective way and solutes in the training set were relatively homogenous. More recently, statistical methods such as D-optimal design or space-filling design have been applied but such methods are not always ideal. This paper describes a comprehensive procedure to select training sets from a large candidate set of 4534 solutes. A newly proposed 'Baynes' rule', which is a modification of Lipinski's 'rule of five', was used to screen out solutes that were not qualified for the study. U-optimality was used as the selection criterion. A principal component analysis showed that the selected training set was representative of the chemical space. Gas chromatograph amenability was verified. A model built using the training set was shown to have greater predictive power than a model built using a previous dataset [1].
A novel in chemico method to detect skin sensitizers in highly diluted reaction conditions.
Yamamoto, Yusuke; Tahara, Haruna; Usami, Ryota; Kasahara, Toshihiko; Jimbo, Yoshihiro; Hioki, Takanori; Fujita, Masaharu
2015-11-01
The direct peptide reactivity assay (DPRA) is a simple and versatile alternative method for the evaluation of skin sensitization that involves the reaction of test chemicals with two peptides. However, this method requires concentrated solutions of test chemicals, and hydrophobic substances may not dissolve at the concentrations required. Furthermore, hydrophobic test chemicals may precipitate when added to the reaction solution. We previously established a high-sensitivity method, the amino acid derivative reactivity assay (ADRA). This method uses novel cysteine (NAC) and novel lysine derivatives (NAL), which were synthesized by introducing a naphthalene ring to the amine group of cysteine and lysine residues. In this study, we modified the ADRA method by reducing the concentration of the test chemicals 100-fold. We investigated the accuracy of skin sensitization predictions made using the modified method, which was designated the ADRA-dilutional method (ADRA-DM). The predictive accuracy of the ADRA-DM for skin sensitization was 90% for 82 test chemicals which were also evaluated via the ADRA, and the predictive accuracy in the ADRA-DM was higher than that in the ADRA and DPRA. Furthermore, no precipitation of test compounds was observed at the initiation of the ADRA-DM reaction. These results show that the ADRA-DM allowed the use of test chemicals at concentrations two orders of magnitude lower than that possible with the ADRA. In addition, ADRA-DM does not have the restrictions on test compound solubility that were a major problem with the DPRA. Therefore, the ADRA-DM is a versatile and useful method. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Presley, L. L.; Williams, E. V.
1972-01-01
The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.
NASA Astrophysics Data System (ADS)
Saad, K. M.
2018-03-01
In this work we extend the standard model for a cubic isothermal auto-catalytic chemical system (CIACS) to a new model of a fractional cubic isothermal auto-catalytic chemical system (FCIACS) based on Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu in the Liouville-Caputo sense (ABC) fractional time derivatives, respectively. We present approximate solutions for these extended models using the q -homotopy analysis transform method ( q -HATM). We solve the FCIACS with the C derivative and compare our results with those obtained using the CF and ABC derivatives. The ranges of convergence of the solutions are found and the optimal values of h , the auxiliary parameter, are derived. Finally, these solutions are compared with numerical solutions of the various models obtained using finite differences and excellent agreement is found.
NASA Astrophysics Data System (ADS)
Smith, David C.
2005-08-01
The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.
Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A
2016-02-01
Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.
Xiang, Tian-Xiang; Anderson, Bradley D
2002-08-01
A method for obtaining clear supersaturated aqueous solutions for parenteral administration of the poorly soluble experimental anti-cancer drug silatecan 7-t-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) has been developed. Equilibrium solubilities of DB-67 were determined in various solvents and pH values, and in the presence of chemically modified water-soluble beta-cyclodextrins. The stoichiometry and binding constants for complexes of the lactone form of DB-67 and its ring-opened carboxylate with sulfobutyl ether and 2-hydroxypropyl substituted beta-cyclodextrins (SBE-CD and HP-CD) were obtained by solubility and circular dichroism spectroscopy, respectively. Kinetics for the reversible ring-opening of DB-67 in aqueous solution and for lactone precipitation were determined by HPLC with UV detection. Solubilities of DB-67 lactone in various injectable solvent systems were found to be at least one order of magnitude below the target concentration (2 mg/ml). DB-67 forms inclusion complexes with SBE-CD and HP-CD but the solubilization attainable is substantially less than the target concentration. Slow addition of DB-67/ DMSO into 22.2% (w/v) SBE-CD failed to yield stable supersaturated solutions due to precipitation. Stable supersatured solutions were obtained, however, by mixing a concentrated alkaline aqueous solution of DB-67 carboxylate with an acidified 22.2% (w/v) SBE-CD solution. Ring-closure yielded supersaturated solutions that could be lyophilized and reconstituted to clear, stable, supersaturated solutions. The method developed provides an alternative to colloidal dispersions (e.g., liposomal suspensions, emulsions, etc.) for parenteral administration of lipophilic camptothecin analogs.
NASA Astrophysics Data System (ADS)
Ershov, Boris G.; Panich, Nadezhda M.
2018-01-01
The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).
Chemical evaluation of electronic cigarettes.
Cheng, Tianrong
2014-05-01
To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes.
ERIC Educational Resources Information Center
Salvador, F.; And Others
1984-01-01
Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)
Solubilization and Stability of Mitomycin C Solutions Prepared for Intravesical Administration.
Myers, Alan L; Zhang, Yan-Ping; Kawedia, Jitesh D; Zhou, Ximin; Sobocinski, Stacey M; Metcalfe, Michael J; Kramer, Mark A; Dinney, Colin P N; Kamat, Ashish M
2017-06-01
Mitomycin C (MMC) is an antitumor agent that is often administered intravesically to treat bladder cancer. Pharmacologically optimized studies have suggested varying methods to optimize delivery, with drug concentration and solution volume being the main drivers. However, these MMC concentrations (e.g. 2.0 mg/mL) supersede its solubility threshold, raising major concerns of inferior drug delivery. In this study, we seek to confirm that the pharmacologically optimized MMC concentrations are achievable in clinical practice through careful modifications of the solution preparation methods. MMC admixtures (1.0 and 2.0 mg/mL) were prepared in normal saline using conventional and alternative compounding methods. Conventional methodology resulted in poorly soluble solutions, with many visible particulates and crystallates. However, special compounding methods, which included incubation of solutions at 50 °C for 50 min followed by storage at 37 °C, were sufficient to solubilize drug. Chemical degradation of MMC solutions was determined over 6 h using high-performance liquid chromatography (HPLC) analytics, while physical stability was tested in parallel. Immediately following the 50 min incubation, both MMC solutions exhibited approximately 5-7% drug degradation. Based on the measured concentrations and linear regression of degradation plots, additional storage of these solutions at 37 °C for 5 h retained chemical stability criterion (< 10% overall drug loss). No physical changes were observed in any solutions at any test time points. We recommend that the described alternative preparation methods may improve intravesicular delivery of MMC in this urological setting, and advise that clinicians employing these changes should closely monitor patients for MMC toxicities and pharmacodynamics (change in clinical outcomes) that result from the potential enhancement of MMC exposure in the bladder.
Chemically modified carbonic anhydrases useful in carbon capture systems
Novick, Scott; Alvizo, Oscar
2013-01-15
The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.
Chemically modified carbonic anhydrases useful in carbon capture systems
Novick, Scott J; Alvizo, Oscar
2013-10-29
The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.
9 CFR 71.11 - Cresylic disinfectant as permitted disinfectant; specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of distilled water at 25 °C. (77 °F.) within 2 minutes (solution-rate test), producing a solution... will be those described in United States Department of Agriculture Bulletin 1308, Chemical and Physical Methods for the Control of Saponified Cresol Solutions, so far as they are applicable. (f) Any suitable...
Hierarchical optimal control of large-scale nonlinear chemical processes.
Ramezani, Mohammad Hossein; Sadati, Nasser
2009-01-01
In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.
NASA Technical Reports Server (NTRS)
Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.
1990-01-01
The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.
Analysis of the influence of chemical treatment to the strength and surface roughness of FDM
NASA Astrophysics Data System (ADS)
Hambali, R. H.; Cheong, K. M.; Azizan, N.
2017-06-01
The applications of Additive Manufacturing (AM) technology have a greater functionality and wider range of application beyond an intention of prototyping. AM is the process of joining materials to form objects from Computer-Aided Design (CAD) models via layer upon layer process. One of AM technologies is the Fused Deposition Modelling (FDM), which use an extrusion method to create a part. FDM has been applied in many manufacturing applications includes an end-used parts. However, FDM tends to have bad surface quality due to staircase effect and post treatment is required. This chemical treatment is one of a way to improve the surface roughness of FDM fabricated parts. This method is one of economical and faster method. In order to enhance the surface finish of Acrylonitrile-Butadiene-Styrene (ABS) FDM parts by performing chemical treatment in an acetone solution as acetone has very low toxicity, high diffusion and low cost chemical solution. Therefore, the aim of this research is to investigate the influence of chemical treatment to the FDM used part in terms of surface roughness as well as the strength. In this project, ten specimens of standard ASTM D638 dogbone specimens have been fabricated using MOJO 3D printer. Five specimens from the dogbone were tested for surface roughness and tensile testing while another five were immersed in the chemical solution before the same testing. Based on results, the surface roughness of chemically treated dogbone has dramatically improved, compared to untreated dogbone with 97.2% of improvement. However, in term of strength, the tensile strength of dogbone is reduced 42.58% due to the rearrange of material properties and chemical effects to the joining of the filaments. In conclusion, chemical treatment is an economical and sustainable approach to enhance the surface quality of AM parts.
Taking the plunge: chemical reaction dynamics in liquids.
Orr-Ewing, Andrew J
2017-12-11
The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.
Chen, Yanjun; Zhang, Yingchun; Tang, Shihuan; Wang, Shanshan; Shen, Dan; Wang, Xuguang; Lei, Yun; Li, Defeng; Zhang, Yi; Jin, Lan; Yang, Hongjun; Huang, Luqi
2013-01-01
Yuanhu Zhitong Tablet (YZT) is an example of a typical and relatively simple clinical herb formula that is widely used in clinics. It is generally believed that YZT play a therapeutical effect in vivo by the synergism of multiple constituents. Thus, it is necessary to build the relationship between the absorbed fingerprints and bioactivity so as to ensure the quality, safety and efficacy. In this study, a new combinative method, an intestinal absorption test coupled with a vasorelaxation bioactivity experiment in vitro, was a simple, sensitive, and feasible technique to study on the absorbed fingerprint-efficacy of YZT based on chemical analysis, vasorelaxation evaluation and data mining. As part of this method, an everted intestinal sac method was performed to determine the intestinal absorption of YZT solutions. YZT were dissolved in solution (n = 12), and the portion of the solution that was absorbed into intestinal sacs was analyzed using rapid-resolution liquid chromatography coupled with quadruple time-of-flight mass spectrometry (RRLC-Q-TOF/MS). Semi-quantitative analysis indicated the presence of 34 compounds. The effect of the intestinally absorbed solution on vasorelaxation of rat aortic rings with endothelium attached was then evaluated in vitro. The results showed that samples grouped by HCA from chemical profiles have similar bioactivity while samples in different groups displayed very different. Moreover, it established a relationship between the absorbed fingerprints and their bioactivity to identify important components by grey relational analysis, which could predict bioactive values based on chemical profiles and provide an evidence for the quantification of multi-constituents. PMID:24339904
Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows
NASA Technical Reports Server (NTRS)
Wood, William A.; Eberhardt, Scott
1995-01-01
A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flow fields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three-dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a non-catalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the non-catalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated in both the radial and streamwise directions. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three-dimensional case in comparison to an all thin-layer Navier-Stokes solution.
Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
Feng, Jian-Min; Dai, Ye-Jing
2013-05-21
Combining carbon nanotubes (CNTs) with graphene has been proved to be a feasible method for improving the performance of graphene for some practical applications. This paper reports a water-assisted route to grow graphene on CNTs from ferrocene and thiophene dissolved in ethanol by the chemical vapor deposition method in an argon flow. A double injection technique was used to separately inject ethanol solution and water for the preparation of graphene/CNTs. First, CNTs were prepared from ethanol solution and water. The injection of ethanol solution was suspended and water alone was injected into the reactor to etch the CNTs. Thereafter, ethanol solution was injected along with water, which is the key factor in obtaining graphene/CNTs. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Raman scattering analyses confirmed that the products were the hybrid materials of graphene/CNTs. X-ray photo-electron spectroscopy analysis showed the presence of oxygen rich functional groups on the surface of the graphene/CNTs. Given the activity of the graphene/CNT surface, CdS quantum dots adhered onto it uniformly through simple mechanical mixing.
Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows
NASA Technical Reports Server (NTRS)
Palmer, Grant; Venkatapathy, Ethiraj
1995-01-01
Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M
2018-04-18
Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.
Chemical equilibrium of ablation materials including condensed species
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.
2013-01-01
Background Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Results Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes: • Support for multi-component compounds (mixtures) • Import and export of SD-files • Optional security (authorization) For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures). Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. Conclusions By using a simple web application it was shown that Molecule Database Framework successfully abstracts chemical structure searches and SD-File import and export to simple method calls. The framework offers good search performance on a standard laptop without any database tuning. This is also due to the fact that chemical structure searches are paged and cached. Molecule Database Framework is available for download on the projects web page on bitbucket: https://bitbucket.org/kienerj/moleculedatabaseframework. PMID:24325762
Kiener, Joos
2013-12-11
Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes:•Support for multi-component compounds (mixtures)•Import and export of SD-files•Optional security (authorization)For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures).Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. By using a simple web application it was shown that Molecule Database Framework successfully abstracts chemical structure searches and SD-File import and export to simple method calls. The framework offers good search performance on a standard laptop without any database tuning. This is also due to the fact that chemical structure searches are paged and cached. Molecule Database Framework is available for download on the projects web page on bitbucket: https://bitbucket.org/kienerj/moleculedatabaseframework.
Smith, Douglas D.; Hiller, John M.
1998-01-01
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.« less
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.
NASA Astrophysics Data System (ADS)
Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.
2018-01-01
Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y., E-mail: yuezhao@sjtu.edu.cn
2017-02-15
Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd{sub 2}Zr{sub 2}O{sub 7} films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method. The aging effect of precursor solution on defect formation was thoroughly investigated. A slight difference was observed between the as-obtained and aged precursor solutions with respect to the phase purity and global texture of films prepared using these solutions. However, the surface morphologies are different, i.e., some regular-shaped regions (mainly hexagonal or dodecagonal) weremore » observed on the film prepared using the as-obtained precursor, whereas the film prepared using the aged precursor exhibits a homogeneous structure. Electron backscatter diffraction and scanning electron microscopy analyses showed that the Gd{sub 2}Zr{sub 2}O{sub 7} grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath. To understand this phenomenon, the properties of the precursors and corresponding xerogel were studied by Fourier transform infrared spectroscopy and coupled thermogravimetry/differential thermal analysis. The results showed that both the solutions mainly contain small Gd−Zr−O clusters obtained by the reaction of zirconium acetylacetonate with propionic acid during the precursor synthesis. The regular-shaped regions were probably formed by large Gd−Zr−O frameworks with a metastable structure in the solution with limited aging time. This study demonstrates the importance of the precise control of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route. - Highlights: •We investigate microstructure of Gd{sub 2}Zr{sub 2}O{sub 7} films grown by a chemical solution route. •The aging effect of precursor solution on formation of surface defect was thoroughly studied. •Gd−Zr−O clusters are present in the precursor solutions.« less
Fabrication, characterization and applications of iron selenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan
This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less
CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.; Lombard, C. K.
1985-01-01
The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.
Numerical simulation of air hypersonic flows with equilibrium chemical reactions
NASA Astrophysics Data System (ADS)
Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin
2018-05-01
The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.
Evaluation and analysis of liquid deicers for winter maintenance : final report.
DOT National Transportation Integrated Search
2017-09-01
The Ohio Department of Transportation (ODOT) uses mechanical and chemical methods to keep the roads safe during snow and ice events. Chemical solutions are available on the market to assist ODOT in preventing snow from bonding to the road surface as ...
Graphitic carbon stabilized silver nanoparticles synthesized by a simple chemical precursor method
NASA Astrophysics Data System (ADS)
Soni, Bhasker; Biswas, Somnath
2018-04-01
Monodispersed graphitic carbon stabilized silver nanoparticles (AgNPs) were synthesized following a simple chemical precursor method. The precursor was obtained by a controlled reduction of Ag+ in aqueous solution of poly-vinyl alcohol (PVA) and sucrose. The process allows precise control over the morphology of the AgNPs along with in situ formation of a surface stabilization layer of graphitic carbon.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
Calibration-free optical chemical sensors
DeGrandpre, Michael D.
2006-04-11
An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.
McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.
2006-11-21
A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA
2011-12-27
A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
Hu, Hao; Yang, Weitao
2013-01-01
Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439
NASA Astrophysics Data System (ADS)
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Chemical Reduction of Nd 1.85 Ce 0.15 CuO 4− δ Powders in Supercritical Sodium Ammonia Solutions
Dias, Yasmin; Wang, Hui; Zhou, Haiqing; ...
2015-01-01
Nd 1.85 Ce 0.15 CuO 4− δ powders are chemically reduced in supercritical sodium ammonia solutions from room temperature to 350°C. The crystallographic structure of the reduced powders is investigated from Rietveld refinement of X-ray powder diffraction. The atomic positions are maintained constant within experimental errors while temperature factors of all atoms increase significantly after the chemical treatments, especially of Nd/Ce atoms. The ammonothermally reduced Nd 1.85 Ce 0.15 CuO 4− δ powders show diamagnetic below 24 K which is contributed to the lower oxygen content and higher temperature factors of atoms in the treated compound. Themore » ammonothermal method paves a new way to reduce oxides in supercritical solutions near room temperature.« less
NASA Astrophysics Data System (ADS)
Shi, Ning; Zhao, Lei; Liang, Shuran; Guo, Fengnan; Zhang, Dan; Liu, Xue; Li, Menghan; Peng, Xiao; Wu, Yan
2017-12-01
In this study, PC-nanoTiO2 and PC-P25 were prepared via chemical-deposition and mixture-calcination methods, respectively. Both of PC-nanoTiO2 and PC-P25 were employed to adsorb and photocatalytic degrade toluene in aqueous solution. The characterization results show that distribution of TiO2 nanoparticles in PC-nanoTiO2 and PC-P25 were different, but their binding force between PC and TiO2 were both chemical bonds. Due to synergy of adsorption and photocatalytic degradation, both PC-nanoTiO2 and PC-P25 exhibit good effect in removing toluene in aqueous solution, and both PC-nanoTiO2 and PC-P25 could be utilized for treating wastewater generated from hazardous chemicals leakage accidents emergency.
Controlling the metal to semiconductor transition of MoS 2 and WS 2 in solution
Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; ...
2015-01-22
Lithiation-exfoliation produces single to few-layered MoS 2 and WS 2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS 2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with themore » simplicity of solution processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS 2 and WS 2 within a liquid medium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, L.; Duff, M.; Cadieux, J.
2010-09-24
A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.
Prioritizing chemicals for environmental management in China based on screening of potential risks
NASA Astrophysics Data System (ADS)
Yu, Xiangyi; Mao, Yan; Sun, Jinye; Shen, Yingwa
2014-03-01
The rapid development of China's chemical industry has created increasing pressure to improve the environmental management of chemicals. To bridge the large gap between the use and safe management of chemicals, we performed a comprehensive review of the international methods used to prioritize chemicals for environmental management. By comparing domestic and foreign methods, we confirmed the presence of this gap and identified potential solutions. Based on our literature review, we developed an appropriate screening method that accounts for the unique characteristics of chemical use within China. The proposed method is based on an evaluation using nine indices of the potential hazard posed by a chemical: three environmental hazard indices (persistence, bioaccumulation, and eco-toxicity), four health hazard indices (acute toxicity, carcinogenicity, mutagenicity, and reproductive and developmental toxicity), and two environmental exposure hazard indices (chemical amount and utilization pattern). The results of our screening agree with results of previous efforts from around the world, confirming the validity of the new system. The classification method will help decisionmakers to prioritize and identify the chemicals with the highest environmental risk, thereby providing a basis for improving chemical management in China.
Mapping Pesticide Partition Coefficients By Electromagnetic Induction
USDA-ARS?s Scientific Manuscript database
A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...
Salis, Howard; Kaznessis, Yiannis N
2005-12-01
Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.
Blanching, salting and sun drying of different pumpkin fruit slices.
Workneh, T S; Zinash, A; Woldetsadik, K
2014-11-01
The study was aimed at assessing the quality of pumpkin (Cucuribita Spp.) slices that were subjected to pre-drying treatments and drying using two drying methods (uncontrolled sun and oven) fruit accessions. Pre-drying had significant (P ≤ 0.05) effect on the quality of dried pumpkin slices. 10 % salt solution dipped pumpkin fruit slices had good chemical quality. The two-way interaction between drying methods and pre-drying treatments had significant (P ≤ 0.05) effect on chemical qualities. Pumpkin subjected to salt solution dipping treatment and oven dried had higher chemical concentrations. Among the pumpkin fruit accessions, pumpkin accession 8007 had the superior TSS, total sugar and sugar to acid ratio after drying. Among the three pre-drying treatment, salt solution dipping treatment had significant (P ≤ 0.05) effect and the most efficient pre-drying treatment to retain the quality of dried pumpkin fruits without significant chemical quality deterioration. Salt dipping treatment combined with low temperature (60 °C) oven air circulation drying is recommended to maintain quality of dried pumpkin slices. However, since direct sun drying needs extended drying time due to fluctuation in temperature, it is recommended to develop or select best successful solar dryer for use in combination with pre-drying salt dipping or blanching treatments.
Foam and gel methods for the decontamination of metallic surfaces
Nunez, Luis; Kaminski, Michael Donald
2007-01-23
Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.
Drug Solubility: Importance and Enhancement Techniques
Savjani, Ketan T.; Gajjar, Anuradha K.; Savjani, Jignasa K.
2012-01-01
Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics. PMID:22830056
A spectral multi-domain technique applied to high-speed chemically reacting flows
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Streett, Craig L.; Hussaini, M. Yousuff
1989-01-01
The first applications of a spectral multidomain method for viscous compressible flow is presented. The method imposes a global flux balance condition at the interface so that high-order continuity of the solution is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across adjoining domains. Since the discretized equations interior to each domain solved are uncoupled from each other, and since the interface relation has a block structure, the solution scheme can be adapted to the particular requirements of each subdomain. The spectral multidomain technique presented is well-suited for the multiple scales associated with the chemically reacting and transition flows in hypersonic research. A nonstaggered multidomain discretization is used for the chemically reacting flow calculation, and the first implementation of a staggered multidomain mesh is presented for accurately solving the stability equation for a viscous compressible fluid.
Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco
2015-01-01
Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533
Lapshina, Elena V [Troitsk, RU; Zhuikov, Boris L [Troitsk, RU; Srivastava, Suresh C [Setauket, NY; Ermolaev, Stanislav V [Obninsk, RU; Togaeva, Natalia R [Obninsk, RU
2012-01-17
The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.
Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M
2017-09-05
Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.
Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes
NASA Technical Reports Server (NTRS)
Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi
2014-01-01
Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.
Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis
NASA Technical Reports Server (NTRS)
Wood, William A.
1994-01-01
A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.
Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Kisasoz, A.; Karaaslan, A.; Bayrak, Y.
2017-03-01
Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.
Methods for treating a liquid using draw solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Aaron D; Orme, Christopher J.
Draw solutions comprising at least one N-cyclicalkyl-cycloalkylamine and a secondary solvent. The N-cyclicalkyl-cycloalkylamine comprises the chemical structure: ##STR00001## wherein n is 0, 1, or 2, n' is 0, 1, or 2, and each of R.sup.1-R.sup.6 is independently selected from the group consisting of an alkyl group, an alkoxy group, an acetyl group, an aryl group, a hydrogen group, a hydroxyl group, and a phosphorus-containing group. Methods of treating a liquid using the draw solution are also disclosed.
Preparation of thin ceramic films via an aqueous solution route
Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.
1989-01-01
A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.
Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del
2016-04-01
High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.
Computer program determines chemical composition of physical system at equilibrium
NASA Technical Reports Server (NTRS)
Kwong, S. S.
1966-01-01
FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.
ERIC Educational Resources Information Center
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie
2016-01-01
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
ERIC Educational Resources Information Center
Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.
2010-01-01
The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…
Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution
ERIC Educational Resources Information Center
Subramanian, Venkat R.
2006-01-01
High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…
NASA Astrophysics Data System (ADS)
Koizumi, Ryota
This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.
Solution-processing of chalcogenide materials for device applications
NASA Astrophysics Data System (ADS)
Zha, Yunlai
Chalcogenide glasses are well-known for their desirable optical properties, which have enabled many infrared applications in the fields of photonics, medicine, environmental sensing and security. Conventional deposition methods such as thermal evaporation, chemical vapor deposition, sputtering or pulse laser deposition are efficient for fabricating structures on flat surfaces. However, they have limitations in deposition on curved surfaces, deposition of thick layers and component integration. In these cases, solution-based methods, which involve the dissolution of chalcogenide glasses and processing as a liquid, become a better choice for their flexibility. After proper treatment, the associated structures can have similar optical, chemical and physical properties to the bulk. This thesis presents an in-depth study of solution-processing chalcogenide glasses, starting from the "solution state" to the "film state" and the "structure state". Firstly, chalcogenide dissolution is studied to reveal the mechanisms at molecular level and build a foundation for material processing. Dissolution processes for various chalcogenide solvent pairs are reviewed and compared. Secondly, thermal processing, in the context of high temperature annealing, is explained along with the chemical and physical properties of the annealed films. Another focus is on nanopore formation in propylamine-processed arsenic sulfide films. Pore density changes with respect to annealing temperatures and durations are characterized. Base on a proposed vacancy coalescence theory, we have identified new dissolution strategies and achieved the breakthrough of pore-free film deposition. Thirdly, several solution methods developed along with the associated photonic structures are demonstrated. The first example is "spin-coating and lamination", which produces thick (over 10 mum) chalcogenide structures. Both homogeneous thick chalcogenide structures and heterogeneous layers of different chalcogenide glasses or metals can be fabricated. Second, "micro-molding in capillaries" (MIMIC) and "micro-transfer molding" (muTM) methods are introduced for fabricating waveguides on flat and curved surfaces. The flexibility of the solution process allows waveguides to be patterned, for the first time, on a curved surface. Third, "micro channel filling" is demonstrated to produce the lowest loss among solution-processed chalcogenide waveguides. These results contribute to the advancement of chalcogenide processing technologies and help move closer towards the ultimate goal of fabricating reliable IR sensors.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Method and apparatus for continuously referenced analysis of reactive components in solution
Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.
1979-07-31
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, and a stream separator disposed within the conduit means for separating the sample solution into a first sample stream and a second sample stream. A reactor is disposed in fluid communication with the first sample stream. A reaction takes place between the reactants introduced and the reactive chemical species of interest, causing the consumption or production of an indicator species in the first sample stream. Measurement means such as a photometric system are disposed in communication with the first and second sample streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae
2013-05-01
We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.
Method for the recovery of silver from waste photographic fixer solutions
Posey, F.A.; Palko, A.A.
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
Method for the recovery of silver from waste photographic fixer solutions
Posey, Franz A.; Palko, Aloysius A.
1984-01-01
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
NASA Astrophysics Data System (ADS)
Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting
2018-01-01
This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar; Cangiano, María de los A.; Ojeda, Manuel W.
The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. Inmore » the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.« less
Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin
2014-09-19
Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young
1998-01-01
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, A.S.; Singh, D.; Jeong, S.Y.
1998-11-03
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.
chemical transformations Scalable methods for solution-phase nanomaterials synthesis Production of premium Patents "Metal Phosphide Catalysts and Methods for Making the Same and Uses Thereof," U.S . Patent No. 9,636,664 B1 (2017) "Metal Phosphide Catalysts and Methods for Making the Same and Uses
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
Salis, Howard; Kaznessis, Yiannis
2005-02-01
The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.
NASA Astrophysics Data System (ADS)
Shibata, T.; Nishiyama, H.
2014-03-01
Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.
Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S
1999-12-01
Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C.
Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2013-01-01
Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984
Insulin compatibility with polymer materials used in external pump infusion systems.
Melberg, S G; Havelund, S; Villumsen, J; Brange, J
1988-04-01
In a study designed to mimic actual user conditions for external insulin pump infusion, the insulin quality after passage through the infusion set was assessed by various analytical methods, including high performance liquid chromatography. The two infusion sets tested consisted of, firstly, a polyvinylchloride/rubber syringe and a polyvinylchloride catheter sterilized by gamma irradiation and, secondly, a polyethylene/polypropylene syringe connected to a polyethylene catheter and sterilized by ethylene oxide. The insulin solution delivered through the PVC infusion set showed a reduction of preservative to less than 30% of the initial content and increased formation of chemical transformation products of insulin varying from twice the reference level during the first day to more than three times on the third day. By contrast, the polyethylene/polypropylene infusion system showed only a minor decrease in preservative content and no increase in chemical transformation. These effects were observed irrespective of the brand of insulin and were not affected by increase of the zinc content of the insulin solution. Investigation of the influence of the sterilization methods performed on polyvinylchloride and polyethylene catheters revealed that gamma irradiated polyvinylchloride catheters were markedly harmful to the insulin solution, whereas ethylene oxide sterilization did not influence the chemical stability of insulin.
Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J
2016-03-21
We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.
Compact Apparatus Grows Protein Crystals
NASA Technical Reports Server (NTRS)
Bugg, Charles E.; Delucas, Lawrence J.; Suddath, Fred L.; Snyder, Robert S.; Herren, Blair J.; Carter, Daniel C.; Yost, Vaughn H.
1989-01-01
Laboratory apparatus provides delicately balanced combination of materials and chemical conditions for growth of protein crystals. Apparatus and technique for growth based on hanging-drop method for crystallization of macromolecules. Includes pair of syringes with ganged plungers. One syringe contains protein solution; other contains precipitating-agent solution. Syringes intrude into cavity lined with porous reservoir material saturated with 1 mL or more of similar precipitating-agent solution. Prior to activation, ends of syringes plugged to prevent transport of water vapor among three solutions.
Possibility of wax control techniques in Indonesian oil fields
NASA Astrophysics Data System (ADS)
Abdurrahman, M.; Ferizal, F. H.; Husna, U. Z.; Pangaribuan, L.
2018-03-01
Wax is one of the common problem which can reduce the oil production, especially for the reservoir with high paraffin content case. When the temperature of crude oil is lower than pour point, wax molecules can begin rapidly precipitated. The impacts of this problem are the clogging of production equipment, sealing off the pores in the reservoir, and decreasing production flow rate. In order to solve the wax problem, several methods have been applied in some oil fields in the world. For example, chemical methods in Jiangsu field (China) and Mumbai High field (India), hot water in Mangala field (India), magnetic method in Daqing field (China), water-dispersible in Bakken basin (US), and microbial in Jidong field (China). In general, the various crude oils present in the Indonesia contain wax content between 10%-39% and pour point of 22°C-49°C. Hot water and chemical method are commonly used to solve wax problems in Indonesian oil fields. However, the primary solution is magnetic method, and the secondary solution is water dispersible.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Surface and tribological properties of seed proteins
USDA-ARS?s Scientific Manuscript database
Aqueous solutions of oat and lupin proteins were investigated for their surface, interfacial, friction and wear properties. The investigated oat proteins included those that were also chemically modified using a variety of methods (acetylation, succinylation, x-linking) and combinations of methods....
Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, Surendra N.
1994-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.
Surface-enhanced Raman sensor for trace chemical detection in water
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Rainey, Petrie M.
1999-11-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection and in recent years SERS has been used for chemical, biochemical, environmental, and physiological applications. A variety of methods using various media (electrodes, colloids, and substrates) have been successfully developed to enhance Raman signals by six orders of magnitude and more. However, SERS has not become a routine analytical technique because these methods are unable to provide quantitative measurements. This is largely due to the inability to fabricate a sampling medium that provides reversible chemical adsorption, analysis-to-analysis reproducibility, unrestricted solution requirements (reagent concentration and pH) or sample phase (liquid or solid). In an effort to overcome these restrictions, we have developed metal-doped sol-gels to provide surface-enhancement of Raman scattering.
Separation of mixtures of chemical elements in plasma
NASA Astrophysics Data System (ADS)
Dolgolenko, D. A.; Muromkin, Yu A.
2017-10-01
This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.
Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis
2008-01-01
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
Solution synthesis of metal oxides for electrochemical energy storage applications.
Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin
2014-05-21
This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
Pelinger, Judith A.; Eisenreich, Steven J.; Capel, Paul D.
1993-01-01
The sorption of hydrophobic organic chemicals (HOCs) to ??-Al2O3 was investigated with a headspace analysis method. The semiautomated headspace analyzer gave rapid, precise, and accurate results for a homologous series alkylbenzenes even at low percentages of solute mass sorbed (3-50%). Sorption experiments carried out with benzene alone indicated weak interactions with well-characterized aluminum oxide, and a solids concentration effect was observed. When the sorption coefficients for benzene alone obtained by headspace analysis were extrapolated up to the solids concentrations typically used in batch sorption experiments, the measured sorption coefficients agreed with reported sorption coefficients for HOCs and sediments of low fractional organic carbon content. Sorbed concentrations increased exponentially with aqueous concentration in isotherms with mixtures of alkylbenzenes, indicating solute-solute interactions at the mineral surface. Sorption was, however, greater than predicted for partitioning of a solute between its pure liquid phase and water, indicating additional influences of the surface and/or the structured liquid near the mineral surface. ?? 1993 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Masataka; Core Research for Evolutional Science and Technology; ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
NASA Astrophysics Data System (ADS)
Tarumi, Moto; Nakai, Hiromi
2018-05-01
This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-10-14
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.
Solution dewatering with concomitant ion removal
Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.
2003-08-05
One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.
NASA Astrophysics Data System (ADS)
Fellner, Klemens; Tang, Bao Quoc
2018-06-01
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
21 CFR 864.1850 - Dye and chemical solution stains.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...
21 CFR 864.1850 - Dye and chemical solution stains.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...
21 CFR 864.1850 - Dye and chemical solution stains.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...
21 CFR 864.1850 - Dye and chemical solution stains.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...
21 CFR 864.1850 - Dye and chemical solution stains.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...
NASA Astrophysics Data System (ADS)
Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.
2017-07-01
One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.
A time-accurate implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun
1992-01-01
A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.
Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie
1999-01-01
The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.
Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping
2015-01-01
Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight. PMID:26503125
The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Zhu, Jianping; Kong, Deshuang; Zhang, Yin; Yao, Nengjian; Tao, Yaqiu; Qiu, Tai
2011-10-01
Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm-3 Ca(NO3)2·4H2O, 0.100 mol·dm-3 (NH4)2HPO4, 0.500 mol·dm-3 (NH2)2CO and 0.10 mol·dm-3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.
NASA Astrophysics Data System (ADS)
Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping
2015-10-01
Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight.
NASA Astrophysics Data System (ADS)
Dang, Xugang; Chen, Hui; Shan, Zhihua
2017-07-01
One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.
NASA Astrophysics Data System (ADS)
Nikolaev, Anton; Kuz'mina, Maria; Frank-Kamenetskaya, Olga; Zorina, Maina
2015-06-01
The study of the influence of carbonate ions in a solution to Sr-distribution in system «solution-crystal» and to ion substitutions and the non-stoichiometry of formed CaHA-SrHA solid solutions was carried out. The CaHA-SrHA solid solutions were synthesized by precipitation from aqueous solutions with the atomic C/P ratio equal to 0, 0.05 and 0.1 at T = 90 °C. Resulting precipitates were studied using various methods including X-ray powder diffraction, infrared spectroscopy and different chemical analyses. The results of the study have shown that in the range of values of (Ca + Sr)/P in the water solution from 40% to 85%, the presence of carbonate ions (C/P = 0.05-0.1) promotes the incorporation of strontium in the apatite. Crystalline apatite solid solutions formed from water solutions of such composition are more defective compared to apatites that are mainly calcium or strontium. They are characterized by a smaller size coherence scattering domain length along [0 0 1] direction and a greater number of carbonate ions, water molecules and vacancies at the Ca-sites.
In situ chemical stimulation of diatomite formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1989-05-09
A method is described of recovering hydrocarbon from a subsurface diatomite formation comprising the steps of: a. introducing an aqueous surface solution into the diatomite formation, the aqueous surface active solution comprising (i) a diatomite/oil/ water wettability improving agent, and (ii) an oil/water interfacial tension lowering agent; and b. producing oil from the diatomite formation.
The methods described in the report can be used with the modified N.R.C. version of the U.S.G.S. Solute Transport Model to predict the concentration of chemical parameters in a contaminant plume. The two volume report contains program documentation and user's manual. The program ...
MODIFIED N.R.C. VERSION OF THE U.S.G.S. SOLUTE TRANSPORT MODEL. VOLUME 1. MODIFICATIONS
The methods described in the report can be used with the modified N.R.C. version of the U.S.G.S. Solute Transport Model to predict the concentration of chemical parameters in a contaminant plume. The two volume report contains program documentation and user's manual. The program ...
From Voltage to Absorbance and Chemical Kinetics Using a Homemade Colorimeter
ERIC Educational Resources Information Center
Delgado, Jorge; Quintero-Ortega, Iraís A.; Vega-Gonzalez, Arturo
2014-01-01
The use of the Beer-Lambert law in spectroscopy is the core of standard methods for determining a chromophore concentration in a solution. Its application requires an understanding about interaction of light with a colored solution and the use of light emission and light detection devices. We build here a simple electronic circuit formed of…
Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin
2014-01-01
Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012
Evaluation of taste solutions by sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko
In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less
Lin, An-Jun; Yang, Tao; Jiang, Shao-Yong
2014-04-15
Previous studies have indicated that prior chemical purification of samples, although complex and time-consuming, is essential in obtaining precise and accurate results for sulfur isotope ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this study, we introduce a new, rapid and precise MC-ICP-MS method for sulfur isotope determination from water samples without chemical purification. The analytical work was performed on an MC-ICP-MS instrument with medium mass resolution (m/Δm ~ 3000). Standard-sample bracketing (SSB) was used to correct samples throughout the analytical sessions. Reference materials included an Alfa-S (ammonium sulfate) standard solution, ammonium sulfate provided by the lab of the authors and fresh seawater from the South China Sea. A range of matrix-matched Alfa-S standard solutions and ammonium sulfate solutions was used to investigate the matrix (salinity) effect (matrix was added in the form of NaCl). A seawater sample was used to confirm the reliability of the method. Using matrix-matched (salinity-matched) Alfa-S as the working standard, the measured δ(34)S value of AS (-6.73 ± 0.09‰) was consistent with the reference value (-6.78 ± 0.07‰) within the uncertainty, suggesting that this method could be recommended for the measurement of water samples without prior chemical purification. The δ(34)S value determination for the unpurified seawater also yielded excellent results (21.03 ± 0.18‰) that are consistent with the reference value (20.99‰), thus confirming the feasibility of the technique. The data and the results indicate that it is feasible to use MC-ICP-MS and matrix-matched working standards to measure the sulfur isotopic compositions of water samples directly without chemical purification. In comparison with the existing MC-ICP-MS techniques, the new method is better for directly measuring δ(34)S values in water samples with complex matrices; therefore, it can significantly accelerate analytical turnover. Copyright © 2014 John Wiley & Sons, Ltd.
Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih
2008-10-01
Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.
Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P
2017-03-07
The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.
Karthick, N K; Kumbharkhane, A C; Joshi, Y S; Mahendraprabu, A; Shanmugam, R; Elangovan, A; Arivazhagan, G
2017-05-05
Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13 C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) CH⋯OC (EA), (EA) methylene CH⋯π electrons (CBZ) and (EA) methyl CH⋯Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (ε E ) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.
2017-05-01
Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.
A NOVEL SEPARATION TECHNOLOGY FOR REMOVAL RECOVERY OF METALS FROM AQUEOUS SOLUTIONS
Recovery/Recycling of metal ions from industrial process waste streams is a preferred alternative to disposal by conventional techniques. This paper presents methods for preparation of inorganic chemically active adsorbents to be used in fixed bed adsorbers. Methods for immobiliz...
The Self-Assembly of Nanogold for Optical Metamaterials
NASA Astrophysics Data System (ADS)
Nidetz, Robert A.
2011-12-01
Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.
Excess chemical potential of small solutes across water--membrane and water--hexane interfaces
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1996-01-01
The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.
The PubChem chemical structure sketcher
2009-01-01
PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects. PMID:20298522
Methods for predicting properties and tailoring salt solutions for industrial processes
NASA Technical Reports Server (NTRS)
Ally, Moonis R.
1993-01-01
An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.
Gu, Baohua; Cole, David R.; Brown, Gilbert M.
2004-10-05
A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.M.
1965-10-05
This is a new and improved sand consolidation method wherein an in-situ curing of a resinous fluid is undertaken. This method does not require that the resinous fluids be catalyzed at the surface of the well or well bore as is the case in previous methods. This method consists of, first, pumping an acid-curable consolidating fluid into the unconsolidated sand or earth formation and, secondly, pumping an oil overflush solution containing a halogenated organic or other organic acid or delayed acid-producing chemical. A small quantity of diesel oilspacer may be used between the plastic catalyst solution. The overflush functions tomore » remove permeability, and its acid or acid producing component promotes subsequent hardening of the remaining film of consolidating fluid. Trichloroacetic acid and benzotrichloride are satisfactory to add to the overflush solution for curing the resins. (17 claims)« less
Method for removing elemental sulfur in sour gas wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sample, T.E. Jr.
1975-09-30
A process is described for removing sulfur deposits from sour gas wells. The formation, well, and surface equipment are contacted with a chemical composition whose aqueous solution will solubilize the sulfur by primary chemical reaction and contains a wetting agent to facilitate and accelerate the sulfur dissolution and removal. The wetting agent or surfactant may be any of a wide variety of surface-active substances such as soaps, sodium or ammonium salts of alkyl or alkyl-aryl sulfates and sulfonates. Nonionic surfactants are preferred, such as ethoxylated substituted phenols. The aqueous solvents are capable of chemically reacting with sulfur to form water-solublemore » sulfur derivatives and include aqueous solutions of alkalies, bases (both inorganic and organic), ammonia, sulfites, bisulfites, etc. (6 claims)« less
A new mathematical solution for predicting char activation reactions
Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.
2002-01-01
The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.
Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.
Solubility correlations. Part 1. Simultaneous fitting of both solute and solvent properties.
Battino, Rubin; Seybold, Paul G
2007-11-01
A method is described for estimating solubility by fitting both solute and solvent properties in a single equation. The method is illustrated by examining the solubilities of five rare gases (He, Ne, Ar, Kr, Xe) and five 'permanent' gases (O(2), N(2), CH(4), CF(4), SF(6)) in either n-alkane (C(5)H(12) to C(16)H(34)) or alkan-1-ol (CH(3)OH to C(11)H(23)OH) solvents. Generally, the correlation (R(2)) values of the fits achieved were significantly better than 0.9. It is suggested that similar methods can be used for estimating other physico-chemical properties such as excess molar volumes and enthalpies of solution.
Physiological Influences on Tissue Electrical Properties in Situ.
1984-01-01
determined gravimetrically. We are .-.- currently investigating the relative cost-effectiveness and ease of measuring inulin concentrations by standard...chemical analyses as opposed to scintillation counting methods using radio-labelled inulin . Of the costs for chemical analysis are comparable to those...for creatinine, inulin clearance will also be measured in selected experiments. Efforts to improve our perfusion system and perfusate solution were
Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretero-Genevrier, Adrián; Gazquez, Jaume; Magen, Cesar
2012-04-25
Here we report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.
Characterization of Non-Newtonian Fluids for Environmental Applications
NASA Astrophysics Data System (ADS)
Espinoza, I.; Hauswirth, S.; Cerda, C. C.; Sadeghi, S.
2017-12-01
Non-Newtonian fluids are fluids that exhibit viscosity changes with time, stress, or changing shear rates. This distinctive quality is advantageous to a number of applications, such as hydraulic fracturing and contaminant remediation. The use of non-Newtonian fluids in contaminant remediation has recently increased as a method of improving delivery of chemical oxidants and surfactants in hard-to-reach, low permeability zones within the subsurface. As the application of these fluids continues to increase, a need to improve upon the basic understanding of non-Newtonian fluid rheology becomes increasingly important. This study investigates the characteristics of guar gum and xanthan gum, two common non-Newtonian polymers, and how factors such as composition, preparation method, and chemical and biological degradation impact the rheology of the fluids. Because the polymers are semi-hydrophobic, preparation of solutions requires blending, heating, pre-dissolution in alcohol, addition of surfactant, or stirring for extended time periods. Additionally, fluids are commonly filtered to remove undissolved material and gels, and subsequently stored under a variety of conditions. We investigated the effect of these processes on the fluids' rheology by producing solutions at a range of concentrations with a variety of preparation and storage methods. The rheological properties of the solutions were then measured over a period of months with a rotational rheometer. The experimental data were fit to standard rheological models, and the parameters of these models were used to quantitatively assess the effect of chemical composition, physical processing, and storage on the fluid rheology. The results of this study provide an improved basis with which to predict physical, chemical, and temporal alterations of guar and xanthan gum rheology, and thereby allow for improved design of experimental, modeling, and field applications utilizing non-Newtonian fluids.
NASA Astrophysics Data System (ADS)
Mowbray, Andrew James
We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Simmonds, A. L.
1986-01-01
Solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip are presented along the stagnation streamline under low-density hypersonic flight conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and Direct Simulation Monte Carlo (DSMC) predictions. With the inclusion of surface-slip boundary conditions in NS calculations, the surface heat transfer and other flow field quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. Therefore, the practical range for the applicability of Navier-Stokes solutions is much wider than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods. The NS solutions agree well with the VSL results for altitudes less than 92 km. An assessment is made of the frozen flow approximation employed in the VSL calculations.
Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E
2014-04-08
Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.
Zheng, Jinkai; Fang, Xiang; Cao, Yong; Xiao, Hang; He, Lili
2013-01-01
To develop an accurate and convenient method for monitoring the production of citrus-derived bioactive 5-demethylnobiletin from demethylation reaction of nobiletin, we compared surface enhanced Raman spectroscopy (SERS) methods with a conventional HPLC method. Our results show that both the substrate-based and solution-based SERS methods correlated with HPLC method very well. The solution method produced lower root mean square error of calibration and higher correlation coefficient than the substrate method. The solution method utilized an ‘affinity chromatography’-like procedure to separate the reactant nobiletin from the product 5-demthylnobiletin based on their different binding affinity to the silver dendrites. The substrate method was found simpler and faster to collect the SERS ‘fingerprint’ spectra of the samples as no incubation between samples and silver was needed and only trace amount of samples were required. Our results demonstrated that the SERS methods were superior to HPLC method in conveniently and rapidly characterizing and quantifying 5-demethylnobiletin production. PMID:23885986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Predictive performance of the Vitrigel‐eye irritancy test method using 118 chemicals
Yamaguchi, Hiroyuki; Kojima, Hajime
2015-01-01
Abstract We recently developed a novel Vitrigel‐eye irritancy test (EIT) method. The Vitrigel‐EIT method is composed of two parts, i.e., the construction of a human corneal epithelium (HCE) model in a collagen vitrigel membrane chamber and the prediction of eye irritancy by analyzing the time‐dependent profile of transepithelial electrical resistance values for 3 min after exposing a chemical to the HCE model. In this study, we estimated the predictive performance of Vitrigel‐EIT method by testing a total of 118 chemicals. The category determined by the Vitrigel‐EIT method in comparison to the globally harmonized system classification revealed that the sensitivity, specificity and accuracy were 90.1%, 65.9% and 80.5%, respectively. Here, five of seven false‐negative chemicals were acidic chemicals inducing the irregular rising of transepithelial electrical resistance values. In case of eliminating the test chemical solutions showing pH 5 or lower, the sensitivity, specificity and accuracy were improved to 96.8%, 67.4% and 84.4%, respectively. Meanwhile, nine of 16 false‐positive chemicals were classified irritant by the US Environmental Protection Agency. In addition, the disappearance of ZO‐1, a tight junction‐associated protein and MUC1, a cell membrane‐spanning mucin was immunohistologically confirmed in the HCE models after exposing not only eye irritant chemicals but also false‐positive chemicals, suggesting that such false‐positive chemicals have an eye irritant potential. These data demonstrated that the Vitrigel‐EIT method could provide excellent predictive performance to judge the widespread eye irritancy, including very mild irritant chemicals. We hope that the Vitrigel‐EIT method contributes to the development of safe commodity chemicals. Copyright © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. PMID:26472347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wai, Chien M.
Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less
NASA Astrophysics Data System (ADS)
Thi, L. A.; Lieu, N. T. T.; Hoa, N. M.; Tran, N.; Binh, N. T.; Quang, V. X.; Nghia, N. X.
2018-03-01
Phosphine-free selenium precursor solutions have been prepared by heating at temperatures ranging from 160 °C to 240 °C and studied by means of infrared absorption spectroscopy. The colloidal CdSe nanocrystals (NCs) synthesized from all those solutions by the wet chemical method. The influence of heating temperature on the chemical reactivity of selenium precursor and its role on the optical and vibrational properties of CdSe NCs are discussed in details. Their morphology, particle size, structural, optical and vibrational properties were investigated using transmission electron microscopy, X-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively.
NASA Astrophysics Data System (ADS)
Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.
2018-02-01
In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.
Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions
NASA Astrophysics Data System (ADS)
Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny
2016-06-01
The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.
MODELS AND MODELING METHODS FOR ASSESSING HUMAN EXPOSURE AND DOSE TO TOXIC CHEMICALS AND POLLUTANTS
This project aims to strengthen the general scientific foundation of EPA's exposure and risk assessment, management, and policy processes by developing state-of-the-art exposure to dose mathematical models and solution methods. The results of this research will be to produce a mo...
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611
NASA Technical Reports Server (NTRS)
Downs, W. R.
1976-01-01
The potential flammability hazard when a water/glycol solution contacts defectively insulated silver-clad copper circuitry or electrical components carrying a direct current is described. The chemical reactions and means for detecting them are explained. Methods for detecting and cleaning contaminated areas and the use of inhibitors to arrest chemical reactivity are also explained. Preventive measures to minimize hazards are given. Photomicrographs of the chemical reactions occurring on silver clad wires are also included.
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Real gas flow fields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Lombard, C. K.; Davy, W. C.
1983-01-01
Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.
Fiber optic detector and method for using same for detecting chemical species
Baylor, Lewis C.; Buchanan, Bruce R.
1995-01-01
An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.
Agarwal, Pratul K.
2015-11-24
A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.
Agarwal, Pratul K.
2013-04-09
A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.
Solution based zinc tin oxide TFTs: the dual role of the organic solvent
NASA Astrophysics Data System (ADS)
Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira
2017-02-01
Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV = -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Nugraha, Aditya D.; Wulandari, Ika O.; Hutami Rahayu, L. B.; Riva'i, Imam; Santojo, D. J. Djoko H.; Sabarudin, Akhmad
2018-01-01
Among the various substances developed through nanoparticles, iron oxide (Fe3O4) nanoparticle is one of the substances that have been widely used in various fields such as industry, agriculture, biotechnology and biomedicine. The synthesis of Fe3O4 nanoparticle can be carried out by two methods, consist of chemical and mechanical synthesis methods. Coprecipitation is one of the most commonly used methods for chemical synthesis. Fe3O4 compounds are easily oxidized because they are amphoteric. To avoid the continuous oxidation process, chemical modification process should be carried out with the addition of a solution of polyvinyl alcohol (PVA). In this study, PVA-coated Fe3O4 nanoparticles were synthesized by in-situ coprecipitation and ultrasonication methods through direct mixing (one-pot synthesis) of the iron (II) chloride tetrahydrate (FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), and PVA under alkaline condition. The effects of addition amount of NH3solution (by adjusting its flow rate using automated syringe pump) and PVA concentration were gently studied. Interaction of PVA with Fe3O4 nanoparticle was identified by infrared spectroscopy whereas lattice parameters and crystallite sizes of the synthesized Fe3O4 nanoparticles and PVA-coated Fe3O4 nanoparticles were assessed by X-ray diffraction (XRD).
Highly oxidized graphene oxide and methods for production thereof
Tour, James M.; Kosynkin, Dmitry V.
2016-08-30
A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.
Review of chemical separation techniques applicable to alpha spectrometric measurements
NASA Astrophysics Data System (ADS)
de Regge, P.; Boden, R.
1984-06-01
Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.
Goode, D.J.; Konikow, Leonard F.
1989-01-01
The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.
Method of dispersing particulate aerosol tracer
O'Holleran, Thomas P.
1988-01-01
A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.
A coupled implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho
1993-01-01
The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.
Influence of pH and method of crystallization on the solid physical form of indomethacin.
Dubbini, Alessandra; Censi, Roberta; Martena, Valentina; Hoti, Ela; Ricciutelli, Massimo; Malaj, Ledjan; Di Martino, Piera
2014-10-01
The purpose of this study was to investigate the effect of pH and method of crystallization on the solid physical form of indomethacin (IDM). IDM, a non steroidal anti-inflammatory drug poorly soluble in water, underwent two different crystallization methods: crystallization by solvent evaporation under reduced pressure at 50.0°C (method A), and crystallization by cooling of solution from 50.0 to 5.0°C (method B). In both cases, several aqueous ethanolic solutions of IDM of different pHs were prepared. pHs were adjusted by adding acidic solutions (HCl 2M) or alkali (NaOH or NH4OH 2M) to an aqueous ethanolic solution of IDM. Thus, several batches were recovered after crystallization. The chemical stability of IDM was verified through (1)H NMR and mass spectroscopy (FIA-ESI-MS), that revealed that IDM degraded in strong alkali media (pH ≥ 12). Crystals obtained under different crystallization conditions at pHs of 1.0, 4.5, 7.0, 8.0, 10.0 and chemically stable were thus characterized for crystal habit by scanning electron microscopy, for thermal behaviour by differential scanning calorimetry, and thermogravimetry, and for solid state by X-ray powder diffractometry. Under the Method A, IDM always crystallized into pure metastable alpha form when solutions were acidified or alkalized respectively with HCl and NH4OH. On the contrary, in presence of NaOH, IDM crystallized under a mixture of alpha and sodium trihydrate form, because the presence of the sodium counter ion orientates the crystallization towards the formation of the trihydrate salt. Under the method B, at pH of 1.0, IDM crystallized under the alpha form; at pH 4.5, IDM crystallized under the form alpha in presence of some nuclei of gamma form; at pH 7.0, 8.0, and 10.0 for NH4OH, IDM crystallized under the most stable polymorph gamma form, whereas in presence of NaOH, a mix of alpha, and salt forms was formed whatever the pH of the solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Improved Understanding of In Situ Chemical Oxidation. Technical Objective 2: Soil Reactivity
2009-05-01
each reaction tube. The reagents ( sulfuric acid /potassium dichromate/mercury sulfate ) were prepared following standard methods (APHA, 1998). When...reaction tubes. A volume (~20 mL) of potassium dichromate digestion solution (potassium dichromate (BDH Laboratories), sulfuric acid (EM Science...and mercury sulphate (EM Science)) and a sulfuric acid reagent solution ( sulfuric acid (EM Science) and silver sulphate (Alfa Aesar)) were added to
Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.
2011-05-01
The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.
A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.
Greer, T; Bedelbayev, A; Igreja, J M; Gomes, J F; Lie, B
2010-01-01
Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.
Extended Hansen solubility approach: naphthalene in individual solvents.
Martin, A; Wu, P L; Adjei, A; Beerbower, A; Prausnitz, J M
1981-11-01
A multiple regression method using Hansen partial solubility parameters, delta D, delta p, and delta H, was used to reproduce the solubilities of naphthalene in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The method, called the extended Hansen approach, was compared with the extended Hildebrand solubility approach and the universal-functional-group-activity-coefficient (UNIFAC) method. The Hildebrand regular solution theory was also used to calculate naphthalene solubility. Naphthalene, an aromatic molecule having no side chains or functional groups, is "well-behaved', i.e., its solubility in active solvents known to interact with drug molecules is fairly regular. Because of its simplicity, naphthalene is a suitable solute with which to initiate the difficult study of solubility phenomena. The three methods tested (Hildebrand regular solution theory was introduced only for comparison of solubilities in regular solution) yielded similar results, reproducing naphthalene solubilities within approximately 30% of literature values. In some cases, however, the error was considerably greater. The UNIFAC calculation is superior in that it requires only the solute's heat of fusion, the melting point, and a knowledge of chemical structures of solute and solvent. The extended Hansen and extended Hildebrand methods need experimental solubility data on which to carry out regression analysis. The extended Hansen approach was the method of second choice because of its adaptability to solutes and solvents from various classes. Sample calculations are included to illustrate methods of predicting solubilities in untested solvents at various temperatures. The UNIFAC method was successful in this regard.
Microcapsule and methods of making and using microcapsules
Okawa, David C.; Pastine, Stefan J.; Zettl, Alexander K.; Frechet, Jean M.J.
2014-09-02
An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material.
Group analysis for natural convection from a vertical plate
NASA Astrophysics Data System (ADS)
Rashed, A. S.; Kassem, M. M.
2008-12-01
The steady laminar natural convection of a fluid having chemical reaction of order n past a semi-infinite vertical plate is considered. The solution of the problem by means of one-parameter group method reduces the number of independent variables by one leading to a system of nonlinear ordinary differential equations. Two different similarity transformations are found. In each case the set of differential equations are solved numerically using Runge-Kutta and the shooting method. For each transformation different Schmidt numbers and chemical reaction orders are tested.
Jump phenomena. [large amplitude responses of nonlinear systems
NASA Technical Reports Server (NTRS)
Reiss, E. L.
1980-01-01
The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.
Namai, Yoshimichi; Matsuoka, Osamu
2006-04-06
We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2014-06-03
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-09-29
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S
2013-08-27
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.
2016-10-01
The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.
Baker, James; Dickman, Andrew; Mason, Stephen; Ellershaw, John
2018-01-01
A continuous subcutaneous infusion (CSCI) is an effective method of multiple drug administration commonly encountered in end of life care when the oral route is compromised. At present, current practice is to limit syringe driver infusion time to a maximum of 24 hours as dictated by available chemical stability data. However, the ability to deliver prescribed medication by a CSCI over 48 hours may have numerous benefits in both patient care and health service resource utilisation. To examine and present the current evidence base for the stability of 48-hour multiple-drug CSCIs in current clinical practice. A systematically-structured review following PRISMA guidelines. Three electronic databases and the grey literature were searched with no time limits. Empirical studies reporting data on the chemical stability of continuous subcutaneous infusions or solutions stored in polypropylene syringes were included. Twenty-one empirical studies were included in this review reporting chemical compatibility and stability of 32 discrete combinations of twenty-four drugs tested at a variety of different drug concentrations. The majority of combinations reported were assessed as being chemically compatible. The greatest risk of clinically significant chemical degradation was observed with midazolam. Only one study reported the microbiological stability of the solution examined. There is currently limited evidence for the physical, chemical and microbiological stability of solutions for continuous subcutaneous infusion over a period of 48 hours. More stability data is required before the use of 48-hour CSCIs can be evaluated for use within clinical practice.
Multiple steady states in atmospheric chemistry
NASA Technical Reports Server (NTRS)
Stewart, Richard W.
1993-01-01
The equations describing the distributions and concentrations of trace species are nonlinear and may thus possess more than one solution. This paper develops methods for searching for multiple physical solutions to chemical continuity equations and applies these to subsets of equations describing tropospheric chemistry. The calculations are carried out with a box model and use two basic strategies. The first strategy is a 'search' method. This involves fixing model parameters at specified values, choosing a wide range of initial guesses at a solution, and using a Newton-Raphson technique to determine if different initial points converge to different solutions. The second strategy involves a set of techniques known as homotopy methods. These do not require an initial guess, are globally convergent, and are guaranteed, in principle, to find all solutions of the continuity equations. The first method is efficient but essentially 'hit or miss' in the sense that it cannot guarantee that all solutions which may exist will be found. The second method is computationally burdensome but can, in principle, determine all the solutions of a photochemical system. Multiple solutions have been found for models that contain a basic complement of photochemical reactions involving O(x), HO(x), NO(x), and CH4. In the present calculations, transitions occur between stable branches of a multiple solution set as a control parameter is varied. These transitions are manifestations of hysteresis phenomena in the photochemical system and may be triggered by increasing the NO flux or decreasing the CH4 flux from current mean tropospheric levels.
NASA Astrophysics Data System (ADS)
Salerno-Kochan, R.
2017-10-01
The aim of this paper is to propose the bioindicative measuring method for screening and assessing the safety of textile and leather materials in relation to chemical threats. This method is based on toxicological assay in which Tetrahymena pyriformis, unicellular organism belonging to protozoans, is used as a test organism. For the realization of the research goal the sensitivity threshold of test organisms to chromium(VI) solutions was identified. The changes in cell development of test organisms in chromium solutions were registered by colorimetric measurements in the presence of alamarBlue® cell viability reagent. Empirical data enabled to fit logistic curves on the base of which the level of chromium toxicity was estimated. In the second step, harmfulness of aqueous extracts obtained from textile and leather samples containing chromium in relation to test organisms was evaluated. The performed research confirmed the high efficiency of the proposed method in screening and assessing chromium content in clothes and shoes materials and showed possibilities of using it in safety assessment of products with regard to chemical risks.
Shioshvili, T I; Chokhonelidze, G Z; Shulaia, Ts A; Kazaishvili, E D; Gogoladze, T V
2005-01-01
The aim of the study was elaboration of a new minimally invasive but effective alternative method of BPH treatment. The experiments were carried out on 46 male dogs divided into two equal groups. 10 ml of Prostalyser-1 solution (natrii chloridi 9.5 g, dimethylsulfoxidi 0.5 g, aquae destill. Ad 1000.0 g) was given in a single injection into the prostates of the first group of animals. The same volume of Prostalyser-2 solution (spiritus ethilicus 96% - 76.5 g, DMSO 0.5 g, aq.destill ad 100.0 g)--into the prostates of the other group, respectively. The temperature of the solutions was +80 degrees C. Within the first 2 months, essential disorders were observed in the cellular Na-pump, membrane permeability system, there were lobular and diffusive necroses in prostatic alveolar epithelium and a decrease of the prostate weight by 68-66%. This condition of the prostate persisted for 4-6 months. Prostalyser-1 and Prostalyser-2 solutions can be recommended as very prospective substances for chemical destruction of the prostate in case of BPH.
Using MD simulations to calculate how solvents modulate solubility
Liu, Shuai; Cao, Shannon; Hoang, Kevin; Young, Kayla L.; Paluch, Andrew S.; Mobley, David L.
2016-01-01
Here, our interest is in predicting solubility in general, and we focus particularly on predicting how the solubility of particular solutes is modulated by the solvent environment. Solubility in general is extremely important, both for theoretical reasons – it provides an important probe of the balance between solute-solute and solute-solvent interactions – and for more practical reasons, such as how to control the solubility of a given solute via modulation of its environment, as in process chemistry and separations. Here, we study how the change of solvent affects the solubility of a given compound. That is, we calculate relative solubilities. We use MD simulations to calculate relative solubility and compare our calculated values with experiment as well as with results from several other methods, SMD and UNIFAC, the latter of which is commonly used in chemical engineering design. We find that straightforward solubility calculations based on molecular simulations using a general small-molecule force field outperform SMD and UNIFAC both in terms of accuracy and coverage of the relevant chemical space. PMID:26878198
Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K
NASA Astrophysics Data System (ADS)
Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao
2018-06-01
The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.
Mokeddem, Diab; Khellaf, Abdelhafid
2009-01-01
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537
Predicting soil formation on the basis of transport-limited chemical weathering
NASA Astrophysics Data System (ADS)
Yu, Fang; Hunt, Allen Gerhard
2018-01-01
Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.
Chemical method for producing smooth surfaces on silicon wafers
Yu, Conrad
2003-01-01
An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).
Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J
2013-01-01
A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.
The Hartree-Fock calculation of the magnetic properties of molecular solutes
NASA Astrophysics Data System (ADS)
Cammi, R.
1998-08-01
In this paper we set the formal bases for the calculation of the magnetic susceptibility and of the nuclear magnetic shielding tensors for molecular solutes described within the framework of the polarizable continuum model (PCM). The theory has been developed at self-consistent field (SCF) level and adapted to be used within the framework of some of the computational procedures of larger use, i.e., the gauge invariant atomic orbital method (GIAO) and the continuous set gauge transformation method (CSGT). The numerical results relative to the magnetizabilities and chemical shielding of acetonitrile and nitrometane in various solvents computed with the PCM-CSGT method are also presented.
NASA Astrophysics Data System (ADS)
Singh, Dharmendra Kumar; Behera, Debasis; Singh, Mantu Kumar; Udayabhanu, G.; John, Rohith P.
2017-10-01
Two hydrazide derivatives, namely, N'-(thiophene-2-ylmethylene)nicotinic hydrazone (TNH) and N'-(pyrrol-2-ylmethylene)nicotinic hydrazone (PNH), have been synthesized and investigated as corrosion inhibitors for mild steel in 1 M HCl solution by electrochemical, weight loss, field emission-scanning electron microscope (FE-SEM), atomic force microscope (AFM), and quantum chemical calculation methods. The experimental results show that both the compounds are good inhibitors for mild steel in 1 M HCl. They act as mixed type inhibitors with predominating cathodic character. The adsorption of inhibitors obeys the Langmuir adsorption isotherm. Correlation between quantum chemical parameters and experimental results is discussed.
Predicting the NMR spectra of nucleotides by DFT calculations: cyclic uridine monophosphate.
Bagno, Alessandro; Rastrelli, Federico; Saielli, Giacomo
2008-06-01
We present an experimental and quantum chemical NMR study of the mononucleotide cyclic uridine monophosphate in water. Spectral parameters ((1)H and (13)C chemical shifts and (1)H--(1)H, (13)C--(1)H, (31)P--(13)C and (31)P--(1)H spin-spin coupling constants) have been carefully obtained experimentally and calculated using DFT methods including the solvent effect and the conformational flexibility of the solute. This study confirms that the (1)H and (13)C spectra of polar, flexible molecules in aqueous solution can be predicted with a high level of accuracy, comparable to that obtained for less complex systems. Copyright (c) 2008 John Wiley & Sons, Ltd
Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles
NASA Astrophysics Data System (ADS)
Stolyar, S. V.; Yaroslavtsev, R. N.; Bayukov, O. A.; Balaev, D. A.; Krasikov, A. A.; Iskhakov, R. S.; Vorotynov, A. M.; Ladygina, V. P.; Purtov, K. V.; Volochaev, M. N.
2018-03-01
Superparamagnetic ferrihydrite powders with average nanoparticle sizes of 2.5 nm produced by the chemical deposition method. Static and dynamic magnetic properties are measured. As a result of ultrasonic treatment in the cavitation regime of suspensions of ferrihydrite powders in a solution of the albumin protein, the Fe ions are reduced to the metallic state. A sol of ferrihydrite nanoparticles is prepared in an aqueous solution of arabinogalactan polysaccharide.
2003-06-12
Raghunath Behera, Belinda Bashore, Richard Jendrejak and Susan C. Tucker*, “How local density enhancements influence solute reaction rates in supercritical...water,” National Meeting of the American Chemical Society, San Diego, CA, April 2001. Raghunath Behera, Belinda Bashore, Richard Jendrejak and... Raghunath Behera, Belinda Bashore, Richard Jendrejak and Susan C. Tucker*, “How local density enhancements influence solute reaction rates in supercritical
Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas
2009-01-01
Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
Shave, Steven; Auer, Manfred
2013-12-23
Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.
Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.
2014-01-01
Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less
Chemical plating method of preparing radiation source material
Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.
1973-12-11
A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)
A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing.
Tezcan, Erdem; Atıcı, Oya Galioğlu
2017-12-01
This paper presents a new delignification method (pile processing) for the recovery of cellulose from lignocellulosic bio-wastes, adapted from heap leaching technology in metallurgy. The method is based on the stacking of cellulosic materials in a pile, irrigation of the pile with aqueous reactive solution from the top, lignin and hemicellulose removal and enrichment of cellulose by the reactive solution while percolation occurs through the bottom of the pile, recirculating the reactive solution after adjusting several values such as chemical concentrations, and allow the system run until the desired time or cellulose purity. Laboratory scale systems were designed using fall leaves (FL) as lignocellulosic waste materials. The ideal condition for FL was noted as: 0.1g solid NaOH addition per gram of FL into the irrigating solution resulting in instant increase in pH to about 13.8, later allowing self-decrease in pH due to delignification over time down to 13.0, at which point another solid NaOH addition was performed. The new method achieved enrichment of cellulose from 30% to 81% and removal of 84% of the lignin that prevents industrial application of lignocellulosic bio-waste using total of 0.3g NaOH and 4ml of water per gram of FL at environmental temperature and pressure. While the stirring reactions used instead of pile processing required the same amount of NaOH, they needed at least 12ml of water and delignification was only 56.1%. Due to its high delignification performance using common and odorless chemicals and simple equipment in mild conditions, the pile processing method has great promise for the industrial evaluation of lignocellulosic bio-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of quantitative screen for 1550 chemicals with GC-MS.
Bergmann, Alan J; Points, Gary L; Scott, Richard P; Wilson, Glenn; Anderson, Kim A
2018-05-01
With hundreds of thousands of chemicals in the environment, effective monitoring requires high-throughput analytical techniques. This paper presents a quantitative screening method for 1550 chemicals based on statistical modeling of responses with identification and integration performed using deconvolution reporting software. The method was evaluated with representative environmental samples. We tested biological extracts, low-density polyethylene, and silicone passive sampling devices spiked with known concentrations of 196 representative chemicals. A multiple linear regression (R 2 = 0.80) was developed with molecular weight, logP, polar surface area, and fractional ion abundance to predict chemical responses within a factor of 2.5. Linearity beyond the calibration had R 2 > 0.97 for three orders of magnitude. Median limits of quantitation were estimated to be 201 pg/μL (1.9× standard deviation). The number of detected chemicals and the accuracy of quantitation were similar for environmental samples and standard solutions. To our knowledge, this is the most precise method for the largest number of semi-volatile organic chemicals lacking authentic standards. Accessible instrumentation and software make this method cost effective in quantifying a large, customizable list of chemicals. When paired with silicone wristband passive samplers, this quantitative screen will be very useful for epidemiology where binning of concentrations is common. Graphical abstract A multiple linear regression of chemical responses measured with GC-MS allowed quantitation of 1550 chemicals in samples such as silicone wristbands.
Soil chemical sensor and precision agricultural chemical delivery system and method
Colburn, Jr., John W.
1991-01-01
A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.
Soil chemical sensor and precision agricultural chemical delivery system and method
Colburn, J.W. Jr.
1991-07-23
A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.
NASA Astrophysics Data System (ADS)
Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian
2015-08-01
The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.
Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun
2013-05-01
Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.
Computations of steady-state and transient premixed turbulent flames using pdf methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulek, T.; Lindstedt, R.P.
1996-03-01
Premixed propagating turbulent flames are modeled using a one-point, single time, joint velocity-composition probability density function (pdf) closure. The pdf evolution equation is solved using a Monte Carlo method. The unclosed terms in the pdf equation are modeled using a modified version of the binomial Langevin model for scalar mixing of Valino and Dopazo, and the Haworth and Pope (HP) and Lagrangian Speziale-Sarkar-Gatski (LSSG) models for the viscous dissipation of velocity and the fluctuating pressure gradient. The source terms for the presumed one-step chemical reaction are extracted from the rate of fuel consumption in laminar premixed hydrocarbon flames, computed usingmore » a detailed chemical kinetic mechanism. Steady-state and transient solutions are obtained for planar turbulent methane-air and propane-air flames. The transient solution method features a coupling with a Finite Volume (FV) code to obtain the mean pressure field. The results are compared with the burning velocity measurements of Abdel-Gayed et al. and with velocity measurements obtained in freely propagating propane-air flames by Videto and Santavicca. The effects of different upstream turbulence fields, chemical source terms (different fuels and strained/unstrained laminar flames) and the influence of the velocity statistics models (HP and LSSG) are assessed.« less
NASA Astrophysics Data System (ADS)
Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.
2012-10-01
The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fact that the P becomes dependent upon the concentration of the solution. Because of the multiple... Potential of Organic Chemicals in Fish. Environmental Science and Technology 8:1113 (1974). (2) Leo, A. et...
Monte Carlo simulation of a near-continuum shock-shock interaction problem
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Wilmoth, Richard G.
1992-01-01
A complex shock interaction is calculated with direct simulation Monte Carlo (DSMC). The calculation is performed for the near-continuum flow produced when an incident shock impinges on the bow shock of a 0.1 in. radius cowl lip for freestream conditions of approximately Mach 15 and 35 km altitude. Solutions are presented both for a full finite-rate chemistry calculation and for a case with chemical reactions suppressed. In each case, both the undisturbed flow about the cowl lip and the full shock interaction flowfields are calculated. Good agreement has been obtained between the no-chemistry simulation of the undisturbed flow and a perfect gas solution obtained with the viscous shock-layer method. Large differences in calculated surface properties when different chemical models are used demonstrate the necessity of adequately representing the chemistry when making surface property predictions. Preliminary grid refinement studies make it possible to estimate the accuracy of the solutions.
Nanoparticle solutions as adhesives for gels and biological tissues
NASA Astrophysics Data System (ADS)
Rose, Séverine; Prevoteau, Alexandre; Elzière, Paul; Hourdet, Dominique; Marcellan, Alba; Leibler, Ludwik
2014-01-01
Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to `glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.
Simple, Fast, and Sensitive Method for Quantification of Tellurite in Culture Media▿
Molina, Roberto C.; Burra, Radhika; Pérez-Donoso, José M.; Elías, Alex O.; Muñoz, Claudia; Montes, Rebecca A.; Chasteen, Thomas G.; Vásquez, Claudio C.
2010-01-01
A fast, simple, and reliable chemical method for tellurite quantification is described. The procedure is based on the NaBH4-mediated reduction of TeO32− followed by the spectrophotometric determination of elemental tellurium in solution. The method is highly reproducible, is stable at different pH values, and exhibits linearity over a broad range of tellurite concentrations. PMID:20525868
Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials
Xue, Qiang; Zhang, Qian; Liu, Lei
2012-01-01
This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL) materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province), CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM) and soak times (5, 10, and 20 days). The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.
Predictive performance of the Vitrigel-eye irritancy test method using 118 chemicals.
Yamaguchi, Hiroyuki; Kojima, Hajime; Takezawa, Toshiaki
2016-08-01
We recently developed a novel Vitrigel-eye irritancy test (EIT) method. The Vitrigel-EIT method is composed of two parts, i.e., the construction of a human corneal epithelium (HCE) model in a collagen vitrigel membrane chamber and the prediction of eye irritancy by analyzing the time-dependent profile of transepithelial electrical resistance values for 3 min after exposing a chemical to the HCE model. In this study, we estimated the predictive performance of Vitrigel-EIT method by testing a total of 118 chemicals. The category determined by the Vitrigel-EIT method in comparison to the globally harmonized system classification revealed that the sensitivity, specificity and accuracy were 90.1%, 65.9% and 80.5%, respectively. Here, five of seven false-negative chemicals were acidic chemicals inducing the irregular rising of transepithelial electrical resistance values. In case of eliminating the test chemical solutions showing pH 5 or lower, the sensitivity, specificity and accuracy were improved to 96.8%, 67.4% and 84.4%, respectively. Meanwhile, nine of 16 false-positive chemicals were classified irritant by the US Environmental Protection Agency. In addition, the disappearance of ZO-1, a tight junction-associated protein and MUC1, a cell membrane-spanning mucin was immunohistologically confirmed in the HCE models after exposing not only eye irritant chemicals but also false-positive chemicals, suggesting that such false-positive chemicals have an eye irritant potential. These data demonstrated that the Vitrigel-EIT method could provide excellent predictive performance to judge the widespread eye irritancy, including very mild irritant chemicals. We hope that the Vitrigel-EIT method contributes to the development of safe commodity chemicals. Copyright © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. Copyright © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
NASA Astrophysics Data System (ADS)
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.
DNA-Compatible Nitro Reduction and Synthesis of Benzimidazoles.
Du, Huang-Chi; Huang, Hongbing
2017-10-18
DNA-encoded chemical libraries have emerged as a cost-effective alternative to high-throughput screening (HTS) for hit identification in drug discovery. A key factor for productive DNA-encoded libraries is the chemical diversity of the small molecule moiety attached to an encoding DNA oligomer. The library structure diversity is often limited to DNA-compatible chemical reactions in aqueous media. Herein, we describe a facile process for reducing aryl nitro groups to aryl amines. The new protocol offers simple operation and circumvents the pyrophoric potential of the conventional method (Raney nickel). The reaction is performed in aqueous solution and does not compromise DNA structural integrity. The utility of this method is demonstrated by the versatile synthesis of benzimidazoles on DNA.
Determination of Copper and Zinc in Brass: Two Basic Methods
ERIC Educational Resources Information Center
Fabre, Paul-Louis; Reynes, Olivier
2010-01-01
In this experiment, the concentrations of copper and zinc in brass are obtained by two methods. This experiment does not require advanced instrumentation, uses inexpensive chemicals, and can be easily carried out during a 3-h upper-level undergraduate laboratory. Pedagogically, the basic concepts of analytical chemistry in solutions, such as pH,…
We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...
NASA Astrophysics Data System (ADS)
Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.
2014-02-01
The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.
Cryoradiation sterilization—Contemporary state and outlook
NASA Astrophysics Data System (ADS)
Talrose, V. L.; Trofimov, V. I.
1995-02-01
The new approach of radiation sterilization — cryoradiosterilization with programmed freezing — was developed for pharmaceutical solutions. Both scientific and technical problems are solved, the results are discussed. Programmed freezing of vials with the drug's solutions provides the high stability of soluted components with biological activity at sterilizing irradiation without significant change of sterilization doses. Physical, chemical, biological and pharmacological properties of a lot of drug solutions for injection satisfy official requirements after cryoradiation sterilization treatment. This method seems to be especially important for the protein systems which could be infected by dangerous viruses (VIH, hepatitis B): blood plasma, diagnostic sera, protein preparations manufactured from donor's blood, etc.
NASA Astrophysics Data System (ADS)
Jia, Weile; Lin, Lin
2017-10-01
Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.
Jia, Weile; Lin, Lin
2017-10-14
Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.
Proton NMR studies of functionalized nanoparticles in aqueous environments
NASA Astrophysics Data System (ADS)
Tataurova, Yulia Nikolaevna
Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results in high-resolution NMR spectra. This technique is selective for protons on the surface organic functional groups due to their motional averaging in solution. In this study, 1H solution NMR spectroscopy was used to investigate the interface of the organic functional groups in D2O. The pKa for these functional groups covalently bound to the surface of nanoparticles was determined using an NMR-pH titration method based on the variation in the proton chemical shift for the alkyl group protons closest to the amine group with pH. The adsorption of toxic contaminants (chromate and arsenate anions) on the surface of functionalized silicalite-1 and mesoporous silica nanoparticles has been studied by 1H solution NMR spectroscopy. With this method, the surface bound contaminants are detected. The analysis of the intensity and position of these peaks allows quantitative assessment of the relative amounts of functional groups with adsorbed metal ions. These results demonstrate the sensitivity of solution NMR spectroscopy to the electronic environment and structure of the surface functional groups on porous nanomaterials.
Complexing agents and pH influence on chemical durability of type I moulded glass containers.
Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta
2017-06-16
Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.
Surface pre-treatment of aluminium by cleaning, chemical ething and conversion coating
NASA Astrophysics Data System (ADS)
Zaki, Mohammad Hafizudden Mohd; Mohd, Yusairie; Isa, Nik Norziehana Che
2017-12-01
Surface pre-treatment is one of the critical treatments for surface modification of aluminium (Al). In this study, pre-treatment of Al surface involved three stages; (1) cleaning (polishing and degreasing), (2) chemical etching (alkaline and acid) and (3) conversion coating (ie: zincate treatment). Cleaning process of Al was conducted by polishing and degreasing with acetone while etching process was done by immersion in 1.25 M NaOH solution (i.e: alkaline etching) followed with acid etching using 8 M HNO3 solution. The zincate treatment was conducted via electroless coating method by immersion of Al into a bath solution containing 0.5 M Zn(NO3)2, 0.1 M HNO3 and 0.2 M NaBH4 (reducing agent) for one hour. Different temperatures (ie: 25 °C, 50 °C, 75 °C, 90 °C) of bath solutions at pH 4 were used to investigate the effect of temperature on zincate treatment. Surface morphology and chemical composition of the pre-treated Al were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion X-ray analysis (EDX), respectively. The results showed that oxide layer on Al surface decreased after chemical etching process. Temperature of zincate solution has significantly affected the conversion coating process of aluminium. It was found that zinc oxide (ZnO) and zinc borate (ZnO.B2O3) were dominantly formed after zincate treatment at high temperature (ie:90 °C) with curved blade-like structure and composition of Zn, B and O with 13.70 wt.%, 3.52 wt.% and 54.39 wt.%, respectively. However, zincate treatment at low temperature (ie:<50 °C) has produced low metallic Zn.
Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y
2015-04-01
The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq < 3. The three pHeq regions (> 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.
Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong
2012-03-01
A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society
Corrosion resistant properties of polyaniline acrylic coating on magnesium alloy
NASA Astrophysics Data System (ADS)
Sathiyanarayanan, S.; Azim, S. Syed; Venkatachari, G.
2006-12-01
The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.
PHYTOREMEDIATION: AN ECOLOGICAL SOLUTION TO ORGANIC CHEMICAL CONTAMINATION
Phytoremediation is a promising new technology that uses plants to degrade, assimilate, metabolize, or detoxify metals, hydrocarbons, pesticides, and chlorinated solvents. In this review, in situ, in vivo and in vitro methods of application are described for remediation of these ...
Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G
2016-02-02
In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.
Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.
2016-01-01
In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829
Iur'ev, V P; Gapparov, M M; Vasserman, L A; Genkina, N K
2006-01-01
This paper is a review of the recent literature data related to structure, composition and physico-chemical properties of starches as well as the special methods of processing of the starch containing raw sources producing the food products with increasing content of resistant starches. The prognosis is made about usefulness of such resistant starches for control of some metabolic disorder in human organism and for prophylactic aims.
Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M
2015-05-04
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of alkali-silica reaction swelling in concrete by staining
Guthrie, Jr., George D.; Carey, J. William
1998-01-01
A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl
2016-03-07
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.
Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa
2018-01-25
A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2 = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie
2018-02-20
Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.
NASA Astrophysics Data System (ADS)
Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie
2018-02-01
Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.
Dickman, Andrew; Mason, Stephen; Ellershaw, John
2018-01-01
Background A continuous subcutaneous infusion (CSCI) is an effective method of multiple drug administration commonly encountered in end of life care when the oral route is compromised. At present, current practice is to limit syringe driver infusion time to a maximum of 24 hours as dictated by available chemical stability data. However, the ability to deliver prescribed medication by a CSCI over 48 hours may have numerous benefits in both patient care and health service resource utilisation. Aim To examine and present the current evidence base for the stability of 48-hour multiple-drug CSCIs in current clinical practice. Design A systematically-structured review following PRISMA guidelines. Data sources Three electronic databases and the grey literature were searched with no time limits. Empirical studies reporting data on the chemical stability of continuous subcutaneous infusions or solutions stored in polypropylene syringes were included. Results Twenty-one empirical studies were included in this review reporting chemical compatibility and stability of 32 discrete combinations of twenty-four drugs tested at a variety of different drug concentrations. The majority of combinations reported were assessed as being chemically compatible. The greatest risk of clinically significant chemical degradation was observed with midazolam. Only one study reported the microbiological stability of the solution examined. Conclusions There is currently limited evidence for the physical, chemical and microbiological stability of solutions for continuous subcutaneous infusion over a period of 48 hours. More stability data is required before the use of 48-hour CSCIs can be evaluated for use within clinical practice. PMID:29538455
Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut
2015-06-06
Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.
A review of photocatalysts prepared by sol-gel method for VOCs removal.
Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin
2010-05-28
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, D.W.; Linnhoff, B.
In Part I, criteria for heat engine and heat pump placement in chemical process networks were derived, based on the ''temperature interval'' (T.I) analysis of the heat exchanger network problem. Using these criteria, this paper gives a method for identifying the best outline design for any combined system of chemical process, heat engines, and heat pumps. The method eliminates inferior alternatives early, and positively leads on to the most appropriate solution. A graphical procedure based on the T.I. analysis forms the heart of the approach, and the calculations involved are simple enough to be carried out on, say, a programmablemore » calculator. Application to a case study is demonstrated. Optimization methods based on this procedure are currently under research.« less
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Fundamental Effects of Aging on Creep Properties of Solution-Treated Low-Carbon N-155 Alloy
NASA Technical Reports Server (NTRS)
Frey, D N; Freeman, J W; White, A E
1950-01-01
A method is developed whereby the fundamental mechanisms are investigated by which processing, heat treatment, and chemical composition control the properties of alloys at high temperatures. The method used metallographic examination -- both optical and electronic --studies of x-ray diffraction-line widths, intensities, and lattice parameters, and hardness surveys to evaluate fundamental structural conditions. Mechanical properties at high temperatures are then measured and correlated with these measured structural conditions. In accordance with this method, a study was made of the fundamental mechanism by which aging controlled the short-time creep and rupture properties of solution-treated low-carbon n-155 alloy at 1200 degrees F.
The improvement of adhesive properties of PEEK through different pre-treatments
NASA Astrophysics Data System (ADS)
Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.
2012-07-01
The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus
2016-07-13
If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
A binary linear programming formulation of the graph edit distance.
Justice, Derek; Hero, Alfred
2006-08-01
A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.
Production of metals and compounds by radiation chemistry
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Philipp, W. H.
1969-01-01
Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.
What Can Interfacial Water Molecules Tell Us About Solute Structure?
NASA Astrophysics Data System (ADS)
Willard, Adam
The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haw; Hsia, Chih-Hao
Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility maymore » be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.« less
Solid-water detoxifying reagents for chemical and biological agents
Hoffman, Dennis M [Livermore, CA; Chiu, Ing Lap [Castro Valley, CA
2006-04-18
Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Gruhn, T. A.; Andrus, C. H.
1973-01-01
Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.
Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios
2009-12-01
The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.
Coexistence of superconductivity and magnetism by chemical design
NASA Astrophysics Data System (ADS)
Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.
2010-12-01
Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.
Development of a high temperature microbial fermentation process for butanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeor, Jeffery D. St.; Reed, David W.; Daubaras, Dayna L.
2015-08-01
Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donormore » and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.« less
Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning
2016-12-01
In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Solution Deposition Methods for Carbon Nanotube Field-Effect Transistors
2009-06-01
authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy...processed into FETs using standard microelectronics processing techniques. The resulting devices were characterized using a semiconductor parameter...method will help to determine which conditions are useful for producing CNT devices for chemical sensing and electronic applications. 15. SUBJECT TERMS
System and method for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J; Kertesz, Vilmos
2014-01-28
A system and method for laser desorption of an analyte from a specimen and capturing of the analyte in a suspended solvent to form a testing solution are described. The method can include providing a specimen supported by a desorption region of a specimen stage and desorbing an analyte from a target site of the specimen with a laser beam centered at a radiation wavelength (.lamda.). The desorption region is transparent to the radiation wavelength (.lamda.) and the sampling probe and a laser source emitting the laser beam are on opposite sides of a primary surface of the specimen stage. The system can also be arranged where the laser source and the sampling probe are on the same side of a primary surface of the specimen stage. The testing solution can then be analyzed using an analytical instrument or undergo further processing.
FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI
Dounce, Alexander L.; Monty, Kenneth J.
1955-01-01
1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Liquid chromatographic characterization of PMR-15 resin and prepreg
NASA Technical Reports Server (NTRS)
Reed, K. E.
1980-01-01
A liquid chromatographic method has been developed capable of providing a chemical fingerprint of PMR-15 resin solutions and prepreg. The amounts of two of the monomers can be quantified so their experimentally determined molar ratio can be compared to the formulated one. Only the monomers were detected in fresh resin solution, whereas several additional components, resulting from an association or reaction between the norbornenyl endcap and the amine, were detected in a resin solution aged for three days. Two commercial prepregs exhibited fingerprints similar to that of laboratory material, but three others contained additional components corresponding to higher esters and nadimides.
NASA Astrophysics Data System (ADS)
Borman, V. D.; Dudko, S. A.; Sinitsyn, I. V.; Troian, V. I.; Filippov, E. A.
1989-01-01
It has been shown in earlier studies that high-temperature superconductor films can be produced through the decomposition of metal (Y, Ba, Cu) carboxylates in a liquid solution film. In the present study, the effect of nonstationary laser heating on the composition and properties of the complex oxide films formed by this method is examined with reference to experimental results obtained for YBa2Cu3O(x) films. It is shown that the chemical composition and properties of films formed in metal carboxylate solutions can be controlled by varying the time of laser heating.
Solution conformation of carbohydrates: a view by using NMR assisted by modeling.
Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús
2015-01-01
Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.
Peng, Shan; Yang, Xiaojun; Tian, Dong; Deng, Wenli
2014-09-10
We developed a simple fabrication method to prepare a superamphiphobic aluminum surface. On the basis of a low-energy surface and the combination of micro- and nanoscale roughness, the resultant surface became super-repellent toward a wide range of liquids with surface tensions of 25.3-72.1 mN m(-1). The applied approach involved (1) the formation of an irregular microplateau structure on an aluminum surface, (2) the fabrication of a nanoplatelet structure, and (3) fluorination treatment. The chemical stability and mechanical durability of the superamphiphobic surface were evaluated in detail. The results demonstrated that the surface presented an excellent chemical stability toward cool corrosive liquids (HCl/NaOH solutions, 25 °C) and 98% concentrated sulfuric acid, hot liquids (water, HCl/NaOH solutions, 30-100 °C), solvent immersion, high temperature, and a long-term period. More importantly, the surface also exhibited robust mechanical durability and could withstand multiple-fold, finger-touch, intensive scratching by a sharp blade, ultrasonication treatment, boiling treatment in water and coffee, repeated peeling by adhesive tape, and even multiple abrasion tests under 500 g of force without losing superamphiphobicity. The as-prepared superamphiphobic surface was also demonstrated to have excellent corrosion resistance. This work provides a simple, cost-effective, and highly efficient method to fabricate a chemically stable and mechanically robust superamphiphobic aluminum surface, which can find important outdoor applications.
Detection of alkali-silica reaction swelling in concrete by staining
Guthrie, G.D. Jr.; Carey, J.W.
1998-04-14
A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.
Enhancing boron rejection in FO using alkaline draw solutions.
Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y
2017-07-01
This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi
2018-01-01
Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Evolutionary Computing Methods for Spectral Retrieval
NASA Technical Reports Server (NTRS)
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
Analytically-derived sensitivities in one-dimensional models of solute transport in porous media
Knopman, D.S.
1987-01-01
Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)
Ice Melting to Release Reactants in Solution Syntheses.
Wei, Hehe; Huang, Kai; Zhang, Le; Ge, Binghui; Wang, Dong; Lang, Jialiang; Ma, Jingyuan; Wang, Da; Zhang, Shuai; Li, Qunyang; Zhang, Ruoyu; Hussain, Naveed; Lei, Ming; Liu, Li-Min; Wu, Hui
2018-03-19
Aqueous solution syntheses are mostly based on mixing two solutions with different reactants. It is shown that freezing one solution and melting it in another solution provides a new interesting strategy to mix chemicals and to significantly change the reaction kinetics and thermodynamics. For example, a precursor solution containing a certain concentration of AgNO 3 was frozen and dropped into a reductive NaBH 4 solution at about 0 °C. The ultra-slow release of reactants was successfully achieved. An ice-melting process can be used to synthesize atomically dispersed metals, including cobalt, nickel, copper, rhodium, ruthenium, palladium, silver, osmium, iridium, platinum, and gold, which can be easily extended to other solution syntheses (such as precipitation, hydrolysis, and displacement reactions) and provide a generalized method to redesign the interphase reaction kinetics and ion diffusion in wet chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stevens, Joanna S.; Gainar, Adrian; Suljoti, Edlira; ...
2015-03-18
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs andmore » σ* shape resonances in the NEXAFS spectra. Finally, this provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.« less
Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide
Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.
2001-01-01
A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.
Adriaens, E; Willoughby, J A; Meyer, B R; Blakeman, L C; Alépée, N; Fochtman, P; Guest, R; Kandarova, H; Verstraelen, S; Van Rompay, A R
2018-06-01
Assessment of ocular irritancy is an international regulatory requirement in the safety evaluation of industrial and consumer products. Although many in vitro ocular irritation assays exist, alone they are incapable of fully categorizing chemicals. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium was developed to assess the reliability of eight in vitro test methods and establish an optimal tiered-testing strategy. One assay selected was the Short Time Exposure (STE) assay. This assay measures the viability of SIRC rabbit corneal cells after 5min exposure to 5% and 0.05% solutions of test material, and is capable of categorizing of Category 1 and No Category chemicals. The accuracy of the STE test method to identify Cat 1 chemicals was 61.3% with 23.7% sensitivity and 95.2% specificity. If non-soluble chemicals and unqualified results were excluded, the performance to identify Cat 1 chemicals remained similar (accuracy 62.2% with 22.7% sensitivity and 100% specificity). The accuracy of the STE test method to identify No Cat chemicals was 72.5% with 66.2% sensitivity and 100% specificity. Excluding highly volatile chemicals, non-surfactant solids and non-qualified results resulted in an important improvement of the performance of the STE test method (accuracy 96.2% with 81.8% sensitivity and 100% specificity). Furthermore, it seems that solids are more difficult to test in the STE, 71.4% of the solids resulted in unqualified results (solubility issues and/or high variation between independent runs) whereas for liquids 13.2% of the results were not qualified, supporting the restriction of the test method regarding the testing of solids. Copyright © 2017. Published by Elsevier Ltd.
The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...
Sorption-desorption of indaziflam in selected agricultural soils
USDA-ARS?s Scientific Manuscript database
Sorption and desorption of indaziflam in 6 soils from Brazil and 3 soils from the USA, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in a 24-h period. The Freundlich equa...
Resistance of dichromated gelatin as photoresist
NASA Astrophysics Data System (ADS)
Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian
1999-09-01
Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupan, O.; Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2385; Chow, L.
2009-01-08
Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving themore » quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.« less
Pehlivaner Kara, Meryem O; Ekenseair, Adam K
2016-10-01
In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haining; Li, Weiping; Liu, Huicong
2010-07-15
A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films inmore » the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)« less
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
A review on methods of regeneration of spent pickling solutions from steel processing.
Regel-Rosocka, Magdalena
2010-05-15
The review presents various techniques of regeneration of spent pickling solutions, including the methods with acid recovery, such as diffusion dialysis, electrodialysis, membrane electrolysis and membrane distillation, evaporation, precipitation and spray roasting as well as those with acid and metal recovery: ion exchange, retardation, crystallization solvent and membrane extraction. Advantages and disadvantages of the techniques are presented, discussed and confronted with the best available techniques requirements. Most of the methods presented meet the BAT requirements. The best available techniques are electrodialysis, diffusion dialysis and crystallization; however, in practice spray roasting and retardation/ion-exchange are applied most frequently for spent pickling solution regeneration. As "waiting for their chance" solvent extraction, non-dispersive solvent extraction and membrane distillation should be indicated because they are well investigated and developed. Environmental and economic benefits of the methods presented in the review depend on the cost of chemicals and wastewater treatment, legislative regulations and cost of modernization of existing technologies or implementation of new ones. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case
NASA Astrophysics Data System (ADS)
Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.
2013-08-01
We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
NASA Technical Reports Server (NTRS)
Schoenauer, W.; Daeubler, H. G.; Glotz, G.; Gruening, J.
1986-01-01
An implicit difference procedure for the solution of equations for a chemically reacting hypersonic boundary layer is described. Difference forms of arbitrary error order in the x and y coordinate plane were used to derive estimates for discretization error. Computational complexity and time were minimized by the use of this difference method and the iteration of the nonlinear boundary layer equations was regulated by discretization error. Velocity and temperature profiles are presented for Mach 20.14 and Mach 18.5; variables are velocity profiles, temperature profiles, mass flow factor, Stanton number, and friction drag coefficient; three figures include numeric data.
NASA Technical Reports Server (NTRS)
Rosenbaum, J. S.
1971-01-01
Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.
The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.
Ayuyan, Artem G; Cohen, Fredric S
2018-02-27
Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by Elsevier Inc.
Pramodh, N R; Kumar, C N Vijay; Pradeep, M R; Naik, Ravi; Mahesh, C S; Kumari, Manju R
2017-12-01
The aim of this study was to evaluate the tensile strength of die stone incorporated with sodium and calcium hypochlorite as disinfectants. Two commercially available type IV die stone (Kalrock: Kalabhai Karson Pvt., Ltd and Pearlstone: Asian Chemicals) and two commercially available disinfectant solutions (sodium hypochlorite and calcium hypochlorite: Beachem Laboratory Chemical Private Limited, Chennai and Leo Chem Private Limited, Bengaluru) were used in this study, and the tensile strength was measured using Lloyd's Universal Testing Machine. The results show that incorporating the disinfecting solutions decreases the tensile strength of both products. The effect of decreasing tensile strength on type IV gypsum product is seen more in calcium hypochlorite when compared with sodium hypochlorite disinfecting solution, and the tensile strength of Kalrock specimens is higher than Pearlstone specimens after disinfecting with sodium hypochlorite and calcium hypochlorite solution. The statistical results also show significant results in all the groups when compared with the control group. The incorporation of sodium and calcium hypochlorite disinfecting solutions is not an encouraging method for both die materials as it reduces the tensile strength of type IV gypsum product. Tensile strength of Kalstone® die material is superior than Pearlstone® die material after mixing with sodium hypochlorite and calcium hypochlorite. According to the recommendations of Americans with Disability Act (ADA) and the Centers for Disease Control and Prevention, disinfecting the whole cast without or minimal changes in physical and mechanical properties was the motto of the study. The tensile strength in type IV gypsum product plays a most important role in retrieval of cast from impression, especially in narrow tooth preparation. This study reveals that incorporating method of disinfecting solutions is not recommended as it reduces the tensile strength.
Accurate chemical master equation solution using multi-finite buffers
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-06-29
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
Accurate chemical master equation solution using multi-finite buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Youfang; Terebus, Anna; Liang, Jie
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
Putt, Karson S; Pugh, Randall B
2013-01-01
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.
Putt, Karson S.; Pugh, Randall B.
2013-01-01
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173
Effect of three ophthalmic solutions on chemical conjunctivitis in the neonate.
Yasunaga, S
1977-02-01
In an attempt to reduce chemical conjunctivitis after silver nitrate prophylaxis, three different ophthalmic solutions (sodium chloride, sterile water, and a boric acid-sodium borate solution) were used to irrigate the eyes immediately after prophylaxis in 450 neonates. Sterile water significantly reduced (P less than .02) the prevalence of chemical conjunctivitis when compared to the conventional sodium chloride rinse. A significantly greater prevalence of chemical irritation in low-birth-weight infants was also noted (P less than .02).
A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal
Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin
2010-01-01
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature. PMID:20640156
Natural Convection in Enclosed Porous or Fluid Media
ERIC Educational Resources Information Center
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
New Concerns Emerge as Zebra Mussel Spreads.
ERIC Educational Resources Information Center
Walter, Martha L., Ed.
1992-01-01
Reports on the Zebra Mussel invasion of North American inland waterways. Discusses United States Army Corps of Engineers operations that may facilitate or be affected by the spread of Zebra Mussels, the threat to native clams, chemical and mechanical control methods, natural solutions, and ongoing research. (MCO)
2012-11-01
disinfectant solutions containing benzalkonium chloride (BAC); a molluscicide and antifouling chemical. In order to determine the efficacy of this...formulations. The methods and results presented herein will be used in a separate study to assess the efficacy of BACs as antifouling agents under
Method of producing .sup.67 Cu
O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.
1984-01-01
A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Method and etchant to join ag-clad BSSCO superconducting tape
Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan
1999-01-01
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.
Method for producing /sup 67/Cu
O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.
A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, Hafsa, E-mail: mrshafsaomar@gmail.com; Jani, Abdul Mutalib Md., E-mail: abdmutalib@perlis.uitm.edu.my; Abdullah, Saifollah, E-mail: saifollah@salam.utm.edu.my
2016-07-06
A simple and low cost method to produce well aligned silicon nanowires at large areas using Ag-assisted chemical etching at room temperature were presented. The structure of silicon nanowires growth by metal-assisted chemical etching was observed. Prior to the etching, the silicon nanowires were prepared by electroless metal deposited (EMD) in solution containing hydrofluoric acid and hydrogen peroxide in Teflon vessel. The silver particle was deposited on substrate by immersion in hydrofluoric acid and silver nitrate solution for sixty second. The silicon nanowires were growth in different hydrogen peroxide concentration which are 0.3M, 0.4M, 0.5M and 0.6M and 0.7M.The influencemore » of hydrogen peroxide concentration to the formation of silicon nanowires was studied. The morphological properties of silicon nanowires were investigated using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS).« less
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
Alternative Test Methods for Developmental Neurotoxicity: A ...
Exposure to environmental contaminants is well documented to adversely impact the development of the nervous system. However, the time, animal and resource intensive EPA and OECD testing guideline methods for developmental neurotoxicity (DNT) are not a viable solution to characterizing potential chemical hazards for the thousands of untested chemicals currently in commerce. Thus, research efforts over the past decade have endeavored to develop cost-effective alternative DNT testing methods. These efforts have begun to generate data that can inform regulatory decisions. Yet there are major challenges to both the acceptance and use of this data. Major scientific challenges for DNT include development of new methods and models that are “fit for purpose”, development of a decision-use framework, and regulatory acceptance of the methods. It is critical to understand that use of data from these methods will be driven mainly by the regulatory problems being addressed. Some problems may be addressed with limited datasets, while others may require data for large numbers of chemicals, or require the development and use of new biological and computational models. For example mechanistic information derived from in vitro DNT assays can be used to inform weight of evidence (WoE) or integrated approaches to testing and assessment (IATA) approaches for chemical-specific assessments. Alternatively, in vitro data can be used to prioritize (for further testing) the thousands
Post polymerization cure shape memory polymers
Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.
2017-01-10
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Post polymerization cure shape memory polymers
Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P
2014-11-11
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan
NASA Astrophysics Data System (ADS)
Fikriyyah, A. K.; Chaldun, E. R.; Indriyati
2018-03-01
Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.
Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions
NASA Astrophysics Data System (ADS)
Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.
2016-05-01
This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.
NASA Astrophysics Data System (ADS)
Veselkov, Alexei N.; Evstigneev, Maxim P.; Veselkov, Dennis A.; Davies, David B.
2001-08-01
A general nuclear magnetic resonance analysis of a statistical-thermodynamical model of hetero-association of aromatic molecules in solution has been developed to take "edge effects" into consideration, i.e., the dependence of proton chemical shifts on the position of the molecule situated inside or at the edge of the aggregate. This generalized approach is compared with a previously published model, where an average contribution to proton shielding is considered irrespective of the position of the molecule in the stack. Association parameters have been determined from experimental concentration and temperature dependences of 500 MHz proton chemical shifts of the hetero-association of the acridine dye, proflavine, and the phenanthridinium dye, ethidium bromide, in aqueous solution. Differences in the parameters in the range 10%-30% calculated using the basic and generalized approaches have been found to depend substantially on the magnitude of the equilibrium hetero-association constant Khet—the larger the value of Khet, the higher the discrepancy between the two methods.
Method for dissolving plutonium oxide with HI and separating plutonium
Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.
1979-01-01
PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.
2008-12-01
n-propoxide and titanium isopropoxide , were measured with a graduated auto pipet and combined with 45 mL of 2-MOE in a 125 mL flask. The solution...nitrogen (N2). This anneal procedure was used to remove trapped hydrogen from the thin film. Following the anneal, a bi-layer of titanium (Ti) and...dioxide Ti titanium 10 NO. OF COPIES ORGANIZATION 1 ADMNSTR ELEC DEFNS TECHL INFO CTR ATTN DTIC OCP 8725 JOHN J KINGMAN RD STE
Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E
1998-01-01
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.
Method for exfoliation of hexagonal boron nitride
NASA Technical Reports Server (NTRS)
Lin, Yi (Inventor); Connell, John W. (Inventor)
2012-01-01
A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.
Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula
2007-12-01
Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.
Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces.
Heinz, Hendrik
2010-05-01
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer-scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface-solute-solvent system, the solute-solvent system, the solvent system, and the surface-solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. Copyright 2009 Wiley Periodicals, Inc.
1H- 14N HSQC detection of choline-containing compounds in solutions
NASA Astrophysics Data System (ADS)
Mao, Jiezhen; Jiang, Ling; Jiang, Bin; Liu, Maili; Mao, Xi-an
2010-09-01
Choline nitrogen ( 14N) has a long relaxation time (seconds) which is due to the highly symmetric chemical environments. 14N in choline also has coupling constants with protons (0.6 Hz to methyl protons, 2.7 Hz to CH 2O protons and 0.2 Hz to NCH 2 protons). Based on these properties, we introduce a two-dimensional NMR method to detect choline and its derivatives in solutions. This method is the 1H- 14N hetero-nuclear single-quantum correlation (HSQC) experiment which has been developed in solid-state NMR in recent years. Experiments have demonstrated that the 1H- 14N HSQC technique is a sensitive method for detection of choline-containing compounds in solutions. From 1 mM choline solution in 16 min on a 500 MHz NMR spectrometer, a 1H- 14N HSQC spectrum has been recorded with a signal-to-noise ratio of 1700. Free choline, phosphocholine and glycerophosphocholine in milk can be well separated in 1H- 14N HSQC spectra. This technique would become a promising analytical approach to mixture analyses where choline-containing compounds are of interest, such as tissue extracts, body fluids and food solutions.
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
Greer, Colleen D; Hodson, Peter V; Li, Zhengkai; King, Thomas; Lee, Kenneth
2012-06-01
Tests of crude oil toxicity to fish are often chronic, exposing embryos from fertilization to hatch to oil solutions prepared using standard mixing procedures. However, during oil spills, fish are not often exposed for long periods and the dynamic nature of the ocean is not easily replicated in the lab. Our objective was to determine if brief exposures of Atlantic herring (Clupea harengus) embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil dispersed in a more realistic model system. Embryos were first exposed to chemically dispersed Alaska North Slope crude and Arabian light crude oil for 2.4 h to 14 d from fertilization to determine if exposure time affected toxicity. Toxicity increased with exposure time, but 2.4-h exposures at realistic concentrations of oil induced blue-sac disease and reduced the percentage of normal embryos at hatch; there was little difference in toxicity between the two oils. Secondly, oil was chemically dispersed in a wave tank to determine if the resultant oil solutions were as toxic to herring embryos as laboratory-derived dispersed oil using a single exposure period of 24 h. Samples taken 15 min postdispersion were more toxic than laboratory-prepared solutions, but samples taken at 5, 30, and 60 min postdispersion were less toxic. Overall, the laboratory- and wave tank-derived solutions of dispersed oil provided similar estimates of toxicity despite differences in the methods for preparing test solutions, suggesting that laboratory and wave tank data are a reliable basis for ecological risk assessments of spilled oil. Copyright © 2012 SETAC.
LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
2000-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1991-01-01
An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions.
Numerical solutions to the time-dependent Bloch equations revisited.
Murase, Kenya; Tanki, Nobuyoshi
2011-01-01
The purpose of this study was to demonstrate a simple and fast method for solving the time-dependent Bloch equations. First, the time-dependent Bloch equations were reduced to a homogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. The validity of this method was investigated by comparing with the analytical solutions in the case of constant radiofrequency irradiation. There was a good agreement between them, indicating the validity of this method. As a further example, this method was applied to the time-dependent Bloch equations in the two-pool exchange model for chemical exchange saturation transfer (CEST) or amide proton transfer (APT) magnetic resonance imaging (MRI), and the Z-spectra and asymmetry spectra were calculated from their solutions. They were also calculated using the fourth/fifth-order Runge-Kutta-Fehlberg (RKF) method for comparison. There was also a good agreement between them, and this method was much faster than the RKF method. In conclusion, this method will be useful for analyzing the complex CEST or APT contrast mechanism and/or investigating the optimal conditions for CEST or APT MRI. Copyright © 2011 Elsevier Inc. All rights reserved.
CO2 capture in amine solutions: modelling and simulations with non-empirical methods
NASA Astrophysics Data System (ADS)
Andreoni, Wanda; Pietrucci, Fabio
2016-12-01
Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.
Electrochemical stabilization of clayey ground
Rzhanitzin, B.A.; Sokoloff, V.P.
1947-01-01
Recently developed new methods of stabilization of weak grounds (e.g. the silicate treatment) are based on injection of chemical solutions into the ground. Such methods are applicable accordingly only to the kinds of ground that have the coefficient of filtration higher than 2 meters per 24 hours and permit penetration of the chemical solutions under pressure. This limit, however, as it is shown by our experience in construction, excludes a numerous and an important class of grounds, stabilization of which is indispensable in many instances. For example, digging of trenches and pits in clayey, silty, or sandy ground shows that all these types act like typical "floaters" (sluds? -S) in the presence of the ground water pressure. There were several instances in the canalization of the city of Moskow where the laying of trenches below the ground water level has led to extreme difficulties with clayey and silty ground. Similar examples could be cited in mining, engineering hydrology, and railroad construction. For these reasons, the development of methods of stabilizing such difficult types of ground has become an urgent problem of our day. In 1936, the author began his investigations, at the ground Stabilization Laboratory of VODGEO Institute, with direct electrical current as the means of stabilization of grounds. Experiments had shown that a large number of clayey types, following passage of direct electrical current, undergoes a transformation of its physico-chemical properties. It was established that the (apparent -S) density of the ground is substantially increased in consequence of the application of direct electrical current. The ground loses also its capacity to swell and to soften in water. Later, after a more detailed study of the physico-chemical mechanism of the electrical stabilization, it became possible to develop the method so as to make it applicable to sandy and silty as well as to clayey ground. By this time (1941, S.), the method has already been tested in the field, was found satisfactory, and is being introduced into construction practice.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
Hassan, Sergio A
2012-08-21
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
NASA Astrophysics Data System (ADS)
Hassan, Sergio A.
2012-08-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Hassan, Sergio A.
2012-01-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098
John Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang Lu; Richard M. Ede; Junpeng Peng; Larry L. Landucci
1999-01-01
Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...
ROOM TEMPERATURE BULK SYNTHESIS OF SILVER NANOCABLES WRAPPED WITH POLYPYRROLE
Wet chemical synthesis of silver cables wrapped with polypyrrole is reported in aqueous media without use of any surfactant/capping agent and/or template. The method employs direct polymerization of pyrrole of an aqueous solution with AgNO3 as an oxidizing agent. The four probe c...
A CHEMICAL METHOD OF TREATING FISSIONABLE MATERIAL
Olson, C.M.
1959-09-01
One step of a process for separating plutonium from uranium and fission products is presented. A nitric acid solution containing these constituents is treated with formic acid to reduce simultaneously the plutonium to a valence state of not greater than +4 and destroy and eliminate the excess nitric acid.
Regeneration of strong-base anion-exchange resins by sequential chemical displacement
Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.
2002-01-01
A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Rizwan-ul-Haq; Rudraswamy, N. G.; Gireesha, B. J.
The present study addresses the three-dimensional flow of a Prandtl fluid over a Riga plate in the presence of chemical reaction and convective condition. The converted set of boundary layer equations are solved numerically by RKF four-fifth method. Obtained numerical results for flow and mass transfer characteristics are discussed for various physical parameters. Additionally, the skin friction coefficient and Sherwood number are also presented. It is found that, the momentum boundary layer thickness is dominant for higher values of α and solutal boundary layer is low for higher Schmidt number and chemical reaction parameter.
Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications
NASA Astrophysics Data System (ADS)
Suchea, M.; Kornilios, N.; Koudoumas, E.
2010-10-01
This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.
Chemical named entities recognition: a review on approaches and applications
2014-01-01
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132
Chemical named entities recognition: a review on approaches and applications.
Eltyeb, Safaa; Salim, Naomie
2014-01-01
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.
General linear methods and friends: Toward efficient solutions of multiphysics problems
NASA Astrophysics Data System (ADS)
Sandu, Adrian
2017-07-01
Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..
A novel method for producing microspheres with semipermeable polymer membranes
NASA Technical Reports Server (NTRS)
Lin, K. C.; Wang, Taylor G.
1992-01-01
A new and systematic approach for producing polymer microspheres has been demonstrated. The membrane of the microsphere is formed by immersing the polyanionic droplet into a collapsing annular sheet, which is made of another polycation polymer solution. This method minimizes the impact force during the time when the chemical reaction takes place, hence eliminating the shortcomings of the current encapsulation techniques. The results of this study show the feasibility of this method for mass production of microcapsules.
Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.
Sundnes, J; Lines, G T; Tveito, A
2001-08-01
The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.
Surface contouring by controlled application of processing fluid using Marangoni effect
Rushford, Michael C.; Britten, Jerald A.
2003-04-29
An apparatus and method for modifying the surface of an object by contacting said surface with a liquid processing solution using the liquid applicator geometry and Marangoni effect (surface tension gradient-driven flow) to define and confine the dimensions of the wetted zone on said object surface. In particular, the method and apparatus involve contouring or figuring the surface of an object using an etchant solution as the wetting fluid and using realtime metrology (e.g. interferometry) to control the placement and dwell time of this wetted zone locally on the surface of said object, thereby removing material from the surface of the object in a controlled manner. One demonstrated manifestation is in the deterministic optical figuring of thin glasses by wet chemical etching using a buffered hydrofluoric acid solution and Marangoni effect.
Apparatus For Etching Or Depositing A Desired Profile Onto A Surface
Rushford, Michael C.; Britten, Jerald A.
2004-05-25
An apparatus and method for modifying the surface of an object by contacting said surface with a liquid processing solution using the liquid applicator geometry and Marangoni effect (surface tension gradient-driven flow) to define and confine the dimensions of the wetted zone on said object surface. In particular, the method and apparatus involve contouring or figuring the surface of an object using an etchant solution as the wetting fluid and using real-time metrology (e.g. interferometry) to control the placement and dwell time of this wetted zone locally on the surface of said object, thereby removing material from the surface of the object in a controlled manner. One demonstrated manifestation is in the deterministic optical figuring of thin glasses by wet chemical etching using a buffered hydrofluoric acid solution and Marangoni effect.
NASA Astrophysics Data System (ADS)
Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub
2018-05-01
Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.
Single-Molecule Electronics: Chemical and Analytical Perspectives.
Nichols, Richard J; Higgins, Simon J
2015-01-01
It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.
Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M
2011-02-28
The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, T.
This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (requiredmore » annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.« less
27 CFR 21.41 - Formula No. 13-A.
Code of Federal Regulations, 2011 CFR
2011-04-01
... medicinal chemicals (including alkaloids). 345.Processing blood and blood products. 349.Miscellaneous drug... photographic chemicals. 358.Processing other chemicals. 359.Processing miscellaneous products. 430.Sterilizing and preserving solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material...
27 CFR 21.59 - Formula No. 32.
Code of Federal Regulations, 2011 CFR
2011-04-01
... vaccines. 344.Processing medicinal chemicals (including alkaloids). 430.Sterilizing and preserving solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride.... 575.Drugs and medicinal chemicals. 579.Other chemicals. 580.Synthetic rubber. (3) Miscellaneous uses...
Kupczewska-Dobecka, Małgorzata; Jakubowski, Marek; Czerczak, Sławomir
2010-09-01
Our objectives included calculating the permeability coefficient and dermal penetration rates (flux value) for 112 chemicals with occupational exposure limits (OELs) according to the LFER (linear free-energy relationship) model developed using published methods. We also attempted to assign skin notations based on each chemical's molecular structure. There are many studies available where formulae for coefficients of permeability from saturated aqueous solutions (K(p)) have been related to physicochemical characteristics of chemicals. The LFER model is based on the solvation equation, which contains five main descriptors predicted from chemical structure: solute excess molar refractivity, dipolarity/polarisability, summation hydrogen bond acidity and basicity, and the McGowan characteristic volume. Descriptor values, available for about 5000 compounds in the Pharma Algorithms Database were used to calculate permeability coefficients. Dermal penetration rate was estimated as a ratio of permeability coefficient and concentration of chemical in saturated aqueous solution. Finally, estimated dermal penetration rates were used to assign the skin notation to chemicals. Defined critical fluxes defined from the literature were recommended as reference values for skin notation. The application of Abraham descriptors predicted from chemical structure and LFER analysis in calculation of permeability coefficients and flux values for chemicals with OELs was successful. Comparison of calculated K(p) values with data obtained earlier from other models showed that LFER predictions were comparable to those obtained by some previously published models, but the differences were much more significant for others. It seems reasonable to conclude that skin should not be characterised as a simple lipophilic barrier alone. Both lipophilic and polar pathways of permeation exist across the stratum corneum. It is feasible to predict skin notation on the basis of the LFER and other published models; from among 112 chemicals 94 (84%) should have the skin notation in the OEL list based on the LFER calculations. The skin notation had been estimated by other published models for almost 94% of the chemicals. Twenty-nine (25.8%) chemicals were identified to have significant absorption and 65 (58%) the potential for dermal toxicity. We found major differences between alternative published analytical models and their ability to determine whether particular chemicals were potentially dermotoxic. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.
2012-05-01
A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump–probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive tomore » changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.« less
Oller, Adriana R; Cappellini, Danielle; Henderson, Rayetta G; Bates, Hudson K
2009-04-01
Chemical speciation of workplace nickel exposures is critical because nickel-containing substances often differ in toxicological properties. Exposure matrices based on leaching methods have been used to ascertain which chemical forms of nickel are primarily associated with adverse respiratory effects after inhalation. Misjudgments in the relative proportion of each of the main fractions of nickel in workplace exposures could translate into possible misattributions of risk to the various forms of nickel. This preliminary study looked at the efficiency of the first step of the Zatka leaching method for accurately assessing the 'water-soluble' fraction of several substances present in nickel production operations, compared to leaching in synthetic lung fluid. The present results demonstrate that for nickel sulfate or chloride, the current Zatka solution is adequate to assess the 'water-soluble' fraction. However, when sparingly water-soluble compounds like nickel carbonates or water-insoluble substances like nickel subsulfide and fine metallic nickel powders are present, the first step of the Zatka method can greatly over estimate the amount of nickel that could be released in pure water. In contrast, the releases of nickel from nickel carbonate, nickel subsulfide, and nickel metal powders in pure water are consistent with their releases in synthetic lung fluid, indicating that deionized water is a better leaching solution to estimate the biologically relevant 'water-soluble' nickel fraction of workplace exposures. Exposure matrices relying mostly on the Zatka speciation method to estimate the main forms of nickel need to be re-evaluated to account for any possible misattributions of risk.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
NASA Astrophysics Data System (ADS)
Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.
2009-05-01
Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.
Chemical enhancement of surface deposition
Patch, Keith D.; Morgan, Dean T.
1997-07-29
A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.
Devadhasan, Jasmine Pramila; Kim, Sanghyo
2015-02-09
CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Breton, Marie; Mir, Lluis M
2018-02-01
The chemical consequences of electropulsation on giant unilamellar vesicles (GUVs), in particular the possible oxidation of unsaturated phospholipids, have been investigated by mass spectrometry, flow cytometry and absorbance methods. Pulse application induced oxidation of the GUV phospholipids and the oxidation level depended on the duration of the pulse. Light and O 2 increased the level of pulse-induced lipid peroxidation whereas the presence of antioxidants either in the membrane or in the solution completely suppressed peroxidation. Importantly, pulse application did not create additional reactive oxygen species (ROS) in GUV-free solution. Lipid peroxidation seems to result from a facilitation of the lipid peroxidation by the ROS already present in the solution before pulsing, not from a direct pulse-induced peroxidation. The pulse would facilitate the entrance of ROS in the core of the membrane, allowing the contact between ROS and lipid chains and provoking the oxidation. Our findings demonstrate that the application of electric pulses on cells could induce the oxidation of the membrane phospholipids since cell membranes contain unsaturated lipids. The chemical consequences of electropulsation will therefore have to be taken into account in future biomedical applications of electropulsation since oxidized phospholipids play a key role in many signaling pathways and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain,A.; Babalola, S.; Bolotnikov, A.E.
2008-08-11
Generally, mechanical polishing is performed to diminish the cutting damage followed by chemical etching to remove the remaining damage on crystal surfaces. In this paper, we detail the findings from our study of the effects of various chemical treatments on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe (CMT) crystals by mechanical polishing with 5 {micro}m and/or lower grits of Al{sub 2}O{sub 3} abrasive papers including final polishing with 0.05-{micro}m particle size alumina powder and then etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and also with an E-solution (HNO{sub 3}:H{sub 2}O:Cr{submore » 2}O{sub 7}). The material removal rate (etching rate) from the crystals was found to be 10 {micro}m, 30 {micro}m, and 15 {micro}m per minute, respectively. The roughness of the resulting surfaces was determined by the Atomic Force Microscopy (AFM) to identify the most efficient surface processing method by combining mechanical and chemical polishing.« less
Xu, Yan; Wu, Qian; Shimatani, Yuji; Yamaguchi, Koji
2015-10-07
Due to the lack of regeneration methods, the reusability of nanofluidic chips is a significant technical challenge impeding the efficient and economic promotion of both fundamental research and practical applications on nanofluidics. Herein, a simple method for the total regeneration of glass nanofluidic chips was described. The method consists of sequential thermal treatment with six well-designed steps, which correspond to four sequential thermal and thermochemical decomposition processes, namely, dehydration, high-temperature redox chemical reaction, high-temperature gasification, and cooling. The method enabled the total regeneration of typical 'dead' glass nanofluidic chips by eliminating physically clogged nanoparticles in the nanochannels, removing chemically reacted organic matter on the glass surface and regenerating permanent functional surfaces of dissimilar materials localized in the nanochannels. The method provides a technical solution to significantly improve the reusability of glass nanofluidic chips and will be useful for the promotion and acceleration of research and applications on nanofluidics.
Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution
NASA Astrophysics Data System (ADS)
Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.
2018-05-01
The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.
A multi-method analysis of the interaction between humic acids and heavy metal ions.
Ke, Tao; Li, Lu; Rajavel, Krishnamoorthy; Wang, Zhenyu; Lin, Daohui
2018-03-08
Understanding of the interaction between humic acids (HAs) and heavy metal ions (HMIs) is essential for the assessment of environmental and health risks of HMIs. Multiple analyses, including fluorescence quenching of HAs; solution pH, zeta potential, and hydrodynamic size changes; and coprecipitation of HAs and HMIs, were carried out to investigate the interaction between two HAs and four HMIs (Ag + , Pb 2+ , Cd 2+ , and Cr 3+ ). The HA-HMI interaction mainly included chemical complexation, H + -HMI exchange, electrostatic attraction, and flocculation. The chemical complexation between HAs and HMIs revealed by the Stern-Volmer quenching constant was ordered as Ag < Cd < Pb < Cr. HMIs replaced protons in the acidic functional groups of HAs and thus lowered the pH of the solution. The electrostatic interaction between the negatively charged HAs and HMIs reduced the electronegativity of HAs. Interaction with HMIs, especially the high-valent ions, induced aggregation of HAs, causing precipitation of both HAs and HMIs in the sorptive solution. Cr 3+ flocculated and precipitated HAs, but at high concentrations, it reversed the surface charge of HAs and resuspended them. The HA-HMI interaction increased as the HA acidity and solution pH increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Sivasubramani, V.; Ramasamy, P.
2015-06-24
A transparent uniaxial L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP) single crystal having dimension of 20 mm diameter and 45 mm length was grown by Sankaranarayanan-Ramasamy (SR) method with a growth rate of 1 mm per day. Using an identical solution the conventional crystal grown to a dimension of 8×5×5 mm{sup 3} was obtained over a period of 30 days. The crystal structure has been confirmed by single crystal X-ray diffraction measurement. The crystalline perfection of LAPP crystals grown by slow evaporation solution technique (SEST) and SR method were characterized using Vickers microhardness, UV-Vis NIR, chemical etching, dark and photo current measurements. The above study indicatesmore » that the crystal quality of the Sankaranarayanan-Ramasamy (SR) method grown LAPP is good compared to the conventional method grown crystal.« less
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Patel, S.; Joshi, U. S.
2016-09-01
Cu2SnS3 (CTS) is one of promising candidate as an absorber material for thin film solar cell. Because of relatively higher prize of Indium and hazardous environmental impact of processing of Gallium, CTS is suitable alternative candidate to Cu2SnS3 (CIGS) based solar cell as its constituent elements such as copper, tin and sulphur are abundantly available in earth's crust. CTS is ternary semiconductor and its energy band gap is 1.5eV, which is perfectly matched with solar energy spectrum for maximum transfer of solar energy into electrical energy through photovoltaic action. The primary methods for the synthesis of CTS are Thermal evaporation, electrochemical, sputtering and wet chemical methods. Here in this paper we have optimized a low cost non-vacuum solution process method for the synthesis of CTS without any external sulfurization. The X-ray diffraction studies showed the formation of phase with the peaks corresponding to (112), (220) and (312) planes. Chemical Solution Deposition (CSD) for the synthesis of CTS is suitable for large area deposition and it includes several routes like solvothermal methods, direct liquid coating and nano ink based technique. The metal Chloride salts and thiourea is used as a source of sulphur to synthesize CTS solution and homogeneous thin films of CTS deposited on glass substrate using spin coating method. Use of abrasive solvent like hydrazine and hydrogen sulphide gas which are used to synthesize CTS thin film have detrimental effect on environment, we report eco friendly solvent based approach to synthesize CTS at low temperature 200 °C.
Tao, Yuqiang; Zhang, Shuzhen; Wang, Zijian; Christie, Peter
2008-11-26
Triolein-embedded cellulose acetate membrane (TECAM) was buried in 15 field-contaminated soils in parallel with the cultivation of wheat to predict bioavailability of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene to wheat roots, and the method was compared with chemical extraction methods. Although a good linear relationship was found between PAH concentrations in chemical extractants and wheat roots, the percentage of PAH in soil removed by chemical extraction was much higher than the corresponding percentage removed by wheat roots. In contrast to chemical extraction, a nearly 1:1 relationship was found between the amount of each PAH taken up by TECAMs and wheat roots (r(2) = 0.798-0.925, P < 0.01). Furthermore, the uptake of PAHs by TECAMs and wheat roots had the same pathway of passive transport via the soil solution. Moreover, TECAM caused minimal disturbance to the soil and was easy to deploy. Therefore, TECAM is believed to be a useful tool to predict bioavailability of PAHs to wheat roots grown in contaminated soils.
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90
Huntley, Mark W.
1996-01-01
A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a bidente ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.
Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90
Huntley, M.W.
1996-02-27
A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.
NASA Astrophysics Data System (ADS)
Igoshin, Valerii I.; Karyshev, V. D.; Katulin, V. A.; Kirilin, A. V.; Kisletsov, A. V.; Konnov, S. A.; Kupriyanov, N. L.; Medvedev, A. M.; Nadezhina, T. N.
1989-02-01
Experimental investigations were made of the physicochemical characteristics of the active solutions for a chemical generator in an oxygen-iodine laser. A strong temperature dependence of the viscosity of the solution was observed. The influence of this factor on the operation of the singlet-oxygen generator and the laser is discussed. The cyclic operation of a laser with efficient neutralization of the reagents and the addition of an alkali is simulated. It is shown that hydrogen peroxide may be 50% utilized when the temperature of the solution is no higher than - 30 °C. A method of preparing a solution for an iodine laser with a low freezing point (between - 30 °C and - 40 °C) is developed. It is shown that an aqueous solution of hydrogen peroxide with a concentration of 25-40% is suitable.
Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Lee, H. W.; Kang, S. K.; Wk. Lee, H.; Kim, G. C.; Lee, J. K.
2012-07-01
Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that causes chest pain and damages lung tissue when the density is very high. H2O2, HO2, and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
NASA Astrophysics Data System (ADS)
Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.
2010-09-01
The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.
NASA Astrophysics Data System (ADS)
Uehara, H.; Arakaki, T.
2017-12-01
Hypochlorous acid and hypobromous acid (abbreviated as "HypoX acids") are the main ingredients of bleaching and bactericides. The HypoX acids change their chemical forms depending on environmental factors such as pH and various chemical reactions. For example, it has been reported that hypobromite ion in water changes to carcinogenic bromate by photochemical reaction with ultraviolet light. In this study, concentrations of HypoX acids were determined by UV-VIS absorbance measurement utilizing the fact that HypoX acids react with hydrogen peroxide and do not co-exist in the solution. The method for determining the concentration by titration with hydrogen peroxide can be carried out simpler and more efficiently than the DPD method or the current titration method generally used for chlorine concentration measurement. Molar absorptivity between 250 - 500 nm of HypoX acids, including their conjugate base species, was determined by solving theoretical acid-base formula including molar fraction of each chemical species at various pHs. Molar absorptivity of OCl- and OBr- between 250 - 500 nm was determined based on the concentrations obtained from titration with hydrogen peroxide and absorbance at pH > 10, where OCl- and OBr- dominate. Furthermore, the HypoX acids solutions were irradiated with a solar simulator, and the photolysis rate constants were obtained. Based on those values, the half-lives were calculated and the behavior of HypoX acids in the environment was elucidated.
Method and etchant to join Ag-clad BSSCO superconducting tape
Balachandran, U.; Iyer, A.N.; Huang, J.Y.
1999-03-16
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.
40 CFR 59.405 - Container labeling requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this section that applies to the coating.) (i) Immersion in water, wastewater, or chemical solutions (aqueous and nonaqueous solutions), or chronic exposure of interior surfaces to moisture condensation; (ii... chemical mixtures or solutions; (iii) Repeated exposure to temperatures above 120 °C (250 °F); (iv...
LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1994-01-01
LSENS has been developed for solving complex, homogeneous, gas-phase, chemical kinetics problems. The motivation for the development of this program is the continuing interest in developing detailed chemical reaction mechanisms for complex reactions such as the combustion of fuels and pollutant formation and destruction. A reaction mechanism is the set of all elementary chemical reactions that are required to describe the process of interest. Mathematical descriptions of chemical kinetics problems constitute sets of coupled, nonlinear, first-order ordinary differential equations (ODEs). The number of ODEs can be very large because of the numerous chemical species involved in the reaction mechanism. Further complicating the situation are the many simultaneous reactions needed to describe the chemical kinetics of practical fuels. For example, the mechanism describing the oxidation of the simplest hydrocarbon fuel, methane, involves over 25 species participating in nearly 100 elementary reaction steps. Validating a chemical reaction mechanism requires repetitive solutions of the governing ODEs for a variety of reaction conditions. Analytical solutions to the systems of ODEs describing chemistry are not possible, except for the simplest cases, which are of little or no practical value. Consequently, there is a need for fast and reliable numerical solution techniques for chemical kinetics problems. In addition to solving the ODEs describing chemical kinetics, it is often necessary to know what effects variations in either initial condition values or chemical reaction mechanism parameters have on the solution. Such a need arises in the development of reaction mechanisms from experimental data. The rate coefficients are often not known with great precision and in general, the experimental data are not sufficiently detailed to accurately estimate the rate coefficient parameters. The development of a reaction mechanism is facilitated by a systematic sensitivity analysis which provides the relationships between the predictions of a kinetics model and the input parameters of the problem. LSENS provides for efficient and accurate chemical kinetics computations and includes sensitivity analysis for a variety of problems, including nonisothermal conditions. LSENS replaces the previous NASA general chemical kinetics codes GCKP and GCKP84. LSENS is designed for flexibility, convenience and computational efficiency. A variety of chemical reaction models can be considered. The models include static system, steady one-dimensional inviscid flow, reaction behind an incident shock wave including boundary layer correction, and the perfectly stirred (highly backmixed) reactor. In addition, computations of equilibrium properties can be performed for the following assigned states, enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static problems LSENS computes sensitivity coefficients with respect to the initial values of the dependent variables and/or the three rates coefficient parameters of each chemical reaction. To integrate the ODEs describing chemical kinetics problems, LSENS uses the packaged code LSODE, the Livermore Solver for Ordinary Differential Equations, because it has been shown to be the most efficient and accurate code for solving such problems. The sensitivity analysis computations use the decoupled direct method, as implemented by Dunker and modified by Radhakrishnan. This method has shown greater efficiency and stability with equal or better accuracy than other methods of sensitivity analysis. LSENS is written in FORTRAN 77 with the exception of the NAMELIST extensions used for input. While this makes the code fairly machine independent, execution times on IBM PC compatibles would be unacceptable to most users. LSENS has been successfully implemented on a Sun4 running SunOS and a DEC VAX running VMS. With minor modifications, it should also be easily implemented on other platforms with FORTRAN compilers which support NAMELIST input. LSENS required 4Mb of RAM under SunOS 4.1.1 and 3.4Mb of RAM under VMS 5.5.1. The standard distribution medium for LSENS is a .25 inch streaming magnetic tape cartridge (QIC-24) in UNIX tar format. It is also available on a 1600 BPI 9-track magnetic tape or a TK50 tape cartridge in DEC VAX BACKUP format. Alternate distribution media and formats are available upon request. LSENS was developed in 1992.
Sheldon, E M; Downar, J B
2000-08-15
Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.
Growth of tungsten oxide nanostructures by chemical solution deposition
NASA Astrophysics Data System (ADS)
Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.
2018-05-01
Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.
Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J
2013-10-15
Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
...The U.S. Environmental Protection Agency (EPA or the Agency) is taking final action to revise the manner for applying the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution. This revision allows facilities subject to the Emergency Planning requirements that have a non-reactive solid EHS in solution, to first multiply the amount of the solid chemical in solution on-site by 0.2 before determining if this quantity equals or exceeds the lower published TPQ. This change is based on data that shows less potential for non-reactive solid chemicals in solution to remain airborne and dispersed beyond a facility's fence line in the event of an accidental release. Previously, EPA assumed that 100% of non-reactive solid chemicals in solution could become airborne and dispersed beyond the fenceline in the event of an accidental release.
Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders
2005-07-08
Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.
Huang, Zhiyuan; Xie, Fengchun; Ma, Yang
2011-01-15
A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
Nanoscale Stress-Corrosion of Geomaterials in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Criscenti, L. J.; Rimsza, J. M.; Matteo, E. N.; Jones, R. E.
2017-12-01
Predicting subcritical crack propagation in low-permeability geo-materials is an unsolved problem crucial to assessing shale caprocks at CO2 sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-material interfaces play a major role in subcritical crack growth by weakening the material and altering crack nucleation and growth rates. However, understanding subsurface fracture has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We are using both molecular simulation and experiment to develop an atomistic-level understanding of the chemical-mechanical coupling that controls subcritical crack propagation. We are investigating fracture of isotropic silica glass in different environments (air, distilled water, and Na+-rich solutions) and will extend our research to include clay minerals in shales. Molecular simulations are performed with ReaxFF, a reactive force field that allows for explicit modeling of bond breaking and formation processes during crack propagation. A coarse-graining method produces calculated fracture toughness values from the atomistic data. We are performing double cleavage drilled compression (DCDC) experiments in aqueous environmental chambers and monitoring crack propagation with either a confocal or atomic force microscope. Our results show that silica fracture toughness decreases as the environment changes from air to distilled water to Na+-rich solutions. These results suggest that our newly developed computational and experimental techniques can be used to investigate the impact of fluid composition on crack growth in geo-materials and that we will be able to use these methods to understand coupled chemo-mechanical processes and predict crack propagation in shale minerals. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Li, Jian-Ping; Liu, Yang; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Zhu, Kevin Y; Tang, Yu-Ping; Zhao, Bu-Chang; Tang, Zhi-Shu; Duan, Jin-Ao
2017-01-01
Stability of traditional Chinese medicine injection (TCMI) is an important issue related with its clinical application. TCMI is composed of multi-components, therefore, when evaluating TCMI stability, several marker compounds cannot represent global components or biological activities of TCMI. Till now, when evaluating TCMI stability, method involving the global components or biological activities has not been reported. In this paper, we established a comprehensive strategy composed of three different methods to evaluate the chemical and biological stability of a typical TCMI, Danhong injection (DHI). UHPLC-TQ/MS was used to analyze the stability of marker compounds (SaA, SaB, RA, DSS, PA, CA, and SG) in DHI, UHPLC-QTOF/MS was used to analyze the stability of global components (MW 80-1000 Da) in DHI, and cell based antioxidant capability assay was used to evaluate the bioactivity of DHI. We applied this strategy to assess the compatible stability of DHI and six infusion solutions (GS, NS, GNS, FI, XI, and DGI), which were commonly used in combination with DHI in clinic. GS was the best infusion solution for DHI, and DGI was the worst one based on marker compounds analysis. Based on global components analysis, XI and DGI were the worst infusion solutions for DHI. And based on bioactivity assay, GS was the best infusion solution for DHI, and XI was the worst one. In conclusion, as evaluated by the established comprehensive strategy, GS was the best infusion solution, however, XI and DGI were the worst infusion solutions for DHI. In the compatibility of DHI and XI or DGI, salvianolic acids in DHI would be degraded, resulting in the reduction of original composition and generation of new components, and leading to the changes of biological activities. This is the essence of instability compatibility of DHI and some infusion solutions. Our study provided references for choosing the reasonable infusion solutions for DHI, which could contribute the improvement of safety and efficacy of DHI. Moreover, the established strategy may be applied for the compatible stability evaluation of other TCMIs.
Analysis of composite ablators using massively parallel computation
NASA Technical Reports Server (NTRS)
Shia, David
1995-01-01
In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.
Synthesis of BiFeO3 thin films by chemical solution deposition - Structural and magnetic studies
NASA Astrophysics Data System (ADS)
Angappane, S.; Kambhala, Nagaiah
2012-06-01
BiFeO3 thin films were deposited on Si (100) substrates by chemical solution deposition. A precursor solution of bismuth acetate and iron acetylacetonate dissolved in distilled water and acetic acid was spin coated on to silicon substrates at ambient conditions, followed by drying and annealing at 650 °C. The films were characterized by XRD and FESEM to study structural properties and morphology. The magnetic properties studied by SQUID magnetometer shows the ferromagnetic nature of the chemical solution deposited BiFeO3 films which are crucial for low cost device applications.
NASA Astrophysics Data System (ADS)
Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda
2018-03-01
The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.
NASA Astrophysics Data System (ADS)
Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda
2018-07-01
The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.
Strategies for characterizing compositions of industrial pulp and paper sludge
NASA Astrophysics Data System (ADS)
Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.
2018-01-01
The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.
Zielinski, Michal W; McGann, Locksley E; Nychka, John A; Elliott, Janet A W
2017-11-22
The prediction of nonideal chemical potentials in aqueous solutions is important in fields such as cryobiology, where models of water and solute transport-that is, osmotic transport-are used to help develop cryopreservation protocols and where solutions contain many varied solutes and are generally highly concentrated and thus thermodynamically nonideal. In this work, we further the development of a nonideal multisolute solution theory that has found application across a broad range of aqueous systems. This theory is based on the osmotic virial equation and does not depend on multisolute data. Specifically, we derive herein a novel solute chemical potential equation that is thermodynamically consistent with the existing model, and we establish the validity of a grouped solute model for the intracellular space. With this updated solution theory, it is now possible to model cellular osmotic behavior in nonideal solutions containing multiple permeating solutes, such as those commonly encountered by cells during cryopreservation. In addition, because we show here that for the osmotic virial equation the grouped solute approach is mathematically equivalent to treating each solute separately, multisolute solutions in other applications with fixed solute mass ratios can now be treated rigorously with such a model, even when all of the solutes cannot be enumerated.
High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves
NASA Technical Reports Server (NTRS)
Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.
2012-01-01
In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.
A numerical solution of the problem of crown forest fire initiation and spread
NASA Astrophysics Data System (ADS)
Marzaeva, S. I.; Galtseva, O. V.
2018-05-01
Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.
Positive and negative ZnO micropatterning on functionalized polymer surfaces.
Yang, Peng; Zou, Shengli; Yang, Wantai
2008-09-01
Patterned ZnO deposition on substrates has received increasing attention because of its great potential in photocatalysis, energy conversion, and electro-optical techniques. Chemical solution growth is especially promising for organic substrates due to its very mild reaction conditions. Here this method is used on functionality-patterned polymer surfaces in order to fabricate positive and negative ZnO micropatterns. A ZnO film made of arrayed rods, typically 500-750 nm in diameter and 2.5 microm in length, is selectively obtained on sulfated and hydroxylated regions of biaxially oriented poly(propylene), giving rise to positive patterns. For reactive polyesters such as poly(ethylene terephthalate), the ZnO rods selectively remain on the unmodified original regions, creating negative patterns. Unlike complex photolithography procedures, the irradiation and patterning processes do not require the use of positive or negative photoresists, and possible damage from acidic solutions on the underlying substrate during the chemical etching process is avoided. The process thus proves to be a simple, creditable, and low-cost method, which could be easily applied on a variety of inert and reactive polymer surfaces.
Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries
Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; ...
2016-02-16
In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.
New singlet oxygen generator for chemical oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Yoshida, S.; Saito, H.; Fujioka, T.; Yamakoshi, H.; Uchiyama, T.
1986-11-01
Experiments have been carried out to investigate a new method for generating O2(1Delta) with long-time operation of an efficient chemical oxygen-iodine laser system in mind. An impinging-jet nozzle was utilized to atomize a H2O2-KOH solution so that the alkaline H2O2/Cl2 reaction might occur in droplet-gas phase with high excitation efficiency. Experimental results indicate that the present generator can yield as high as 80 percent of O2(1Delta) with reasonable O2 flow rate.
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
A finite state projection algorithm for the stationary solution of the chemical master equation
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
Construction of exchange repulsion in terms of the wave functions at QM/MM boundary region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Umino, Satoru; Morita, Akihiro
2015-08-28
We developed a simple method to calculate exchange repulsion between a quantum mechanical (QM) solute and a molecular mechanical (MM) molecule in the QM/MM approach. In our method, the size parameter in the Buckingham type potential for the QM solute is directly determined in terms of the one-electron wave functions of the solute. The point of the method lies in the introduction of the exchange core function (ECF) defined as a Slater function which mimics the behavior of the exterior electron density at the QM/MM boundary region. In the present paper, the ECF was constructed in terms of the Becke-Rousselmore » (BR) exchange hole function. It was demonstrated that the ECF yielded by the BR procedure can faithfully reproduce the radial behavior of the electron density of a QM solute. The size parameter of the solute as well as the exchange repulsion are, then, obtained using the overlap model without any fitting procedure. To examine the efficiency of the method, it was applied to calculation of the exchange repulsions for minimal QM/MM systems, hydrogen-bonded water dimer, and H{sub 3}O{sup +}–H{sub 2}O. We found that our approach is able to reproduce the potential energy curves for these systems showing reasonable agreements with those given by accurate full quantum chemical calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.
Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less
Predictive Quantum Chemistry: A Step Toward ``Chemistry Without Test Tubes''
NASA Astrophysics Data System (ADS)
Perera, Ajith
2007-12-01
The merits of the claims made in two recent papers entitled "First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N-dearylation of 1-(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and application of the methodology to 1-(p-methoxyphenyl) pentazole" (R. N. Butler, J. C. Stephan and L. A. Burke, J. Chem. Commun. 2003, 1016-1017) and "First generation of the pentazolate anion is solution is far from over" (T. Schroer, R. Haiges, S. Schneider and K. O. Christe, Chem. Commun. 2005, 1607-1609) are verified by predictive quality theoretical methods. Knowing whether the CF3OH in HF solution undergoes protonation to form CF3[OH2]+ is critical to the success of the recently proposed synthetic route to form the prototype perfluorinated alcohol, CF3OH. Chirstie and co-workers first considered the 13C and 19F shielding constants to distinguish CF3OH and CF3[OH2]+, but it turns out that they both have similar chemical shifts. Furthermore, they noted that the computed 13C chemical shifts differ by 11 ppm from the measured ones and claimed that "These findings presented a dilemma because either experimental or the calculated shifts has to be seriously flawed and, therefore chemical shifts alone it was impossible to decide whether CF3OH in liquid HF is protonated or not". Instead of chemical shifts, they propose to use 13C-19F NMR spin-spin coupling constants and argue that the observed 20 Hz difference of 1J(13C-19F) to the increase in the covalent character upon protonation. The reported discrepancy in computed and measured chemical shifts is reexamined and the spin-spin coupling constants results are verified by the predicative-level calculations.
Detection Of Concrete Deterioration By Staining
Guthrie, Jr., George D.; Carey, J. William
1999-09-21
A method using concentrated aqueous solutions of sodium cobaltinitrite and a rhodamine dye is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR), and to identify degraded concrete which results in a porous or semi-permeable paste due to carbonation or leaching. These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.
Chemico-therapeutic approach to prevention of dental caries. [using stannous fluoride gel
NASA Technical Reports Server (NTRS)
Shannon, I. L.
1975-01-01
The program of chemical preventive dentistry is based primarily upon the development of a procedure for stabilizing stannous fluoride in solution by forcing it into glycerin. New topical fluoride treatment concentrates, fluoride containing gels and prophylaxis pastes, as well as a completely stable stannous fluoride dentifrice are made possible by the development of a rather complicated heat application method to force stannous fluoride into solution in glycerin. That the stannous fluoride is clinically effective in such a preparation is demonstrated briefly on orthodontic patients.
Electrochemical remediation produces a new high-nitrogen compound from NTO wastewaters.
Cronin, Michael P; Day, Anthony I; Wallace, Lynne
2007-10-22
A new high-nitrogen molecule, identified as azoxytriazolone (AZTO), has been generated in high yield by electroreduction of acidic aqueous solutions of nitrotriazolone (NTO). The near-quantitative conversion appears to be driven by the low solubility of the product. AZTO precipitates readily, leaving the solution virtually free of organic material, and the process may therefore present an efficient and productive remediation method for wastewater from NTO manufacture. The chemical formula and molecular structure of AZTO indicate that it may be effective as an insensitive explosive.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.
Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire
2011-09-01
The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.
Synthesis procedure optimization and characterization of europium (III) tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Reza Banan, Ali; Ahmadi, Farhad
2014-09-01
Taguchi robust design as a statistical method was applied for the optimization of process parameters in order to tunable, facile and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in an aqueous medium. Effects of some synthesis procedure variables on the particle size of europium (III) tungstate nanoparticles were studied. Analysis of variance showed the importance of controlling tungstate concentration, cation feeding flow rate and temperature during preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method. The morphology and chemical composition of the prepared nano-material were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and fluorescence.
Chemical enhancement of surface deposition
Patch, K.D.; Morgan, D.T.
1997-07-29
A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
Reduction of operations and maintenance costs at geothermal power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruton, C.J.; Stevens, C.G.; Rard, J.A.
1997-12-31
To reduce chemical costs at geothermal power plants, we are investigating: (a) improved chemical processes associated with H{sub 2}S abatement techniques, and (b) the use of cross dispersive infrared spectrometry to monitor accurately, reliably, and continuously H{sub 2}S emissions from cooling towers. The latter is a new type of infrared optical technology developed by LLNL for non-proliferation verification. Initial work is focused at The Geysers in cooperation with Pacific Gas and Electric. Methods for deploying the spectrometer on-site at The Geysers are being developed. Chemical analysis of solutions involved in H{sub 2}S abatement technologies is continuing to isolate the chemicalmore » forms of sulfur produced.« less
Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Guazzo, Dana Morton
2013-01-01
This Part 3 of this three-part research series reports the impact of high-voltage leak detection (HVLD) exposure on the physico-chemical stability of the packaged product. The product, intended for human administration by injection, is an aqueous solution formulation of the rapid acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. The package is a small-volume form-fill-seal plastic laminate bag. Product-packages exposed to HVLD were compared to unexposed product after storage for 9 months at recommended storage conditions of 5 ± 3 °C. No differences in active ingredient or degradation products assays were noted. No changes in any other stability indicating parameter results were observed. This report concludes this three-part series. Part 1 documented HVLD method development and validation work. Part 2 explored the impact of various package material, package temperature, and package storage conditions on HVLD test results. Detection of leaks in the bag seal area was investigated. In conclusion, HVLD is reported to be a validatable leak test method suitable for rapid, nondestructive container-closure integrity evaluation of the subject product-package. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was proven to find hole leaks in small plastic bags filled with a solution of insulin aspart intended for human injection (NovoRapid®/NovoLog® by Novo Nordisk A/S, Bagsværd, Denmark). In Part 2, the ability of the HVLD method to find other types of package leaks was tested, and the impact of package material and product storage temperature on HVLD results was explored. This final Part 3 checked how well the packaged protein drug solution maintained its potency after HVLD exposure over 9 months of storage under long-term stability conditions. Results showed that HVLD caused no harm to the product.
Optical Properties of Synthesized Nanoparticles ZnS Using Methacrylic Acid as the Capping Agent
NASA Astrophysics Data System (ADS)
Nazerdeylami, Somayeh; Saievar Iranizad, Esmaiel; Molaei, Mehdi
Optical analysis (UV-vis spectroscopy) of solution of ZnS nanoparticles prepared at room temperature by a chemical capping method using methacrylic acid (MAA) capping agent at concentration of 0.05, 0.2, 0.5 and 1.17 molar is investigated. The spectroscopy results indicate increasing of band gap of ZnS through increasing concentration of the methacrylic acid as capping agent in the solution. According to the relation of Effective Mass Approximation, it is concluded that the size of nanoparticles decreased with the increasing concentration of the capping agent in the tested solutions. The size of the particles is found to be in 1.77-2.05 nm range.
NASA Astrophysics Data System (ADS)
Christov, Christomir
2007-07-01
The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).
Relationship between Solvation Thermodynamics from IST and DFT Perspectives.
Levy, Ronald M; Cui, Di; Zhang, Bin W; Matubayasi, Nobuyuki
2017-04-20
Inhomogeneous solvation theory (IST) and classical density functional theory (DFT) each provide a framework for relating distribution functions of solutions to their thermodynamic properties. As reviewed in this work, both IST and DFT can be formulated in a way that use two "end point" simulations, one of the pure solvent and the other of the solution, to determine the solute chemical potential and other thermodynamic properties of the solution and of subvolumes in regions local to the solute containing hydrating waters. In contrast to IST, where expressions for the excess energy and entropy of solution are the object of analysis, in the DFT end point formulation of the problem, the solute-solvent potential of mean force (PMF) plays a central role. The indirect part of the PMF corresponds to the lowest order (1-body) truncation of the IST expression. Because the PMF is a free energy function, powerful numerical methods can be used to estimate it. We show that the DFT expressions for the solute excess chemical potential can be written in a form which is local, involving integrals only over regions proximate to the solute. The DFT end point route to estimating solvation free energies provides an alternative path to that of IST for analyzing solvation effects on molecular recognition and conformational changes in solution, which can lead to new insights. In order to illustrate the kind of information that is contained in the solute-solvent PMF, we have carried out simulations of β-cyclodextrin in water. This solute is a well studied "host" molecule to which "guest" molecules bind; host-guest systems serve as models for molecular recognition. We illustrate the range of values the direct and indirect parts of the solute-solvent PMF can have as a water molecule is brought to the interface of β-cyclodextrin from the bulk; we discuss the "competition" between these two terms, and the role it plays in molecular recognition.
Mowrey-McKee, Mary; Borazjani, Roya; Collins, Gary; Cook, James; Norton, Susan
2012-01-01
The purpose of this article is to describe new methodology, antimicrobial efficacy endpoint methodology to determine compatibility of contact lens solutions, lens cases and hydrogel lenses for disinfection (AEEMC), to evaluate the effect of a contact lens and a lens case on disinfection efficacy, and to present the ring test used to justify the use of the method in multiple laboratories. A prototype solution containing chlorhexidine as the disinfecting agent and four representative lens types (group I and IV hydrogels and two silicone hydrogels) were used in these ring tests. Five laboratories participated in the chemical and microbiologic analyses. The residual chlorhexidine in lens cases containing the contact lenses was determined using high-performance liquid chromatography; uptake by the lenses was then determined by extrapolation. For the microbiologic part of the study, a contact lens was placed in the well of the lens case, inoculated at 10 to 10 cfu (colony forming units) per lens with microorganisms in 10% organic soil. The microorganisms, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Candida albicans, and Fusarium solani, were prepared as in International Organization for Standardization (ISO) 14729. After a 3- to 10-min exposure time, the prototype solution was dispensed into each well. Aliquots of the inoculated solutions were removed at 4 and 24 hrs and 7 and 30 days and cultured in neutralizing media for determination of survivors; lenses were also cultured for survivors. Chemical uptake data confirmed the differences observed in kill of the challenge organisms according to lens type. It was observed that the culturing of the solution provided adequate data to show the effect of a lens on disinfection efficacy of a lens care product. The findings of the ring test indicated that the separate culturing of the contact lenses is not necessary for routine assessment. The methodology in the November 12, 2008, draft standard (AEEMC), meets the stated objective of demonstrating the effect of a contact lens on the disinfection efficacy of a simulated lens care product. This method, used in combination with the methodology in ISO 14729, should provide for a more robust evaluation of applicable contact lens care disinfecting products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk
A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stablemore » without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.« less
Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan
2002-01-01
The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.
Recent progress in tissue optical clearing
Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V
2013-01-01
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874
Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes
NASA Astrophysics Data System (ADS)
Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.
2017-08-01
The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.
NASA Astrophysics Data System (ADS)
Gunn, Natasha L. O.; Ward, David B.; Menelaou, Constantinos; Herbert, Matthew A.; Davies, Trevor J.
2017-04-01
Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs), where the direct reduction of oxygen is replaced by an in-direct mechanism occurring outside of the cell, are attractive to study as they offer a solution to the cost and durability problems faced by conventional PEFCs. This study reports the first detailed characterization of a high performance complete CRRC PEFC system, where catholyte is circulated between the cathode side of the cell and an air-liquid oxidation reactor called the "regenerator". The catholyte is an aqueous solution of phosphomolybdovanadate polyoxoanion and is assessed in terms of its performance within both a small single cell and corresponding regenerator over a range of redox states. Two methods for determining regeneration rate are proposed and explored. Expressing the regeneration rate as a "chemical" current is suggested as a useful means of measuring re-oxidation rate with respect to the cell. The analysis highlights the present limitations to the technology and provides an indication of the maximum power density achievable, which is highly competitive with conventional PEFC systems.
Graphene sheets modified with polyindole for electro-chemical detection of dopamine.
Kumar, Ashish; Prakash, Rajiv
2014-03-01
Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).
NASA Astrophysics Data System (ADS)
Raghavan, Siju Cherikkattil; Shivaprakash, N. Channegowda; Sindhu, Sukumaran Nair
2017-11-01
A new derivative of di-4-isopropyl benzyl substituted propylenedioxythiophene (ProDOT-IPBz2) monomer was synthesized and its resultant polymer was prepared by chemical and electrochemical methods. The chemical polymerization was carried out in a hexane/water reverse microemulsion system using sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as self-assembling template. Chemically synthesized PProDOT-IPBz2 was formed as thin nanobelts with high aspect ratio (3:100), and it was found to be soluble in common organic solvents. The electrochemical and electrochromic (EC) properties of PProDOT-IPBz2 films were studied and it was found that PProDOT-IPBz2 films showed high transparency at oxidized state (+1.0 V) and dark purple color formed at reduced state (-1.0 V). The color contrast of solution cast film was calculated to be 37% T at 550 nm, however electropolymerized PProDOT-IPBz2 film exhibited a color contrast of 48% at 550 nm with switching speed of ∼1 s, and the coloration efficiency was calculated to be 305 cm2C-1.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389